freebsd-dev/sys/compat/x86bios/x86bios.c
2010-08-09 22:06:08 +00:00

874 lines
20 KiB
C

/*-
* Copyright (c) 2009 Alex Keda <admin@lissyara.su>
* Copyright (c) 2009-2010 Jung-uk Kim <jkim@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_x86bios.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <contrib/x86emu/x86emu.h>
#include <contrib/x86emu/x86emu_regs.h>
#include <compat/x86bios/x86bios.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#ifdef __amd64__
#define X86BIOS_NATIVE_ARCH
#endif
#ifdef __i386__
#define X86BIOS_NATIVE_VM86
#endif
#define X86BIOS_MEM_SIZE 0x00100000 /* 1M */
#define X86BIOS_TRACE(h, n, r) do { \
printf(__STRING(h) \
" (ax=0x%04x bx=0x%04x cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",\
(n), (r)->R_AX, (r)->R_BX, (r)->R_CX, (r)->R_DX, \
(r)->R_ES, (r)->R_DI); \
} while (0)
static struct mtx x86bios_lock;
SYSCTL_NODE(_debug, OID_AUTO, x86bios, CTLFLAG_RD, NULL, "x86bios debugging");
static int x86bios_trace_call;
TUNABLE_INT("debug.x86bios.call", &x86bios_trace_call);
SYSCTL_INT(_debug_x86bios, OID_AUTO, call, CTLFLAG_RW, &x86bios_trace_call, 0,
"Trace far function calls");
static int x86bios_trace_int;
TUNABLE_INT("debug.x86bios.int", &x86bios_trace_int);
SYSCTL_INT(_debug_x86bios, OID_AUTO, int, CTLFLAG_RW, &x86bios_trace_int, 0,
"Trace software interrupt handlers");
#ifdef X86BIOS_NATIVE_VM86
#include <machine/vm86.h>
#include <machine/vmparam.h>
#include <machine/pc/bios.h>
struct vm86context x86bios_vmc;
static void
x86bios_emu2vmf(struct x86emu_regs *regs, struct vm86frame *vmf)
{
vmf->vmf_ds = regs->R_DS;
vmf->vmf_es = regs->R_ES;
vmf->vmf_ax = regs->R_AX;
vmf->vmf_bx = regs->R_BX;
vmf->vmf_cx = regs->R_CX;
vmf->vmf_dx = regs->R_DX;
vmf->vmf_bp = regs->R_BP;
vmf->vmf_si = regs->R_SI;
vmf->vmf_di = regs->R_DI;
}
static void
x86bios_vmf2emu(struct vm86frame *vmf, struct x86emu_regs *regs)
{
regs->R_DS = vmf->vmf_ds;
regs->R_ES = vmf->vmf_es;
regs->R_FLG = vmf->vmf_flags;
regs->R_AX = vmf->vmf_ax;
regs->R_BX = vmf->vmf_bx;
regs->R_CX = vmf->vmf_cx;
regs->R_DX = vmf->vmf_dx;
regs->R_BP = vmf->vmf_bp;
regs->R_SI = vmf->vmf_si;
regs->R_DI = vmf->vmf_di;
}
void *
x86bios_alloc(uint32_t *offset, size_t size, int flags)
{
void *vaddr;
int i;
if (offset == NULL || size == 0)
return (NULL);
vaddr = contigmalloc(size, M_DEVBUF, flags, 0, X86BIOS_MEM_SIZE,
PAGE_SIZE, 0);
if (vaddr != NULL) {
*offset = vtophys(vaddr);
mtx_lock(&x86bios_lock);
for (i = 0; i < atop(round_page(size)); i++)
vm86_addpage(&x86bios_vmc, atop(*offset) + i,
(vm_offset_t)vaddr + ptoa(i));
mtx_unlock(&x86bios_lock);
}
return (vaddr);
}
void
x86bios_free(void *addr, size_t size)
{
vm_paddr_t paddr;
int i, nfree;
if (addr == NULL || size == 0)
return;
paddr = vtophys(addr);
if (paddr >= X86BIOS_MEM_SIZE || (paddr & PAGE_MASK) != 0)
return;
mtx_lock(&x86bios_lock);
for (i = 0; i < x86bios_vmc.npages; i++)
if (x86bios_vmc.pmap[i].kva == (vm_offset_t)addr)
break;
if (i >= x86bios_vmc.npages) {
mtx_unlock(&x86bios_lock);
return;
}
nfree = atop(round_page(size));
bzero(x86bios_vmc.pmap + i, sizeof(*x86bios_vmc.pmap) * nfree);
if (i + nfree == x86bios_vmc.npages) {
x86bios_vmc.npages -= nfree;
while (--i >= 0 && x86bios_vmc.pmap[i].kva == 0)
x86bios_vmc.npages--;
}
mtx_unlock(&x86bios_lock);
contigfree(addr, size, M_DEVBUF);
}
void
x86bios_init_regs(struct x86regs *regs)
{
bzero(regs, sizeof(*regs));
}
void
x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off)
{
struct vm86frame vmf;
if (x86bios_trace_call)
X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs);
bzero(&vmf, sizeof(vmf));
x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf);
vmf.vmf_cs = seg;
vmf.vmf_ip = off;
mtx_lock(&x86bios_lock);
vm86_datacall(-1, &vmf, &x86bios_vmc);
mtx_unlock(&x86bios_lock);
x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs);
if (x86bios_trace_call)
X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs);
}
uint32_t
x86bios_get_intr(int intno)
{
return (readl(BIOS_PADDRTOVADDR(intno * 4)));
}
void
x86bios_intr(struct x86regs *regs, int intno)
{
struct vm86frame vmf;
if (x86bios_trace_int)
X86BIOS_TRACE(Calling INT 0x%02x, intno, regs);
bzero(&vmf, sizeof(vmf));
x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf);
mtx_lock(&x86bios_lock);
vm86_datacall(intno, &vmf, &x86bios_vmc);
mtx_unlock(&x86bios_lock);
x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs);
if (x86bios_trace_int)
X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs);
}
void *
x86bios_offset(uint32_t offset)
{
vm_offset_t addr;
addr = vm86_getaddr(&x86bios_vmc, X86BIOS_PHYSTOSEG(offset),
X86BIOS_PHYSTOOFF(offset));
if (addr == 0)
addr = BIOS_PADDRTOVADDR(offset);
return ((void *)addr);
}
static int
x86bios_init(void)
{
mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_DEF);
bzero(&x86bios_vmc, sizeof(x86bios_vmc));
return (0);
}
static int
x86bios_uninit(void)
{
mtx_destroy(&x86bios_lock);
return (0);
}
#else
#include <machine/iodev.h>
#define X86BIOS_PAGE_SIZE 0x00001000 /* 4K */
#define X86BIOS_IVT_SIZE 0x00000500 /* 1K + 256 (BDA) */
#define X86BIOS_IVT_BASE 0x00000000
#define X86BIOS_RAM_BASE 0x00001000
#define X86BIOS_ROM_BASE 0x000a0000
#define X86BIOS_ROM_SIZE (X86BIOS_MEM_SIZE - x86bios_rom_phys)
#define X86BIOS_SEG_SIZE X86BIOS_PAGE_SIZE
#define X86BIOS_PAGES (X86BIOS_MEM_SIZE / X86BIOS_PAGE_SIZE)
#define X86BIOS_R_SS _pad2
#define X86BIOS_R_SP _pad3.I16_reg.x_reg
static struct x86emu x86bios_emu;
static void *x86bios_ivt;
static void *x86bios_rom;
static void *x86bios_seg;
static vm_offset_t *x86bios_map;
static vm_paddr_t x86bios_rom_phys;
static vm_paddr_t x86bios_seg_phys;
static int x86bios_fault;
static uint32_t x86bios_fault_addr;
static uint16_t x86bios_fault_cs;
static uint16_t x86bios_fault_ip;
static void
x86bios_set_fault(struct x86emu *emu, uint32_t addr)
{
x86bios_fault = 1;
x86bios_fault_addr = addr;
x86bios_fault_cs = emu->x86.R_CS;
x86bios_fault_ip = emu->x86.R_IP;
x86emu_halt_sys(emu);
}
static void *
x86bios_get_pages(uint32_t offset, size_t size)
{
vm_offset_t addr;
if (offset + size > X86BIOS_MEM_SIZE + X86BIOS_IVT_SIZE)
return (NULL);
if (offset >= X86BIOS_MEM_SIZE)
offset -= X86BIOS_MEM_SIZE;
addr = x86bios_map[offset / X86BIOS_PAGE_SIZE];
if (addr != 0)
addr += offset % X86BIOS_PAGE_SIZE;
return ((void *)addr);
}
static void
x86bios_set_pages(vm_offset_t va, vm_paddr_t pa, size_t size)
{
int i, j;
for (i = pa / X86BIOS_PAGE_SIZE, j = 0;
j < howmany(size, X86BIOS_PAGE_SIZE); i++, j++)
x86bios_map[i] = va + j * X86BIOS_PAGE_SIZE;
}
static uint8_t
x86bios_emu_rdb(struct x86emu *emu, uint32_t addr)
{
uint8_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86bios_set_fault(emu, addr);
return (*va);
}
static uint16_t
x86bios_emu_rdw(struct x86emu *emu, uint32_t addr)
{
uint16_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86bios_set_fault(emu, addr);
#ifndef __NO_STRICT_ALIGNMENT
if ((addr & 1) != 0)
return (le16dec(va));
else
#endif
return (le16toh(*va));
}
static uint32_t
x86bios_emu_rdl(struct x86emu *emu, uint32_t addr)
{
uint32_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86bios_set_fault(emu, addr);
#ifndef __NO_STRICT_ALIGNMENT
if ((addr & 3) != 0)
return (le32dec(va));
else
#endif
return (le32toh(*va));
}
static void
x86bios_emu_wrb(struct x86emu *emu, uint32_t addr, uint8_t val)
{
uint8_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86bios_set_fault(emu, addr);
*va = val;
}
static void
x86bios_emu_wrw(struct x86emu *emu, uint32_t addr, uint16_t val)
{
uint16_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86bios_set_fault(emu, addr);
#ifndef __NO_STRICT_ALIGNMENT
if ((addr & 1) != 0)
le16enc(va, val);
else
#endif
*va = htole16(val);
}
static void
x86bios_emu_wrl(struct x86emu *emu, uint32_t addr, uint32_t val)
{
uint32_t *va;
va = x86bios_get_pages(addr, sizeof(*va));
if (va == NULL)
x86bios_set_fault(emu, addr);
#ifndef __NO_STRICT_ALIGNMENT
if ((addr & 3) != 0)
le32enc(va, val);
else
#endif
*va = htole32(val);
}
static uint8_t
x86bios_emu_inb(struct x86emu *emu, uint16_t port)
{
#ifndef X86BIOS_NATIVE_ARCH
if (port == 0xb2) /* APM scratch register */
return (0);
if (port >= 0x80 && port < 0x88) /* POST status register */
return (0);
#endif
return (iodev_read_1(port));
}
static uint16_t
x86bios_emu_inw(struct x86emu *emu, uint16_t port)
{
uint16_t val;
#ifndef X86BIOS_NATIVE_ARCH
if (port >= 0x80 && port < 0x88) /* POST status register */
return (0);
if ((port & 1) != 0) {
val = iodev_read_1(port);
val |= iodev_read_1(port + 1) << 8;
} else
#endif
val = iodev_read_2(port);
return (val);
}
static uint32_t
x86bios_emu_inl(struct x86emu *emu, uint16_t port)
{
uint32_t val;
#ifndef X86BIOS_NATIVE_ARCH
if (port >= 0x80 && port < 0x88) /* POST status register */
return (0);
if ((port & 1) != 0) {
val = iodev_read_1(port);
val |= iodev_read_2(port + 1) << 8;
val |= iodev_read_1(port + 3) << 24;
} else if ((port & 2) != 0) {
val = iodev_read_2(port);
val |= iodev_read_2(port + 2) << 16;
} else
#endif
val = iodev_read_4(port);
return (val);
}
static void
x86bios_emu_outb(struct x86emu *emu, uint16_t port, uint8_t val)
{
#ifndef X86BIOS_NATIVE_ARCH
if (port == 0xb2) /* APM scratch register */
return;
if (port >= 0x80 && port < 0x88) /* POST status register */
return;
#endif
iodev_write_1(port, val);
}
static void
x86bios_emu_outw(struct x86emu *emu, uint16_t port, uint16_t val)
{
#ifndef X86BIOS_NATIVE_ARCH
if (port >= 0x80 && port < 0x88) /* POST status register */
return;
if ((port & 1) != 0) {
iodev_write_1(port, val);
iodev_write_1(port + 1, val >> 8);
} else
#endif
iodev_write_2(port, val);
}
static void
x86bios_emu_outl(struct x86emu *emu, uint16_t port, uint32_t val)
{
#ifndef X86BIOS_NATIVE_ARCH
if (port >= 0x80 && port < 0x88) /* POST status register */
return;
if ((port & 1) != 0) {
iodev_write_1(port, val);
iodev_write_2(port + 1, val >> 8);
iodev_write_1(port + 3, val >> 24);
} else if ((port & 2) != 0) {
iodev_write_2(port, val);
iodev_write_2(port + 2, val >> 16);
} else
#endif
iodev_write_4(port, val);
}
static void
x86bios_emu_get_intr(struct x86emu *emu, int intno)
{
uint16_t *sp;
uint32_t iv;
emu->x86.R_SP -= 6;
sp = (uint16_t *)((vm_offset_t)x86bios_seg + emu->x86.R_SP);
sp[0] = htole16(emu->x86.R_IP);
sp[1] = htole16(emu->x86.R_CS);
sp[2] = htole16(emu->x86.R_FLG);
iv = x86bios_get_intr(intno);
emu->x86.R_IP = iv & 0xffff;
emu->x86.R_CS = (iv >> 16) & 0xffff;
emu->x86.R_FLG &= ~(F_IF | F_TF);
}
void *
x86bios_alloc(uint32_t *offset, size_t size, int flags)
{
void *vaddr;
if (offset == NULL || size == 0)
return (NULL);
vaddr = contigmalloc(size, M_DEVBUF, flags, X86BIOS_RAM_BASE,
x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0);
if (vaddr != NULL) {
*offset = vtophys(vaddr);
mtx_lock_spin(&x86bios_lock);
x86bios_set_pages((vm_offset_t)vaddr, *offset, size);
mtx_unlock_spin(&x86bios_lock);
}
return (vaddr);
}
void
x86bios_free(void *addr, size_t size)
{
vm_paddr_t paddr;
if (addr == NULL || size == 0)
return;
paddr = vtophys(addr);
if (paddr < X86BIOS_RAM_BASE || paddr >= x86bios_rom_phys ||
paddr % X86BIOS_PAGE_SIZE != 0)
return;
mtx_lock_spin(&x86bios_lock);
bzero(x86bios_map + paddr / X86BIOS_PAGE_SIZE,
sizeof(*x86bios_map) * howmany(size, X86BIOS_PAGE_SIZE));
mtx_unlock_spin(&x86bios_lock);
contigfree(addr, size, M_DEVBUF);
}
void
x86bios_init_regs(struct x86regs *regs)
{
bzero(regs, sizeof(*regs));
regs->X86BIOS_R_SS = X86BIOS_PHYSTOSEG(x86bios_seg_phys);
regs->X86BIOS_R_SP = X86BIOS_PAGE_SIZE - 2;
}
void
x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off)
{
if (x86bios_map == NULL)
return;
if (x86bios_trace_call)
X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs);
mtx_lock_spin(&x86bios_lock);
memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
x86bios_fault = 0;
x86emu_exec_call(&x86bios_emu, seg, off);
memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
mtx_unlock_spin(&x86bios_lock);
if (x86bios_trace_call) {
X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs);
if (x86bios_fault)
printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n",
x86bios_fault_addr, x86bios_fault_cs,
x86bios_fault_ip);
}
}
uint32_t
x86bios_get_intr(int intno)
{
uint32_t *iv;
iv = (uint32_t *)((vm_offset_t)x86bios_ivt + intno * 4);
return (le32toh(*iv));
}
void
x86bios_intr(struct x86regs *regs, int intno)
{
if (intno < 0 || intno > 255)
return;
if (x86bios_map == NULL)
return;
if (x86bios_trace_int)
X86BIOS_TRACE(Calling INT 0x%02x, intno, regs);
mtx_lock_spin(&x86bios_lock);
memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
x86bios_fault = 0;
x86emu_exec_intr(&x86bios_emu, intno);
memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
mtx_unlock_spin(&x86bios_lock);
if (x86bios_trace_int) {
X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs);
if (x86bios_fault)
printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n",
x86bios_fault_addr, x86bios_fault_cs,
x86bios_fault_ip);
}
}
void *
x86bios_offset(uint32_t offset)
{
return (x86bios_get_pages(offset, 1));
}
static __inline void
x86bios_unmap_mem(void)
{
if (x86bios_ivt != NULL)
#ifdef X86BIOS_NATIVE_ARCH
pmap_unmapdev((vm_offset_t)x86bios_ivt, X86BIOS_IVT_SIZE);
#else
free(x86bios_ivt, M_DEVBUF);
#endif
if (x86bios_rom != NULL)
pmap_unmapdev((vm_offset_t)x86bios_rom, X86BIOS_ROM_SIZE);
if (x86bios_seg != NULL)
contigfree(x86bios_seg, X86BIOS_SEG_SIZE, M_DEVBUF);
}
static __inline int
x86bios_map_mem(void)
{
#ifdef X86BIOS_NATIVE_ARCH
x86bios_ivt = pmap_mapbios(X86BIOS_IVT_BASE, X86BIOS_IVT_SIZE);
/* Probe EBDA via BDA. */
x86bios_rom_phys = *(uint16_t *)((caddr_t)x86bios_ivt + 0x40e);
x86bios_rom_phys = x86bios_rom_phys << 4;
if (x86bios_rom_phys != 0 && x86bios_rom_phys < X86BIOS_ROM_BASE &&
X86BIOS_ROM_BASE - x86bios_rom_phys <= 128 * 1024)
x86bios_rom_phys =
rounddown(x86bios_rom_phys, X86BIOS_PAGE_SIZE);
else
#else
x86bios_ivt = malloc(X86BIOS_IVT_SIZE, M_DEVBUF, M_ZERO | M_WAITOK);
#endif
x86bios_rom_phys = X86BIOS_ROM_BASE;
x86bios_rom = pmap_mapdev(x86bios_rom_phys, X86BIOS_ROM_SIZE);
if (x86bios_rom == NULL)
goto fail;
#ifdef X86BIOS_NATIVE_ARCH
/* Change attribute for EBDA. */
if (x86bios_rom_phys < X86BIOS_ROM_BASE &&
pmap_change_attr((vm_offset_t)x86bios_rom,
X86BIOS_ROM_BASE - x86bios_rom_phys, PAT_WRITE_BACK) != 0)
goto fail;
#endif
x86bios_seg = contigmalloc(X86BIOS_SEG_SIZE, M_DEVBUF, M_WAITOK,
X86BIOS_RAM_BASE, x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0);
x86bios_seg_phys = vtophys(x86bios_seg);
if (bootverbose) {
printf("x86bios: IVT 0x%06jx-0x%06jx at %p\n",
(vm_paddr_t)X86BIOS_IVT_BASE,
(vm_paddr_t)X86BIOS_IVT_SIZE + X86BIOS_IVT_BASE - 1,
x86bios_ivt);
printf("x86bios: SSEG 0x%06jx-0x%06jx at %p\n",
x86bios_seg_phys,
(vm_paddr_t)X86BIOS_SEG_SIZE + x86bios_seg_phys - 1,
x86bios_seg);
if (x86bios_rom_phys < X86BIOS_ROM_BASE)
printf("x86bios: EBDA 0x%06jx-0x%06jx at %p\n",
x86bios_rom_phys, (vm_paddr_t)X86BIOS_ROM_BASE - 1,
x86bios_rom);
printf("x86bios: ROM 0x%06jx-0x%06jx at %p\n",
(vm_paddr_t)X86BIOS_ROM_BASE,
(vm_paddr_t)X86BIOS_MEM_SIZE - X86BIOS_SEG_SIZE - 1,
(caddr_t)x86bios_rom + X86BIOS_ROM_BASE - x86bios_rom_phys);
}
return (0);
fail:
x86bios_unmap_mem();
return (1);
}
static int
x86bios_init(void)
{
int i;
if (x86bios_map_mem() != 0)
return (ENOMEM);
mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_SPIN);
x86bios_map = malloc(sizeof(*x86bios_map) * X86BIOS_PAGES, M_DEVBUF,
M_WAITOK | M_ZERO);
x86bios_set_pages((vm_offset_t)x86bios_ivt, X86BIOS_IVT_BASE,
X86BIOS_IVT_SIZE);
x86bios_set_pages((vm_offset_t)x86bios_rom, x86bios_rom_phys,
X86BIOS_ROM_SIZE);
x86bios_set_pages((vm_offset_t)x86bios_seg, x86bios_seg_phys,
X86BIOS_SEG_SIZE);
bzero(&x86bios_emu, sizeof(x86bios_emu));
x86bios_emu.emu_rdb = x86bios_emu_rdb;
x86bios_emu.emu_rdw = x86bios_emu_rdw;
x86bios_emu.emu_rdl = x86bios_emu_rdl;
x86bios_emu.emu_wrb = x86bios_emu_wrb;
x86bios_emu.emu_wrw = x86bios_emu_wrw;
x86bios_emu.emu_wrl = x86bios_emu_wrl;
x86bios_emu.emu_inb = x86bios_emu_inb;
x86bios_emu.emu_inw = x86bios_emu_inw;
x86bios_emu.emu_inl = x86bios_emu_inl;
x86bios_emu.emu_outb = x86bios_emu_outb;
x86bios_emu.emu_outw = x86bios_emu_outw;
x86bios_emu.emu_outl = x86bios_emu_outl;
for (i = 0; i < 256; i++)
x86bios_emu._x86emu_intrTab[i] = x86bios_emu_get_intr;
return (0);
}
static int
x86bios_uninit(void)
{
vm_offset_t *map = x86bios_map;
mtx_lock_spin(&x86bios_lock);
if (x86bios_map != NULL) {
free(x86bios_map, M_DEVBUF);
x86bios_map = NULL;
}
mtx_unlock_spin(&x86bios_lock);
if (map != NULL)
x86bios_unmap_mem();
mtx_destroy(&x86bios_lock);
return (0);
}
#endif
void *
x86bios_get_orm(uint32_t offset)
{
uint8_t *p;
/* Does the shadow ROM contain BIOS POST code for x86? */
p = x86bios_offset(offset);
if (p == NULL || p[0] != 0x55 || p[1] != 0xaa || p[3] != 0xe9)
return (NULL);
return (p);
}
int
x86bios_match_device(uint32_t offset, device_t dev)
{
uint8_t *p;
uint16_t device, vendor;
uint8_t class, progif, subclass;
/* Does the shadow ROM contain BIOS POST code for x86? */
p = x86bios_get_orm(offset);
if (p == NULL)
return (0);
/* Does it contain PCI data structure? */
p += le16toh(*(uint16_t *)(p + 0x18));
if (bcmp(p, "PCIR", 4) != 0 ||
le16toh(*(uint16_t *)(p + 0x0a)) < 0x18 || *(p + 0x14) != 0)
return (0);
/* Does it match the vendor, device, and classcode? */
vendor = le16toh(*(uint16_t *)(p + 0x04));
device = le16toh(*(uint16_t *)(p + 0x06));
progif = *(p + 0x0d);
subclass = *(p + 0x0e);
class = *(p + 0x0f);
if (vendor != pci_get_vendor(dev) || device != pci_get_device(dev) ||
class != pci_get_class(dev) || subclass != pci_get_subclass(dev) ||
progif != pci_get_progif(dev))
return (0);
return (1);
}
static int
x86bios_modevent(module_t mod __unused, int type, void *data __unused)
{
switch (type) {
case MOD_LOAD:
return (x86bios_init());
case MOD_UNLOAD:
return (x86bios_uninit());
default:
return (ENOTSUP);
}
}
static moduledata_t x86bios_mod = {
"x86bios",
x86bios_modevent,
NULL,
};
DECLARE_MODULE(x86bios, x86bios_mod, SI_SUB_CPU, SI_ORDER_ANY);
MODULE_VERSION(x86bios, 1);