freebsd-dev/sys/dev/uart/uart_core.c
John Baldwin 64c4dfcd26 Export a sysctl count of RX FIFO overrun events.
uart(4) backends currently detect RX FIFO overrun errors and report
them to the uart(4) core layer.  They are then reported to the generic
TTY layer which promptly ignores them.  As a result, there is
currently no good way to determine if a uart is experiencing RX FIFO
overruns.  One could add a generic per-tty counter, but there did not
appear to be a good way to export those.  Instead, add a sysctl under
the uart(4) sysctl tree to export the count of overruns.

Reviewed by:	brooks
MFC after:	2 weeks
Sponsored by:	DARPA
Differential Revision:	https://reviews.freebsd.org/D24368
2020-04-13 20:59:09 +00:00

832 lines
21 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/cons.h>
#include <sys/fcntl.h>
#include <sys/interrupt.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/reboot.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_ppstypes.h>
#include "uart_if.h"
devclass_t uart_devclass;
const char uart_driver_name[] = "uart";
SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
SLIST_HEAD_INITIALIZER(uart_sysdevs);
static MALLOC_DEFINE(M_UART, "UART", "UART driver");
#ifndef UART_POLL_FREQ
#define UART_POLL_FREQ 50
#endif
static int uart_poll_freq = UART_POLL_FREQ;
SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq,
0, "UART poll frequency");
static int uart_force_poll;
SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll,
0, "Force UART polling");
static inline int
uart_pps_mode_valid(int pps_mode)
{
int opt;
switch(pps_mode & UART_PPS_SIGNAL_MASK) {
case UART_PPS_DISABLED:
case UART_PPS_CTS:
case UART_PPS_DCD:
break;
default:
return (false);
}
opt = pps_mode & UART_PPS_OPTION_MASK;
if ((opt & ~(UART_PPS_INVERT_PULSE | UART_PPS_NARROW_PULSE)) != 0)
return (false);
return (true);
}
static void
uart_pps_print_mode(struct uart_softc *sc)
{
device_printf(sc->sc_dev, "PPS capture mode: ");
switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
case UART_PPS_DISABLED:
printf("disabled");
break;
case UART_PPS_CTS:
printf("CTS");
break;
case UART_PPS_DCD:
printf("DCD");
break;
default:
printf("invalid");
break;
}
if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
printf("-Inverted");
if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE)
printf("-NarrowPulse");
printf("\n");
}
static int
uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS)
{
struct uart_softc *sc;
int err, tmp;
sc = arg1;
tmp = sc->sc_pps_mode;
err = sysctl_handle_int(oidp, &tmp, 0, req);
if (err != 0 || req->newptr == NULL)
return (err);
if (!uart_pps_mode_valid(tmp))
return (EINVAL);
sc->sc_pps_mode = tmp;
return(0);
}
static void
uart_pps_process(struct uart_softc *sc, int ser_sig)
{
sbintime_t now;
int is_assert, pps_sig;
/* Which signal is configured as PPS? Early out if none. */
switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
case UART_PPS_CTS:
pps_sig = SER_CTS;
break;
case UART_PPS_DCD:
pps_sig = SER_DCD;
break;
default:
return;
}
/* Early out if there is no change in the signal configured as PPS. */
if ((ser_sig & SER_DELTA(pps_sig)) == 0)
return;
/*
* In narrow-pulse mode we need to synthesize both capture and clear
* events from a single "delta occurred" indication from the uart
* hardware because the pulse width is too narrow to reliably detect
* both edges. However, when the pulse width is close to our interrupt
* processing latency we might intermittantly catch both edges. To
* guard against generating spurious events when that happens, we use a
* separate timer to ensure at least half a second elapses before we
* generate another event.
*/
pps_capture(&sc->sc_pps);
if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
now = getsbinuptime();
if (now > sc->sc_pps_captime + 500 * SBT_1MS) {
sc->sc_pps_captime = now;
pps_event(&sc->sc_pps, PPS_CAPTUREASSERT);
pps_event(&sc->sc_pps, PPS_CAPTURECLEAR);
}
} else {
is_assert = ser_sig & pps_sig;
if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
is_assert = !is_assert;
pps_event(&sc->sc_pps, is_assert ? PPS_CAPTUREASSERT :
PPS_CAPTURECLEAR);
}
}
static void
uart_pps_init(struct uart_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
ctx = device_get_sysctl_ctx(sc->sc_dev);
tree = device_get_sysctl_tree(sc->sc_dev);
/*
* The historical default for pps capture mode is either DCD or CTS,
* depending on the UART_PPS_ON_CTS kernel option. Start with that,
* then try to fetch the tunable that overrides the mode for all uart
* devices, then try to fetch the sysctl-tunable that overrides the mode
* for one specific device.
*/
#ifdef UART_PPS_ON_CTS
sc->sc_pps_mode = UART_PPS_CTS;
#else
sc->sc_pps_mode = UART_PPS_DCD;
#endif
TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode",
CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, sc, 0,
uart_pps_mode_sysctl, "I", "pulse mode: 0/1/2=disabled/CTS/DCD; "
"add 0x10 to invert, 0x20 for narrow pulse");
if (!uart_pps_mode_valid(sc->sc_pps_mode)) {
device_printf(sc->sc_dev,
"Invalid pps_mode 0x%02x configured; disabling PPS capture\n",
sc->sc_pps_mode);
sc->sc_pps_mode = UART_PPS_DISABLED;
} else if (bootverbose) {
uart_pps_print_mode(sc);
}
sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
sc->sc_pps.driver_mtx = uart_tty_getlock(sc);
sc->sc_pps.driver_abi = PPS_ABI_VERSION;
pps_init_abi(&sc->sc_pps);
}
void
uart_add_sysdev(struct uart_devinfo *di)
{
SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
}
const char *
uart_getname(struct uart_class *uc)
{
return ((uc != NULL) ? uc->name : NULL);
}
struct uart_ops *
uart_getops(struct uart_class *uc)
{
return ((uc != NULL) ? uc->uc_ops : NULL);
}
int
uart_getrange(struct uart_class *uc)
{
return ((uc != NULL) ? uc->uc_range : 0);
}
u_int
uart_getregshift(struct uart_class *uc)
{
return ((uc != NULL) ? uc->uc_rshift : 0);
}
u_int
uart_getregiowidth(struct uart_class *uc)
{
return ((uc != NULL) ? uc->uc_riowidth : 0);
}
/*
* Schedule a soft interrupt. We do this on the 0 to !0 transition
* of the TTY pending interrupt status.
*/
void
uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
{
uint32_t new, old;
do {
old = sc->sc_ttypend;
new = old | ipend;
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
if ((old & SER_INT_MASK) == 0)
swi_sched(sc->sc_softih, 0);
}
/*
* A break condition has been detected. We treat the break condition as
* a special case that should not happen during normal operation. When
* the break condition is to be passed to higher levels in the form of
* a NUL character, we really want the break to be in the right place in
* the input stream. The overhead to achieve that is not in relation to
* the exceptional nature of the break condition, so we permit ourselves
* to be sloppy.
*/
static __inline int
uart_intr_break(void *arg)
{
struct uart_softc *sc = arg;
#if defined(KDB)
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
if (kdb_break())
return (0);
}
#endif
if (sc->sc_opened)
uart_sched_softih(sc, SER_INT_BREAK);
return (0);
}
/*
* Handle a receiver overrun situation. We lost at least 1 byte in the
* input stream and it's our job to contain the situation. We grab as
* much of the data we can, but otherwise flush the receiver FIFO to
* create some breathing room. The net effect is that we avoid the
* overrun condition to happen for the next X characters, where X is
* related to the FIFO size at the cost of losing data right away.
* So, instead of having multiple overrun interrupts in close proximity
* to each other and possibly pessimizing UART interrupt latency for
* other UARTs in a multiport configuration, we create a longer segment
* of missing characters by freeing up the FIFO.
* Each overrun condition is marked in the input buffer by a token. The
* token represents the loss of at least one, but possible more bytes in
* the input stream.
*/
static __inline int
uart_intr_overrun(void *arg)
{
struct uart_softc *sc = arg;
if (sc->sc_opened) {
UART_RECEIVE(sc);
if (uart_rx_put(sc, UART_STAT_OVERRUN))
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
uart_sched_softih(sc, SER_INT_RXREADY);
}
sc->sc_rxoverruns++;
UART_FLUSH(sc, UART_FLUSH_RECEIVER);
return (0);
}
/*
* Received data ready.
*/
static __inline int
uart_intr_rxready(void *arg)
{
struct uart_softc *sc = arg;
int rxp;
rxp = sc->sc_rxput;
UART_RECEIVE(sc);
#if defined(KDB)
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
while (rxp != sc->sc_rxput) {
kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
if (rxp == sc->sc_rxbufsz)
rxp = 0;
}
}
#endif
if (sc->sc_opened)
uart_sched_softih(sc, SER_INT_RXREADY);
else
sc->sc_rxput = sc->sc_rxget; /* Ignore received data. */
return (1);
}
/*
* Line or modem status change (OOB signalling).
* We pass the signals to the software interrupt handler for further
* processing. Note that we merge the delta bits, but set the state
* bits. This is to avoid losing state transitions due to having more
* than 1 hardware interrupt between software interrupts.
*/
static __inline int
uart_intr_sigchg(void *arg)
{
struct uart_softc *sc = arg;
int new, old, sig;
sig = UART_GETSIG(sc);
/*
* Time pulse counting support, invoked whenever the PPS parameters are
* currently set to capture either edge of the signal.
*/
if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
uart_pps_process(sc, sig);
}
/*
* Keep track of signal changes, even when the device is not
* opened. This allows us to inform upper layers about a
* possible loss of DCD and thus the existence of a (possibly)
* different connection when we have DCD back, during the time
* that the device was closed.
*/
do {
old = sc->sc_ttypend;
new = old & ~SER_MASK_STATE;
new |= sig & SER_INT_SIGMASK;
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
if (sc->sc_opened)
uart_sched_softih(sc, SER_INT_SIGCHG);
return (1);
}
/*
* The transmitter can accept more data.
*/
static __inline int
uart_intr_txidle(void *arg)
{
struct uart_softc *sc = arg;
if (sc->sc_txbusy) {
sc->sc_txbusy = 0;
uart_sched_softih(sc, SER_INT_TXIDLE);
}
return (0);
}
static int
uart_intr(void *arg)
{
struct uart_softc *sc = arg;
int cnt, ipend, testintr;
if (sc->sc_leaving)
return (FILTER_STRAY);
cnt = 0;
testintr = sc->sc_testintr;
while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) {
cnt++;
if (ipend & SER_INT_OVERRUN)
uart_intr_overrun(sc);
if (ipend & SER_INT_BREAK)
uart_intr_break(sc);
if (ipend & SER_INT_RXREADY)
uart_intr_rxready(sc);
if (ipend & SER_INT_SIGCHG)
uart_intr_sigchg(sc);
if (ipend & SER_INT_TXIDLE)
uart_intr_txidle(sc);
}
if (sc->sc_polled) {
callout_reset(&sc->sc_timer, hz / uart_poll_freq,
(callout_func_t *)uart_intr, sc);
}
return ((cnt == 0) ? FILTER_STRAY :
((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD :
FILTER_HANDLED));
}
serdev_intr_t *
uart_bus_ihand(device_t dev, int ipend)
{
switch (ipend) {
case SER_INT_BREAK:
return (uart_intr_break);
case SER_INT_OVERRUN:
return (uart_intr_overrun);
case SER_INT_RXREADY:
return (uart_intr_rxready);
case SER_INT_SIGCHG:
return (uart_intr_sigchg);
case SER_INT_TXIDLE:
return (uart_intr_txidle);
}
return (NULL);
}
int
uart_bus_ipend(device_t dev)
{
struct uart_softc *sc;
sc = device_get_softc(dev);
return (UART_IPEND(sc));
}
int
uart_bus_sysdev(device_t dev)
{
struct uart_softc *sc;
sc = device_get_softc(dev);
return ((sc->sc_sysdev != NULL) ? 1 : 0);
}
int
uart_bus_probe(device_t dev, int regshft, int regiowidth, int rclk, int rid, int chan, int quirks)
{
struct uart_softc *sc;
struct uart_devinfo *sysdev;
int error;
sc = device_get_softc(dev);
/*
* All uart_class references are weak. Check that the needed
* class has been compiled-in. Fail if not.
*/
if (sc->sc_class == NULL)
return (ENXIO);
/*
* Initialize the instance. Note that the instance (=softc) does
* not necessarily match the hardware specific softc. We can't do
* anything about it now, because we may not attach to the device.
* Hardware drivers cannot use any of the class specific fields
* while probing.
*/
kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
sc->sc_dev = dev;
if (device_get_desc(dev) == NULL)
device_set_desc(dev, uart_getname(sc->sc_class));
/*
* Allocate the register resource. We assume that all UARTs have
* a single register window in either I/O port space or memory
* mapped I/O space. Any UART that needs multiple windows will
* consequently not be supported by this driver as-is. We try I/O
* port space first because that's the common case.
*/
sc->sc_rrid = rid;
sc->sc_rtype = SYS_RES_IOPORT;
sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
RF_ACTIVE);
if (sc->sc_rres == NULL) {
sc->sc_rrid = rid;
sc->sc_rtype = SYS_RES_MEMORY;
sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype,
&sc->sc_rrid, RF_ACTIVE);
if (sc->sc_rres == NULL)
return (ENXIO);
}
/*
* Fill in the bus access structure and compare this device with
* a possible console device and/or a debug port. We set the flags
* in the softc so that the hardware dependent probe can adjust
* accordingly. In general, you don't want to permanently disrupt
* console I/O.
*/
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
sc->sc_bas.chan = chan;
sc->sc_bas.regshft = regshft;
sc->sc_bas.regiowidth = regiowidth;
sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;
sc->sc_bas.busy_detect = !!(quirks & UART_F_BUSY_DETECT);
SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
if (chan == sysdev->bas.chan &&
uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
/* XXX check if ops matches class. */
sc->sc_sysdev = sysdev;
sysdev->bas.rclk = sc->sc_bas.rclk;
}
}
error = UART_PROBE(sc);
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
return ((error) ? error : BUS_PROBE_DEFAULT);
}
int
uart_bus_attach(device_t dev)
{
struct uart_softc *sc, *sc0;
const char *sep;
int error, filt;
/*
* The sc_class field defines the type of UART we're going to work
* with and thus the size of the softc. Replace the generic softc
* with one that matches the UART now that we're certain we handle
* the device.
*/
sc0 = device_get_softc(dev);
if (sc0->sc_class->size > device_get_driver(dev)->size) {
sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
bcopy(sc0, sc, sizeof(*sc));
device_set_softc(dev, sc);
} else
sc = sc0;
/*
* Now that we know the softc for this device, connect the back
* pointer from the sysdev for this device, if any
*/
if (sc->sc_sysdev != NULL)
sc->sc_sysdev->sc = sc;
/*
* Protect ourselves against interrupts while we're not completely
* finished attaching and initializing. We don't expect interrupts
* until after UART_ATTACH(), though.
*/
sc->sc_leaving = 1;
mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
if (sc->sc_hwmtx == NULL)
sc->sc_hwmtx = &sc->sc_hwmtx_s;
/*
* Re-allocate. We expect that the softc contains the information
* collected by uart_bus_probe() intact.
*/
sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
RF_ACTIVE);
if (sc->sc_rres == NULL) {
mtx_destroy(&sc->sc_hwmtx_s);
return (ENXIO);
}
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
/*
* Ensure there is room for at least three full FIFOs of data in the
* receive buffer (handles the case of low-level drivers with huge
* FIFOs), and also ensure that there is no less than the historical
* size of 384 bytes (handles the typical small-FIFO case).
*/
sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3);
sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
M_UART, M_WAITOK);
sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
M_UART, M_WAITOK);
error = UART_ATTACH(sc);
if (error)
goto fail;
if (sc->sc_hwiflow || sc->sc_hwoflow) {
sep = "";
device_print_prettyname(dev);
if (sc->sc_hwiflow) {
printf("%sRTS iflow", sep);
sep = ", ";
}
if (sc->sc_hwoflow) {
printf("%sCTS oflow", sep);
sep = ", ";
}
printf("\n");
}
if (sc->sc_sysdev != NULL) {
if (sc->sc_sysdev->baudrate == 0) {
if (UART_IOCTL(sc, UART_IOCTL_BAUD,
(intptr_t)&sc->sc_sysdev->baudrate) != 0)
sc->sc_sysdev->baudrate = -1;
}
switch (sc->sc_sysdev->type) {
case UART_DEV_CONSOLE:
device_printf(dev, "console");
break;
case UART_DEV_DBGPORT:
device_printf(dev, "debug port");
break;
case UART_DEV_KEYBOARD:
device_printf(dev, "keyboard");
break;
default:
device_printf(dev, "unknown system device");
break;
}
printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
"noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
sc->sc_sysdev->stopbits);
}
sc->sc_leaving = 0;
sc->sc_testintr = 1;
filt = uart_intr(sc);
sc->sc_testintr = 0;
/*
* Don't use interrupts if we couldn't clear any pending interrupt
* conditions. We may have broken H/W and polling is probably the
* safest thing to do.
*/
if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) {
sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_irid, RF_ACTIVE | RF_SHAREABLE);
}
if (sc->sc_ires != NULL) {
error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY,
uart_intr, NULL, sc, &sc->sc_icookie);
sc->sc_fastintr = (error == 0) ? 1 : 0;
if (!sc->sc_fastintr)
error = bus_setup_intr(dev, sc->sc_ires,
INTR_TYPE_TTY | INTR_MPSAFE, NULL,
(driver_intr_t *)uart_intr, sc, &sc->sc_icookie);
if (error) {
device_printf(dev, "could not activate interrupt\n");
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
sc->sc_ires);
sc->sc_ires = NULL;
}
}
if (sc->sc_ires == NULL) {
/* No interrupt resource. Force polled mode. */
sc->sc_polled = 1;
callout_init(&sc->sc_timer, 1);
callout_reset(&sc->sc_timer, hz / uart_poll_freq,
(callout_func_t *)uart_intr, sc);
}
if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
sep = "";
device_print_prettyname(dev);
if (sc->sc_fastintr) {
printf("%sfast interrupt", sep);
sep = ", ";
}
if (sc->sc_polled) {
printf("%spolled mode (%dHz)", sep, uart_poll_freq);
sep = ", ";
}
printf("\n");
}
if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) {
if ((error = sc->sc_sysdev->attach(sc)) != 0)
goto fail;
} else {
if ((error = uart_tty_attach(sc)) != 0)
goto fail;
uart_pps_init(sc);
}
if (sc->sc_sysdev != NULL)
sc->sc_sysdev->hwmtx = sc->sc_hwmtx;
if (sc->sc_rxfifosz > 1)
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rx_overruns", CTLFLAG_RD, &sc->sc_rxoverruns, 0,
"Receive overruns");
return (0);
fail:
free(sc->sc_txbuf, M_UART);
free(sc->sc_rxbuf, M_UART);
if (sc->sc_ires != NULL) {
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
sc->sc_ires);
}
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
mtx_destroy(&sc->sc_hwmtx_s);
return (error);
}
int
uart_bus_detach(device_t dev)
{
struct uart_softc *sc;
sc = device_get_softc(dev);
sc->sc_leaving = 1;
if (sc->sc_sysdev != NULL)
sc->sc_sysdev->hwmtx = NULL;
UART_DETACH(sc);
if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
(*sc->sc_sysdev->detach)(sc);
else
uart_tty_detach(sc);
free(sc->sc_txbuf, M_UART);
free(sc->sc_rxbuf, M_UART);
if (sc->sc_ires != NULL) {
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
sc->sc_ires);
}
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
mtx_destroy(&sc->sc_hwmtx_s);
if (sc->sc_class->size > device_get_driver(dev)->size) {
device_set_softc(dev, NULL);
free(sc, M_UART);
}
return (0);
}
int
uart_bus_resume(device_t dev)
{
struct uart_softc *sc;
sc = device_get_softc(dev);
return (UART_ATTACH(sc));
}
void
uart_grab(struct uart_devinfo *di)
{
if (di->sc)
UART_GRAB(di->sc);
}
void
uart_ungrab(struct uart_devinfo *di)
{
if (di->sc)
UART_UNGRAB(di->sc);
}