freebsd-dev/sys/dev/usb2/wlan/if_zyd2.c
Andrew Thompson f2476867dc Just put the ifnet pointer first in the softc like it needs to be rather than
adding another deliciously evil pointer.
2009-01-18 05:35:58 +00:00

3379 lines
87 KiB
C

/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
/* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */
/* $FreeBSD$ */
/*-
* Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* ZyDAS ZD1211/ZD1211B USB WLAN driver
*
* NOTE: all function names beginning like "zyd_cfg_" can only
* be called from within the config thread function !
*/
#include <dev/usb2/include/usb2_devid.h>
#include <dev/usb2/include/usb2_standard.h>
#include <dev/usb2/include/usb2_mfunc.h>
#include <dev/usb2/include/usb2_error.h>
#define usb2_config_td_cc zyd_config_copy
#define usb2_config_td_softc zyd_softc
#define USB_DEBUG_VAR zyd_debug
#include <dev/usb2/core/usb2_core.h>
#include <dev/usb2/core/usb2_lookup.h>
#include <dev/usb2/core/usb2_process.h>
#include <dev/usb2/core/usb2_config_td.h>
#include <dev/usb2/core/usb2_debug.h>
#include <dev/usb2/core/usb2_request.h>
#include <dev/usb2/core/usb2_busdma.h>
#include <dev/usb2/core/usb2_util.h>
#include <dev/usb2/wlan/usb2_wlan.h>
#include <dev/usb2/wlan/if_zydreg.h>
#include <dev/usb2/wlan/if_zydfw.h>
#if USB_DEBUG
static int zyd_debug = 0;
SYSCTL_NODE(_hw_usb2, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
SYSCTL_INT(_hw_usb2_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
"zyd debug level");
#endif
#undef INDEXES
#define INDEXES(a) (sizeof(a) / sizeof((a)[0]))
static device_probe_t zyd_probe;
static device_attach_t zyd_attach;
static device_detach_t zyd_detach;
static usb2_callback_t zyd_intr_read_clear_stall_callback;
static usb2_callback_t zyd_intr_read_callback;
static usb2_callback_t zyd_intr_write_clear_stall_callback;
static usb2_callback_t zyd_intr_write_callback;
static usb2_callback_t zyd_bulk_read_clear_stall_callback;
static usb2_callback_t zyd_bulk_read_callback;
static usb2_callback_t zyd_bulk_write_clear_stall_callback;
static usb2_callback_t zyd_bulk_write_callback;
static usb2_config_td_command_t zyd_cfg_first_time_setup;
static usb2_config_td_command_t zyd_cfg_update_promisc;
static usb2_config_td_command_t zyd_cfg_set_chan;
static usb2_config_td_command_t zyd_cfg_pre_init;
static usb2_config_td_command_t zyd_cfg_init;
static usb2_config_td_command_t zyd_cfg_pre_stop;
static usb2_config_td_command_t zyd_cfg_stop;
static usb2_config_td_command_t zyd_config_copy;
static usb2_config_td_command_t zyd_cfg_scan_start;
static usb2_config_td_command_t zyd_cfg_scan_end;
static usb2_config_td_command_t zyd_cfg_set_rxfilter;
static usb2_config_td_command_t zyd_cfg_amrr_timeout;
static uint8_t zyd_plcp2ieee(uint8_t, uint8_t);
static void zyd_cfg_usbrequest(struct zyd_softc *,
struct usb2_device_request *, uint8_t *);
static void zyd_cfg_usb2_intr_read(struct zyd_softc *, void *, uint32_t);
static void zyd_cfg_usb2_intr_write(struct zyd_softc *, const void *,
uint16_t, uint32_t);
static void zyd_cfg_read16(struct zyd_softc *, uint16_t, uint16_t *);
static void zyd_cfg_read32(struct zyd_softc *, uint16_t, uint32_t *);
static void zyd_cfg_write16(struct zyd_softc *, uint16_t, uint16_t);
static void zyd_cfg_write32(struct zyd_softc *, uint16_t, uint32_t);
static void zyd_cfg_rfwrite(struct zyd_softc *, uint32_t);
static uint8_t zyd_cfg_uploadfirmware(struct zyd_softc *, const uint8_t *,
uint32_t);
static void zyd_cfg_lock_phy(struct zyd_softc *);
static void zyd_cfg_unlock_phy(struct zyd_softc *);
static void zyd_cfg_set_beacon_interval(struct zyd_softc *, uint32_t);
static const char *zyd_rf_name(uint8_t);
static void zyd_cfg_rf_rfmd_init(struct zyd_softc *, struct zyd_rf *);
static void zyd_cfg_rf_rfmd_switch_radio(struct zyd_softc *, uint8_t);
static void zyd_cfg_rf_rfmd_set_channel(struct zyd_softc *,
struct zyd_rf *, uint8_t);
static void zyd_cfg_rf_al2230_switch_radio(struct zyd_softc *, uint8_t);
static void zyd_cfg_rf_al2230_init(struct zyd_softc *, struct zyd_rf *);
static void zyd_cfg_rf_al2230_init_b(struct zyd_softc *, struct zyd_rf *);
static void zyd_cfg_rf_al2230_set_channel(struct zyd_softc *,
struct zyd_rf *, uint8_t);
static uint8_t zyd_cfg_rf_init_hw(struct zyd_softc *, struct zyd_rf *);
static uint8_t zyd_cfg_hw_init(struct zyd_softc *);
static void zyd_cfg_set_mac_addr(struct zyd_softc *, const uint8_t *);
static void zyd_cfg_switch_radio(struct zyd_softc *, uint8_t);
static void zyd_cfg_set_bssid(struct zyd_softc *, uint8_t *);
static void zyd_start_cb(struct ifnet *);
static void zyd_init_cb(void *);
static int zyd_ioctl_cb(struct ifnet *, u_long command, caddr_t data);
static void zyd_watchdog(void *);
static void zyd_end_of_commands(struct zyd_softc *);
static void zyd_newassoc_cb(struct ieee80211_node *, int isnew);
static void zyd_scan_start_cb(struct ieee80211com *);
static void zyd_scan_end_cb(struct ieee80211com *);
static void zyd_set_channel_cb(struct ieee80211com *);
static void zyd_cfg_set_led(struct zyd_softc *, uint32_t, uint8_t);
static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t
mac[IEEE80211_ADDR_LEN]);
static void zyd_vap_delete(struct ieee80211vap *);
static struct ieee80211_node *zyd_node_alloc_cb(struct ieee80211vap *,
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void zyd_cfg_set_run(struct zyd_softc *, struct usb2_config_td_cc *);
static void zyd_fill_write_queue(struct zyd_softc *);
static void zyd_tx_clean_queue(struct zyd_softc *);
static void zyd_tx_freem(struct mbuf *);
static void zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
static struct ieee80211vap *zyd_get_vap(struct zyd_softc *);
static void zyd_tx_data(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
static int zyd_raw_xmit_cb(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void zyd_setup_desc_and_tx(struct zyd_softc *, struct mbuf *,
uint16_t);
static int zyd_newstate_cb(struct ieee80211vap *,
enum ieee80211_state nstate, int arg);
static void zyd_cfg_amrr_start(struct zyd_softc *);
static void zyd_update_mcast_cb(struct ifnet *);
static void zyd_update_promisc_cb(struct ifnet *);
static void zyd_cfg_get_macaddr(struct zyd_softc *sc);
static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
/* various supported device vendors/products */
#define ZYD_ZD1211 0
#define ZYD_ZD1211B 1
static const struct usb2_device_id zyd_devs[] = {
/* ZYD_ZD1211 */
{USB_VPI(USB_VENDOR_3COM2, USB_PRODUCT_3COM2_3CRUSB10075, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WL54, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL159G, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_CYBERTAN, USB_PRODUCT_CYBERTAN_TG54USB, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_DRAYTEK, USB_PRODUCT_DRAYTEK_VIGOR550, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GD, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GZL, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54GZ, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54MINI, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG760A, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_NUB8301, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_SWEEX, USB_PRODUCT_SWEEX_ZD1211, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_QUICKWLAN, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_1, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_2, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_TWINMOS, USB_PRODUCT_TWINMOS_G240, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_ALL0298V2, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB_A, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR055G, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_AG225H, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_ZYAIRG220, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G200V2, ZYD_ZD1211)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G202, ZYD_ZD1211)},
/* ZYD_ZD1211B */
{USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SMCWUSBG, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_A9T_WIFI, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050_V4000, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSBF54G, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_FIBERLINE, USB_PRODUCT_FIBERLINE_WL430U, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54L, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_SNU5600, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US54GXS, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG76NA, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UBC1, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_USR, USB_PRODUCT_USR_USR5423, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211B, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_M202, ZYD_ZD1211B)},
{USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G220V2, ZYD_ZD1211B)},
};
static const struct usb2_config zyd_config[ZYD_N_TRANSFER] = {
[ZYD_BULK_DT_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.mh.bufsize = ZYD_MAX_TXBUFSZ,
.mh.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.mh.callback = &zyd_bulk_write_callback,
.ep_index = 0,
.mh.timeout = 10000, /* 10 seconds */
},
[ZYD_BULK_DT_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.mh.bufsize = ZYX_MAX_RXBUFSZ,
.mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.mh.callback = &zyd_bulk_read_callback,
.ep_index = 0,
},
[ZYD_BULK_CS_WR] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_bulk_write_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[ZYD_BULK_CS_RD] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_bulk_read_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[ZYD_INTR_DT_WR] = {
.type = UE_BULK_INTR,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.mh.bufsize = sizeof(struct zyd_cmd),
.mh.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.mh.callback = &zyd_intr_write_callback,
.mh.timeout = 1000, /* 1 second */
.ep_index = 1,
},
[ZYD_INTR_DT_RD] = {
.type = UE_BULK_INTR,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.mh.bufsize = sizeof(struct zyd_cmd),
.mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.mh.callback = &zyd_intr_read_callback,
.ep_index = 1,
},
[ZYD_INTR_CS_WR] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_intr_write_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[ZYD_INTR_CS_RD] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.flags = {},
.mh.callback = &zyd_intr_read_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
};
static devclass_t zyd_devclass;
static device_method_t zyd_methods[] = {
DEVMETHOD(device_probe, zyd_probe),
DEVMETHOD(device_attach, zyd_attach),
DEVMETHOD(device_detach, zyd_detach),
{0, 0}
};
static driver_t zyd_driver = {
.name = "zyd",
.methods = zyd_methods,
.size = sizeof(struct zyd_softc),
};
DRIVER_MODULE(zyd, ushub, zyd_driver, zyd_devclass, NULL, 0);
MODULE_DEPEND(zyd, usb2_wlan, 1, 1, 1);
MODULE_DEPEND(zyd, usb2_core, 1, 1, 1);
MODULE_DEPEND(zyd, wlan, 1, 1, 1);
MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1);
static uint8_t
zyd_plcp2ieee(uint8_t signal, uint8_t isofdm)
{
if (isofdm) {
static const uint8_t ofdmrates[16] =
{0, 0, 0, 0, 0, 0, 0, 96, 48, 24, 12, 108, 72, 36, 18};
return ofdmrates[signal & 0xf];
} else {
static const uint8_t cckrates[16] =
{0, 0, 0, 0, 4, 0, 0, 11, 0, 0, 2, 0, 0, 0, 22, 0};
return cckrates[signal & 0xf];
}
}
/*
* USB request basic wrapper
*/
static void
zyd_cfg_usbrequest(struct zyd_softc *sc, struct usb2_device_request *req, uint8_t *data)
{
usb2_error_t err;
uint16_t length;
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
goto error;
}
err = usb2_do_request_flags
(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 1000);
if (err) {
DPRINTFN(0, "%s: device request failed, err=%s "
"(ignored)\n", sc->sc_name, usb2_errstr(err));
error:
length = UGETW(req->wLength);
if ((req->bmRequestType & UT_READ) && length) {
bzero(data, length);
}
}
}
static void
zyd_intr_read_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_INTR_DT_RD];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_INTR_READ_STALL;
usb2_transfer_start(xfer_other);
}
}
/*
* Callback handler for interrupt transfer
*/
static void
zyd_intr_read_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct zyd_cmd *cmd = &sc->sc_intr_ibuf;
uint32_t actlen;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
actlen = xfer->actlen;
DPRINTFN(3, "length=%d\n", actlen);
if (actlen > sizeof(sc->sc_intr_ibuf)) {
actlen = sizeof(sc->sc_intr_ibuf);
}
usb2_copy_out(xfer->frbuffers, 0,
&sc->sc_intr_ibuf, actlen);
switch (le16toh(cmd->code)) {
case ZYD_NOTIF_RETRYSTATUS:
goto handle_notif_retrystatus;
case ZYD_NOTIF_IORD:
goto handle_notif_iord;
default:
DPRINTFN(2, "unknown indication: 0x%04x\n",
le16toh(cmd->code));
}
/* fallthrough */
case USB_ST_SETUP:
tr_setup:
if (sc->sc_flags & ZYD_FLAG_INTR_READ_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_CS_RD]);
break;
}
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
break;
default: /* Error */
DPRINTFN(3, "error = %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_INTR_READ_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_CS_RD]);
}
break;
}
return;
handle_notif_retrystatus:{
struct zyd_notif_retry *retry = (void *)(cmd->data);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211vap *vap;
struct ieee80211_node *ni;
DPRINTF("retry intr: rate=0x%x "
"addr=%02x:%02x:%02x:%02x:%02x:%02x count=%d (0x%x)\n",
le16toh(retry->rate), retry->macaddr[0], retry->macaddr[1],
retry->macaddr[2], retry->macaddr[3], retry->macaddr[4],
retry->macaddr[5], le16toh(retry->count) & 0xff,
le16toh(retry->count));
vap = zyd_get_vap(sc);
if ((vap != NULL) && (sc->sc_amrr_timer)) {
/*
* Find the node to which the packet was sent
* and update its retry statistics. In BSS
* mode, this node is the AP we're associated
* to so no lookup is actually needed.
*/
ni = ieee80211_find_txnode(vap, retry->macaddr);
if (ni != NULL) {
ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn,
IEEE80211_AMRR_FAILURE, 1);
ieee80211_free_node(ni);
}
}
if (retry->count & htole16(0x100)) {
ifp->if_oerrors++; /* too many retries */
}
goto tr_setup;
}
handle_notif_iord:
if (*(uint16_t *)cmd->data == htole16(ZYD_CR_INTERRUPT)) {
goto tr_setup; /* HMAC interrupt */
}
if (actlen < 4) {
DPRINTFN(0, "too short, %u bytes\n", actlen);
goto tr_setup; /* too short */
}
actlen -= 4;
sc->sc_intr_ilen = actlen;
if (sc->sc_intr_iwakeup) {
sc->sc_intr_iwakeup = 0;
usb2_cv_signal(&sc->sc_intr_cv);
} else {
sc->sc_intr_iwakeup = 1;
}
/*
* We pause reading data from the interrupt endpoint until the
* data has been picked up!
*/
}
/*
* Interrupt call reply transfer, read
*/
static void
zyd_cfg_usb2_intr_read(struct zyd_softc *sc, void *data, uint32_t size)
{
uint16_t actlen;
uint16_t x;
if (size > sizeof(sc->sc_intr_ibuf.data)) {
DPRINTFN(0, "truncating transfer size!\n");
size = sizeof(sc->sc_intr_ibuf.data);
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
bzero(data, size);
goto done;
}
if (sc->sc_intr_iwakeup) {
DPRINTF("got data already!\n");
sc->sc_intr_iwakeup = 0;
goto skip0;
}
repeat:
sc->sc_intr_iwakeup = 1;
while (sc->sc_intr_iwakeup) {
/* wait for data */
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_DT_RD]);
if (usb2_cv_timedwait(&sc->sc_intr_cv,
&sc->sc_mtx, hz / 2)) {
/* should not happen */
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
bzero(data, size);
goto done;
}
}
skip0:
if (size != sc->sc_intr_ilen) {
DPRINTFN(0, "unexpected length %u != %u\n",
size, sc->sc_intr_ilen);
goto repeat;
}
actlen = sc->sc_intr_ilen;
actlen /= 4;
/* verify register values */
for (x = 0; x != actlen; x++) {
if (sc->sc_intr_obuf.data[(2 * x)] !=
sc->sc_intr_ibuf.data[(4 * x)]) {
/* invalid register */
DPRINTFN(0, "Invalid register (1) at %u!\n", x);
goto repeat;
}
if (sc->sc_intr_obuf.data[(2 * x) + 1] !=
sc->sc_intr_ibuf.data[(4 * x) + 1]) {
/* invalid register */
DPRINTFN(0, "Invalid register (2) at %u!\n", x);
goto repeat;
}
}
bcopy(sc->sc_intr_ibuf.data, data, size);
/*
* We have fetched the data from the shared buffer and it is
* safe to restart the interrupt transfer!
*/
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_DT_RD]);
done:
return;
}
static void
zyd_intr_write_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_INTR_DT_WR];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_INTR_WRITE_STALL;
usb2_transfer_start(xfer_other);
}
}
static void
zyd_intr_write_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(3, "length=%d\n", xfer->actlen);
goto wakeup;
case USB_ST_SETUP:
if (sc->sc_flags & ZYD_FLAG_INTR_WRITE_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_CS_WR]);
goto wakeup;
}
if (sc->sc_intr_owakeup) {
usb2_copy_in(xfer->frbuffers, 0, &sc->sc_intr_obuf,
sc->sc_intr_olen);
xfer->frlengths[0] = sc->sc_intr_olen;
usb2_start_hardware(xfer);
}
break;
default: /* Error */
DPRINTFN(3, "error = %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_INTR_WRITE_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_CS_WR]);
}
goto wakeup;
}
return;
wakeup:
if (sc->sc_intr_owakeup) {
sc->sc_intr_owakeup = 0;
usb2_cv_signal(&sc->sc_intr_cv);
}
}
/*
* Interrupt transfer, write.
*
* Not always an "interrupt transfer". If operating in
* full speed mode, EP4 is bulk out, not interrupt out.
*/
static void
zyd_cfg_usb2_intr_write(struct zyd_softc *sc, const void *data,
uint16_t code, uint32_t size)
{
if (size > sizeof(sc->sc_intr_obuf.data)) {
DPRINTFN(0, "truncating transfer size!\n");
size = sizeof(sc->sc_intr_obuf.data);
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
goto done;
}
sc->sc_intr_olen = size + 2;
sc->sc_intr_owakeup = 1;
sc->sc_intr_obuf.code = htole16(code);
bcopy(data, sc->sc_intr_obuf.data, size);
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_DT_WR]);
while (sc->sc_intr_owakeup) {
if (usb2_cv_timedwait(&sc->sc_intr_cv,
&sc->sc_mtx, hz / 2)) {
/* should not happen */
}
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
sc->sc_intr_owakeup = 0;
goto done;
}
}
done:
return;
}
static void
zyd_cfg_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, uint16_t ilen,
void *odata, uint16_t olen, uint16_t flags)
{
zyd_cfg_usb2_intr_write(sc, idata, code, ilen);
if (flags & ZYD_CMD_FLAG_READ) {
zyd_cfg_usb2_intr_read(sc, odata, olen);
}
}
static void
zyd_cfg_read16(struct zyd_softc *sc, uint16_t addr, uint16_t *value)
{
struct zyd_pair tmp[1];
addr = htole16(addr);
zyd_cfg_cmd(sc, ZYD_CMD_IORD, &addr, sizeof(addr),
tmp, sizeof(tmp), ZYD_CMD_FLAG_READ);
*value = le16toh(tmp[0].val);
}
static void
zyd_cfg_read32(struct zyd_softc *sc, uint16_t addr, uint32_t *value)
{
struct zyd_pair tmp[2];
uint16_t regs[2];
regs[0] = ZYD_REG32_HI(addr);
regs[1] = ZYD_REG32_LO(addr);
regs[0] = htole16(regs[0]);
regs[1] = htole16(regs[1]);
zyd_cfg_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs),
tmp, sizeof(tmp), ZYD_CMD_FLAG_READ);
*value = (le16toh(tmp[0].val) << 16) | le16toh(tmp[1].val);
}
static void
zyd_cfg_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
{
struct zyd_pair pair[1];
pair[0].reg = htole16(reg);
pair[0].val = htole16(val);
zyd_cfg_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
}
static void
zyd_cfg_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
{
struct zyd_pair pair[2];
pair[0].reg = htole16(ZYD_REG32_HI(reg));
pair[0].val = htole16(val >> 16);
pair[1].reg = htole16(ZYD_REG32_LO(reg));
pair[1].val = htole16(val & 0xffff);
zyd_cfg_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
}
/*------------------------------------------------------------------------*
* zyd_cfg_rfwrite - write RF registers
*------------------------------------------------------------------------*/
static void
zyd_cfg_rfwrite(struct zyd_softc *sc, uint32_t value)
{
struct zyd_rf *rf = &sc->sc_rf;
struct zyd_rfwrite req;
uint16_t cr203;
uint16_t i;
zyd_cfg_read16(sc, ZYD_CR203, &cr203);
cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
req.code = htole16(2);
req.width = htole16(rf->width);
for (i = 0; i != rf->width; i++) {
req.bit[i] = htole16(cr203);
if (value & (1 << (rf->width - 1 - i)))
req.bit[i] |= htole16(ZYD_RF_DATA);
}
zyd_cfg_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + (2 * rf->width), NULL, 0, 0);
}
/*------------------------------------------------------------------------*
* zyd_cfg_rfwrite_cr
*------------------------------------------------------------------------*/
static void
zyd_cfg_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
{
zyd_cfg_write16(sc, ZYD_CR244, (val >> 16) & 0xff);
zyd_cfg_write16(sc, ZYD_CR243, (val >> 8) & 0xff);
zyd_cfg_write16(sc, ZYD_CR242, (val >> 0) & 0xff);
}
static void
zyd_bulk_read_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_BULK_DT_RD];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_BULK_READ_STALL;
usb2_transfer_start(xfer_other);
}
}
static void
zyd_bulk_read_callback_sub(struct usb2_xfer *xfer, struct zyd_ifq *mq,
uint32_t offset, uint16_t len)
{
enum {
ZYD_OVERHEAD = (ZYD_HW_PADDING + IEEE80211_CRC_LEN),
};
struct zyd_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct zyd_plcphdr plcp;
struct zyd_rx_stat stat;
struct mbuf *m;
if (len < ZYD_OVERHEAD) {
DPRINTF("frame too "
"short (length=%d)\n", len);
ifp->if_ierrors++;
return;
}
usb2_copy_out(xfer->frbuffers, offset, &plcp, sizeof(plcp));
usb2_copy_out(xfer->frbuffers, offset + len - sizeof(stat),
&stat, sizeof(stat));
if (stat.flags & ZYD_RX_ERROR) {
DPRINTF("RX status indicated "
"error (0x%02x)\n", stat.flags);
ifp->if_ierrors++;
return;
}
/* compute actual frame length */
len -= ZYD_OVERHEAD;
/* allocate a mbuf to store the frame */
if (len > MCLBYTES) {
DPRINTF("too large frame, "
"%u bytes\n", len);
return;
} else if (len > MHLEN)
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
else
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL) {
DPRINTF("could not allocate rx mbuf\n");
ifp->if_ierrors++;
return;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
m->m_len = len;
usb2_copy_out(xfer->frbuffers, offset +
sizeof(plcp), m->m_data, len);
if (bpf_peers_present(ifp->if_bpf)) {
struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
/* XXX toss, no way to express errors */
if (stat.flags & ZYD_RX_DECRYPTERR)
tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
tap->wr_rate =
zyd_plcp2ieee(plcp.signal, stat.flags & ZYD_RX_OFDM);
tap->wr_antsignal = stat.rssi + -95;
tap->wr_antnoise = -95; /* XXX */
bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
}
if (sizeof(m->m_hdr.pad) > 0) {
m->m_hdr.pad[0] = stat.rssi; /* XXX hack */
}
_IF_ENQUEUE(mq, m);
}
static void
zyd_bulk_read_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni;
struct zyd_rx_desc rx_desc;
struct zyd_ifq mq = {NULL, NULL, 0};
struct mbuf *m;
uint32_t offset;
uint16_t len16;
uint8_t x;
uint8_t rssi;
int8_t nf;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
if (xfer->actlen < MAX(sizeof(rx_desc), ZYD_MIN_FRAGSZ)) {
DPRINTFN(0, "xfer too short, %d bytes\n", xfer->actlen);
ifp->if_ierrors++;
goto tr_setup;
}
usb2_copy_out(xfer->frbuffers, xfer->actlen - sizeof(rx_desc),
&rx_desc, sizeof(rx_desc));
if (UGETW(rx_desc.tag) == ZYD_TAG_MULTIFRAME) {
offset = 0;
DPRINTFN(4, "received multi-frame transfer, "
"%u bytes\n", xfer->actlen);
for (x = 0; x < ZYD_MAX_RXFRAMECNT; x++) {
len16 = UGETW(rx_desc.len[x]);
if ((len16 == 0) || (len16 > xfer->actlen)) {
break;
}
zyd_bulk_read_callback_sub(xfer, &mq, offset, len16);
/*
* next frame is aligned on a 32-bit
* boundary
*/
len16 = (len16 + 3) & ~3;
offset += len16;
if (len16 > xfer->actlen) {
break;
}
xfer->actlen -= len16;
}
} else {
DPRINTFN(4, "received single-frame transfer, "
"%u bytes\n", xfer->actlen);
zyd_bulk_read_callback_sub(xfer, &mq, 0, xfer->actlen);
}
case USB_ST_SETUP:
tr_setup:
DPRINTF("setup\n");
if (sc->sc_flags & ZYD_FLAG_BULK_READ_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_CS_RD]);
} else {
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
}
/*
* At the end of a USB callback it is always safe to unlock
* the private mutex of a device! That is why we do the
* "ieee80211_input" here, and not some lines up!
*/
if (mq.ifq_head) {
mtx_unlock(&sc->sc_mtx);
while (1) {
_IF_DEQUEUE(&mq, m);
if (m == NULL)
break;
rssi = m->m_hdr.pad[0]; /* XXX hack */
rssi = (rssi > 63) ? 127 : 2 * rssi;
nf = -95; /* XXX */
ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
if (ni != NULL) {
if (ieee80211_input(ni, m, rssi, nf, 0)) {
/* ignore */
}
ieee80211_free_node(ni);
} else {
if (ieee80211_input_all(ic, m, rssi, nf, 0)) {
/* ignore */
}
}
}
mtx_lock(&sc->sc_mtx);
}
break;
default: /* Error */
DPRINTF("frame error: %s\n", usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_BULK_READ_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_CS_RD]);
}
break;
}
}
/*------------------------------------------------------------------------*
* zyd_cfg_uploadfirmware
* Returns:
* 0: Success
* Else: Failure
*------------------------------------------------------------------------*/
static uint8_t
zyd_cfg_uploadfirmware(struct zyd_softc *sc, const uint8_t *fw_ptr,
uint32_t fw_len)
{
struct usb2_device_request req;
uint16_t temp;
uint16_t addr;
uint8_t stat;
DPRINTF("firmware %p size=%u\n", fw_ptr, fw_len);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADREQ;
USETW(req.wIndex, 0);
temp = 64;
addr = ZYD_FIRMWARE_START_ADDR;
while (fw_len > 0) {
if (fw_len < 64) {
temp = fw_len;
}
DPRINTF("firmware block: fw_len=%u\n", fw_len);
USETW(req.wValue, addr);
USETW(req.wLength, temp);
zyd_cfg_usbrequest(sc, &req,
USB_ADD_BYTES(fw_ptr, 0));
addr += (temp / 2);
fw_len -= temp;
fw_ptr += temp;
}
/* check whether the upload succeeded */
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADSTS;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(stat));
zyd_cfg_usbrequest(sc, &req, &stat);
return ((stat & 0x80) ? 1 : 0);
}
/*
* Driver OS interface
*/
/*
* Probe for a ZD1211-containing product
*/
static int
zyd_probe(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb2_mode != USB_MODE_HOST) {
return (ENXIO);
}
if (uaa->info.bConfigIndex != 0) {
return (ENXIO);
}
if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) {
return (ENXIO);
}
return (usb2_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
}
/*
* Attach the interface. Allocate softc structures, do
* setup and ethernet/BPF attach.
*/
static int
zyd_attach(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
struct zyd_softc *sc = device_get_softc(dev);
int error;
uint8_t iface_index;
if (sc == NULL) {
return (ENOMEM);
}
if (uaa->info.bcdDevice < 0x4330) {
device_printf(dev, "device version mismatch: 0x%X "
"(only >= 43.30 supported)\n",
uaa->info.bcdDevice);
return (EINVAL);
}
device_set_usb2_desc(dev);
snprintf(sc->sc_name, sizeof(sc->sc_name), "%s",
device_get_nameunit(dev));
sc->sc_unit = device_get_unit(dev);
sc->sc_udev = uaa->device;
sc->sc_mac_rev = USB_GET_DRIVER_INFO(uaa);
mtx_init(&sc->sc_mtx, "zyd lock", MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
usb2_cv_init(&sc->sc_intr_cv, "IWAIT");
usb2_callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
/*
* Endpoint 1 = Bulk out (512b @ high speed / 64b @ full speed)
* Endpoint 2 = Bulk in (512b @ high speed / 64b @ full speed)
* Endpoint 3 = Intr in (64b)
* Endpoint 4 = Intr out @ high speed / bulk out @ full speed (64b)
*/
iface_index = ZYD_IFACE_INDEX;
error = usb2_transfer_setup(uaa->device, &iface_index,
sc->sc_xfer, zyd_config, ZYD_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "could not allocate USB "
"transfers: %s\n", usb2_errstr(error));
goto detach;
}
error = usb2_config_td_setup(&sc->sc_config_td, sc, &sc->sc_mtx,
&zyd_end_of_commands, sizeof(struct usb2_config_td_cc), 16);
if (error) {
device_printf(dev, "could not setup config "
"thread!\n");
goto detach;
}
mtx_lock(&sc->sc_mtx);
/* start setup */
usb2_config_td_queue_command
(&sc->sc_config_td, NULL, &zyd_cfg_first_time_setup, 0, 0);
zyd_watchdog(sc);
mtx_unlock(&sc->sc_mtx);
return (0);
detach:
zyd_detach(dev);
return (ENXIO);
}
/*
* Lock PHY registers
*/
static void
zyd_cfg_lock_phy(struct zyd_softc *sc)
{
uint32_t temp;
zyd_cfg_read32(sc, ZYD_MAC_MISC, &temp);
temp &= ~ZYD_UNLOCK_PHY_REGS;
zyd_cfg_write32(sc, ZYD_MAC_MISC, temp);
}
/*
* Unlock PHY registers
*/
static void
zyd_cfg_unlock_phy(struct zyd_softc *sc)
{
uint32_t temp;
zyd_cfg_read32(sc, ZYD_MAC_MISC, &temp);
temp |= ZYD_UNLOCK_PHY_REGS;
zyd_cfg_write32(sc, ZYD_MAC_MISC, temp);
}
static void
zyd_cfg_set_beacon_interval(struct zyd_softc *sc, uint32_t bintval)
{
uint32_t val;
zyd_cfg_read32(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
sc->sc_atim_wnd = val;
zyd_cfg_read32(sc, ZYD_CR_PRE_TBTT, &val);
sc->sc_pre_tbtt = val;
sc->sc_bcn_int = bintval;
if (sc->sc_bcn_int <= 5)
sc->sc_bcn_int = 5;
if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
zyd_cfg_write32(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
zyd_cfg_write32(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
zyd_cfg_write32(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
}
/*
* Get RF name
*/
static const char *
zyd_rf_name(uint8_t type)
{
static const char *const zyd_rfs[] = {
"unknown", "unknown", "UW2451", "UCHIP", "AL2230",
"AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
"AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
"PHILIPS"
};
return (zyd_rfs[(type > 15) ? 0 : type]);
}
/*
* RF driver: Init for RFMD chip
*/
static void
zyd_cfg_rf_rfmd_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
static const uint32_t rfini[] = ZYD_RFMD_RF;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init RFMD radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
}
/*
* RF driver: Switch radio on/off for RFMD chip
*/
static void
zyd_cfg_rf_rfmd_switch_radio(struct zyd_softc *sc, uint8_t on)
{
zyd_cfg_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
zyd_cfg_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
}
/*
* RF driver: Channel setting for RFMD chip
*/
static void
zyd_cfg_rf_rfmd_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_RFMD_CHANTABLE;
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
}
/*
* RF driver: Switch radio on/off for AL2230 chip
*/
static void
zyd_cfg_rf_al2230_switch_radio(struct zyd_softc *sc, uint8_t on)
{
uint8_t on251 = (sc->sc_mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
zyd_cfg_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
zyd_cfg_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
}
/*
* RF driver: Init for AL2230 chip
*/
static void
zyd_cfg_rf_al2230_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
static const struct zyd_phy_pair phypll[] = {
{ZYD_CR251, 0x2f}, {ZYD_CR251, 0x3f},
{ZYD_CR138, 0x28}, {ZYD_CR203, 0x06}
};
static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++)
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
if ((sc->sc_rf_rev == ZYD_RF_AL2230S) || (sc->sc_al2230s != 0)) {
for (i = 0; i != INDEXES(phy2230s); i++)
zyd_cfg_write16(sc, phy2230s[i].reg, phy2230s[i].val);
}
/* init AL2230 radio */
for (i = 0; i != INDEXES(rfini1); i++)
zyd_cfg_rfwrite(sc, rfini1[i]);
if ((sc->sc_rf_rev == ZYD_RF_AL2230S) || (sc->sc_al2230s != 0))
zyd_cfg_rfwrite(sc, 0x000824);
else
zyd_cfg_rfwrite(sc, 0x0005a4);
for (i = 0; i != INDEXES(rfini2); i++)
zyd_cfg_rfwrite(sc, rfini2[i]);
for (i = 0; i != INDEXES(phypll); i++)
zyd_cfg_write16(sc, phypll[i].reg, phypll[i].val);
for (i = 0; i != INDEXES(rfini3); i++)
zyd_cfg_rfwrite(sc, rfini3[i]);
}
static void
zyd_cfg_rf_al2230_fini(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
uint32_t i;
for (i = 0; i != INDEXES(phy); i++)
zyd_cfg_write16(sc, phy[i].reg, phy[i].val);
if (sc->sc_newphy != 0)
zyd_cfg_write16(sc, ZYD_CR9, 0xe1);
zyd_cfg_write16(sc, ZYD_CR203, 0x6);
}
static void
zyd_cfg_rf_al2230_init_b(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
uint32_t i;
for (i = 0; i != INDEXES(phy1); i++)
zyd_cfg_write16(sc, phy1[i].reg, phy1[i].val);
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++)
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
if ((sc->sc_rf_rev == ZYD_RF_AL2230S) || (sc->sc_al2230s != 0))
for (i = 0; i != INDEXES(phy2230s); i++)
zyd_cfg_write16(sc, phy2230s[i].reg, phy2230s[i].val);
for (i = 0; i != 3; i++)
zyd_cfg_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
for (i = 0; i != INDEXES(rfini_part1); i++)
zyd_cfg_rfwrite_cr(sc, rfini_part1[i]);
if ((sc->sc_rf_rev == ZYD_RF_AL2230S) || (sc->sc_al2230s != 0))
zyd_cfg_rfwrite(sc, 0x241000);
else
zyd_cfg_rfwrite(sc, 0x25a000);
for (i = 0; i != INDEXES(rfini_part2); i++)
zyd_cfg_rfwrite_cr(sc, rfini_part2[i]);
for (i = 0; i != INDEXES(phy2); i++)
zyd_cfg_write16(sc, phy2[i].reg, phy2[i].val);
for (i = 0; i != INDEXES(rfini_part3); i++)
zyd_cfg_rfwrite_cr(sc, rfini_part3[i]);
for (i = 0; i < INDEXES(phy3); i++)
zyd_cfg_write16(sc, phy3[i].reg, phy3[i].val);
zyd_cfg_rf_al2230_fini(sc, rf);
}
/*
* RF driver: Channel setting for AL2230 chip
*/
static void
zyd_cfg_rf_al2230_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct zyd_phy_pair phy1[] = {
{ZYD_CR138, 0x28}, {ZYD_CR203, 0x06},
};
static const struct {
uint32_t r1, r2, r3;
} rfprog[] = ZYD_AL2230_CHANTABLE;
uint32_t i;
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r3);
for (i = 0; i != INDEXES(phy1); i++)
zyd_cfg_write16(sc, phy1[i].reg, phy1[i].val);
}
static void
zyd_cfg_rf_al2230_set_channel_b(struct zyd_softc *sc,
struct zyd_rf *rf, uint8_t chan)
{
static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
static const struct {
uint32_t r1, r2, r3;
} rfprog[] = ZYD_AL2230_CHANTABLE_B;
uint32_t i;
for (i = 0; i != INDEXES(phy1); i++)
zyd_cfg_write16(sc, phy1[i].reg, phy1[i].val);
zyd_cfg_rfwrite_cr(sc, rfprog[chan - 1].r1);
zyd_cfg_rfwrite_cr(sc, rfprog[chan - 1].r2);
zyd_cfg_rfwrite_cr(sc, rfprog[chan - 1].r3);
zyd_cfg_rf_al2230_fini(sc, rf);
}
#define ZYD_AL2230_PHY_BANDEDGE6 \
{ \
{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \
{ ZYD_CR47, 0x1e } \
}
static void
zyd_cfg_rf_al2230_bandedge6(struct zyd_softc *sc,
struct zyd_rf *rf, uint8_t chan)
{
struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
uint32_t i;
if ((chan == 1) || (chan == 11))
r[0].val = 0x12;
for (i = 0; i < INDEXES(r); i++)
zyd_cfg_write16(sc, r[i].reg, r[i].val);
}
/*
* AL7230B RF methods.
*/
static void
zyd_cfg_rf_al7230b_switch_radio(struct zyd_softc *sc, uint8_t on)
{
zyd_cfg_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
zyd_cfg_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
}
static void
zyd_cfg_rf_al7230b_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
uint32_t i;
/* for AL7230B, PHY and RF need to be initialized in "phases" */
/* init RF-dependent PHY registers, part one */
for (i = 0; i != INDEXES(phyini_1); i++) {
zyd_cfg_write16(sc, phyini_1[i].reg, phyini_1[i].val);
}
/* init AL7230B radio, part one */
for (i = 0; i != INDEXES(rfini_1); i++) {
zyd_cfg_rfwrite(sc, rfini_1[i]);
}
/* init RF-dependent PHY registers, part two */
for (i = 0; i != INDEXES(phyini_2); i++) {
zyd_cfg_write16(sc, phyini_2[i].reg, phyini_2[i].val);
}
/* init AL7230B radio, part two */
for (i = 0; i != INDEXES(rfini_2); i++) {
zyd_cfg_rfwrite(sc, rfini_2[i]);
}
/* init RF-dependent PHY registers, part three */
for (i = 0; i != INDEXES(phyini_3); i++) {
zyd_cfg_write16(sc, phyini_3[i].reg, phyini_3[i].val);
}
}
static void
zyd_cfg_rf_al7230b_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_AL7230B_CHANTABLE;
static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
uint32_t i;
zyd_cfg_write16(sc, ZYD_CR240, 0x57);
zyd_cfg_write16(sc, ZYD_CR251, 0x2f);
for (i = 0; i != INDEXES(rfsc); i++) {
zyd_cfg_rfwrite(sc, rfsc[i]);
}
zyd_cfg_write16(sc, ZYD_CR128, 0x14);
zyd_cfg_write16(sc, ZYD_CR129, 0x12);
zyd_cfg_write16(sc, ZYD_CR130, 0x10);
zyd_cfg_write16(sc, ZYD_CR38, 0x38);
zyd_cfg_write16(sc, ZYD_CR136, 0xdf);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
zyd_cfg_rfwrite(sc, 0x3c9000);
zyd_cfg_write16(sc, ZYD_CR251, 0x3f);
zyd_cfg_write16(sc, ZYD_CR203, 0x06);
zyd_cfg_write16(sc, ZYD_CR240, 0x08);
}
/*
* AL2210 RF methods.
*/
static void
zyd_cfg_rf_al2210_switch_radio(struct zyd_softc *sc, uint8_t on)
{
}
static void
zyd_cfg_rf_al2210_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
static const uint32_t rfini[] = ZYD_AL2210_RF;
uint32_t tmp;
uint32_t i;
zyd_cfg_write32(sc, ZYD_CR18, 2);
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init AL2210 radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
zyd_cfg_read32(sc, ZYD_CR_RADIO_PD, &tmp);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x05);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x00);
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
zyd_cfg_write32(sc, ZYD_CR18, 3);
}
static void
zyd_cfg_rf_al2210_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
uint32_t tmp;
zyd_cfg_write32(sc, ZYD_CR18, 2);
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
zyd_cfg_read32(sc, ZYD_CR_RADIO_PD, &tmp);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
zyd_cfg_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x05);
zyd_cfg_write32(sc, ZYD_CR_RFCFG, 0x00);
zyd_cfg_write16(sc, ZYD_CR47, 0x1e);
/* actually set the channel */
zyd_cfg_rfwrite(sc, rfprog[channel - 1]);
zyd_cfg_write32(sc, ZYD_CR18, 3);
}
/*
* GCT RF methods.
*/
static void
zyd_cfg_rf_gct_switch_radio(struct zyd_softc *sc, uint8_t on)
{
/* vendor driver does nothing for this RF chip */
}
static void
zyd_cfg_rf_gct_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
static const uint32_t rfini[] = ZYD_GCT_RF;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
/* init cgt radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
}
static void
zyd_cfg_rf_gct_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
zyd_cfg_rfwrite(sc, 0x1c0000);
zyd_cfg_rfwrite(sc, rfprog[channel - 1]);
zyd_cfg_rfwrite(sc, 0x1c0008);
}
/*
* Maxim RF methods.
*/
static void
zyd_cfg_rf_maxim_switch_radio(struct zyd_softc *sc, uint8_t on)
{
/* vendor driver does nothing for this RF chip */
}
static void
zyd_cfg_rf_maxim_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
uint16_t tmp;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
}
static void
zyd_cfg_rf_maxim_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM_CHANTABLE;
uint16_t tmp;
uint32_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
/* init maxim radio - skipping the two first values */
if (INDEXES(rfini) > 2) {
for (i = 2; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
}
/*
* Maxim2 RF methods.
*/
static void
zyd_cfg_rf_maxim2_switch_radio(struct zyd_softc *sc, uint8_t on)
{
/* vendor driver does nothing for this RF chip */
}
static void
zyd_cfg_rf_maxim2_init(struct zyd_softc *sc, struct zyd_rf *rf)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
uint16_t tmp;
uint32_t i;
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim2 radio */
for (i = 0; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
}
static void
zyd_cfg_rf_maxim2_set_channel(struct zyd_softc *sc, struct zyd_rf *rf,
uint8_t channel)
{
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM2_CHANTABLE;
uint16_t tmp;
uint32_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i != INDEXES(phyini); i++) {
zyd_cfg_write16(sc, phyini[i].reg, phyini[i].val);
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r1);
zyd_cfg_rfwrite(sc, rfprog[channel - 1].r2);
/* init maxim2 radio - skipping the two first values */
if (INDEXES(rfini) > 2) {
for (i = 2; i != INDEXES(rfini); i++) {
zyd_cfg_rfwrite(sc, rfini[i]);
}
}
zyd_cfg_read16(sc, ZYD_CR203, &tmp);
zyd_cfg_write16(sc, ZYD_CR203, tmp | (1 << 4));
}
/*
* Assign drivers and init the RF
*/
static uint8_t
zyd_cfg_rf_init_hw(struct zyd_softc *sc, struct zyd_rf *rf)
{
; /* fix for indent */
switch (sc->sc_rf_rev) {
case ZYD_RF_RFMD:
rf->cfg_init_hw = zyd_cfg_rf_rfmd_init;
rf->cfg_switch_radio = zyd_cfg_rf_rfmd_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_rfmd_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2230:
case ZYD_RF_AL2230S:
if (sc->sc_mac_rev == ZYD_ZD1211B) {
rf->cfg_init_hw = zyd_cfg_rf_al2230_init_b;
rf->cfg_set_channel = zyd_cfg_rf_al2230_set_channel_b;
} else {
rf->cfg_init_hw = zyd_cfg_rf_al2230_init;
rf->cfg_set_channel = zyd_cfg_rf_al2230_set_channel;
}
rf->cfg_switch_radio = zyd_cfg_rf_al2230_switch_radio;
rf->cfg_bandedge6 = zyd_cfg_rf_al2230_bandedge6;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL7230B:
rf->cfg_init_hw = zyd_cfg_rf_al7230b_init;
rf->cfg_switch_radio = zyd_cfg_rf_al7230b_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_al7230b_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2210:
rf->cfg_init_hw = zyd_cfg_rf_al2210_init;
rf->cfg_switch_radio = zyd_cfg_rf_al2210_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_al2210_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_GCT:
rf->cfg_init_hw = zyd_cfg_rf_gct_init;
rf->cfg_switch_radio = zyd_cfg_rf_gct_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_gct_set_channel;
rf->width = 21; /* 21-bit RF values */
break;
case ZYD_RF_MAXIM_NEW:
rf->cfg_init_hw = zyd_cfg_rf_maxim_init;
rf->cfg_switch_radio = zyd_cfg_rf_maxim_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_maxim_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
case ZYD_RF_MAXIM_NEW2:
rf->cfg_init_hw = zyd_cfg_rf_maxim2_init;
rf->cfg_switch_radio = zyd_cfg_rf_maxim2_switch_radio;
rf->cfg_set_channel = zyd_cfg_rf_maxim2_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
default:
DPRINTFN(0, "%s: Sorry, radio %s is not supported yet\n",
sc->sc_name, zyd_rf_name(sc->sc_rf_rev));
return (1);
}
zyd_cfg_lock_phy(sc);
(rf->cfg_init_hw) (sc, rf);
zyd_cfg_unlock_phy(sc);
return (0); /* success */
}
/*
* Init the hardware
*/
static uint8_t
zyd_cfg_hw_init(struct zyd_softc *sc)
{
const struct zyd_phy_pair *phyp;
uint32_t tmp;
/* specify that the plug and play is finished */
zyd_cfg_write32(sc, ZYD_MAC_AFTER_PNP, 1);
zyd_cfg_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_firmware_base);
DPRINTF("firmware base address=0x%04x\n", sc->sc_firmware_base);
/* retrieve firmware revision number */
zyd_cfg_read16(sc, sc->sc_firmware_base + ZYD_FW_FIRMWARE_REV, &sc->sc_fw_rev);
zyd_cfg_write32(sc, ZYD_CR_GPI_EN, 0);
zyd_cfg_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
/* set mandatory rates - XXX assumes 802.11b/g */
zyd_cfg_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
/* disable interrupts */
zyd_cfg_write32(sc, ZYD_CR_INTERRUPT, 0);
/* PHY init */
zyd_cfg_lock_phy(sc);
phyp = (sc->sc_mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
for (; phyp->reg != 0; phyp++) {
zyd_cfg_write16(sc, phyp->reg, phyp->val);
}
if ((sc->sc_mac_rev == ZYD_ZD1211) && sc->sc_fix_cr157) {
zyd_cfg_read32(sc, ZYD_EEPROM_PHY_REG, &tmp);
zyd_cfg_write32(sc, ZYD_CR157, tmp >> 8);
}
zyd_cfg_unlock_phy(sc);
/* HMAC init */
zyd_cfg_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
zyd_cfg_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
zyd_cfg_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
zyd_cfg_write32(sc, ZYD_MAC_MISC, 0x000000a4);
zyd_cfg_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
zyd_cfg_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
zyd_cfg_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
zyd_cfg_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
zyd_cfg_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
zyd_cfg_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
zyd_cfg_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
zyd_cfg_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
zyd_cfg_write32(sc, ZYD_MAC_AFTER_PNP, 1);
zyd_cfg_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
zyd_cfg_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
zyd_cfg_write32(sc, ZYD_MAC_CAM_MODE, 0x3);
if (sc->sc_mac_rev == ZYD_ZD1211) {
zyd_cfg_write32(sc, ZYD_MAC_RETRY, 0x00000002);
zyd_cfg_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
} else {
zyd_cfg_write32(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
zyd_cfg_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
zyd_cfg_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
zyd_cfg_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
zyd_cfg_write32(sc, ZYD_MACB_TXOP, 0x01800824);
zyd_cfg_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
}
/* init beacon interval to 100ms */
zyd_cfg_set_beacon_interval(sc, 100);
return (0); /* success */
}
/*
* Read information from EEPROM
*/
static void
zyd_cfg_read_eeprom(struct zyd_softc *sc)
{
uint32_t tmp;
uint16_t i;
uint16_t val;
/* read MAC address */
zyd_cfg_get_macaddr(sc);
/* read product data */
zyd_cfg_read32(sc, ZYD_EEPROM_POD, &tmp);
sc->sc_rf_rev = tmp & 0x0f;
sc->sc_ledtype = (tmp >> 4) & 0x01;
sc->sc_cckgain = (tmp >> 8) & 0x01;
sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
sc->sc_pa_rev = (tmp >> 16) & 0x0f;
sc->sc_al2230s = (tmp >> 7) & 0x01;
sc->sc_bandedge6 = (tmp >> 21) & 0x01;
sc->sc_newphy = (tmp >> 31) & 0x01;
sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
/* read regulatory domain (currently unused) */
zyd_cfg_read32(sc, ZYD_EEPROM_SUBID, &tmp);
sc->sc_regdomain = tmp >> 16;
DPRINTF("regulatory domain %x\n", sc->sc_regdomain);
/* read Tx power calibration tables */
for (i = 0; i < 7; i++) {
zyd_cfg_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
sc->sc_pwr_cal[(i * 2)] = val >> 8;
sc->sc_pwr_cal[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
sc->sc_pwr_int[(i * 2)] = val >> 8;
sc->sc_pwr_int[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
sc->sc_ofdm36_cal[(i * 2)] = val >> 8;
sc->sc_ofdm36_cal[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
sc->sc_ofdm48_cal[(i * 2)] = val >> 8;
sc->sc_ofdm48_cal[(i * 2) + 1] = val & 0xff;
zyd_cfg_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
sc->sc_ofdm54_cal[(i * 2)] = val >> 8;
sc->sc_ofdm54_cal[(i * 2) + 1] = val & 0xff;
}
}
static void
zyd_cfg_get_macaddr(struct zyd_softc *sc)
{
struct usb2_device_request req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = ZYD_READFWDATAREQ;
USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
USETW(req.wIndex, 0);
USETW(req.wLength, IEEE80211_ADDR_LEN);
zyd_cfg_usbrequest(sc, &req, sc->sc_myaddr);
return;
}
static void
zyd_cfg_set_mac_addr(struct zyd_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
zyd_cfg_write32(sc, ZYD_MAC_MACADRL, tmp);
tmp = (addr[5] << 8) | addr[4];
zyd_cfg_write32(sc, ZYD_MAC_MACADRH, tmp);
}
/*
* Switch radio on/off
*/
static void
zyd_cfg_switch_radio(struct zyd_softc *sc, uint8_t onoff)
{
zyd_cfg_lock_phy(sc);
(sc->sc_rf.cfg_switch_radio) (sc, onoff);
zyd_cfg_unlock_phy(sc);
}
/*
* Set BSSID
*/
static void
zyd_cfg_set_bssid(struct zyd_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
zyd_cfg_write32(sc, ZYD_MAC_BSSADRL, tmp);
tmp = (addr[5] << 8) | addr[4];
zyd_cfg_write32(sc, ZYD_MAC_BSSADRH, tmp);
}
/*
* Complete the attach process
*/
static void
zyd_cfg_first_time_setup(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct usb2_config_descriptor *cd;
struct ieee80211com *ic;
struct ifnet *ifp;
const uint8_t *fw_ptr;
uint32_t fw_len;
uint8_t bands;
usb2_error_t err;
/* setup RX tap header */
sc->sc_rxtap_len = sizeof(sc->sc_rxtap);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
/* setup TX tap header */
sc->sc_txtap_len = sizeof(sc->sc_txtap);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
if (sc->sc_mac_rev == ZYD_ZD1211) {
fw_ptr = zd1211_firmware;
fw_len = sizeof(zd1211_firmware);
} else {
fw_ptr = zd1211b_firmware;
fw_len = sizeof(zd1211b_firmware);
}
if (zyd_cfg_uploadfirmware(sc, fw_ptr, fw_len)) {
DPRINTFN(0, "%s: could not "
"upload firmware!\n", sc->sc_name);
return;
}
cd = usb2_get_config_descriptor(sc->sc_udev);
/* reset device */
err = usb2_req_set_config(sc->sc_udev, &sc->sc_mtx,
cd->bConfigurationValue);
if (err) {
DPRINTF("reset failed (ignored)\n");
}
/* Read MAC and other stuff rom EEPROM */
zyd_cfg_read_eeprom(sc);
/* Init hardware */
if (zyd_cfg_hw_init(sc)) {
DPRINTFN(0, "%s: HW init failed!\n", sc->sc_name);
return;
}
/* Now init the RF chip */
if (zyd_cfg_rf_init_hw(sc, &sc->sc_rf)) {
DPRINTFN(0, "%s: RF init failed!\n", sc->sc_name);
return;
}
printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %02x:%02x:%02x:%02x:%02x:%02x\n",
sc->sc_name, (sc->sc_mac_rev == ZYD_ZD1211) ? "" : "B",
sc->sc_fw_rev >> 8, sc->sc_fw_rev & 0xff, zyd_rf_name(sc->sc_rf_rev),
sc->sc_pa_rev, sc->sc_myaddr[0],
sc->sc_myaddr[1], sc->sc_myaddr[2],
sc->sc_myaddr[3], sc->sc_myaddr[4],
sc->sc_myaddr[5]);
mtx_unlock(&sc->sc_mtx);
ifp = if_alloc(IFT_IEEE80211);
mtx_lock(&sc->sc_mtx);
if (ifp == NULL) {
DPRINTFN(0, "%s: could not if_alloc()!\n",
sc->sc_name);
goto done;
}
sc->sc_ifp = ifp;
ic = ifp->if_l2com;
ifp->if_softc = sc;
if_initname(ifp, "zyd", sc->sc_unit);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = &zyd_init_cb;
ifp->if_ioctl = &zyd_ioctl_cb;
ifp->if_start = &zyd_start_cb;
ifp->if_watchdog = NULL;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
bcopy(sc->sc_myaddr, ic->ic_myaddr, sizeof(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
/* Set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
ieee80211_init_channels(ic, NULL, &bands);
mtx_unlock(&sc->sc_mtx);
ieee80211_ifattach(ic);
mtx_lock(&sc->sc_mtx);
ic->ic_node_alloc = &zyd_node_alloc_cb;
ic->ic_raw_xmit = &zyd_raw_xmit_cb;
ic->ic_newassoc = &zyd_newassoc_cb;
ic->ic_scan_start = &zyd_scan_start_cb;
ic->ic_scan_end = &zyd_scan_end_cb;
ic->ic_set_channel = &zyd_set_channel_cb;
ic->ic_vap_create = &zyd_vap_create;
ic->ic_vap_delete = &zyd_vap_delete;
ic->ic_update_mcast = &zyd_update_mcast_cb;
ic->ic_update_promisc = &zyd_update_promisc_cb;
sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
mtx_unlock(&sc->sc_mtx);
bpfattach(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) +
sizeof(sc->sc_txtap));
mtx_lock(&sc->sc_mtx);
if (bootverbose) {
ieee80211_announce(ic);
}
usb2_transfer_start(sc->sc_xfer[ZYD_INTR_DT_RD]);
done:
return;
}
/*
* Detach device
*/
static int
zyd_detach(device_t dev)
{
struct zyd_softc *sc = device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
usb2_config_td_drain(&sc->sc_config_td);
mtx_lock(&sc->sc_mtx);
usb2_callout_stop(&sc->sc_watchdog);
zyd_cfg_pre_stop(sc, NULL, 0);
ifp = sc->sc_ifp;
ic = ifp->if_l2com;
mtx_unlock(&sc->sc_mtx);
/* stop all USB transfers first */
usb2_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
/* get rid of any late children */
bus_generic_detach(dev);
if (ifp) {
bpfdetach(ifp);
ieee80211_ifdetach(ic);
if_free(ifp);
}
usb2_config_td_unsetup(&sc->sc_config_td);
usb2_callout_drain(&sc->sc_watchdog);
usb2_cv_destroy(&sc->sc_intr_cv);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
zyd_cfg_newstate(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct zyd_vap *uvp = ZYD_VAP(vap);
enum ieee80211_state ostate;
enum ieee80211_state nstate;
int arg;
ostate = vap->iv_state;
nstate = sc->sc_ns_state;
arg = sc->sc_ns_arg;
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_RUN:
zyd_cfg_set_run(sc, cc);
break;
default:
break;
}
mtx_unlock(&sc->sc_mtx);
IEEE80211_LOCK(ic);
uvp->newstate(vap, nstate, arg);
if (vap->iv_newstate_cb != NULL)
vap->iv_newstate_cb(vap, nstate, arg);
IEEE80211_UNLOCK(ic);
mtx_lock(&sc->sc_mtx);
}
static void
zyd_cfg_set_run(struct zyd_softc *sc,
struct usb2_config_td_cc *cc)
{
zyd_cfg_set_chan(sc, cc, 0);
if (cc->ic_opmode != IEEE80211_M_MONITOR) {
/* turn link LED on */
zyd_cfg_set_led(sc, ZYD_LED1, 1);
/* make data LED blink upon Tx */
zyd_cfg_write32(sc, sc->sc_firmware_base + ZYD_FW_LINK_STATUS, 1);
zyd_cfg_set_bssid(sc, cc->iv_bss.ni_bssid);
}
if (cc->iv_bss.fixed_rate_none) {
/* enable automatic rate adaptation */
zyd_cfg_amrr_start(sc);
}
}
static int
zyd_newstate_cb(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct zyd_vap *uvp = ZYD_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct zyd_softc *sc = ic->ic_ifp->if_softc;
DPRINTF("setting new state: %d\n", nstate);
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
mtx_unlock(&sc->sc_mtx);
/* Special case which happens at detach. */
if (nstate == IEEE80211_S_INIT) {
(uvp->newstate) (vap, nstate, arg);
}
return (0); /* nothing to do */
}
/* store next state */
sc->sc_ns_state = nstate;
sc->sc_ns_arg = arg;
/* stop timers */
sc->sc_amrr_timer = 0;
/*
* USB configuration can only be done from the USB configuration
* thread:
*/
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy,
&zyd_cfg_newstate, 0, 0);
mtx_unlock(&sc->sc_mtx);
return EINPROGRESS;
}
static void
zyd_cfg_update_promisc(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint32_t low;
uint32_t high;
if ((cc->ic_opmode == IEEE80211_M_MONITOR) ||
(cc->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
low = 0xffffffff;
high = 0xffffffff;
} else {
low = cc->zyd_multi_low;
high = cc->zyd_multi_high;
}
/* reprogram multicast global hash table */
zyd_cfg_write32(sc, ZYD_MAC_GHTBL, low);
zyd_cfg_write32(sc, ZYD_MAC_GHTBH, high);
}
/*
* Rate-to-bit-converter (Field "rate" in zyd_controlsetformat)
*/
static uint8_t
zyd_plcp_signal(uint8_t rate)
{
; /* fix for indent */
switch (rate) {
/* CCK rates (NB: not IEEE std, device-specific) */
case 2:
return (0x0);
case 4:
return (0x1);
case 11:
return (0x2);
case 22:
return (0x3);
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12:
return (0xb);
case 18:
return (0xf);
case 24:
return (0xa);
case 36:
return (0xe);
case 48:
return (0x9);
case 72:
return (0xd);
case 96:
return (0x8);
case 108:
return (0xc);
/* XXX unsupported/unknown rate */
default:
return (0xff);
}
}
static void
zyd_std_command(struct ieee80211com *ic, usb2_config_td_command_t *func)
{
struct zyd_softc *sc = ic->ic_ifp->if_softc;
mtx_lock(&sc->sc_mtx);
sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy, func, 0, 0);
mtx_unlock(&sc->sc_mtx);
}
static void
zyd_scan_start_cb(struct ieee80211com *ic)
{
zyd_std_command(ic, &zyd_cfg_scan_start);
}
static void
zyd_scan_end_cb(struct ieee80211com *ic)
{
zyd_std_command(ic, &zyd_cfg_scan_end);
}
static void
zyd_set_channel_cb(struct ieee80211com *ic)
{
zyd_std_command(ic, &zyd_cfg_set_chan);
}
/*========================================================================*
* configure sub-routines, zyd_cfg_xxx
*========================================================================*/
static void
zyd_cfg_scan_start(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
zyd_cfg_set_bssid(sc, cc->if_broadcastaddr);
}
static void
zyd_cfg_scan_end(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
zyd_cfg_set_bssid(sc, cc->iv_bss.ni_bssid);
}
static void
zyd_cfg_set_chan(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint32_t chan;
uint32_t tmp;
chan = cc->ic_curchan.chan_to_ieee;
DPRINTF("Will try %d\n", chan);
if ((chan == 0) || (chan == IEEE80211_CHAN_ANY)) {
DPRINTF("0 or ANY, exiting\n");
return;
}
zyd_cfg_lock_phy(sc);
(sc->sc_rf.cfg_set_channel) (sc, &sc->sc_rf, chan);
/* update Tx power */
zyd_cfg_write16(sc, ZYD_CR31, sc->sc_pwr_int[chan - 1]);
if (sc->sc_mac_rev == ZYD_ZD1211B) {
zyd_cfg_write16(sc, ZYD_CR67, sc->sc_ofdm36_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR66, sc->sc_ofdm48_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR65, sc->sc_ofdm54_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR68, sc->sc_pwr_cal[chan - 1]);
zyd_cfg_write16(sc, ZYD_CR69, 0x28);
zyd_cfg_write16(sc, ZYD_CR69, 0x2a);
}
if (sc->sc_cckgain) {
/* set CCK baseband gain from EEPROM */
zyd_cfg_read32(sc, ZYD_EEPROM_PHY_REG, &tmp);
zyd_cfg_write16(sc, ZYD_CR47, tmp & 0xff);
}
if (sc->sc_bandedge6 && (sc->sc_rf.cfg_bandedge6 != NULL)) {
(sc->sc_rf.cfg_bandedge6) (sc, &sc->sc_rf, chan);
}
zyd_cfg_write32(sc, ZYD_CR_CONFIG_PHILIPS, 0);
zyd_cfg_unlock_phy(sc);
sc->sc_rxtap.wr_chan_freq =
sc->sc_txtap.wt_chan_freq =
htole16(cc->ic_curchan.ic_freq);
sc->sc_rxtap.wr_chan_flags =
sc->sc_txtap.wt_chan_flags =
htole16(cc->ic_flags);
}
/*
* Interface: init
*/
/* immediate configuration */
static void
zyd_cfg_pre_init(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
zyd_cfg_pre_stop(sc, cc, 0);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_flags |= ZYD_FLAG_HL_READY;
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
}
/* delayed configuration */
static void
zyd_cfg_init(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
zyd_cfg_stop(sc, cc, 0);
/* Do initial setup */
zyd_cfg_set_mac_addr(sc, cc->ic_myaddr);
zyd_cfg_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
/* promiscuous mode */
zyd_cfg_write32(sc, ZYD_MAC_SNIFFER,
(cc->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
/* multicast setup */
zyd_cfg_update_promisc(sc, cc, refcount);
zyd_cfg_set_rxfilter(sc, cc, refcount);
/* switch radio transmitter ON */
zyd_cfg_switch_radio(sc, 1);
/* XXX wrong, can't set here */
/* set basic rates */
if (cc->ic_curmode == IEEE80211_MODE_11B)
zyd_cfg_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
else if (cc->ic_curmode == IEEE80211_MODE_11A)
zyd_cfg_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
else /* assumes 802.11b/g */
zyd_cfg_write32(sc, ZYD_MAC_BAS_RATE, 0xff0f);
/* set mandatory rates */
if (cc->ic_curmode == IEEE80211_MODE_11B)
zyd_cfg_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
else if (cc->ic_curmode == IEEE80211_MODE_11A)
zyd_cfg_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
else /* assumes 802.11b/g */
zyd_cfg_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
/* set default BSS channel */
zyd_cfg_set_chan(sc, cc, 0);
/* enable interrupts */
zyd_cfg_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
/* make sure that the transfers get started */
sc->sc_flags |= (
ZYD_FLAG_BULK_READ_STALL |
ZYD_FLAG_BULK_WRITE_STALL |
ZYD_FLAG_LL_READY);
if ((sc->sc_flags & ZYD_FLAG_LL_READY) &&
(sc->sc_flags & ZYD_FLAG_HL_READY)) {
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/*
* start the USB transfers, if not already started:
*/
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_DT_RD]);
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_DT_WR]);
/*
* start IEEE802.11 layer
*/
mtx_unlock(&sc->sc_mtx);
ieee80211_start_all(ic);
mtx_lock(&sc->sc_mtx);
}
}
/* immediate configuration */
static void
zyd_cfg_pre_stop(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
if (cc) {
/* copy the needed configuration */
zyd_config_copy(sc, cc, refcount);
}
if (ifp) {
/* clear flags */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
sc->sc_flags &= ~(ZYD_FLAG_HL_READY |
ZYD_FLAG_LL_READY);
/*
* stop all the transfers, if not already stopped:
*/
usb2_transfer_stop(sc->sc_xfer[ZYD_BULK_DT_WR]);
usb2_transfer_stop(sc->sc_xfer[ZYD_BULK_DT_RD]);
usb2_transfer_stop(sc->sc_xfer[ZYD_BULK_CS_WR]);
usb2_transfer_stop(sc->sc_xfer[ZYD_BULK_CS_RD]);
/* clean up transmission */
zyd_tx_clean_queue(sc);
}
/* delayed configuration */
static void
zyd_cfg_stop(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
/* switch radio transmitter OFF */
zyd_cfg_switch_radio(sc, 0);
/* disable Rx */
zyd_cfg_write32(sc, ZYD_MAC_RXFILTER, 0);
/* disable interrupts */
zyd_cfg_write32(sc, ZYD_CR_INTERRUPT, 0);
}
static void
zyd_update_mcast_cb(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy,
&zyd_cfg_update_promisc, 0, 0);
mtx_unlock(&sc->sc_mtx);
}
static void
zyd_update_promisc_cb(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_config_copy,
&zyd_cfg_update_promisc, 0, 0);
mtx_unlock(&sc->sc_mtx);
}
static void
zyd_cfg_set_rxfilter(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint32_t rxfilter;
switch (cc->ic_opmode) {
case IEEE80211_M_STA:
rxfilter = ZYD_FILTER_BSS;
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_HOSTAP:
rxfilter = ZYD_FILTER_HOSTAP;
break;
case IEEE80211_M_MONITOR:
rxfilter = ZYD_FILTER_MONITOR;
break;
default:
/* should not get there */
return;
}
zyd_cfg_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
}
static void
zyd_cfg_set_led(struct zyd_softc *sc, uint32_t which, uint8_t on)
{
uint32_t tmp;
zyd_cfg_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
if (on)
tmp |= which;
else
tmp &= ~which;
zyd_cfg_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
}
static void
zyd_start_cb(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_DT_WR]);
mtx_unlock(&sc->sc_mtx);
}
static void
zyd_bulk_write_clear_stall_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[ZYD_BULK_DT_WR];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~ZYD_FLAG_BULK_WRITE_STALL;
usb2_transfer_start(xfer_other);
}
}
/*
* We assume that "m->m_pkthdr.rcvif" is pointing to the "ni" that
* should be freed, when "zyd_setup_desc_and_tx" is called.
*/
static void
zyd_setup_desc_and_tx(struct zyd_softc *sc, struct mbuf *m,
uint16_t rate)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct mbuf *mm;
enum ieee80211_phytype phytype;
uint16_t len;
uint16_t totlen;
uint16_t pktlen;
uint8_t remainder;
if (sc->sc_tx_queue.ifq_len >= IFQ_MAXLEN) {
/* free packet */
zyd_tx_freem(m);
ifp->if_oerrors++;
return;
}
if (!((sc->sc_flags & ZYD_FLAG_LL_READY) &&
(sc->sc_flags & ZYD_FLAG_HL_READY))) {
/* free packet */
zyd_tx_freem(m);
ifp->if_oerrors++;
return;
}
if (rate < 2) {
DPRINTF("rate < 2!\n");
/* avoid division by zero */
rate = 2;
}
ic->ic_lastdata = ticks;
if (bpf_peers_present(ifp->if_bpf)) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m);
}
len = m->m_pkthdr.len;
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
phytype = ieee80211_rate2phytype(sc->sc_rates, rate);
sc->sc_tx_desc.len = htole16(totlen);
sc->sc_tx_desc.phy = zyd_plcp_signal(rate);
if (phytype == IEEE80211_T_OFDM) {
sc->sc_tx_desc.phy |= ZYD_TX_PHY_OFDM;
if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
sc->sc_tx_desc.phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
sc->sc_tx_desc.phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof(struct zyd_tx_desc) + 10;
if (sc->sc_mac_rev == ZYD_ZD1211)
pktlen += totlen;
sc->sc_tx_desc.pktlen = htole16(pktlen);
sc->sc_tx_desc.plcp_length = ((16 * totlen) + rate - 1) / rate;
sc->sc_tx_desc.plcp_service = 0;
if (rate == 22) {
remainder = (16 * totlen) % 22;
if ((remainder != 0) && (remainder < 7))
sc->sc_tx_desc.plcp_service |= ZYD_PLCP_LENGEXT;
}
if (sizeof(sc->sc_tx_desc) > MHLEN) {
DPRINTF("No room for header structure!\n");
zyd_tx_freem(m);
return;
}
mm = m_gethdr(M_NOWAIT, MT_DATA);
if (mm == NULL) {
DPRINTF("Could not allocate header mbuf!\n");
zyd_tx_freem(m);
return;
}
bcopy(&sc->sc_tx_desc, mm->m_data, sizeof(sc->sc_tx_desc));
mm->m_len = sizeof(sc->sc_tx_desc);
mm->m_next = m;
mm->m_pkthdr.len = mm->m_len + m->m_pkthdr.len;
mm->m_pkthdr.rcvif = NULL;
/* start write transfer, if not started */
_IF_ENQUEUE(&sc->sc_tx_queue, mm);
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_DT_WR]);
}
static void
zyd_bulk_write_callback(struct usb2_xfer *xfer)
{
struct zyd_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
uint16_t temp_len;
DPRINTF("\n");
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete\n");
ifp->if_opackets++;
case USB_ST_SETUP:
if (sc->sc_flags & ZYD_FLAG_BULK_WRITE_STALL) {
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_CS_WR]);
DPRINTFN(11, "write stalled\n");
break;
}
if (sc->sc_flags & ZYD_FLAG_WAIT_COMMAND) {
/*
* don't send anything while a command is pending !
*/
DPRINTFN(11, "wait command\n");
break;
}
zyd_fill_write_queue(sc);
_IF_DEQUEUE(&sc->sc_tx_queue, m);
if (m) {
if (m->m_pkthdr.len > ZYD_MAX_TXBUFSZ) {
DPRINTFN(0, "data overflow, %u bytes\n",
m->m_pkthdr.len);
m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
}
usb2_m_copy_in(xfer->frbuffers, 0,
m, 0, m->m_pkthdr.len);
/* get transfer length */
temp_len = m->m_pkthdr.len;
DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
m->m_pkthdr.len, temp_len);
xfer->frlengths[0] = temp_len;
usb2_start_hardware(xfer);
/* free mbuf and node */
zyd_tx_freem(m);
}
break;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= ZYD_FLAG_BULK_WRITE_STALL;
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_CS_WR]);
}
ifp->if_oerrors++;
break;
}
}
static void
zyd_init_cb(void *arg)
{
struct zyd_softc *sc = arg;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_cfg_pre_init,
&zyd_cfg_init, 0, 0);
mtx_unlock(&sc->sc_mtx);
}
static int
zyd_ioctl_cb(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
int error;
switch (cmd) {
case SIOCSIFFLAGS:
mtx_lock(&sc->sc_mtx);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_cfg_pre_init,
&zyd_cfg_init, 0, 0);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
usb2_config_td_queue_command
(&sc->sc_config_td, &zyd_cfg_pre_stop,
&zyd_cfg_stop, 0, 0);
}
}
mtx_unlock(&sc->sc_mtx);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCADDMULTI:
case SIOCDELMULTI:
error = ifmedia_ioctl(ifp, (void *)data, &ic->ic_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
zyd_watchdog(void *arg)
{
struct zyd_softc *sc = arg;
mtx_assert(&sc->sc_mtx, MA_OWNED);
if (sc->sc_amrr_timer) {
usb2_config_td_queue_command
(&sc->sc_config_td, NULL,
&zyd_cfg_amrr_timeout, 0, 0);
}
usb2_callout_reset(&sc->sc_watchdog,
hz, &zyd_watchdog, sc);
}
static void
zyd_config_copy_chan(struct zyd_config_copy_chan *cc,
struct ieee80211com *ic, struct ieee80211_channel *c)
{
if (!c)
return;
cc->chan_to_ieee =
ieee80211_chan2ieee(ic, c);
if (c != IEEE80211_CHAN_ANYC) {
cc->chan_to_mode =
ieee80211_chan2mode(c);
cc->ic_freq = c->ic_freq;
if (IEEE80211_IS_CHAN_B(c))
cc->chan_is_b = 1;
if (IEEE80211_IS_CHAN_A(c))
cc->chan_is_a = 1;
if (IEEE80211_IS_CHAN_2GHZ(c))
cc->chan_is_2ghz = 1;
if (IEEE80211_IS_CHAN_5GHZ(c))
cc->chan_is_5ghz = 1;
if (IEEE80211_IS_CHAN_ANYG(c))
cc->chan_is_g = 1;
}
}
static void
zyd_config_copy(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
const struct ieee80211_txparam *tp;
struct ieee80211vap *vap;
struct ifmultiaddr *ifma;
struct ieee80211_node *ni;
struct ieee80211com *ic;
struct ifnet *ifp;
bzero(cc, sizeof(*cc));
ifp = sc->sc_ifp;
if (ifp) {
cc->if_flags = ifp->if_flags;
bcopy(ifp->if_broadcastaddr, cc->if_broadcastaddr,
sizeof(cc->if_broadcastaddr));
cc->zyd_multi_low = 0x00000000;
cc->zyd_multi_high = 0x80000000;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
uint8_t v;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
ifma->ifma_addr))[5] >> 2;
if (v < 32)
cc->zyd_multi_low |= 1 << v;
else
cc->zyd_multi_high |= 1 << (v - 32);
}
IF_ADDR_UNLOCK(ifp);
ic = ifp->if_l2com;
if (ic) {
zyd_config_copy_chan(&cc->ic_curchan, ic, ic->ic_curchan);
zyd_config_copy_chan(&cc->ic_bsschan, ic, ic->ic_bsschan);
vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap) {
ni = vap->iv_bss;
if (ni) {
cc->iv_bss.ni_intval = ni->ni_intval;
bcopy(ni->ni_bssid, cc->iv_bss.ni_bssid,
sizeof(cc->iv_bss.ni_bssid));
}
tp = vap->iv_txparms + cc->ic_bsschan.chan_to_mode;
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
cc->iv_bss.fixed_rate_none = 1;
}
}
cc->ic_opmode = ic->ic_opmode;
cc->ic_flags = ic->ic_flags;
cc->ic_txpowlimit = ic->ic_txpowlimit;
cc->ic_curmode = ic->ic_curmode;
bcopy(ic->ic_myaddr, cc->ic_myaddr,
sizeof(cc->ic_myaddr));
}
}
sc->sc_flags |= ZYD_FLAG_WAIT_COMMAND;
}
static void
zyd_end_of_commands(struct zyd_softc *sc)
{
sc->sc_flags &= ~ZYD_FLAG_WAIT_COMMAND;
/* start write transfer, if not started */
usb2_transfer_start(sc->sc_xfer[ZYD_BULK_DT_WR]);
}
static void
zyd_newassoc_cb(struct ieee80211_node *ni, int isnew)
{
struct ieee80211vap *vap = ni->ni_vap;
ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni);
}
static void
zyd_cfg_amrr_timeout(struct zyd_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ieee80211vap *vap;
struct ieee80211_node *ni;
vap = zyd_get_vap(sc);
if (vap == NULL) {
return;
}
ni = vap->iv_bss;
if (ni == NULL) {
return;
}
if ((sc->sc_flags & ZYD_FLAG_LL_READY) &&
(sc->sc_flags & ZYD_FLAG_HL_READY)) {
if (sc->sc_amrr_timer) {
if (ieee80211_amrr_choose(ni, &ZYD_NODE(ni)->amn)) {
/* ignore */
}
}
}
}
static void
zyd_cfg_amrr_start(struct zyd_softc *sc)
{
struct ieee80211vap *vap;
struct ieee80211_node *ni;
vap = zyd_get_vap(sc);
if (vap == NULL) {
return;
}
ni = vap->iv_bss;
if (ni == NULL) {
return;
}
/* init AMRR */
ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni);
/* enable AMRR timer */
sc->sc_amrr_timer = 1;
}
static struct ieee80211vap *
zyd_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct zyd_vap *zvp;
struct ieee80211vap *vap;
struct zyd_softc *sc = ic->ic_ifp->if_softc;
/* Need to sync with config thread: */
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_sync(&sc->sc_config_td)) {
mtx_unlock(&sc->sc_mtx);
/* config thread is gone */
return (NULL);
}
mtx_unlock(&sc->sc_mtx);
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
zvp = (struct zyd_vap *)malloc(sizeof(struct zyd_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (zvp == NULL)
return NULL;
vap = &zvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
zvp->newstate = vap->iv_newstate;
vap->iv_newstate = &zyd_newstate_cb;
ieee80211_amrr_init(&zvp->amrr, vap,
IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
1000 /* 1 sec */ );
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
ic->ic_opmode = opmode;
return (vap);
}
static void
zyd_vap_delete(struct ieee80211vap *vap)
{
struct zyd_vap *zvp = ZYD_VAP(vap);
struct zyd_softc *sc = vap->iv_ic->ic_ifp->if_softc;
/* Need to sync with config thread: */
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_sync(&sc->sc_config_td)) {
/* ignore */
}
mtx_unlock(&sc->sc_mtx);
ieee80211_amrr_cleanup(&zvp->amrr);
ieee80211_vap_detach(vap);
free(zvp, M_80211_VAP);
}
/* ARGUSED */
static struct ieee80211_node *
zyd_node_alloc_cb(struct ieee80211vap *vap __unused,
const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
{
struct zyd_node *zn;
zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return ((zn != NULL) ? &zn->ni : NULL);
}
static void
zyd_fill_write_queue(struct zyd_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211_node *ni;
struct mbuf *m;
/*
* We only fill up half of the queue with data frames. The rest is
* reserved for other kinds of frames.
*/
while (sc->sc_tx_queue.ifq_len < (IFQ_MAXLEN / 2)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
ni = (void *)(m->m_pkthdr.rcvif);
m = ieee80211_encap(ni, m);
if (m == NULL) {
ieee80211_free_node(ni);
continue;
}
zyd_tx_data(sc, m, ni);
}
}
static void
zyd_tx_clean_queue(struct zyd_softc *sc)
{
struct mbuf *m;
for (;;) {
_IF_DEQUEUE(&sc->sc_tx_queue, m);
if (!m) {
break;
}
zyd_tx_freem(m);
}
}
static void
zyd_tx_freem(struct mbuf *m)
{
struct ieee80211_node *ni;
while (m) {
ni = (void *)(m->m_pkthdr.rcvif);
if (!ni) {
m = m_free(m);
continue;
}
if (m->m_flags & M_TXCB) {
ieee80211_process_callback(ni, m, 0);
}
m_freem(m);
ieee80211_free_node(ni);
break;
}
}
static void
zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t totlen;
uint16_t rate;
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
rate = tp->mgmtrate;
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
ieee80211_free_node(ni);
return;
}
wh = mtod(m, struct ieee80211_frame *);
}
/* fill Tx descriptor */
sc->sc_tx_desc.flags = ZYD_TX_FLAG_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* get total length */
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > vap->iv_rtsthreshold) {
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
}
} else
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_MULTICAST;
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
m->m_pkthdr.rcvif = (void *)ni;
zyd_setup_desc_and_tx(sc, m, rate);
}
static void
zyd_tx_data(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t rate;
wh = mtod(m, struct ieee80211_frame *);
sc->sc_tx_desc.flags = ZYD_TX_FLAG_BACKOFF;
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
rate = tp->mcastrate;
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_MULTICAST;
} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
rate = tp->ucastrate;
} else
rate = ni->ni_txrate;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
ieee80211_free_node(ni);
return;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
/* fill Tx descriptor */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
uint16_t totlen;
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > vap->iv_rtsthreshold) {
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_RTS;
}
}
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
sc->sc_tx_desc.flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
m->m_pkthdr.rcvif = (void *)ni;
zyd_setup_desc_and_tx(sc, m, rate);
}
static int
zyd_raw_xmit_cb(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct zyd_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
zyd_tx_mgt(sc, m, ni);
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
zyd_tx_mgt(sc, m, ni); /* XXX zyd_tx_raw() */
}
mtx_unlock(&sc->sc_mtx);
return (0);
}
static struct ieee80211vap *
zyd_get_vap(struct zyd_softc *sc)
{
struct ifnet *ifp;
struct ieee80211com *ic;
if (sc == NULL) {
return NULL;
}
ifp = sc->sc_ifp;
if (ifp == NULL) {
return NULL;
}
ic = ifp->if_l2com;
if (ic == NULL) {
return NULL;
}
return TAILQ_FIRST(&ic->ic_vaps);
}