freebsd-dev/sys/dev/usb/input/ukbd.c
Oleksandr Tymoshenko 5163e77fad const-ify struct evdev_methods
Submitted by:	Vladimir Kondratiev <wulf@cicgroup.ru>
Suggested by:	hselasky
2016-10-03 17:20:34 +00:00

2308 lines
56 KiB
C

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* HID spec: http://www.usb.org/developers/devclass_docs/HID1_11.pdf
*/
#include "opt_compat.h"
#include "opt_kbd.h"
#include "opt_ukbd.h"
#include "opt_evdev.h"
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbhid.h>
#define USB_DEBUG_VAR ukbd_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/quirk/usb_quirk.h>
#ifdef EVDEV_SUPPORT
#include <dev/evdev/input.h>
#include <dev/evdev/evdev.h>
#endif
#include <sys/ioccom.h>
#include <sys/filio.h>
#include <sys/tty.h>
#include <sys/kbio.h>
#include <dev/kbd/kbdreg.h>
/* the initial key map, accent map and fkey strings */
#if defined(UKBD_DFLT_KEYMAP) && !defined(KLD_MODULE)
#define KBD_DFLT_KEYMAP
#include "ukbdmap.h"
#endif
/* the following file must be included after "ukbdmap.h" */
#include <dev/kbd/kbdtables.h>
#ifdef USB_DEBUG
static int ukbd_debug = 0;
static int ukbd_no_leds = 0;
static int ukbd_pollrate = 0;
static SYSCTL_NODE(_hw_usb, OID_AUTO, ukbd, CTLFLAG_RW, 0, "USB keyboard");
SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, debug, CTLFLAG_RWTUN,
&ukbd_debug, 0, "Debug level");
SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, no_leds, CTLFLAG_RWTUN,
&ukbd_no_leds, 0, "Disables setting of keyboard leds");
SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, pollrate, CTLFLAG_RWTUN,
&ukbd_pollrate, 0, "Force this polling rate, 1-1000Hz");
#endif
#define UKBD_EMULATE_ATSCANCODE 1
#define UKBD_DRIVER_NAME "ukbd"
#define UKBD_NMOD 8 /* units */
#define UKBD_NKEYCODE 6 /* units */
#define UKBD_IN_BUF_SIZE (2*(UKBD_NMOD + (2*UKBD_NKEYCODE))) /* bytes */
#define UKBD_IN_BUF_FULL ((UKBD_IN_BUF_SIZE / 2) - 1) /* bytes */
#define UKBD_NFKEY (sizeof(fkey_tab)/sizeof(fkey_tab[0])) /* units */
#define UKBD_BUFFER_SIZE 64 /* bytes */
struct ukbd_data {
uint16_t modifiers;
#define MOD_CONTROL_L 0x01
#define MOD_CONTROL_R 0x10
#define MOD_SHIFT_L 0x02
#define MOD_SHIFT_R 0x20
#define MOD_ALT_L 0x04
#define MOD_ALT_R 0x40
#define MOD_WIN_L 0x08
#define MOD_WIN_R 0x80
/* internal */
#define MOD_EJECT 0x0100
#define MOD_FN 0x0200
uint8_t keycode[UKBD_NKEYCODE];
};
enum {
UKBD_INTR_DT_0,
UKBD_INTR_DT_1,
UKBD_CTRL_LED,
UKBD_N_TRANSFER,
};
struct ukbd_softc {
keyboard_t sc_kbd;
keymap_t sc_keymap;
accentmap_t sc_accmap;
fkeytab_t sc_fkeymap[UKBD_NFKEY];
struct hid_location sc_loc_apple_eject;
struct hid_location sc_loc_apple_fn;
struct hid_location sc_loc_ctrl_l;
struct hid_location sc_loc_ctrl_r;
struct hid_location sc_loc_shift_l;
struct hid_location sc_loc_shift_r;
struct hid_location sc_loc_alt_l;
struct hid_location sc_loc_alt_r;
struct hid_location sc_loc_win_l;
struct hid_location sc_loc_win_r;
struct hid_location sc_loc_events;
struct hid_location sc_loc_numlock;
struct hid_location sc_loc_capslock;
struct hid_location sc_loc_scrolllock;
struct usb_callout sc_callout;
struct ukbd_data sc_ndata;
struct ukbd_data sc_odata;
struct thread *sc_poll_thread;
struct usb_device *sc_udev;
struct usb_interface *sc_iface;
struct usb_xfer *sc_xfer[UKBD_N_TRANSFER];
#ifdef EVDEV_SUPPORT
struct evdev_dev *sc_evdev;
#endif
sbintime_t sc_co_basetime;
int sc_delay;
uint32_t sc_ntime[UKBD_NKEYCODE];
uint32_t sc_otime[UKBD_NKEYCODE];
uint32_t sc_input[UKBD_IN_BUF_SIZE]; /* input buffer */
uint32_t sc_time_ms;
uint32_t sc_composed_char; /* composed char code, if non-zero */
#ifdef UKBD_EMULATE_ATSCANCODE
uint32_t sc_buffered_char[2];
#endif
uint32_t sc_flags; /* flags */
#define UKBD_FLAG_COMPOSE 0x00000001
#define UKBD_FLAG_POLLING 0x00000002
#define UKBD_FLAG_SET_LEDS 0x00000004
#define UKBD_FLAG_ATTACHED 0x00000010
#define UKBD_FLAG_GONE 0x00000020
#define UKBD_FLAG_HID_MASK 0x003fffc0
#define UKBD_FLAG_APPLE_EJECT 0x00000040
#define UKBD_FLAG_APPLE_FN 0x00000080
#define UKBD_FLAG_APPLE_SWAP 0x00000100
#define UKBD_FLAG_CTRL_L 0x00000400
#define UKBD_FLAG_CTRL_R 0x00000800
#define UKBD_FLAG_SHIFT_L 0x00001000
#define UKBD_FLAG_SHIFT_R 0x00002000
#define UKBD_FLAG_ALT_L 0x00004000
#define UKBD_FLAG_ALT_R 0x00008000
#define UKBD_FLAG_WIN_L 0x00010000
#define UKBD_FLAG_WIN_R 0x00020000
#define UKBD_FLAG_EVENTS 0x00040000
#define UKBD_FLAG_NUMLOCK 0x00080000
#define UKBD_FLAG_CAPSLOCK 0x00100000
#define UKBD_FLAG_SCROLLLOCK 0x00200000
int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */
int sc_state; /* shift/lock key state */
int sc_accents; /* accent key index (> 0) */
int sc_polling; /* polling recursion count */
int sc_led_size;
int sc_kbd_size;
uint16_t sc_inputs;
uint16_t sc_inputhead;
uint16_t sc_inputtail;
uint16_t sc_modifiers;
uint8_t sc_leds; /* store for async led requests */
uint8_t sc_iface_index;
uint8_t sc_iface_no;
uint8_t sc_id_apple_eject;
uint8_t sc_id_apple_fn;
uint8_t sc_id_ctrl_l;
uint8_t sc_id_ctrl_r;
uint8_t sc_id_shift_l;
uint8_t sc_id_shift_r;
uint8_t sc_id_alt_l;
uint8_t sc_id_alt_r;
uint8_t sc_id_win_l;
uint8_t sc_id_win_r;
uint8_t sc_id_event;
uint8_t sc_id_numlock;
uint8_t sc_id_capslock;
uint8_t sc_id_scrolllock;
uint8_t sc_id_events;
uint8_t sc_kbd_id;
uint8_t sc_buffer[UKBD_BUFFER_SIZE];
};
#define KEY_ERROR 0x01
#define KEY_PRESS 0
#define KEY_RELEASE 0x400
#define KEY_INDEX(c) ((c) & 0xFF)
#define SCAN_PRESS 0
#define SCAN_RELEASE 0x80
#define SCAN_PREFIX_E0 0x100
#define SCAN_PREFIX_E1 0x200
#define SCAN_PREFIX_CTL 0x400
#define SCAN_PREFIX_SHIFT 0x800
#define SCAN_PREFIX (SCAN_PREFIX_E0 | SCAN_PREFIX_E1 | \
SCAN_PREFIX_CTL | SCAN_PREFIX_SHIFT)
#define SCAN_CHAR(c) ((c) & 0x7f)
#define UKBD_LOCK() USB_MTX_LOCK(&Giant)
#define UKBD_UNLOCK() USB_MTX_UNLOCK(&Giant)
#define UKBD_LOCK_ASSERT() USB_MTX_ASSERT(&Giant, MA_OWNED)
struct ukbd_mods {
uint32_t mask, key;
};
static const struct ukbd_mods ukbd_mods[UKBD_NMOD] = {
{MOD_CONTROL_L, 0xe0},
{MOD_CONTROL_R, 0xe4},
{MOD_SHIFT_L, 0xe1},
{MOD_SHIFT_R, 0xe5},
{MOD_ALT_L, 0xe2},
{MOD_ALT_R, 0xe6},
{MOD_WIN_L, 0xe3},
{MOD_WIN_R, 0xe7},
};
#define NN 0 /* no translation */
/*
* Translate USB keycodes to AT keyboard scancodes.
*/
/*
* FIXME: Mac USB keyboard generates:
* 0x53: keypad NumLock/Clear
* 0x66: Power
* 0x67: keypad =
* 0x68: F13
* 0x69: F14
* 0x6a: F15
*
* USB Apple Keyboard JIS generates:
* 0x90: Kana
* 0x91: Eisu
*/
static const uint8_t ukbd_trtab[256] = {
0, 0, 0, 0, 30, 48, 46, 32, /* 00 - 07 */
18, 33, 34, 35, 23, 36, 37, 38, /* 08 - 0F */
50, 49, 24, 25, 16, 19, 31, 20, /* 10 - 17 */
22, 47, 17, 45, 21, 44, 2, 3, /* 18 - 1F */
4, 5, 6, 7, 8, 9, 10, 11, /* 20 - 27 */
28, 1, 14, 15, 57, 12, 13, 26, /* 28 - 2F */
27, 43, 43, 39, 40, 41, 51, 52, /* 30 - 37 */
53, 58, 59, 60, 61, 62, 63, 64, /* 38 - 3F */
65, 66, 67, 68, 87, 88, 92, 70, /* 40 - 47 */
104, 102, 94, 96, 103, 99, 101, 98, /* 48 - 4F */
97, 100, 95, 69, 91, 55, 74, 78,/* 50 - 57 */
89, 79, 80, 81, 75, 76, 77, 71, /* 58 - 5F */
72, 73, 82, 83, 86, 107, 122, NN, /* 60 - 67 */
NN, NN, NN, NN, NN, NN, NN, NN, /* 68 - 6F */
NN, NN, NN, NN, 115, 108, 111, 113, /* 70 - 77 */
109, 110, 112, 118, 114, 116, 117, 119, /* 78 - 7F */
121, 120, NN, NN, NN, NN, NN, 123, /* 80 - 87 */
124, 125, 126, 127, 128, NN, NN, NN, /* 88 - 8F */
129, 130, NN, NN, NN, NN, NN, NN, /* 90 - 97 */
NN, NN, NN, NN, NN, NN, NN, NN, /* 98 - 9F */
NN, NN, NN, NN, NN, NN, NN, NN, /* A0 - A7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* A8 - AF */
NN, NN, NN, NN, NN, NN, NN, NN, /* B0 - B7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* B8 - BF */
NN, NN, NN, NN, NN, NN, NN, NN, /* C0 - C7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* C8 - CF */
NN, NN, NN, NN, NN, NN, NN, NN, /* D0 - D7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* D8 - DF */
29, 42, 56, 105, 90, 54, 93, 106, /* E0 - E7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* E8 - EF */
NN, NN, NN, NN, NN, NN, NN, NN, /* F0 - F7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* F8 - FF */
};
static const uint8_t ukbd_boot_desc[] = {
0x05, 0x01, 0x09, 0x06, 0xa1,
0x01, 0x05, 0x07, 0x19, 0xe0,
0x29, 0xe7, 0x15, 0x00, 0x25,
0x01, 0x75, 0x01, 0x95, 0x08,
0x81, 0x02, 0x95, 0x01, 0x75,
0x08, 0x81, 0x01, 0x95, 0x03,
0x75, 0x01, 0x05, 0x08, 0x19,
0x01, 0x29, 0x03, 0x91, 0x02,
0x95, 0x05, 0x75, 0x01, 0x91,
0x01, 0x95, 0x06, 0x75, 0x08,
0x15, 0x00, 0x26, 0xff, 0x00,
0x05, 0x07, 0x19, 0x00, 0x2a,
0xff, 0x00, 0x81, 0x00, 0xc0
};
/* prototypes */
static void ukbd_timeout(void *);
static void ukbd_set_leds(struct ukbd_softc *, uint8_t);
static int ukbd_set_typematic(keyboard_t *, int);
#ifdef UKBD_EMULATE_ATSCANCODE
static uint32_t ukbd_atkeycode(int, int);
static int ukbd_key2scan(struct ukbd_softc *, int, int, int);
#endif
static uint32_t ukbd_read_char(keyboard_t *, int);
static void ukbd_clear_state(keyboard_t *);
static int ukbd_ioctl(keyboard_t *, u_long, caddr_t);
static int ukbd_enable(keyboard_t *);
static int ukbd_disable(keyboard_t *);
static void ukbd_interrupt(struct ukbd_softc *);
static void ukbd_event_keyinput(struct ukbd_softc *);
static device_probe_t ukbd_probe;
static device_attach_t ukbd_attach;
static device_detach_t ukbd_detach;
static device_resume_t ukbd_resume;
#ifdef EVDEV_SUPPORT
static const struct evdev_methods ukbd_evdev_methods = {
.ev_event = evdev_ev_kbd_event,
};
#endif
static uint8_t
ukbd_any_key_pressed(struct ukbd_softc *sc)
{
uint8_t i;
uint8_t j;
for (j = i = 0; i < UKBD_NKEYCODE; i++)
j |= sc->sc_odata.keycode[i];
return (j ? 1 : 0);
}
static void
ukbd_start_timer(struct ukbd_softc *sc)
{
sbintime_t delay, prec;
delay = SBT_1MS * sc->sc_delay;
sc->sc_co_basetime += delay;
/* This is rarely called, so prefer precision to efficiency. */
prec = qmin(delay >> 7, SBT_1MS * 10);
usb_callout_reset_sbt(&sc->sc_callout, sc->sc_co_basetime, prec,
ukbd_timeout, sc, C_ABSOLUTE);
}
static void
ukbd_put_key(struct ukbd_softc *sc, uint32_t key)
{
UKBD_LOCK_ASSERT();
DPRINTF("0x%02x (%d) %s\n", key, key,
(key & KEY_RELEASE) ? "released" : "pressed");
#ifdef EVDEV_SUPPORT
if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL) {
evdev_push_event(sc->sc_evdev, EV_KEY,
evdev_hid2key(KEY_INDEX(key)), !(key & KEY_RELEASE));
evdev_sync(sc->sc_evdev);
}
#endif
if (sc->sc_inputs < UKBD_IN_BUF_SIZE) {
sc->sc_input[sc->sc_inputtail] = key;
++(sc->sc_inputs);
++(sc->sc_inputtail);
if (sc->sc_inputtail >= UKBD_IN_BUF_SIZE) {
sc->sc_inputtail = 0;
}
} else {
DPRINTF("input buffer is full\n");
}
}
static void
ukbd_do_poll(struct ukbd_softc *sc, uint8_t wait)
{
UKBD_LOCK_ASSERT();
KASSERT((sc->sc_flags & UKBD_FLAG_POLLING) != 0,
("ukbd_do_poll called when not polling\n"));
DPRINTFN(2, "polling\n");
if (USB_IN_POLLING_MODE_FUNC() == 0) {
/*
* In this context the kernel is polling for input,
* but the USB subsystem works in normal interrupt-driven
* mode, so we just wait on the USB threads to do the job.
* Note that we currently hold the Giant, but it's also used
* as the transfer mtx, so we must release it while waiting.
*/
while (sc->sc_inputs == 0) {
/*
* Give USB threads a chance to run. Note that
* kern_yield performs DROP_GIANT + PICKUP_GIANT.
*/
kern_yield(PRI_UNCHANGED);
if (!wait)
break;
}
return;
}
while (sc->sc_inputs == 0) {
usbd_transfer_poll(sc->sc_xfer, UKBD_N_TRANSFER);
/* Delay-optimised support for repetition of keys */
if (ukbd_any_key_pressed(sc)) {
/* a key is pressed - need timekeeping */
DELAY(1000);
/* 1 millisecond has passed */
sc->sc_time_ms += 1;
}
ukbd_interrupt(sc);
if (!wait)
break;
}
}
static int32_t
ukbd_get_key(struct ukbd_softc *sc, uint8_t wait)
{
int32_t c;
UKBD_LOCK_ASSERT();
KASSERT((USB_IN_POLLING_MODE_FUNC() == 0) ||
(sc->sc_flags & UKBD_FLAG_POLLING) != 0,
("not polling in kdb or panic\n"));
if (sc->sc_inputs == 0 &&
(sc->sc_flags & UKBD_FLAG_GONE) == 0) {
/* start transfer, if not already started */
usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]);
usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]);
}
if (sc->sc_flags & UKBD_FLAG_POLLING)
ukbd_do_poll(sc, wait);
if (sc->sc_inputs == 0) {
c = -1;
} else {
c = sc->sc_input[sc->sc_inputhead];
--(sc->sc_inputs);
++(sc->sc_inputhead);
if (sc->sc_inputhead >= UKBD_IN_BUF_SIZE) {
sc->sc_inputhead = 0;
}
}
return (c);
}
static void
ukbd_interrupt(struct ukbd_softc *sc)
{
struct timeval ctv;
uint32_t n_mod;
uint32_t o_mod;
uint32_t now = sc->sc_time_ms;
int32_t dtime;
uint8_t key;
uint8_t i;
uint8_t j;
UKBD_LOCK_ASSERT();
if (sc->sc_ndata.keycode[0] == KEY_ERROR)
return;
n_mod = sc->sc_ndata.modifiers;
o_mod = sc->sc_odata.modifiers;
if (n_mod != o_mod) {
for (i = 0; i < UKBD_NMOD; i++) {
if ((n_mod & ukbd_mods[i].mask) !=
(o_mod & ukbd_mods[i].mask)) {
ukbd_put_key(sc, ukbd_mods[i].key |
((n_mod & ukbd_mods[i].mask) ?
KEY_PRESS : KEY_RELEASE));
}
}
}
/* Check for released keys. */
for (i = 0; i < UKBD_NKEYCODE; i++) {
key = sc->sc_odata.keycode[i];
if (key == 0) {
continue;
}
for (j = 0; j < UKBD_NKEYCODE; j++) {
if (sc->sc_ndata.keycode[j] == 0) {
continue;
}
if (key == sc->sc_ndata.keycode[j]) {
goto rfound;
}
}
ukbd_put_key(sc, key | KEY_RELEASE);
rfound: ;
}
/* Check for pressed keys. */
for (i = 0; i < UKBD_NKEYCODE; i++) {
key = sc->sc_ndata.keycode[i];
if (key == 0) {
continue;
}
sc->sc_ntime[i] = now + sc->sc_kbd.kb_delay1;
for (j = 0; j < UKBD_NKEYCODE; j++) {
if (sc->sc_odata.keycode[j] == 0) {
continue;
}
if (key == sc->sc_odata.keycode[j]) {
/* key is still pressed */
sc->sc_ntime[i] = sc->sc_otime[j];
dtime = (sc->sc_otime[j] - now);
if (dtime > 0) {
/* time has not elapsed */
goto pfound;
}
sc->sc_ntime[i] = now + sc->sc_kbd.kb_delay2;
break;
}
}
if (j < UKBD_NKEYCODE) {
/* Old key repeating. */
sc->sc_delay = sc->sc_kbd.kb_delay2;
} else {
/* New key. */
microuptime(&ctv);
sc->sc_co_basetime = tvtosbt(ctv);
sc->sc_delay = sc->sc_kbd.kb_delay1;
}
ukbd_put_key(sc, key | KEY_PRESS);
/*
* If any other key is presently down, force its repeat to be
* well in the future (100s). This makes the last key to be
* pressed do the autorepeat.
*/
for (j = 0; j != UKBD_NKEYCODE; j++) {
if (j != i)
sc->sc_ntime[j] = now + (100 * 1000);
}
pfound: ;
}
sc->sc_odata = sc->sc_ndata;
memcpy(sc->sc_otime, sc->sc_ntime, sizeof(sc->sc_otime));
ukbd_event_keyinput(sc);
}
static void
ukbd_event_keyinput(struct ukbd_softc *sc)
{
int c;
UKBD_LOCK_ASSERT();
if ((sc->sc_flags & UKBD_FLAG_POLLING) != 0)
return;
if (sc->sc_inputs == 0)
return;
if (KBD_IS_ACTIVE(&sc->sc_kbd) &&
KBD_IS_BUSY(&sc->sc_kbd)) {
/* let the callback function process the input */
(sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT,
sc->sc_kbd.kb_callback.kc_arg);
} else {
/* read and discard the input, no one is waiting for it */
do {
c = ukbd_read_char(&sc->sc_kbd, 0);
} while (c != NOKEY);
}
}
static void
ukbd_timeout(void *arg)
{
struct ukbd_softc *sc = arg;
UKBD_LOCK_ASSERT();
sc->sc_time_ms += sc->sc_delay;
sc->sc_delay = 0;
ukbd_interrupt(sc);
/* Make sure any leftover key events gets read out */
ukbd_event_keyinput(sc);
if (ukbd_any_key_pressed(sc) || (sc->sc_inputs != 0)) {
ukbd_start_timer(sc);
}
}
static uint8_t
ukbd_apple_fn(uint8_t keycode) {
switch (keycode) {
case 0x28: return 0x49; /* RETURN -> INSERT */
case 0x2a: return 0x4c; /* BACKSPACE -> DEL */
case 0x50: return 0x4a; /* LEFT ARROW -> HOME */
case 0x4f: return 0x4d; /* RIGHT ARROW -> END */
case 0x52: return 0x4b; /* UP ARROW -> PGUP */
case 0x51: return 0x4e; /* DOWN ARROW -> PGDN */
default: return keycode;
}
}
static uint8_t
ukbd_apple_swap(uint8_t keycode) {
switch (keycode) {
case 0x35: return 0x64;
case 0x64: return 0x35;
default: return keycode;
}
}
static void
ukbd_intr_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct ukbd_softc *sc = usbd_xfer_softc(xfer);
struct usb_page_cache *pc;
uint8_t i;
uint8_t offset;
uint8_t id;
int len;
UKBD_LOCK_ASSERT();
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
pc = usbd_xfer_get_frame(xfer, 0);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTF("actlen=%d bytes\n", len);
if (len == 0) {
DPRINTF("zero length data\n");
goto tr_setup;
}
if (sc->sc_kbd_id != 0) {
/* check and remove HID ID byte */
usbd_copy_out(pc, 0, &id, 1);
offset = 1;
len--;
if (len == 0) {
DPRINTF("zero length data\n");
goto tr_setup;
}
} else {
offset = 0;
id = 0;
}
if (len > UKBD_BUFFER_SIZE)
len = UKBD_BUFFER_SIZE;
/* get data */
usbd_copy_out(pc, offset, sc->sc_buffer, len);
/* clear temporary storage */
memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata));
/* scan through HID data */
if ((sc->sc_flags & UKBD_FLAG_APPLE_EJECT) &&
(id == sc->sc_id_apple_eject)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_eject))
sc->sc_modifiers |= MOD_EJECT;
else
sc->sc_modifiers &= ~MOD_EJECT;
}
if ((sc->sc_flags & UKBD_FLAG_APPLE_FN) &&
(id == sc->sc_id_apple_fn)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_fn))
sc->sc_modifiers |= MOD_FN;
else
sc->sc_modifiers &= ~MOD_FN;
}
if ((sc->sc_flags & UKBD_FLAG_CTRL_L) &&
(id == sc->sc_id_ctrl_l)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_ctrl_l))
sc-> sc_modifiers |= MOD_CONTROL_L;
else
sc-> sc_modifiers &= ~MOD_CONTROL_L;
}
if ((sc->sc_flags & UKBD_FLAG_CTRL_R) &&
(id == sc->sc_id_ctrl_r)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_ctrl_r))
sc->sc_modifiers |= MOD_CONTROL_R;
else
sc->sc_modifiers &= ~MOD_CONTROL_R;
}
if ((sc->sc_flags & UKBD_FLAG_SHIFT_L) &&
(id == sc->sc_id_shift_l)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_shift_l))
sc->sc_modifiers |= MOD_SHIFT_L;
else
sc->sc_modifiers &= ~MOD_SHIFT_L;
}
if ((sc->sc_flags & UKBD_FLAG_SHIFT_R) &&
(id == sc->sc_id_shift_r)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_shift_r))
sc->sc_modifiers |= MOD_SHIFT_R;
else
sc->sc_modifiers &= ~MOD_SHIFT_R;
}
if ((sc->sc_flags & UKBD_FLAG_ALT_L) &&
(id == sc->sc_id_alt_l)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_alt_l))
sc->sc_modifiers |= MOD_ALT_L;
else
sc->sc_modifiers &= ~MOD_ALT_L;
}
if ((sc->sc_flags & UKBD_FLAG_ALT_R) &&
(id == sc->sc_id_alt_r)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_alt_r))
sc->sc_modifiers |= MOD_ALT_R;
else
sc->sc_modifiers &= ~MOD_ALT_R;
}
if ((sc->sc_flags & UKBD_FLAG_WIN_L) &&
(id == sc->sc_id_win_l)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_win_l))
sc->sc_modifiers |= MOD_WIN_L;
else
sc->sc_modifiers &= ~MOD_WIN_L;
}
if ((sc->sc_flags & UKBD_FLAG_WIN_R) &&
(id == sc->sc_id_win_r)) {
if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_win_r))
sc->sc_modifiers |= MOD_WIN_R;
else
sc->sc_modifiers &= ~MOD_WIN_R;
}
sc->sc_ndata.modifiers = sc->sc_modifiers;
if ((sc->sc_flags & UKBD_FLAG_EVENTS) &&
(id == sc->sc_id_events)) {
i = sc->sc_loc_events.count;
if (i > UKBD_NKEYCODE)
i = UKBD_NKEYCODE;
if (i > len)
i = len;
while (i--) {
sc->sc_ndata.keycode[i] =
hid_get_data(sc->sc_buffer + i, len - i,
&sc->sc_loc_events);
}
}
#ifdef USB_DEBUG
DPRINTF("modifiers = 0x%04x\n", (int)sc->sc_modifiers);
for (i = 0; i < UKBD_NKEYCODE; i++) {
if (sc->sc_ndata.keycode[i]) {
DPRINTF("[%d] = 0x%02x\n",
(int)i, (int)sc->sc_ndata.keycode[i]);
}
}
#endif
if (sc->sc_modifiers & MOD_FN) {
for (i = 0; i < UKBD_NKEYCODE; i++) {
sc->sc_ndata.keycode[i] =
ukbd_apple_fn(sc->sc_ndata.keycode[i]);
}
}
if (sc->sc_flags & UKBD_FLAG_APPLE_SWAP) {
for (i = 0; i < UKBD_NKEYCODE; i++) {
sc->sc_ndata.keycode[i] =
ukbd_apple_swap(sc->sc_ndata.keycode[i]);
}
}
ukbd_interrupt(sc);
if (ukbd_any_key_pressed(sc) != 0) {
ukbd_start_timer(sc);
}
case USB_ST_SETUP:
tr_setup:
if (sc->sc_inputs < UKBD_IN_BUF_FULL) {
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
} else {
DPRINTF("input queue is full!\n");
}
break;
default: /* Error */
DPRINTF("error=%s\n", usbd_errstr(error));
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
static void
ukbd_set_leds_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct ukbd_softc *sc = usbd_xfer_softc(xfer);
struct usb_device_request req;
struct usb_page_cache *pc;
uint8_t id;
uint8_t any;
int len;
UKBD_LOCK_ASSERT();
#ifdef USB_DEBUG
if (ukbd_no_leds)
return;
#endif
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
case USB_ST_SETUP:
if (!(sc->sc_flags & UKBD_FLAG_SET_LEDS))
break;
sc->sc_flags &= ~UKBD_FLAG_SET_LEDS;
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_SET_REPORT;
USETW2(req.wValue, UHID_OUTPUT_REPORT, 0);
req.wIndex[0] = sc->sc_iface_no;
req.wIndex[1] = 0;
req.wLength[1] = 0;
memset(sc->sc_buffer, 0, UKBD_BUFFER_SIZE);
id = 0;
any = 0;
/* Assumption: All led bits must be in the same ID. */
if (sc->sc_flags & UKBD_FLAG_NUMLOCK) {
if (sc->sc_leds & NLKED) {
hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1,
&sc->sc_loc_numlock, 1);
}
id = sc->sc_id_numlock;
any = 1;
}
if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK) {
if (sc->sc_leds & SLKED) {
hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1,
&sc->sc_loc_scrolllock, 1);
}
id = sc->sc_id_scrolllock;
any = 1;
}
if (sc->sc_flags & UKBD_FLAG_CAPSLOCK) {
if (sc->sc_leds & CLKED) {
hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1,
&sc->sc_loc_capslock, 1);
}
id = sc->sc_id_capslock;
any = 1;
}
/* if no leds, nothing to do */
if (!any)
break;
#ifdef EVDEV_SUPPORT
if (sc->sc_evdev != NULL)
evdev_push_leds(sc->sc_evdev, sc->sc_leds);
#endif
/* range check output report length */
len = sc->sc_led_size;
if (len > (UKBD_BUFFER_SIZE - 1))
len = (UKBD_BUFFER_SIZE - 1);
/* check if we need to prefix an ID byte */
sc->sc_buffer[0] = id;
pc = usbd_xfer_get_frame(xfer, 1);
if (id != 0) {
len++;
usbd_copy_in(pc, 0, sc->sc_buffer, len);
} else {
usbd_copy_in(pc, 0, sc->sc_buffer + 1, len);
}
req.wLength[0] = len;
usbd_xfer_set_frame_len(xfer, 1, len);
DPRINTF("len=%d, id=%d\n", len, id);
/* setup control request last */
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
/* start data transfer */
usbd_xfer_set_frames(xfer, 2);
usbd_transfer_submit(xfer);
break;
default: /* Error */
DPRINTFN(1, "error=%s\n", usbd_errstr(error));
break;
}
}
static const struct usb_config ukbd_config[UKBD_N_TRANSFER] = {
[UKBD_INTR_DT_0] = {
.type = UE_INTERRUPT,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.bufsize = 0, /* use wMaxPacketSize */
.callback = &ukbd_intr_callback,
},
[UKBD_INTR_DT_1] = {
.type = UE_INTERRUPT,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.bufsize = 0, /* use wMaxPacketSize */
.callback = &ukbd_intr_callback,
},
[UKBD_CTRL_LED] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request) + UKBD_BUFFER_SIZE,
.callback = &ukbd_set_leds_callback,
.timeout = 1000, /* 1 second */
},
};
/* A match on these entries will load ukbd */
static const STRUCT_USB_HOST_ID __used ukbd_devs[] = {
{USB_IFACE_CLASS(UICLASS_HID),
USB_IFACE_SUBCLASS(UISUBCLASS_BOOT),
USB_IFACE_PROTOCOL(UIPROTO_BOOT_KEYBOARD),},
};
static int
ukbd_probe(device_t dev)
{
keyboard_switch_t *sw = kbd_get_switch(UKBD_DRIVER_NAME);
struct usb_attach_arg *uaa = device_get_ivars(dev);
void *d_ptr;
int error;
uint16_t d_len;
UKBD_LOCK_ASSERT();
DPRINTFN(11, "\n");
if (sw == NULL) {
return (ENXIO);
}
if (uaa->usb_mode != USB_MODE_HOST) {
return (ENXIO);
}
if (uaa->info.bInterfaceClass != UICLASS_HID)
return (ENXIO);
if (usb_test_quirk(uaa, UQ_KBD_IGNORE))
return (ENXIO);
if ((uaa->info.bInterfaceSubClass == UISUBCLASS_BOOT) &&
(uaa->info.bInterfaceProtocol == UIPROTO_BOOT_KEYBOARD))
return (BUS_PROBE_DEFAULT);
error = usbd_req_get_hid_desc(uaa->device, NULL,
&d_ptr, &d_len, M_TEMP, uaa->info.bIfaceIndex);
if (error)
return (ENXIO);
if (hid_is_keyboard(d_ptr, d_len)) {
if (hid_is_mouse(d_ptr, d_len)) {
/*
* NOTE: We currently don't support USB mouse
* and USB keyboard on the same USB endpoint.
* Let "ums" driver win.
*/
error = ENXIO;
} else {
error = BUS_PROBE_DEFAULT;
}
} else {
error = ENXIO;
}
free(d_ptr, M_TEMP);
return (error);
}
static void
ukbd_parse_hid(struct ukbd_softc *sc, const uint8_t *ptr, uint32_t len)
{
uint32_t flags;
/* reset detected bits */
sc->sc_flags &= ~UKBD_FLAG_HID_MASK;
/* check if there is an ID byte */
sc->sc_kbd_size = hid_report_size(ptr, len,
hid_input, &sc->sc_kbd_id);
/* investigate if this is an Apple Keyboard */
if (hid_locate(ptr, len,
HID_USAGE2(HUP_CONSUMER, HUG_APPLE_EJECT),
hid_input, 0, &sc->sc_loc_apple_eject, &flags,
&sc->sc_id_apple_eject)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_APPLE_EJECT |
UKBD_FLAG_APPLE_SWAP;
DPRINTFN(1, "Found Apple eject-key\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(0xFFFF, 0x0003),
hid_input, 0, &sc->sc_loc_apple_fn, &flags,
&sc->sc_id_apple_fn)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_APPLE_FN;
DPRINTFN(1, "Found Apple FN-key\n");
}
/* figure out some keys */
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE0),
hid_input, 0, &sc->sc_loc_ctrl_l, &flags,
&sc->sc_id_ctrl_l)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_CTRL_L;
DPRINTFN(1, "Found left control\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE4),
hid_input, 0, &sc->sc_loc_ctrl_r, &flags,
&sc->sc_id_ctrl_r)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_CTRL_R;
DPRINTFN(1, "Found right control\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE1),
hid_input, 0, &sc->sc_loc_shift_l, &flags,
&sc->sc_id_shift_l)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_SHIFT_L;
DPRINTFN(1, "Found left shift\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE5),
hid_input, 0, &sc->sc_loc_shift_r, &flags,
&sc->sc_id_shift_r)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_SHIFT_R;
DPRINTFN(1, "Found right shift\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE2),
hid_input, 0, &sc->sc_loc_alt_l, &flags,
&sc->sc_id_alt_l)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_ALT_L;
DPRINTFN(1, "Found left alt\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE6),
hid_input, 0, &sc->sc_loc_alt_r, &flags,
&sc->sc_id_alt_r)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_ALT_R;
DPRINTFN(1, "Found right alt\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE3),
hid_input, 0, &sc->sc_loc_win_l, &flags,
&sc->sc_id_win_l)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_WIN_L;
DPRINTFN(1, "Found left GUI\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0xE7),
hid_input, 0, &sc->sc_loc_win_r, &flags,
&sc->sc_id_win_r)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_WIN_R;
DPRINTFN(1, "Found right GUI\n");
}
/* figure out event buffer */
if (hid_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0x00),
hid_input, 0, &sc->sc_loc_events, &flags,
&sc->sc_id_events)) {
if (flags & HIO_VARIABLE) {
DPRINTFN(1, "Ignoring keyboard event control\n");
} else {
sc->sc_flags |= UKBD_FLAG_EVENTS;
DPRINTFN(1, "Found keyboard event array\n");
}
}
/* figure out leds on keyboard */
sc->sc_led_size = hid_report_size(ptr, len,
hid_output, NULL);
if (hid_locate(ptr, len,
HID_USAGE2(HUP_LEDS, 0x01),
hid_output, 0, &sc->sc_loc_numlock, &flags,
&sc->sc_id_numlock)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_NUMLOCK;
DPRINTFN(1, "Found keyboard numlock\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_LEDS, 0x02),
hid_output, 0, &sc->sc_loc_capslock, &flags,
&sc->sc_id_capslock)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_CAPSLOCK;
DPRINTFN(1, "Found keyboard capslock\n");
}
if (hid_locate(ptr, len,
HID_USAGE2(HUP_LEDS, 0x03),
hid_output, 0, &sc->sc_loc_scrolllock, &flags,
&sc->sc_id_scrolllock)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= UKBD_FLAG_SCROLLLOCK;
DPRINTFN(1, "Found keyboard scrolllock\n");
}
}
static int
ukbd_attach(device_t dev)
{
struct ukbd_softc *sc = device_get_softc(dev);
struct usb_attach_arg *uaa = device_get_ivars(dev);
int unit = device_get_unit(dev);
keyboard_t *kbd = &sc->sc_kbd;
void *hid_ptr = NULL;
usb_error_t err;
uint16_t n;
uint16_t hid_len;
#ifdef EVDEV_SUPPORT
struct evdev_dev *evdev;
int i;
#endif
#ifdef USB_DEBUG
int rate;
#endif
UKBD_LOCK_ASSERT();
kbd_init_struct(kbd, UKBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0);
kbd->kb_data = (void *)sc;
device_set_usb_desc(dev);
sc->sc_udev = uaa->device;
sc->sc_iface = uaa->iface;
sc->sc_iface_index = uaa->info.bIfaceIndex;
sc->sc_iface_no = uaa->info.bIfaceNum;
sc->sc_mode = K_XLATE;
usb_callout_init_mtx(&sc->sc_callout, &Giant, 0);
#ifdef UKBD_NO_POLLING
err = usbd_transfer_setup(uaa->device,
&uaa->info.bIfaceIndex, sc->sc_xfer, ukbd_config,
UKBD_N_TRANSFER, sc, &Giant);
#else
/*
* Setup the UKBD USB transfers one by one, so they are memory
* independent which allows for handling panics triggered by
* the keyboard driver itself, typically via CTRL+ALT+ESC
* sequences. Or if the USB keyboard driver was processing a
* key at the moment of panic.
*/
for (n = 0; n != UKBD_N_TRANSFER; n++) {
err = usbd_transfer_setup(uaa->device,
&uaa->info.bIfaceIndex, sc->sc_xfer + n, ukbd_config + n,
1, sc, &Giant);
if (err)
break;
}
#endif
if (err) {
DPRINTF("error=%s\n", usbd_errstr(err));
goto detach;
}
/* setup default keyboard maps */
sc->sc_keymap = key_map;
sc->sc_accmap = accent_map;
for (n = 0; n < UKBD_NFKEY; n++) {
sc->sc_fkeymap[n] = fkey_tab[n];
}
kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap,
sc->sc_fkeymap, UKBD_NFKEY);
KBD_FOUND_DEVICE(kbd);
ukbd_clear_state(kbd);
/*
* FIXME: set the initial value for lock keys in "sc_state"
* according to the BIOS data?
*/
KBD_PROBE_DONE(kbd);
/* get HID descriptor */
err = usbd_req_get_hid_desc(uaa->device, NULL, &hid_ptr,
&hid_len, M_TEMP, uaa->info.bIfaceIndex);
if (err == 0) {
DPRINTF("Parsing HID descriptor of %d bytes\n",
(int)hid_len);
ukbd_parse_hid(sc, hid_ptr, hid_len);
free(hid_ptr, M_TEMP);
}
/* check if we should use the boot protocol */
if (usb_test_quirk(uaa, UQ_KBD_BOOTPROTO) ||
(err != 0) || (!(sc->sc_flags & UKBD_FLAG_EVENTS))) {
DPRINTF("Forcing boot protocol\n");
err = usbd_req_set_protocol(sc->sc_udev, NULL,
sc->sc_iface_index, 0);
if (err != 0) {
DPRINTF("Set protocol error=%s (ignored)\n",
usbd_errstr(err));
}
ukbd_parse_hid(sc, ukbd_boot_desc, sizeof(ukbd_boot_desc));
}
/* ignore if SETIDLE fails, hence it is not crucial */
usbd_req_set_idle(sc->sc_udev, NULL, sc->sc_iface_index, 0, 0);
ukbd_ioctl(kbd, KDSETLED, (caddr_t)&sc->sc_state);
KBD_INIT_DONE(kbd);
if (kbd_register(kbd) < 0) {
goto detach;
}
KBD_CONFIG_DONE(kbd);
ukbd_enable(kbd);
#ifdef KBD_INSTALL_CDEV
if (kbd_attach(kbd)) {
goto detach;
}
#endif
#ifdef EVDEV_SUPPORT
evdev = evdev_alloc();
evdev_set_name(evdev, device_get_desc(dev));
evdev_set_phys(evdev, device_get_nameunit(dev));
evdev_set_id(evdev, BUS_USB, uaa->info.idVendor,
uaa->info.idProduct, 0);
evdev_set_serial(evdev, usb_get_serial(uaa->device));
evdev_set_methods(evdev, kbd, &ukbd_evdev_methods);
evdev_support_event(evdev, EV_SYN);
evdev_support_event(evdev, EV_KEY);
if (sc->sc_flags & (UKBD_FLAG_NUMLOCK | UKBD_FLAG_CAPSLOCK |
UKBD_FLAG_SCROLLLOCK))
evdev_support_event(evdev, EV_LED);
evdev_support_event(evdev, EV_REP);
for (i = 0x00; i <= 0xFF; i++)
evdev_support_key(evdev, evdev_hid2key(i));
if (sc->sc_flags & UKBD_FLAG_NUMLOCK)
evdev_support_led(evdev, LED_NUML);
if (sc->sc_flags & UKBD_FLAG_CAPSLOCK)
evdev_support_led(evdev, LED_CAPSL);
if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK)
evdev_support_led(evdev, LED_SCROLLL);
if (evdev_register(evdev))
evdev_free(evdev);
else
sc->sc_evdev = evdev;
#endif
sc->sc_flags |= UKBD_FLAG_ATTACHED;
if (bootverbose) {
genkbd_diag(kbd, bootverbose);
}
#ifdef USB_DEBUG
/* check for polling rate override */
rate = ukbd_pollrate;
if (rate > 0) {
if (rate > 1000)
rate = 1;
else
rate = 1000 / rate;
/* set new polling interval in ms */
usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_0], rate);
usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_1], rate);
}
#endif
/* start the keyboard */
usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]);
usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]);
return (0); /* success */
detach:
ukbd_detach(dev);
return (ENXIO); /* error */
}
static int
ukbd_detach(device_t dev)
{
struct ukbd_softc *sc = device_get_softc(dev);
int error;
UKBD_LOCK_ASSERT();
DPRINTF("\n");
sc->sc_flags |= UKBD_FLAG_GONE;
usb_callout_stop(&sc->sc_callout);
/* kill any stuck keys */
if (sc->sc_flags & UKBD_FLAG_ATTACHED) {
/* stop receiving events from the USB keyboard */
usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_0]);
usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_1]);
/* release all leftover keys, if any */
memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata));
/* process releasing of all keys */
ukbd_interrupt(sc);
}
ukbd_disable(&sc->sc_kbd);
#ifdef KBD_INSTALL_CDEV
if (sc->sc_flags & UKBD_FLAG_ATTACHED) {
error = kbd_detach(&sc->sc_kbd);
if (error) {
/* usb attach cannot return an error */
device_printf(dev, "WARNING: kbd_detach() "
"returned non-zero! (ignored)\n");
}
}
#endif
#ifdef EVDEV_SUPPORT
evdev_free(sc->sc_evdev);
#endif
if (KBD_IS_CONFIGURED(&sc->sc_kbd)) {
error = kbd_unregister(&sc->sc_kbd);
if (error) {
/* usb attach cannot return an error */
device_printf(dev, "WARNING: kbd_unregister() "
"returned non-zero! (ignored)\n");
}
}
sc->sc_kbd.kb_flags = 0;
usbd_transfer_unsetup(sc->sc_xfer, UKBD_N_TRANSFER);
usb_callout_drain(&sc->sc_callout);
DPRINTF("%s: disconnected\n",
device_get_nameunit(dev));
return (0);
}
static int
ukbd_resume(device_t dev)
{
struct ukbd_softc *sc = device_get_softc(dev);
UKBD_LOCK_ASSERT();
ukbd_clear_state(&sc->sc_kbd);
return (0);
}
/* early keyboard probe, not supported */
static int
ukbd_configure(int flags)
{
return (0);
}
/* detect a keyboard, not used */
static int
ukbd__probe(int unit, void *arg, int flags)
{
return (ENXIO);
}
/* reset and initialize the device, not used */
static int
ukbd_init(int unit, keyboard_t **kbdp, void *arg, int flags)
{
return (ENXIO);
}
/* test the interface to the device, not used */
static int
ukbd_test_if(keyboard_t *kbd)
{
return (0);
}
/* finish using this keyboard, not used */
static int
ukbd_term(keyboard_t *kbd)
{
return (ENXIO);
}
/* keyboard interrupt routine, not used */
static int
ukbd_intr(keyboard_t *kbd, void *arg)
{
return (0);
}
/* lock the access to the keyboard, not used */
static int
ukbd_lock(keyboard_t *kbd, int lock)
{
return (1);
}
/*
* Enable the access to the device; until this function is called,
* the client cannot read from the keyboard.
*/
static int
ukbd_enable(keyboard_t *kbd)
{
UKBD_LOCK();
KBD_ACTIVATE(kbd);
UKBD_UNLOCK();
return (0);
}
/* disallow the access to the device */
static int
ukbd_disable(keyboard_t *kbd)
{
UKBD_LOCK();
KBD_DEACTIVATE(kbd);
UKBD_UNLOCK();
return (0);
}
/* check if data is waiting */
/* Currently unused. */
static int
ukbd_check(keyboard_t *kbd)
{
struct ukbd_softc *sc = kbd->kb_data;
UKBD_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
if (sc->sc_flags & UKBD_FLAG_POLLING)
ukbd_do_poll(sc, 0);
#ifdef UKBD_EMULATE_ATSCANCODE
if (sc->sc_buffered_char[0]) {
return (1);
}
#endif
if (sc->sc_inputs > 0) {
return (1);
}
return (0);
}
/* check if char is waiting */
static int
ukbd_check_char_locked(keyboard_t *kbd)
{
struct ukbd_softc *sc = kbd->kb_data;
UKBD_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
if ((sc->sc_composed_char > 0) &&
(!(sc->sc_flags & UKBD_FLAG_COMPOSE))) {
return (1);
}
return (ukbd_check(kbd));
}
static int
ukbd_check_char(keyboard_t *kbd)
{
int result;
UKBD_LOCK();
result = ukbd_check_char_locked(kbd);
UKBD_UNLOCK();
return (result);
}
/* read one byte from the keyboard if it's allowed */
/* Currently unused. */
static int
ukbd_read(keyboard_t *kbd, int wait)
{
struct ukbd_softc *sc = kbd->kb_data;
int32_t usbcode;
#ifdef UKBD_EMULATE_ATSCANCODE
uint32_t keycode;
uint32_t scancode;
#endif
UKBD_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (-1);
#ifdef UKBD_EMULATE_ATSCANCODE
if (sc->sc_buffered_char[0]) {
scancode = sc->sc_buffered_char[0];
if (scancode & SCAN_PREFIX) {
sc->sc_buffered_char[0] &= ~SCAN_PREFIX;
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
sc->sc_buffered_char[0] = sc->sc_buffered_char[1];
sc->sc_buffered_char[1] = 0;
return (scancode);
}
#endif /* UKBD_EMULATE_ATSCANCODE */
/* XXX */
usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1);
if (!KBD_IS_ACTIVE(kbd) || (usbcode == -1))
return (-1);
++(kbd->kb_count);
#ifdef UKBD_EMULATE_ATSCANCODE
keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.modifiers);
if (keycode == NN) {
return -1;
}
return (ukbd_key2scan(sc, keycode, sc->sc_ndata.modifiers,
(usbcode & KEY_RELEASE)));
#else /* !UKBD_EMULATE_ATSCANCODE */
return (usbcode);
#endif /* UKBD_EMULATE_ATSCANCODE */
}
/* read char from the keyboard */
static uint32_t
ukbd_read_char_locked(keyboard_t *kbd, int wait)
{
struct ukbd_softc *sc = kbd->kb_data;
uint32_t action;
uint32_t keycode;
int32_t usbcode;
#ifdef UKBD_EMULATE_ATSCANCODE
uint32_t scancode;
#endif
UKBD_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (NOKEY);
next_code:
/* do we have a composed char to return ? */
if ((sc->sc_composed_char > 0) &&
(!(sc->sc_flags & UKBD_FLAG_COMPOSE))) {
action = sc->sc_composed_char;
sc->sc_composed_char = 0;
if (action > 0xFF) {
goto errkey;
}
goto done;
}
#ifdef UKBD_EMULATE_ATSCANCODE
/* do we have a pending raw scan code? */
if (sc->sc_mode == K_RAW) {
scancode = sc->sc_buffered_char[0];
if (scancode) {
if (scancode & SCAN_PREFIX) {
sc->sc_buffered_char[0] = (scancode & ~SCAN_PREFIX);
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
sc->sc_buffered_char[0] = sc->sc_buffered_char[1];
sc->sc_buffered_char[1] = 0;
return (scancode);
}
}
#endif /* UKBD_EMULATE_ATSCANCODE */
/* see if there is something in the keyboard port */
/* XXX */
usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1);
if (usbcode == -1) {
return (NOKEY);
}
++kbd->kb_count;
#ifdef UKBD_EMULATE_ATSCANCODE
/* USB key index -> key code -> AT scan code */
keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.modifiers);
if (keycode == NN) {
return (NOKEY);
}
/* return an AT scan code for the K_RAW mode */
if (sc->sc_mode == K_RAW) {
return (ukbd_key2scan(sc, keycode, sc->sc_ndata.modifiers,
(usbcode & KEY_RELEASE)));
}
#else /* !UKBD_EMULATE_ATSCANCODE */
/* return the byte as is for the K_RAW mode */
if (sc->sc_mode == K_RAW) {
return (usbcode);
}
/* USB key index -> key code */
keycode = ukbd_trtab[KEY_INDEX(usbcode)];
if (keycode == NN) {
return (NOKEY);
}
#endif /* UKBD_EMULATE_ATSCANCODE */
switch (keycode) {
case 0x38: /* left alt (compose key) */
if (usbcode & KEY_RELEASE) {
if (sc->sc_flags & UKBD_FLAG_COMPOSE) {
sc->sc_flags &= ~UKBD_FLAG_COMPOSE;
if (sc->sc_composed_char > 0xFF) {
sc->sc_composed_char = 0;
}
}
} else {
if (!(sc->sc_flags & UKBD_FLAG_COMPOSE)) {
sc->sc_flags |= UKBD_FLAG_COMPOSE;
sc->sc_composed_char = 0;
}
}
break;
}
/* return the key code in the K_CODE mode */
if (usbcode & KEY_RELEASE) {
keycode |= SCAN_RELEASE;
}
if (sc->sc_mode == K_CODE) {
return (keycode);
}
/* compose a character code */
if (sc->sc_flags & UKBD_FLAG_COMPOSE) {
switch (keycode) {
/* key pressed, process it */
case 0x47:
case 0x48:
case 0x49: /* keypad 7,8,9 */
sc->sc_composed_char *= 10;
sc->sc_composed_char += keycode - 0x40;
goto check_composed;
case 0x4B:
case 0x4C:
case 0x4D: /* keypad 4,5,6 */
sc->sc_composed_char *= 10;
sc->sc_composed_char += keycode - 0x47;
goto check_composed;
case 0x4F:
case 0x50:
case 0x51: /* keypad 1,2,3 */
sc->sc_composed_char *= 10;
sc->sc_composed_char += keycode - 0x4E;
goto check_composed;
case 0x52: /* keypad 0 */
sc->sc_composed_char *= 10;
goto check_composed;
/* key released, no interest here */
case SCAN_RELEASE | 0x47:
case SCAN_RELEASE | 0x48:
case SCAN_RELEASE | 0x49: /* keypad 7,8,9 */
case SCAN_RELEASE | 0x4B:
case SCAN_RELEASE | 0x4C:
case SCAN_RELEASE | 0x4D: /* keypad 4,5,6 */
case SCAN_RELEASE | 0x4F:
case SCAN_RELEASE | 0x50:
case SCAN_RELEASE | 0x51: /* keypad 1,2,3 */
case SCAN_RELEASE | 0x52: /* keypad 0 */
goto next_code;
case 0x38: /* left alt key */
break;
default:
if (sc->sc_composed_char > 0) {
sc->sc_flags &= ~UKBD_FLAG_COMPOSE;
sc->sc_composed_char = 0;
goto errkey;
}
break;
}
}
/* keycode to key action */
action = genkbd_keyaction(kbd, SCAN_CHAR(keycode),
(keycode & SCAN_RELEASE),
&sc->sc_state, &sc->sc_accents);
if (action == NOKEY) {
goto next_code;
}
done:
return (action);
check_composed:
if (sc->sc_composed_char <= 0xFF) {
goto next_code;
}
errkey:
return (ERRKEY);
}
/* Currently wait is always false. */
static uint32_t
ukbd_read_char(keyboard_t *kbd, int wait)
{
uint32_t keycode;
UKBD_LOCK();
keycode = ukbd_read_char_locked(kbd, wait);
UKBD_UNLOCK();
return (keycode);
}
/* some useful control functions */
static int
ukbd_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
struct ukbd_softc *sc = kbd->kb_data;
int i;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
int ival;
#endif
UKBD_LOCK_ASSERT();
switch (cmd) {
case KDGKBMODE: /* get keyboard mode */
*(int *)arg = sc->sc_mode;
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 7):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSKBMODE: /* set keyboard mode */
switch (*(int *)arg) {
case K_XLATE:
if (sc->sc_mode != K_XLATE) {
/* make lock key state and LED state match */
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= KBD_LED_VAL(kbd);
}
/* FALLTHROUGH */
case K_RAW:
case K_CODE:
if (sc->sc_mode != *(int *)arg) {
if ((sc->sc_flags & UKBD_FLAG_POLLING) == 0)
ukbd_clear_state(kbd);
sc->sc_mode = *(int *)arg;
}
break;
default:
return (EINVAL);
}
break;
case KDGETLED: /* get keyboard LED */
*(int *)arg = KBD_LED_VAL(kbd);
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 66):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSETLED: /* set keyboard LED */
/* NOTE: lock key state in "sc_state" won't be changed */
if (*(int *)arg & ~LOCK_MASK)
return (EINVAL);
i = *(int *)arg;
/* replace CAPS LED with ALTGR LED for ALTGR keyboards */
if (sc->sc_mode == K_XLATE &&
kbd->kb_keymap->n_keys > ALTGR_OFFSET) {
if (i & ALKED)
i |= CLKED;
else
i &= ~CLKED;
}
if (KBD_HAS_DEVICE(kbd))
ukbd_set_leds(sc, i);
KBD_LED_VAL(kbd) = *(int *)arg;
break;
case KDGKBSTATE: /* get lock key state */
*(int *)arg = sc->sc_state & LOCK_MASK;
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 20):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSKBSTATE: /* set lock key state */
if (*(int *)arg & ~LOCK_MASK) {
return (EINVAL);
}
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= *(int *)arg;
/* set LEDs and quit */
return (ukbd_ioctl(kbd, KDSETLED, arg));
case KDSETREPEAT: /* set keyboard repeat rate (new
* interface) */
if (!KBD_HAS_DEVICE(kbd)) {
return (0);
}
/*
* Convert negative, zero and tiny args to the same limits
* as atkbd. We could support delays of 1 msec, but
* anything much shorter than the shortest atkbd value
* of 250.34 is almost unusable as well as incompatible.
*/
kbd->kb_delay1 = imax(((int *)arg)[0], 250);
kbd->kb_delay2 = imax(((int *)arg)[1], 34);
#ifdef EVDEV_SUPPORT
if (sc->sc_evdev != NULL)
evdev_push_repeats(sc->sc_evdev, kbd);
#endif
return (0);
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 67):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSETRAD: /* set keyboard repeat rate (old
* interface) */
return (ukbd_set_typematic(kbd, *(int *)arg));
case PIO_KEYMAP: /* set keyboard translation table */
case OPIO_KEYMAP: /* set keyboard translation table
* (compat) */
case PIO_KEYMAPENT: /* set keyboard translation table
* entry */
case PIO_DEADKEYMAP: /* set accent key translation table */
sc->sc_accents = 0;
/* FALLTHROUGH */
default:
return (genkbd_commonioctl(kbd, cmd, arg));
}
return (0);
}
static int
ukbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
int result;
/*
* XXX Check if someone is calling us from a critical section:
*/
if (curthread->td_critnest != 0)
return (EDEADLK);
/*
* XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any
* context where printf(9) can be called, which among other things
* includes interrupt filters and threads with any kinds of locks
* already held. For this reason it would be dangerous to acquire
* the Giant here unconditionally. On the other hand we have to
* have it to handle the ioctl.
* So we make our best effort to auto-detect whether we can grab
* the Giant or not. Blame syscons(4) for this.
*/
switch (cmd) {
case KDGKBSTATE:
case KDSKBSTATE:
case KDSETLED:
if (!mtx_owned(&Giant) && !USB_IN_POLLING_MODE_FUNC())
return (EDEADLK); /* best I could come up with */
/* FALLTHROUGH */
default:
UKBD_LOCK();
result = ukbd_ioctl_locked(kbd, cmd, arg);
UKBD_UNLOCK();
return (result);
}
}
/* clear the internal state of the keyboard */
static void
ukbd_clear_state(keyboard_t *kbd)
{
struct ukbd_softc *sc = kbd->kb_data;
UKBD_LOCK_ASSERT();
sc->sc_flags &= ~(UKBD_FLAG_COMPOSE | UKBD_FLAG_POLLING);
sc->sc_state &= LOCK_MASK; /* preserve locking key state */
sc->sc_accents = 0;
sc->sc_composed_char = 0;
#ifdef UKBD_EMULATE_ATSCANCODE
sc->sc_buffered_char[0] = 0;
sc->sc_buffered_char[1] = 0;
#endif
memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata));
memset(&sc->sc_odata, 0, sizeof(sc->sc_odata));
memset(&sc->sc_ntime, 0, sizeof(sc->sc_ntime));
memset(&sc->sc_otime, 0, sizeof(sc->sc_otime));
}
/* save the internal state, not used */
static int
ukbd_get_state(keyboard_t *kbd, void *buf, size_t len)
{
return (len == 0) ? 1 : -1;
}
/* set the internal state, not used */
static int
ukbd_set_state(keyboard_t *kbd, void *buf, size_t len)
{
return (EINVAL);
}
static int
ukbd_poll(keyboard_t *kbd, int on)
{
struct ukbd_softc *sc = kbd->kb_data;
UKBD_LOCK();
/*
* Keep a reference count on polling to allow recursive
* cngrab() during a panic for example.
*/
if (on)
sc->sc_polling++;
else if (sc->sc_polling > 0)
sc->sc_polling--;
if (sc->sc_polling != 0) {
sc->sc_flags |= UKBD_FLAG_POLLING;
sc->sc_poll_thread = curthread;
} else {
sc->sc_flags &= ~UKBD_FLAG_POLLING;
sc->sc_delay = 0;
}
UKBD_UNLOCK();
return (0);
}
/* local functions */
static void
ukbd_set_leds(struct ukbd_softc *sc, uint8_t leds)
{
UKBD_LOCK_ASSERT();
DPRINTF("leds=0x%02x\n", leds);
sc->sc_leds = leds;
sc->sc_flags |= UKBD_FLAG_SET_LEDS;
/* start transfer, if not already started */
usbd_transfer_start(sc->sc_xfer[UKBD_CTRL_LED]);
}
static int
ukbd_set_typematic(keyboard_t *kbd, int code)
{
#ifdef EVDEV_SUPPORT
struct ukbd_softc *sc = kbd->kb_data;
#endif
static const int delays[] = {250, 500, 750, 1000};
static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63,
68, 76, 84, 92, 100, 110, 118, 126,
136, 152, 168, 184, 200, 220, 236, 252,
272, 304, 336, 368, 400, 440, 472, 504};
if (code & ~0x7f) {
return (EINVAL);
}
kbd->kb_delay1 = delays[(code >> 5) & 3];
kbd->kb_delay2 = rates[code & 0x1f];
#ifdef EVDEV_SUPPORT
if (sc->sc_evdev != NULL)
evdev_push_repeats(sc->sc_evdev, kbd);
#endif
return (0);
}
#ifdef UKBD_EMULATE_ATSCANCODE
static uint32_t
ukbd_atkeycode(int usbcode, int shift)
{
uint32_t keycode;
keycode = ukbd_trtab[KEY_INDEX(usbcode)];
/*
* Translate Alt-PrintScreen to SysRq.
*
* Some or all AT keyboards connected through USB have already
* mapped Alted PrintScreens to an unusual usbcode (0x8a).
* ukbd_trtab translates this to 0x7e, and key2scan() would
* translate that to 0x79 (Intl' 4). Assume that if we have
* an Alted 0x7e here then it actually is an Alted PrintScreen.
*
* The usual usbcode for all PrintScreens is 0x46. ukbd_trtab
* translates this to 0x5c, so the Alt check to classify 0x5c
* is routine.
*/
if ((keycode == 0x5c || keycode == 0x7e) &&
shift & (MOD_ALT_L | MOD_ALT_R))
return (0x54);
return (keycode);
}
static int
ukbd_key2scan(struct ukbd_softc *sc, int code, int shift, int up)
{
static const int scan[] = {
/* 89 */
0x11c, /* Enter */
/* 90-99 */
0x11d, /* Ctrl-R */
0x135, /* Divide */
0x137, /* PrintScreen */
0x138, /* Alt-R */
0x147, /* Home */
0x148, /* Up */
0x149, /* PageUp */
0x14b, /* Left */
0x14d, /* Right */
0x14f, /* End */
/* 100-109 */
0x150, /* Down */
0x151, /* PageDown */
0x152, /* Insert */
0x153, /* Delete */
0x146, /* Pause/Break */
0x15b, /* Win_L(Super_L) */
0x15c, /* Win_R(Super_R) */
0x15d, /* Application(Menu) */
/* SUN TYPE 6 USB KEYBOARD */
0x168, /* Sun Type 6 Help */
0x15e, /* Sun Type 6 Stop */
/* 110 - 119 */
0x15f, /* Sun Type 6 Again */
0x160, /* Sun Type 6 Props */
0x161, /* Sun Type 6 Undo */
0x162, /* Sun Type 6 Front */
0x163, /* Sun Type 6 Copy */
0x164, /* Sun Type 6 Open */
0x165, /* Sun Type 6 Paste */
0x166, /* Sun Type 6 Find */
0x167, /* Sun Type 6 Cut */
0x125, /* Sun Type 6 Mute */
/* 120 - 130 */
0x11f, /* Sun Type 6 VolumeDown */
0x11e, /* Sun Type 6 VolumeUp */
0x120, /* Sun Type 6 PowerDown */
/* Japanese 106/109 keyboard */
0x73, /* Keyboard Intl' 1 (backslash / underscore) */
0x70, /* Keyboard Intl' 2 (Katakana / Hiragana) */
0x7d, /* Keyboard Intl' 3 (Yen sign) (Not using in jp106/109) */
0x79, /* Keyboard Intl' 4 (Henkan) */
0x7b, /* Keyboard Intl' 5 (Muhenkan) */
0x5c, /* Keyboard Intl' 6 (Keypad ,) (For PC-9821 layout) */
0x71, /* Apple Keyboard JIS (Kana) */
0x72, /* Apple Keyboard JIS (Eisu) */
};
if ((code >= 89) && (code < (int)(89 + nitems(scan)))) {
code = scan[code - 89];
}
/* PrintScreen */
if (code == 0x137 && (!(shift & (MOD_CONTROL_L | MOD_CONTROL_R |
MOD_SHIFT_L | MOD_SHIFT_R)))) {
code |= SCAN_PREFIX_SHIFT;
}
/* Pause/Break */
if ((code == 0x146) && (!(shift & (MOD_CONTROL_L | MOD_CONTROL_R)))) {
code = (0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL);
}
code |= (up ? SCAN_RELEASE : SCAN_PRESS);
if (code & SCAN_PREFIX) {
if (code & SCAN_PREFIX_CTL) {
/* Ctrl */
sc->sc_buffered_char[0] = (0x1d | (code & SCAN_RELEASE));
sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX);
} else if (code & SCAN_PREFIX_SHIFT) {
/* Shift */
sc->sc_buffered_char[0] = (0x2a | (code & SCAN_RELEASE));
sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX_SHIFT);
} else {
sc->sc_buffered_char[0] = (code & ~SCAN_PREFIX);
sc->sc_buffered_char[1] = 0;
}
return ((code & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
return (code);
}
#endif /* UKBD_EMULATE_ATSCANCODE */
static keyboard_switch_t ukbdsw = {
.probe = &ukbd__probe,
.init = &ukbd_init,
.term = &ukbd_term,
.intr = &ukbd_intr,
.test_if = &ukbd_test_if,
.enable = &ukbd_enable,
.disable = &ukbd_disable,
.read = &ukbd_read,
.check = &ukbd_check,
.read_char = &ukbd_read_char,
.check_char = &ukbd_check_char,
.ioctl = &ukbd_ioctl,
.lock = &ukbd_lock,
.clear_state = &ukbd_clear_state,
.get_state = &ukbd_get_state,
.set_state = &ukbd_set_state,
.get_fkeystr = &genkbd_get_fkeystr,
.poll = &ukbd_poll,
.diag = &genkbd_diag,
};
KEYBOARD_DRIVER(ukbd, ukbdsw, ukbd_configure);
static int
ukbd_driver_load(module_t mod, int what, void *arg)
{
switch (what) {
case MOD_LOAD:
kbd_add_driver(&ukbd_kbd_driver);
break;
case MOD_UNLOAD:
kbd_delete_driver(&ukbd_kbd_driver);
break;
}
return (0);
}
static devclass_t ukbd_devclass;
static device_method_t ukbd_methods[] = {
DEVMETHOD(device_probe, ukbd_probe),
DEVMETHOD(device_attach, ukbd_attach),
DEVMETHOD(device_detach, ukbd_detach),
DEVMETHOD(device_resume, ukbd_resume),
DEVMETHOD_END
};
static driver_t ukbd_driver = {
.name = "ukbd",
.methods = ukbd_methods,
.size = sizeof(struct ukbd_softc),
};
DRIVER_MODULE(ukbd, uhub, ukbd_driver, ukbd_devclass, ukbd_driver_load, 0);
MODULE_DEPEND(ukbd, usb, 1, 1, 1);
#ifdef EVDEV_SUPPORT
MODULE_DEPEND(ukbd, evdev, 1, 1, 1);
#endif
MODULE_VERSION(ukbd, 1);
USB_PNP_HOST_INFO(ukbd_devs);