freebsd-dev/sys/dev/efidev/efirt.c
Pawel Biernacki 7029da5c36 Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (17 of many)
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.

This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.

Mark all obvious cases as MPSAFE.  All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT

Approved by:	kib (mentor, blanket)
Commented by:	kib, gallatin, melifaro
Differential Revision:	https://reviews.freebsd.org/D23718
2020-02-26 14:26:36 +00:00

589 lines
14 KiB
C

/*-
* Copyright (c) 2004 Marcel Moolenaar
* Copyright (c) 2001 Doug Rabson
* Copyright (c) 2016, 2018 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Konstantin Belousov
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/efi.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/clock.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
#include <machine/fpu.h>
#include <machine/efi.h>
#include <machine/metadata.h>
#include <machine/vmparam.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
static struct efi_systbl *efi_systbl;
static eventhandler_tag efi_shutdown_tag;
/*
* The following pointers point to tables in the EFI runtime service data pages.
* Care should be taken to make sure that we've properly entered the EFI runtime
* environment (efi_enter()) before dereferencing them.
*/
static struct efi_cfgtbl *efi_cfgtbl;
static struct efi_rt *efi_runtime;
static int efi_status2err[25] = {
0, /* EFI_SUCCESS */
ENOEXEC, /* EFI_LOAD_ERROR */
EINVAL, /* EFI_INVALID_PARAMETER */
ENOSYS, /* EFI_UNSUPPORTED */
EMSGSIZE, /* EFI_BAD_BUFFER_SIZE */
EOVERFLOW, /* EFI_BUFFER_TOO_SMALL */
EBUSY, /* EFI_NOT_READY */
EIO, /* EFI_DEVICE_ERROR */
EROFS, /* EFI_WRITE_PROTECTED */
EAGAIN, /* EFI_OUT_OF_RESOURCES */
EIO, /* EFI_VOLUME_CORRUPTED */
ENOSPC, /* EFI_VOLUME_FULL */
ENXIO, /* EFI_NO_MEDIA */
ESTALE, /* EFI_MEDIA_CHANGED */
ENOENT, /* EFI_NOT_FOUND */
EACCES, /* EFI_ACCESS_DENIED */
ETIMEDOUT, /* EFI_NO_RESPONSE */
EADDRNOTAVAIL, /* EFI_NO_MAPPING */
ETIMEDOUT, /* EFI_TIMEOUT */
EDOOFUS, /* EFI_NOT_STARTED */
EALREADY, /* EFI_ALREADY_STARTED */
ECANCELED, /* EFI_ABORTED */
EPROTO, /* EFI_ICMP_ERROR */
EPROTO, /* EFI_TFTP_ERROR */
EPROTO /* EFI_PROTOCOL_ERROR */
};
static int efi_enter(void);
static void efi_leave(void);
static int
efi_status_to_errno(efi_status status)
{
u_long code;
code = status & 0x3ffffffffffffffful;
return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
}
static struct mtx efi_lock;
static SYSCTL_NODE(_hw, OID_AUTO, efi, CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL,
"EFI");
static bool efi_poweroff = true;
SYSCTL_BOOL(_hw_efi, OID_AUTO, poweroff, CTLFLAG_RWTUN, &efi_poweroff, 0,
"If true, use EFI runtime services to power off in preference to ACPI");
static bool
efi_is_in_map(struct efi_md *map, int ndesc, int descsz, vm_offset_t addr)
{
struct efi_md *p;
int i;
for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
descsz)) {
if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
continue;
if (addr >= (uintptr_t)p->md_virt &&
addr < (uintptr_t)p->md_virt + p->md_pages * PAGE_SIZE)
return (true);
}
return (false);
}
static void
efi_shutdown_final(void *dummy __unused, int howto)
{
/*
* On some systems, ACPI S5 is missing or does not function properly.
* When present, shutdown via EFI Runtime Services instead, unless
* disabled.
*/
if ((howto & RB_POWEROFF) != 0 && efi_poweroff)
(void)efi_reset_system(EFI_RESET_SHUTDOWN);
}
static int
efi_init(void)
{
struct efi_map_header *efihdr;
struct efi_md *map;
struct efi_rt *rtdm;
caddr_t kmdp;
size_t efisz;
int ndesc, rt_disabled;
rt_disabled = 0;
TUNABLE_INT_FETCH("efi.rt.disabled", &rt_disabled);
if (rt_disabled == 1)
return (0);
mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
if (efi_systbl_phys == 0) {
if (bootverbose)
printf("EFI systbl not available\n");
return (0);
}
efi_systbl = (struct efi_systbl *)efi_phys_to_kva(efi_systbl_phys);
if (efi_systbl == NULL || efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
efi_systbl = NULL;
if (bootverbose)
printf("EFI systbl signature invalid\n");
return (0);
}
efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
(struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
if (efi_cfgtbl == NULL) {
if (bootverbose)
printf("EFI config table is not present\n");
}
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_EFI_MAP);
if (efihdr == NULL) {
if (bootverbose)
printf("EFI map is not present\n");
return (0);
}
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
if (efihdr->descriptor_size == 0)
return (ENOMEM);
ndesc = efihdr->memory_size / efihdr->descriptor_size;
if (!efi_create_1t1_map(map, ndesc, efihdr->descriptor_size)) {
if (bootverbose)
printf("EFI cannot create runtime map\n");
return (ENOMEM);
}
efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
(struct efi_rt *)efi_systbl->st_rt;
if (efi_runtime == NULL) {
if (bootverbose)
printf("EFI runtime services table is not present\n");
efi_destroy_1t1_map();
return (ENXIO);
}
#if defined(__aarch64__) || defined(__amd64__)
/*
* Some UEFI implementations have multiple implementations of the
* RS->GetTime function. They switch from one we can only use early
* in the boot process to one valid as a RunTime service only when we
* call RS->SetVirtualAddressMap. As this is not always the case, e.g.
* with an old loader.efi, check if the RS->GetTime function is within
* the EFI map, and fail to attach if not.
*/
rtdm = (struct efi_rt *)efi_phys_to_kva((uintptr_t)efi_runtime);
if (rtdm == NULL || !efi_is_in_map(map, ndesc, efihdr->descriptor_size,
(vm_offset_t)rtdm->rt_gettime)) {
if (bootverbose)
printf(
"EFI runtime services table has an invalid pointer\n");
efi_runtime = NULL;
efi_destroy_1t1_map();
return (ENXIO);
}
#endif
/*
* We use SHUTDOWN_PRI_LAST - 1 to trigger after IPMI, but before ACPI.
*/
efi_shutdown_tag = EVENTHANDLER_REGISTER(shutdown_final,
efi_shutdown_final, NULL, SHUTDOWN_PRI_LAST - 1);
return (0);
}
static void
efi_uninit(void)
{
/* Most likely disabled by tunable */
if (efi_runtime == NULL)
return;
if (efi_shutdown_tag != NULL)
EVENTHANDLER_DEREGISTER(shutdown_final, efi_shutdown_tag);
efi_destroy_1t1_map();
efi_systbl = NULL;
efi_cfgtbl = NULL;
efi_runtime = NULL;
mtx_destroy(&efi_lock);
}
int
efi_rt_ok(void)
{
if (efi_runtime == NULL)
return (ENXIO);
return (0);
}
static int
efi_enter(void)
{
struct thread *td;
pmap_t curpmap;
int error;
if (efi_runtime == NULL)
return (ENXIO);
td = curthread;
curpmap = &td->td_proc->p_vmspace->vm_pmap;
PMAP_LOCK(curpmap);
mtx_lock(&efi_lock);
fpu_kern_enter(td, NULL, FPU_KERN_NOCTX);
error = efi_arch_enter();
if (error != 0) {
fpu_kern_leave(td, NULL);
mtx_unlock(&efi_lock);
PMAP_UNLOCK(curpmap);
}
return (error);
}
static void
efi_leave(void)
{
struct thread *td;
pmap_t curpmap;
efi_arch_leave();
curpmap = &curproc->p_vmspace->vm_pmap;
td = curthread;
fpu_kern_leave(td, NULL);
mtx_unlock(&efi_lock);
PMAP_UNLOCK(curpmap);
}
int
efi_get_table(struct uuid *uuid, void **ptr)
{
struct efi_cfgtbl *ct;
u_long count;
if (efi_cfgtbl == NULL || efi_systbl == NULL)
return (ENXIO);
count = efi_systbl->st_entries;
ct = efi_cfgtbl;
while (count--) {
if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
*ptr = (void *)efi_phys_to_kva(ct->ct_data);
return (0);
}
ct++;
}
return (ENOENT);
}
static int efi_rt_handle_faults = EFI_RT_HANDLE_FAULTS_DEFAULT;
SYSCTL_INT(_machdep, OID_AUTO, efi_rt_handle_faults, CTLFLAG_RWTUN,
&efi_rt_handle_faults, 0,
"Call EFI RT methods with fault handler wrapper around");
static int
efi_rt_arch_call_nofault(struct efirt_callinfo *ec)
{
switch (ec->ec_argcnt) {
case 0:
ec->ec_efi_status = ((register_t (*)(void))ec->ec_fptr)();
break;
case 1:
ec->ec_efi_status = ((register_t (*)(register_t))ec->ec_fptr)
(ec->ec_arg1);
break;
case 2:
ec->ec_efi_status = ((register_t (*)(register_t, register_t))
ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2);
break;
case 3:
ec->ec_efi_status = ((register_t (*)(register_t, register_t,
register_t))ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2,
ec->ec_arg3);
break;
case 4:
ec->ec_efi_status = ((register_t (*)(register_t, register_t,
register_t, register_t))ec->ec_fptr)(ec->ec_arg1,
ec->ec_arg2, ec->ec_arg3, ec->ec_arg4);
break;
case 5:
ec->ec_efi_status = ((register_t (*)(register_t, register_t,
register_t, register_t, register_t))ec->ec_fptr)(
ec->ec_arg1, ec->ec_arg2, ec->ec_arg3, ec->ec_arg4,
ec->ec_arg5);
break;
default:
panic("efi_rt_arch_call: %d args", (int)ec->ec_argcnt);
}
return (0);
}
static int
efi_call(struct efirt_callinfo *ecp)
{
int error;
error = efi_enter();
if (error != 0)
return (error);
error = efi_rt_handle_faults ? efi_rt_arch_call(ecp) :
efi_rt_arch_call_nofault(ecp);
efi_leave();
if (error == 0)
error = efi_status_to_errno(ecp->ec_efi_status);
else if (bootverbose)
printf("EFI %s call faulted, error %d\n", ecp->ec_name, error);
return (error);
}
#define EFI_RT_METHOD_PA(method) \
((uintptr_t)((struct efi_rt *)efi_phys_to_kva((uintptr_t) \
efi_runtime))->method)
static int
efi_get_time_locked(struct efi_tm *tm, struct efi_tmcap *tmcap)
{
struct efirt_callinfo ec;
EFI_TIME_OWNED();
if (efi_runtime == NULL)
return (ENXIO);
bzero(&ec, sizeof(ec));
ec.ec_name = "rt_gettime";
ec.ec_argcnt = 2;
ec.ec_arg1 = (uintptr_t)tm;
ec.ec_arg2 = (uintptr_t)tmcap;
ec.ec_fptr = EFI_RT_METHOD_PA(rt_gettime);
return (efi_call(&ec));
}
int
efi_get_time(struct efi_tm *tm)
{
struct efi_tmcap dummy;
int error;
if (efi_runtime == NULL)
return (ENXIO);
EFI_TIME_LOCK();
/*
* UEFI spec states that the Capabilities argument to GetTime is
* optional, but some UEFI implementations choke when passed a NULL
* pointer. Pass a dummy efi_tmcap, even though we won't use it,
* to workaround such implementations.
*/
error = efi_get_time_locked(tm, &dummy);
EFI_TIME_UNLOCK();
return (error);
}
int
efi_get_time_capabilities(struct efi_tmcap *tmcap)
{
struct efi_tm dummy;
int error;
if (efi_runtime == NULL)
return (ENXIO);
EFI_TIME_LOCK();
error = efi_get_time_locked(&dummy, tmcap);
EFI_TIME_UNLOCK();
return (error);
}
int
efi_reset_system(enum efi_reset type)
{
struct efirt_callinfo ec;
switch (type) {
case EFI_RESET_COLD:
case EFI_RESET_WARM:
case EFI_RESET_SHUTDOWN:
break;
default:
return (EINVAL);
}
if (efi_runtime == NULL)
return (ENXIO);
bzero(&ec, sizeof(ec));
ec.ec_name = "rt_reset";
ec.ec_argcnt = 4;
ec.ec_arg1 = (uintptr_t)type;
ec.ec_arg2 = (uintptr_t)0;
ec.ec_arg3 = (uintptr_t)0;
ec.ec_arg4 = (uintptr_t)NULL;
ec.ec_fptr = EFI_RT_METHOD_PA(rt_reset);
return (efi_call(&ec));
}
static int
efi_set_time_locked(struct efi_tm *tm)
{
struct efirt_callinfo ec;
EFI_TIME_OWNED();
if (efi_runtime == NULL)
return (ENXIO);
bzero(&ec, sizeof(ec));
ec.ec_name = "rt_settime";
ec.ec_argcnt = 1;
ec.ec_arg1 = (uintptr_t)tm;
ec.ec_fptr = EFI_RT_METHOD_PA(rt_settime);
return (efi_call(&ec));
}
int
efi_set_time(struct efi_tm *tm)
{
int error;
if (efi_runtime == NULL)
return (ENXIO);
EFI_TIME_LOCK();
error = efi_set_time_locked(tm);
EFI_TIME_UNLOCK();
return (error);
}
int
efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
size_t *datasize, void *data)
{
struct efirt_callinfo ec;
if (efi_runtime == NULL)
return (ENXIO);
bzero(&ec, sizeof(ec));
ec.ec_argcnt = 5;
ec.ec_name = "rt_getvar";
ec.ec_arg1 = (uintptr_t)name;
ec.ec_arg2 = (uintptr_t)vendor;
ec.ec_arg3 = (uintptr_t)attrib;
ec.ec_arg4 = (uintptr_t)datasize;
ec.ec_arg5 = (uintptr_t)data;
ec.ec_fptr = EFI_RT_METHOD_PA(rt_getvar);
return (efi_call(&ec));
}
int
efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
{
struct efirt_callinfo ec;
if (efi_runtime == NULL)
return (ENXIO);
bzero(&ec, sizeof(ec));
ec.ec_argcnt = 3;
ec.ec_name = "rt_scanvar";
ec.ec_arg1 = (uintptr_t)namesize;
ec.ec_arg2 = (uintptr_t)name;
ec.ec_arg3 = (uintptr_t)vendor;
ec.ec_fptr = EFI_RT_METHOD_PA(rt_scanvar);
return (efi_call(&ec));
}
int
efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
size_t datasize, void *data)
{
struct efirt_callinfo ec;
if (efi_runtime == NULL)
return (ENXIO);
bzero(&ec, sizeof(ec));
ec.ec_argcnt = 5;
ec.ec_name = "rt_setvar";
ec.ec_arg1 = (uintptr_t)name;
ec.ec_arg2 = (uintptr_t)vendor;
ec.ec_arg3 = (uintptr_t)attrib;
ec.ec_arg4 = (uintptr_t)datasize;
ec.ec_arg5 = (uintptr_t)data;
ec.ec_fptr = EFI_RT_METHOD_PA(rt_setvar);
return (efi_call(&ec));
}
static int
efirt_modevents(module_t m, int event, void *arg __unused)
{
switch (event) {
case MOD_LOAD:
return (efi_init());
case MOD_UNLOAD:
efi_uninit();
return (0);
case MOD_SHUTDOWN:
return (0);
default:
return (EOPNOTSUPP);
}
}
static moduledata_t efirt_moddata = {
.name = "efirt",
.evhand = efirt_modevents,
.priv = NULL,
};
/* After fpuinitstate, before efidev */
DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_DRIVERS, SI_ORDER_SECOND);
MODULE_VERSION(efirt, 1);