freebsd-dev/sys/kern/subr_rman.c
John Baldwin 9914a8cc7d - Fix rman_manage_region() to be a lot more intelligent. It now checks
for overlaps, but more importantly, it collapses adjacent free regions.
  This is needed to cope with BIOSen that split up ports for system devices
  (like IPMI controllers) across multiple system resource entries.
- Now that rman_manage_region() is not so dumb, remove extra logic in the
  x86 nexus drivers to populate the IRQ rman that manually coalesced the
  regions.

MFC after:	1 week
2006-09-11 19:31:52 +00:00

910 lines
23 KiB
C

/*-
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The kernel resource manager. This code is responsible for keeping track
* of hardware resources which are apportioned out to various drivers.
* It does not actually assign those resources, and it is not expected
* that end-device drivers will call into this code directly. Rather,
* the code which implements the buses that those devices are attached to,
* and the code which manages CPU resources, will call this code, and the
* end-device drivers will make upcalls to that code to actually perform
* the allocation.
*
* There are two sorts of resources managed by this code. The first is
* the more familiar array (RMAN_ARRAY) type; resources in this class
* consist of a sequence of individually-allocatable objects which have
* been numbered in some well-defined order. Most of the resources
* are of this type, as it is the most familiar. The second type is
* called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
* resources in which each instance is indistinguishable from every
* other instance). The principal anticipated application of gauges
* is in the context of power consumption, where a bus may have a specific
* power budget which all attached devices share. RMAN_GAUGE is not
* implemented yet.
*
* For array resources, we make one simplifying assumption: two clients
* sharing the same resource must use the same range of indices. That
* is to say, sharing of overlapping-but-not-identical regions is not
* permitted.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/bus.h> /* XXX debugging */
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
/*
* We use a linked list rather than a bitmap because we need to be able to
* represent potentially huge objects (like all of a processor's physical
* address space). That is also why the indices are defined to have type
* `unsigned long' -- that being the largest integral type in ISO C (1990).
* The 1999 version of C allows `long long'; we may need to switch to that
* at some point in the future, particularly if we want to support 36-bit
* addresses on IA32 hardware.
*/
struct resource_i {
struct resource r_r;
TAILQ_ENTRY(resource_i) r_link;
LIST_ENTRY(resource_i) r_sharelink;
LIST_HEAD(, resource_i) *r_sharehead;
u_long r_start; /* index of the first entry in this resource */
u_long r_end; /* index of the last entry (inclusive) */
u_int r_flags;
void *r_virtual; /* virtual address of this resource */
struct device *r_dev; /* device which has allocated this resource */
struct rman *r_rm; /* resource manager from whence this came */
int r_rid; /* optional rid for this resource. */
};
int rman_debug = 0;
TUNABLE_INT("debug.rman_debug", &rman_debug);
SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
&rman_debug, 0, "rman debug");
#define DPRINTF(params) if (rman_debug) printf params
static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
struct rman_head rman_head;
static struct mtx rman_mtx; /* mutex to protect rman_head */
static int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
struct resource_i **whohas);
static int int_rman_deactivate_resource(struct resource_i *r);
static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
static __inline struct resource_i *
int_alloc_resource(int malloc_flag)
{
struct resource_i *r;
r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
if (r != NULL) {
r->r_r.__r_i = r;
}
return (r);
}
int
rman_init(struct rman *rm)
{
static int once = 0;
if (once == 0) {
once = 1;
TAILQ_INIT(&rman_head);
mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
}
if (rm->rm_type == RMAN_UNINIT)
panic("rman_init");
if (rm->rm_type == RMAN_GAUGE)
panic("implement RMAN_GAUGE");
TAILQ_INIT(&rm->rm_list);
rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
if (rm->rm_mtx == NULL)
return ENOMEM;
mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
mtx_lock(&rman_mtx);
TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
mtx_unlock(&rman_mtx);
return 0;
}
/*
* NB: this interface is not robust against programming errors which
* add multiple copies of the same region.
*/
int
rman_manage_region(struct rman *rm, u_long start, u_long end)
{
struct resource_i *r, *s, *t;
DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
rm->rm_descr, start, end));
r = int_alloc_resource(M_NOWAIT);
if (r == NULL)
return ENOMEM;
r->r_start = start;
r->r_end = end;
r->r_rm = rm;
mtx_lock(rm->rm_mtx);
/* Skip entries before us. */
for (s = TAILQ_FIRST(&rm->rm_list);
s && s->r_end + 1 < r->r_start;
s = TAILQ_NEXT(s, r_link))
;
/* If we ran off the end of the list, insert at the tail. */
if (s == NULL) {
TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
} else {
/* Check for any overlap with the current region. */
if (r->r_start <= s->r_end && r->r_end >= s->r_start)
return EBUSY;
/* Check for any overlap with the next region. */
t = TAILQ_NEXT(s, r_link);
if (t && r->r_start <= t->r_end && r->r_end >= t->r_start)
return EBUSY;
/*
* See if this region can be merged with the next region. If
* not, clear the pointer.
*/
if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
t = NULL;
/* See if we can merge with the current region. */
if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
/* Can we merge all 3 regions? */
if (t != NULL) {
s->r_end = t->r_end;
TAILQ_REMOVE(&rm->rm_list, t, r_link);
free(r, M_RMAN);
free(t, M_RMAN);
} else {
s->r_end = r->r_end;
free(r, M_RMAN);
}
} else {
/* Can we merge with just the next region? */
if (t != NULL) {
t->r_start = r->r_start;
free(r, M_RMAN);
} else
TAILQ_INSERT_BEFORE(s, r, r_link);
}
}
mtx_unlock(rm->rm_mtx);
return 0;
}
int
rman_init_from_resource(struct rman *rm, struct resource *r)
{
int rv;
if ((rv = rman_init(rm)) != 0)
return (rv);
return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
}
int
rman_fini(struct rman *rm)
{
struct resource_i *r;
mtx_lock(rm->rm_mtx);
TAILQ_FOREACH(r, &rm->rm_list, r_link) {
if (r->r_flags & RF_ALLOCATED) {
mtx_unlock(rm->rm_mtx);
return EBUSY;
}
}
/*
* There really should only be one of these if we are in this
* state and the code is working properly, but it can't hurt.
*/
while (!TAILQ_EMPTY(&rm->rm_list)) {
r = TAILQ_FIRST(&rm->rm_list);
TAILQ_REMOVE(&rm->rm_list, r, r_link);
free(r, M_RMAN);
}
mtx_unlock(rm->rm_mtx);
mtx_lock(&rman_mtx);
TAILQ_REMOVE(&rman_head, rm, rm_link);
mtx_unlock(&rman_mtx);
mtx_destroy(rm->rm_mtx);
free(rm->rm_mtx, M_RMAN);
return 0;
}
struct resource *
rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
u_long count, u_long bound, u_int flags,
struct device *dev)
{
u_int want_activate;
struct resource_i *r, *s, *rv;
u_long rstart, rend, amask, bmask;
rv = NULL;
DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
"length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
count, flags,
dev == NULL ? "<null>" : device_get_nameunit(dev)));
want_activate = (flags & RF_ACTIVE);
flags &= ~RF_ACTIVE;
mtx_lock(rm->rm_mtx);
for (r = TAILQ_FIRST(&rm->rm_list);
r && r->r_end < start;
r = TAILQ_NEXT(r, r_link))
;
if (r == NULL) {
DPRINTF(("could not find a region\n"));
goto out;
}
amask = (1ul << RF_ALIGNMENT(flags)) - 1;
/* If bound is 0, bmask will also be 0 */
bmask = ~(bound - 1);
/*
* First try to find an acceptable totally-unshared region.
*/
for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
if (s->r_start + count - 1 > end) {
DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
s->r_start, end));
break;
}
if (s->r_flags & RF_ALLOCATED) {
DPRINTF(("region is allocated\n"));
continue;
}
rstart = ulmax(s->r_start, start);
/*
* Try to find a region by adjusting to boundary and alignment
* until both conditions are satisfied. This is not an optimal
* algorithm, but in most cases it isn't really bad, either.
*/
do {
rstart = (rstart + amask) & ~amask;
if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
rstart += bound - (rstart & ~bmask);
} while ((rstart & amask) != 0 && rstart < end &&
rstart < s->r_end);
rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
if (rstart > rend) {
DPRINTF(("adjusted start exceeds end\n"));
continue;
}
DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
rstart, rend, (rend - rstart + 1), count));
if ((rend - rstart + 1) >= count) {
DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
rstart, rend, (rend - rstart + 1)));
if ((s->r_end - s->r_start + 1) == count) {
DPRINTF(("candidate region is entire chunk\n"));
rv = s;
rv->r_flags |= RF_ALLOCATED | flags;
rv->r_dev = dev;
goto out;
}
/*
* If s->r_start < rstart and
* s->r_end > rstart + count - 1, then
* we need to split the region into three pieces
* (the middle one will get returned to the user).
* Otherwise, we are allocating at either the
* beginning or the end of s, so we only need to
* split it in two. The first case requires
* two new allocations; the second requires but one.
*/
rv = int_alloc_resource(M_NOWAIT);
if (rv == NULL)
goto out;
rv->r_start = rstart;
rv->r_end = rstart + count - 1;
rv->r_flags = flags | RF_ALLOCATED;
rv->r_dev = dev;
rv->r_rm = rm;
if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
DPRINTF(("splitting region in three parts: "
"[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
s->r_start, rv->r_start - 1,
rv->r_start, rv->r_end,
rv->r_end + 1, s->r_end));
/*
* We are allocating in the middle.
*/
r = int_alloc_resource(M_NOWAIT);
if (r == NULL) {
free(rv, M_RMAN);
rv = NULL;
goto out;
}
r->r_start = rv->r_end + 1;
r->r_end = s->r_end;
r->r_flags = s->r_flags;
r->r_rm = rm;
s->r_end = rv->r_start - 1;
TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
r_link);
TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
r_link);
} else if (s->r_start == rv->r_start) {
DPRINTF(("allocating from the beginning\n"));
/*
* We are allocating at the beginning.
*/
s->r_start = rv->r_end + 1;
TAILQ_INSERT_BEFORE(s, rv, r_link);
} else {
DPRINTF(("allocating at the end\n"));
/*
* We are allocating at the end.
*/
s->r_end = rv->r_start - 1;
TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
r_link);
}
goto out;
}
}
/*
* Now find an acceptable shared region, if the client's requirements
* allow sharing. By our implementation restriction, a candidate
* region must match exactly by both size and sharing type in order
* to be considered compatible with the client's request. (The
* former restriction could probably be lifted without too much
* additional work, but this does not seem warranted.)
*/
DPRINTF(("no unshared regions found\n"));
if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
goto out;
for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
if (s->r_start > end)
break;
if ((s->r_flags & flags) != flags)
continue;
rstart = ulmax(s->r_start, start);
rend = ulmin(s->r_end, ulmax(start + count - 1, end));
if (s->r_start >= start && s->r_end <= end
&& (s->r_end - s->r_start + 1) == count &&
(s->r_start & amask) == 0 &&
((s->r_start ^ s->r_end) & bmask) == 0) {
rv = int_alloc_resource(M_NOWAIT);
if (rv == NULL)
goto out;
rv->r_start = s->r_start;
rv->r_end = s->r_end;
rv->r_flags = s->r_flags &
(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
rv->r_dev = dev;
rv->r_rm = rm;
if (s->r_sharehead == NULL) {
s->r_sharehead = malloc(sizeof *s->r_sharehead,
M_RMAN, M_NOWAIT | M_ZERO);
if (s->r_sharehead == NULL) {
free(rv, M_RMAN);
rv = NULL;
goto out;
}
LIST_INIT(s->r_sharehead);
LIST_INSERT_HEAD(s->r_sharehead, s,
r_sharelink);
s->r_flags |= RF_FIRSTSHARE;
}
rv->r_sharehead = s->r_sharehead;
LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
goto out;
}
}
/*
* We couldn't find anything.
*/
out:
/*
* If the user specified RF_ACTIVE in the initial flags,
* which is reflected in `want_activate', we attempt to atomically
* activate the resource. If this fails, we release the resource
* and indicate overall failure. (This behavior probably doesn't
* make sense for RF_TIMESHARE-type resources.)
*/
if (rv && want_activate) {
struct resource_i *whohas;
if (int_rman_activate_resource(rm, rv, &whohas)) {
int_rman_release_resource(rm, rv);
rv = NULL;
}
}
mtx_unlock(rm->rm_mtx);
return (rv == NULL ? NULL : &rv->r_r);
}
struct resource *
rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
u_int flags, struct device *dev)
{
return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
dev));
}
static int
int_rman_activate_resource(struct rman *rm, struct resource_i *r,
struct resource_i **whohas)
{
struct resource_i *s;
int ok;
/*
* If we are not timesharing, then there is nothing much to do.
* If we already have the resource, then there is nothing at all to do.
* If we are not on a sharing list with anybody else, then there is
* little to do.
*/
if ((r->r_flags & RF_TIMESHARE) == 0
|| (r->r_flags & RF_ACTIVE) != 0
|| r->r_sharehead == NULL) {
r->r_flags |= RF_ACTIVE;
return 0;
}
ok = 1;
for (s = LIST_FIRST(r->r_sharehead); s && ok;
s = LIST_NEXT(s, r_sharelink)) {
if ((s->r_flags & RF_ACTIVE) != 0) {
ok = 0;
*whohas = s;
}
}
if (ok) {
r->r_flags |= RF_ACTIVE;
return 0;
}
return EBUSY;
}
int
rman_activate_resource(struct resource *re)
{
int rv;
struct resource_i *r, *whohas;
struct rman *rm;
r = re->__r_i;
rm = r->r_rm;
mtx_lock(rm->rm_mtx);
rv = int_rman_activate_resource(rm, r, &whohas);
mtx_unlock(rm->rm_mtx);
return rv;
}
int
rman_await_resource(struct resource *re, int pri, int timo)
{
int rv;
struct resource_i *r, *whohas;
struct rman *rm;
r = re->__r_i;
rm = r->r_rm;
mtx_lock(rm->rm_mtx);
for (;;) {
rv = int_rman_activate_resource(rm, r, &whohas);
if (rv != EBUSY)
return (rv); /* returns with mutex held */
if (r->r_sharehead == NULL)
panic("rman_await_resource");
whohas->r_flags |= RF_WANTED;
rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
if (rv) {
mtx_unlock(rm->rm_mtx);
return (rv);
}
}
}
static int
int_rman_deactivate_resource(struct resource_i *r)
{
r->r_flags &= ~RF_ACTIVE;
if (r->r_flags & RF_WANTED) {
r->r_flags &= ~RF_WANTED;
wakeup(r->r_sharehead);
}
return 0;
}
int
rman_deactivate_resource(struct resource *r)
{
struct rman *rm;
rm = r->__r_i->r_rm;
mtx_lock(rm->rm_mtx);
int_rman_deactivate_resource(r->__r_i);
mtx_unlock(rm->rm_mtx);
return 0;
}
static int
int_rman_release_resource(struct rman *rm, struct resource_i *r)
{
struct resource_i *s, *t;
if (r->r_flags & RF_ACTIVE)
int_rman_deactivate_resource(r);
/*
* Check for a sharing list first. If there is one, then we don't
* have to think as hard.
*/
if (r->r_sharehead) {
/*
* If a sharing list exists, then we know there are at
* least two sharers.
*
* If we are in the main circleq, appoint someone else.
*/
LIST_REMOVE(r, r_sharelink);
s = LIST_FIRST(r->r_sharehead);
if (r->r_flags & RF_FIRSTSHARE) {
s->r_flags |= RF_FIRSTSHARE;
TAILQ_INSERT_BEFORE(r, s, r_link);
TAILQ_REMOVE(&rm->rm_list, r, r_link);
}
/*
* Make sure that the sharing list goes away completely
* if the resource is no longer being shared at all.
*/
if (LIST_NEXT(s, r_sharelink) == NULL) {
free(s->r_sharehead, M_RMAN);
s->r_sharehead = NULL;
s->r_flags &= ~RF_FIRSTSHARE;
}
goto out;
}
/*
* Look at the adjacent resources in the list and see if our
* segment can be merged with any of them. If either of the
* resources is allocated or is not exactly adjacent then they
* cannot be merged with our segment.
*/
s = TAILQ_PREV(r, resource_head, r_link);
if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
s->r_end + 1 != r->r_start))
s = NULL;
t = TAILQ_NEXT(r, r_link);
if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
r->r_end + 1 != t->r_start))
t = NULL;
if (s != NULL && t != NULL) {
/*
* Merge all three segments.
*/
s->r_end = t->r_end;
TAILQ_REMOVE(&rm->rm_list, r, r_link);
TAILQ_REMOVE(&rm->rm_list, t, r_link);
free(t, M_RMAN);
} else if (s != NULL) {
/*
* Merge previous segment with ours.
*/
s->r_end = r->r_end;
TAILQ_REMOVE(&rm->rm_list, r, r_link);
} else if (t != NULL) {
/*
* Merge next segment with ours.
*/
t->r_start = r->r_start;
TAILQ_REMOVE(&rm->rm_list, r, r_link);
} else {
/*
* At this point, we know there is nothing we
* can potentially merge with, because on each
* side, there is either nothing there or what is
* there is still allocated. In that case, we don't
* want to remove r from the list; we simply want to
* change it to an unallocated region and return
* without freeing anything.
*/
r->r_flags &= ~RF_ALLOCATED;
return 0;
}
out:
free(r, M_RMAN);
return 0;
}
int
rman_release_resource(struct resource *re)
{
int rv;
struct resource_i *r;
struct rman *rm;
r = re->__r_i;
rm = r->r_rm;
mtx_lock(rm->rm_mtx);
rv = int_rman_release_resource(rm, r);
mtx_unlock(rm->rm_mtx);
return (rv);
}
uint32_t
rman_make_alignment_flags(uint32_t size)
{
int i;
/*
* Find the hightest bit set, and add one if more than one bit
* set. We're effectively computing the ceil(log2(size)) here.
*/
for (i = 31; i > 0; i--)
if ((1 << i) & size)
break;
if (~(1 << i) & size)
i++;
return(RF_ALIGNMENT_LOG2(i));
}
u_long
rman_get_start(struct resource *r)
{
return (r->__r_i->r_start);
}
u_long
rman_get_end(struct resource *r)
{
return (r->__r_i->r_end);
}
u_long
rman_get_size(struct resource *r)
{
return (r->__r_i->r_end - r->__r_i->r_start + 1);
}
u_int
rman_get_flags(struct resource *r)
{
return (r->__r_i->r_flags);
}
void
rman_set_virtual(struct resource *r, void *v)
{
r->__r_i->r_virtual = v;
}
void *
rman_get_virtual(struct resource *r)
{
return (r->__r_i->r_virtual);
}
void
rman_set_bustag(struct resource *r, bus_space_tag_t t)
{
r->r_bustag = t;
}
bus_space_tag_t
rman_get_bustag(struct resource *r)
{
return (r->r_bustag);
}
void
rman_set_bushandle(struct resource *r, bus_space_handle_t h)
{
r->r_bushandle = h;
}
bus_space_handle_t
rman_get_bushandle(struct resource *r)
{
return (r->r_bushandle);
}
void
rman_set_rid(struct resource *r, int rid)
{
r->__r_i->r_rid = rid;
}
void
rman_set_start(struct resource *r, u_long start)
{
r->__r_i->r_start = start;
}
void
rman_set_end(struct resource *r, u_long end)
{
r->__r_i->r_end = end;
}
int
rman_get_rid(struct resource *r)
{
return (r->__r_i->r_rid);
}
struct device *
rman_get_device(struct resource *r)
{
return (r->__r_i->r_dev);
}
void
rman_set_device(struct resource *r, struct device *dev)
{
r->__r_i->r_dev = dev;
}
int
rman_is_region_manager(struct resource *r, struct rman *rm)
{
return (r->__r_i->r_rm == rm);
}
/*
* Sysctl interface for scanning the resource lists.
*
* We take two input parameters; the index into the list of resource
* managers, and the resource offset into the list.
*/
static int
sysctl_rman(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
int rman_idx, res_idx;
struct rman *rm;
struct resource_i *res;
struct u_rman urm;
struct u_resource ures;
int error;
if (namelen != 3)
return (EINVAL);
if (bus_data_generation_check(name[0]))
return (EINVAL);
rman_idx = name[1];
res_idx = name[2];
/*
* Find the indexed resource manager
*/
mtx_lock(&rman_mtx);
TAILQ_FOREACH(rm, &rman_head, rm_link) {
if (rman_idx-- == 0)
break;
}
mtx_unlock(&rman_mtx);
if (rm == NULL)
return (ENOENT);
/*
* If the resource index is -1, we want details on the
* resource manager.
*/
if (res_idx == -1) {
bzero(&urm, sizeof(urm));
urm.rm_handle = (uintptr_t)rm;
strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
urm.rm_start = rm->rm_start;
urm.rm_size = rm->rm_end - rm->rm_start + 1;
urm.rm_type = rm->rm_type;
error = SYSCTL_OUT(req, &urm, sizeof(urm));
return (error);
}
/*
* Find the indexed resource and return it.
*/
mtx_lock(rm->rm_mtx);
TAILQ_FOREACH(res, &rm->rm_list, r_link) {
if (res_idx-- == 0) {
bzero(&ures, sizeof(ures));
ures.r_handle = (uintptr_t)res;
ures.r_parent = (uintptr_t)res->r_rm;
ures.r_device = (uintptr_t)res->r_dev;
if (res->r_dev != NULL) {
if (device_get_name(res->r_dev) != NULL) {
snprintf(ures.r_devname, RM_TEXTLEN,
"%s%d",
device_get_name(res->r_dev),
device_get_unit(res->r_dev));
} else {
strlcpy(ures.r_devname, "nomatch",
RM_TEXTLEN);
}
} else {
ures.r_devname[0] = '\0';
}
ures.r_start = res->r_start;
ures.r_size = res->r_end - res->r_start + 1;
ures.r_flags = res->r_flags;
mtx_unlock(rm->rm_mtx);
error = SYSCTL_OUT(req, &ures, sizeof(ures));
return (error);
}
}
mtx_unlock(rm->rm_mtx);
return (ENOENT);
}
SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
"kernel resource manager");