freebsd-dev/sys/amd64/include/apicvar.h
John Baldwin 6f92bdd0c1 New APIC support code:
- The apic interrupt entry points have been rewritten so that each entry
  point can serve 32 different vectors.  When the entry is executed, it
  uses one of the 32-bit ISR registers to determine which vector in its
  assigned range was triggered.  Thus, the apic code can support 159
  different interrupt vectors with only 5 entry points.
- We now always to disable the local APIC to work around an errata in
  certain PPros and then re-enable it again if we decide to use the APICs
  to route interrupts.
- We no longer map IO APICs or local APICs using special page table
  entries.  Instead, we just use pmap_mapdev().  We also no longer
  export the virtual address of the local APIC as a global symbol to
  the rest of the system, but only in local_apic.c.  To aid this, the
  APIC ID of each CPU is exported as a per-CPU variable.
- Interrupt sources are provided for each intpin on each IO APIC.
  Currently, each source is given a unique interrupt vector meaning that
  PCI interrupts are not shared on most machines with an I/O APIC.
  That mapping for interrupt sources to interrupt vectors is up to the
  APIC enumerator driver however.
- We no longer probe to see if we need to use mixed mode to route IRQ 0,
  instead we always use mixed mode to route IRQ 0 for now.  This can be
  disabled via the 'NO_MIXED_MODE' kernel option.
- The npx(4) driver now always probes to see if a built-in FPU is present
  since this test can now be performed with the new APIC code.  However,
  an SMP kernel will panic if there is more than one CPU and a built-in
  FPU is not found.
- PCI interrupts are now properly routed when using APICs to route
  interrupts, so remove the hack to psuedo-route interrupts when the
  intpin register was read.
- The apic.h header was moved to apicreg.h and a new apicvar.h header
  that declares the APIs used by the new APIC code was added.
2003-11-03 21:53:38 +00:00

166 lines
6.3 KiB
C

/*-
* Copyright (c) 2003 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _MACHINE_APICVAR_H_
#define _MACHINE_APICVAR_H_
/*
* Local && I/O APIC variable definitions.
*/
/*
* Layout of local APIC interrupt vectors:
*
* 0xff (255) +-------------+
* | | 15 (Spurios Vector)
* 0xf0 (240) +-------------+
* | | 14 (Interprocessor Interrupts)
* 0xe0 (224) +-------------+
* | | 13 (Local Interrupt (LINT[01]))
* 0xd0 (208) +-------------+
* | | 12 (Local Timer and Error Interrupts)
* 0xc0 (192) +-------------+
* | | 11 (I/O Interrupts)
* 0xb0 (176) +-------------+
* | | 10 (I/O Interrupts)
* 0xa0 (160) +-------------+
* | | 9 (I/O Interrupts)
* 0x90 (144) +-------------+
* | | 8 (I/O Interrupts / System Calls)
* 0x80 (128) +-------------+
* | | 7 (I/O Interrupts)
* 0x70 (112) +-------------+
* | | 6 (I/O Interrupts)
* 0x60 (96) +-------------+
* | | 5 (I/O Interrupts)
* 0x50 (80) +-------------+
* | | 4 (I/O Interrupts)
* 0x40 (64) +-------------+
* | | 3 (I/O Interrupts)
* 0x30 (48) +-------------+
* | | 2 (I/O Interrupts)
* 0x20 (32) +-------------+
* | | 1 (Exceptions, traps, faults, etc.)
* 0x10 (16) +-------------+
* | | 0 (Exceptions, traps, faults, etc.)
* 0x00 (0) +-------------+
*
* Note: 0x80 needs to be handled specially and not allocated to an
* I/O device!
*/
#define APIC_ID_ALL 0xff
#define APIC_NUM_IOINTS 160
#define APIC_LOCAL_INTS (IDT_IO_INTS + APIC_NUM_IOINTS)
#define APIC_TIMER_INT APIC_LOCAL_INTS
#define APIC_ERROR_INT (APIC_LOCAL_INTS + 1)
#define APIC_THERMAL_INT (APIC_LOCAL_INTS + 2)
#define APIC_IPI_INTS (APIC_LOCAL_INTS + 32)
#define IPI_AST APIC_IPI_INTS /* Generate software trap. */
#define IPI_INVLTLB (APIC_IPI_INTS + 1) /* TLB Shootdown IPIs */
#define IPI_INVLPG (APIC_IPI_INTS + 2)
#define IPI_INVLRNG (APIC_IPI_INTS + 3)
#define IPI_HARDCLOCK (APIC_IPI_INTS + 8) /* Inter-CPU clock handling. */
#define IPI_STATCLOCK (APIC_IPI_INTS + 9)
#define IPI_RENDEZVOUS (APIC_IPI_INTS + 10) /* Inter-CPU rendezvous. */
#define IPI_LAZYPMAP (APIC_IPI_INTS + 11) /* Lazy pmap release. */
#define IPI_STOP (APIC_IPI_INTS + 12) /* Stop CPU until restarted. */
#define APIC_SPURIOUS_INT 255
#define LVT_LINT0 0
#define LVT_LINT1 1
#define LVT_TIMER 2
#define LVT_ERROR 3
#define LVT_PMC 4
#define LVT_THERMAL 5
#define LVT_MAX LVT_THERMAL
#ifndef LOCORE
#define APIC_IPI_DEST_SELF -1
#define APIC_IPI_DEST_ALL -2
#define APIC_IPI_DEST_OTHERS -3
/*
* An APIC enumerator is a psuedo bus driver that enumerates APIC's including
* CPU's and I/O APIC's.
*/
struct apic_enumerator {
const char *apic_name;
int (*apic_probe)(void);
int (*apic_probe_cpus)(void);
int (*apic_setup_local)(void);
int (*apic_setup_io)(void);
SLIST_ENTRY(apic_enumerator) apic_next;
};
inthand_t
IDTVEC(apic_isr1), IDTVEC(apic_isr2), IDTVEC(apic_isr3),
IDTVEC(apic_isr4), IDTVEC(apic_isr5), IDTVEC(spuriousint);
u_int apic_irq_to_idt(u_int irq);
u_int apic_idt_to_irq(u_int vector);
void apic_register_enumerator(struct apic_enumerator *enumerator);
void *ioapic_create(uintptr_t addr, int32_t id, int intbase);
int ioapic_disable_pin(void *cookie, u_int pin);
int ioapic_get_vector(void *cookie, u_int pin);
int ioapic_next_logical_cluster(void);
void ioapic_register(void *cookie);
int ioapic_remap_vector(void *cookie, u_int pin, int vector);
int ioapic_set_extint(void *cookie, u_int pin);
int ioapic_set_nmi(void *cookie, u_int pin);
int ioapic_set_polarity(void *cookie, u_int pin, char activehi);
int ioapic_set_triggermode(void *cookie, u_int pin, char edgetrigger);
int ioapic_set_smi(void *cookie, u_int pin);
void lapic_create(u_int apic_id, int boot_cpu);
void lapic_disable(void);
void lapic_dump(const char *str);
void lapic_enable_intr(u_int vector);
int lapic_id(void);
void lapic_init(uintptr_t addr);
int lapic_intr_pending(u_int vector);
void lapic_ipi_raw(register_t icrlo, u_int dest);
void lapic_ipi_vectored(u_int vector, int dest);
int lapic_ipi_wait(int delay);
void lapic_handle_intr(struct intrframe frame);
void lapic_set_logical_id(u_int apic_id, u_int cluster, u_int cluster_id);
int lapic_set_lvt_mask(u_int apic_id, u_int lvt, u_char masked);
int lapic_set_lvt_mode(u_int apic_id, u_int lvt, u_int32_t mode);
int lapic_set_lvt_polarity(u_int apic_id, u_int lvt, u_char activehi);
int lapic_set_lvt_triggermode(u_int apic_id, u_int lvt, u_char edgetrigger);
void lapic_setup(void);
#endif /* !LOCORE */
#endif /* _MACHINE_APICVAR_H_ */