freebsd-dev/sys/dev/ath/ath_rate/amrr/amrr.c
Pedro F. Giffuni 718cf2ccb9 sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 14:52:40 +00:00

473 lines
14 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2004 INRIA
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* AMRR rate control. See:
* http://www-sop.inria.fr/rapports/sophia/RR-5208.html
* "IEEE 802.11 Rate Adaptation: A Practical Approach" by
* Mathieu Lacage, Hossein Manshaei, Thierry Turletti
*/
#include "opt_ath.h"
#include "opt_inet.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/errno.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_arp.h>
#include <net80211/ieee80211_var.h>
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_rate/amrr/amrr.h>
#include <dev/ath/ath_hal/ah_desc.h>
static int ath_rateinterval = 1000; /* rate ctl interval (ms) */
static int ath_rate_max_success_threshold = 10;
static int ath_rate_min_success_threshold = 1;
static void ath_rate_update(struct ath_softc *, struct ieee80211_node *,
int rate);
static void ath_rate_ctl_start(struct ath_softc *, struct ieee80211_node *);
static void ath_rate_ctl(void *, struct ieee80211_node *);
void
ath_rate_node_init(struct ath_softc *sc, struct ath_node *an)
{
/* NB: assumed to be zero'd by caller */
}
void
ath_rate_node_cleanup(struct ath_softc *sc, struct ath_node *an)
{
}
void
ath_rate_findrate(struct ath_softc *sc, struct ath_node *an,
int shortPreamble, size_t frameLen,
u_int8_t *rix, int *try0, u_int8_t *txrate)
{
struct amrr_node *amn = ATH_NODE_AMRR(an);
*rix = amn->amn_tx_rix0;
*try0 = amn->amn_tx_try0;
if (shortPreamble)
*txrate = amn->amn_tx_rate0sp;
else
*txrate = amn->amn_tx_rate0;
}
/*
* Get the TX rates.
*
* The short preamble bits aren't set here; the caller should augment
* the returned rate with the relevant preamble rate flag.
*/
void
ath_rate_getxtxrates(struct ath_softc *sc, struct ath_node *an,
uint8_t rix0, struct ath_rc_series *rc)
{
struct amrr_node *amn = ATH_NODE_AMRR(an);
rc[0].flags = rc[1].flags = rc[2].flags = rc[3].flags = 0;
rc[0].rix = amn->amn_tx_rate0;
rc[1].rix = amn->amn_tx_rate1;
rc[2].rix = amn->amn_tx_rate2;
rc[3].rix = amn->amn_tx_rate3;
rc[0].tries = amn->amn_tx_try0;
rc[1].tries = amn->amn_tx_try1;
rc[2].tries = amn->amn_tx_try2;
rc[3].tries = amn->amn_tx_try3;
}
void
ath_rate_setupxtxdesc(struct ath_softc *sc, struct ath_node *an,
struct ath_desc *ds, int shortPreamble, u_int8_t rix)
{
struct amrr_node *amn = ATH_NODE_AMRR(an);
ath_hal_setupxtxdesc(sc->sc_ah, ds
, amn->amn_tx_rate1sp, amn->amn_tx_try1 /* series 1 */
, amn->amn_tx_rate2sp, amn->amn_tx_try2 /* series 2 */
, amn->amn_tx_rate3sp, amn->amn_tx_try3 /* series 3 */
);
}
void
ath_rate_tx_complete(struct ath_softc *sc, struct ath_node *an,
const struct ath_rc_series *rc, const struct ath_tx_status *ts,
int frame_size, int nframes, int nbad)
{
struct amrr_node *amn = ATH_NODE_AMRR(an);
int sr = ts->ts_shortretry;
int lr = ts->ts_longretry;
int retry_count = sr + lr;
amn->amn_tx_try0_cnt++;
if (retry_count == 1) {
amn->amn_tx_try1_cnt++;
} else if (retry_count == 2) {
amn->amn_tx_try1_cnt++;
amn->amn_tx_try2_cnt++;
} else if (retry_count == 3) {
amn->amn_tx_try1_cnt++;
amn->amn_tx_try2_cnt++;
amn->amn_tx_try3_cnt++;
} else if (retry_count > 3) {
amn->amn_tx_try1_cnt++;
amn->amn_tx_try2_cnt++;
amn->amn_tx_try3_cnt++;
amn->amn_tx_failure_cnt++;
}
if (amn->amn_interval != 0 &&
ticks - amn->amn_ticks > amn->amn_interval) {
ath_rate_ctl(sc, &an->an_node);
amn->amn_ticks = ticks;
}
}
void
ath_rate_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew)
{
if (isnew)
ath_rate_ctl_start(sc, &an->an_node);
}
static void
node_reset(struct amrr_node *amn)
{
amn->amn_tx_try0_cnt = 0;
amn->amn_tx_try1_cnt = 0;
amn->amn_tx_try2_cnt = 0;
amn->amn_tx_try3_cnt = 0;
amn->amn_tx_failure_cnt = 0;
amn->amn_success = 0;
amn->amn_recovery = 0;
amn->amn_success_threshold = ath_rate_min_success_threshold;
}
/**
* The code below assumes that we are dealing with hardware multi rate retry
* I have no idea what will happen if you try to use this module with another
* type of hardware. Your machine might catch fire or it might work with
* horrible performance...
*/
static void
ath_rate_update(struct ath_softc *sc, struct ieee80211_node *ni, int rate)
{
struct ath_node *an = ATH_NODE(ni);
struct amrr_node *amn = ATH_NODE_AMRR(an);
struct ieee80211vap *vap = ni->ni_vap;
const HAL_RATE_TABLE *rt = sc->sc_currates;
u_int8_t rix;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
IEEE80211_NOTE(vap, IEEE80211_MSG_RATECTL, ni,
"%s: set xmit rate to %dM", __func__,
ni->ni_rates.rs_nrates > 0 ?
(ni->ni_rates.rs_rates[rate] & IEEE80211_RATE_VAL) / 2 : 0);
amn->amn_rix = rate;
/*
* Before associating a node has no rate set setup
* so we can't calculate any transmit codes to use.
* This is ok since we should never be sending anything
* but management frames and those always go at the
* lowest hardware rate.
*/
if (ni->ni_rates.rs_nrates > 0) {
ni->ni_txrate = ni->ni_rates.rs_rates[rate] & IEEE80211_RATE_VAL;
amn->amn_tx_rix0 = sc->sc_rixmap[ni->ni_txrate];
amn->amn_tx_rate0 = rt->info[amn->amn_tx_rix0].rateCode;
amn->amn_tx_rate0sp = amn->amn_tx_rate0 |
rt->info[amn->amn_tx_rix0].shortPreamble;
if (sc->sc_mrretry) {
amn->amn_tx_try0 = 1;
amn->amn_tx_try1 = 1;
amn->amn_tx_try2 = 1;
amn->amn_tx_try3 = 1;
if (--rate >= 0) {
rix = sc->sc_rixmap[
ni->ni_rates.rs_rates[rate]&IEEE80211_RATE_VAL];
amn->amn_tx_rate1 = rt->info[rix].rateCode;
amn->amn_tx_rate1sp = amn->amn_tx_rate1 |
rt->info[rix].shortPreamble;
} else {
amn->amn_tx_rate1 = amn->amn_tx_rate1sp = 0;
}
if (--rate >= 0) {
rix = sc->sc_rixmap[
ni->ni_rates.rs_rates[rate]&IEEE80211_RATE_VAL];
amn->amn_tx_rate2 = rt->info[rix].rateCode;
amn->amn_tx_rate2sp = amn->amn_tx_rate2 |
rt->info[rix].shortPreamble;
} else {
amn->amn_tx_rate2 = amn->amn_tx_rate2sp = 0;
}
if (rate > 0) {
/* NB: only do this if we didn't already do it above */
amn->amn_tx_rate3 = rt->info[0].rateCode;
amn->amn_tx_rate3sp =
amn->amn_tx_rate3 | rt->info[0].shortPreamble;
} else {
amn->amn_tx_rate3 = amn->amn_tx_rate3sp = 0;
}
} else {
amn->amn_tx_try0 = ATH_TXMAXTRY;
/* theorically, these statements are useless because
* the code which uses them tests for an_tx_try0 == ATH_TXMAXTRY
*/
amn->amn_tx_try1 = 0;
amn->amn_tx_try2 = 0;
amn->amn_tx_try3 = 0;
amn->amn_tx_rate1 = amn->amn_tx_rate1sp = 0;
amn->amn_tx_rate2 = amn->amn_tx_rate2sp = 0;
amn->amn_tx_rate3 = amn->amn_tx_rate3sp = 0;
}
}
node_reset(amn);
amn->amn_interval = ath_rateinterval;
if (vap->iv_opmode == IEEE80211_M_STA)
amn->amn_interval /= 2;
amn->amn_interval = (amn->amn_interval * hz) / 1000;
}
/*
* Set the starting transmit rate for a node.
*/
static void
ath_rate_ctl_start(struct ath_softc *sc, struct ieee80211_node *ni)
{
#define RATE(_ix) (ni->ni_rates.rs_rates[(_ix)] & IEEE80211_RATE_VAL)
const struct ieee80211_txparam *tp = ni->ni_txparms;
int srate;
KASSERT(ni->ni_rates.rs_nrates > 0, ("no rates"));
if (tp == NULL || tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
/*
* No fixed rate is requested. For 11b start with
* the highest negotiated rate; otherwise, for 11g
* and 11a, we start "in the middle" at 24Mb or 36Mb.
*/
srate = ni->ni_rates.rs_nrates - 1;
if (sc->sc_curmode != IEEE80211_MODE_11B) {
/*
* Scan the negotiated rate set to find the
* closest rate.
*/
/* NB: the rate set is assumed sorted */
for (; srate >= 0 && RATE(srate) > 72; srate--)
;
}
} else {
/*
* A fixed rate is to be used; ic_fixed_rate is the
* IEEE code for this rate (sans basic bit). Convert this
* to the index into the negotiated rate set for
* the node. We know the rate is there because the
* rate set is checked when the station associates.
*/
/* NB: the rate set is assumed sorted */
srate = ni->ni_rates.rs_nrates - 1;
for (; srate >= 0 && RATE(srate) != tp->ucastrate; srate--)
;
}
/*
* The selected rate may not be available due to races
* and mode settings. Also orphaned nodes created in
* adhoc mode may not have any rate set so this lookup
* can fail. This is not fatal.
*/
ath_rate_update(sc, ni, srate < 0 ? 0 : srate);
#undef RATE
}
/*
* Examine and potentially adjust the transmit rate.
*/
static void
ath_rate_ctl(void *arg, struct ieee80211_node *ni)
{
struct ath_softc *sc = arg;
struct amrr_node *amn = ATH_NODE_AMRR(ATH_NODE (ni));
int rix;
#define is_success(amn) \
(amn->amn_tx_try1_cnt < (amn->amn_tx_try0_cnt/10))
#define is_enough(amn) \
(amn->amn_tx_try0_cnt > 10)
#define is_failure(amn) \
(amn->amn_tx_try1_cnt > (amn->amn_tx_try0_cnt/3))
rix = amn->amn_rix;
IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni,
"cnt0: %d cnt1: %d cnt2: %d cnt3: %d -- threshold: %d",
amn->amn_tx_try0_cnt, amn->amn_tx_try1_cnt, amn->amn_tx_try2_cnt,
amn->amn_tx_try3_cnt, amn->amn_success_threshold);
if (is_success (amn) && is_enough (amn)) {
amn->amn_success++;
if (amn->amn_success == amn->amn_success_threshold &&
rix + 1 < ni->ni_rates.rs_nrates) {
amn->amn_recovery = 1;
amn->amn_success = 0;
rix++;
IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni,
"increase rate to %d", rix);
} else {
amn->amn_recovery = 0;
}
} else if (is_failure (amn)) {
amn->amn_success = 0;
if (rix > 0) {
if (amn->amn_recovery) {
/* recovery failure. */
amn->amn_success_threshold *= 2;
amn->amn_success_threshold = min (amn->amn_success_threshold,
(u_int)ath_rate_max_success_threshold);
IEEE80211_NOTE(ni->ni_vap,
IEEE80211_MSG_RATECTL, ni,
"decrease rate recovery thr: %d",
amn->amn_success_threshold);
} else {
/* simple failure. */
amn->amn_success_threshold = ath_rate_min_success_threshold;
IEEE80211_NOTE(ni->ni_vap,
IEEE80211_MSG_RATECTL, ni,
"decrease rate normal thr: %d",
amn->amn_success_threshold);
}
amn->amn_recovery = 0;
rix--;
} else {
amn->amn_recovery = 0;
}
}
if (is_enough (amn) || rix != amn->amn_rix) {
/* reset counters. */
amn->amn_tx_try0_cnt = 0;
amn->amn_tx_try1_cnt = 0;
amn->amn_tx_try2_cnt = 0;
amn->amn_tx_try3_cnt = 0;
amn->amn_tx_failure_cnt = 0;
}
if (rix != amn->amn_rix) {
ath_rate_update(sc, ni, rix);
}
}
static int
ath_rate_fetch_node_stats(struct ath_softc *sc, struct ath_node *an,
struct ath_rateioctl *re)
{
return (EINVAL);
}
static void
ath_rate_sysctlattach(struct ath_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"rate_interval", CTLFLAG_RW, &ath_rateinterval, 0,
"rate control: operation interval (ms)");
/* XXX bounds check values */
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"max_sucess_threshold", CTLFLAG_RW,
&ath_rate_max_success_threshold, 0, "");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"min_sucess_threshold", CTLFLAG_RW,
&ath_rate_min_success_threshold, 0, "");
}
struct ath_ratectrl *
ath_rate_attach(struct ath_softc *sc)
{
struct amrr_softc *asc;
asc = malloc(sizeof(struct amrr_softc), M_DEVBUF, M_NOWAIT|M_ZERO);
if (asc == NULL)
return NULL;
asc->arc.arc_space = sizeof(struct amrr_node);
ath_rate_sysctlattach(sc);
return &asc->arc;
}
void
ath_rate_detach(struct ath_ratectrl *arc)
{
struct amrr_softc *asc = (struct amrr_softc *) arc;
free(asc, M_DEVBUF);
}