freebsd-dev/sys/i386/xen/xen_machdep.c
Alan Cox c1a16a1fb2 Replace all uses of the vm page queues lock by a new R/W lock.
Unfortunately, this lock cannot be defined as static under Xen because it
is (ab)used to serialize queued page table changes.

Tested by:	sbruno
2012-10-12 23:26:00 +00:00

1259 lines
31 KiB
C

/*
*
* Copyright (c) 2004 Christian Limpach.
* Copyright (c) 2004-2006,2008 Kip Macy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christian Limpach.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mount.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sysproto.h>
#include <machine/xen/xen-os.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/segments.h>
#include <machine/pcb.h>
#include <machine/stdarg.h>
#include <machine/vmparam.h>
#include <machine/cpu.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/asmacros.h>
#include <xen/hypervisor.h>
#include <machine/xen/xenvar.h>
#include <machine/xen/xenfunc.h>
#include <machine/xen/xenpmap.h>
#include <machine/xen/xenfunc.h>
#include <xen/interface/memory.h>
#include <machine/xen/features.h>
#ifdef SMP
#include <machine/privatespace.h>
#endif
#include <vm/vm_page.h>
#define IDTVEC(name) __CONCAT(X,name)
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
int xendebug_flags;
start_info_t *xen_start_info;
shared_info_t *HYPERVISOR_shared_info;
xen_pfn_t *xen_machine_phys = machine_to_phys_mapping;
xen_pfn_t *xen_phys_machine;
xen_pfn_t *xen_pfn_to_mfn_frame_list[16];
xen_pfn_t *xen_pfn_to_mfn_frame_list_list;
int preemptable, init_first;
extern unsigned int avail_space;
void ni_cli(void);
void ni_sti(void);
void
ni_cli(void)
{
CTR0(KTR_SPARE2, "ni_cli disabling interrupts");
__asm__("pushl %edx;"
"pushl %eax;"
);
__cli();
__asm__("popl %eax;"
"popl %edx;"
);
}
void
ni_sti(void)
{
__asm__("pushl %edx;"
"pushl %esi;"
"pushl %eax;"
);
__sti();
__asm__("popl %eax;"
"popl %esi;"
"popl %edx;"
);
}
/*
* Modify the cmd_line by converting ',' to NULLs so that it is in a format
* suitable for the static env vars.
*/
char *
xen_setbootenv(char *cmd_line)
{
char *cmd_line_next;
/* Skip leading spaces */
for (; *cmd_line == ' '; cmd_line++);
printk("xen_setbootenv(): cmd_line='%s'\n", cmd_line);
for (cmd_line_next = cmd_line; strsep(&cmd_line_next, ",") != NULL;);
return cmd_line;
}
static struct
{
const char *ev;
int mask;
} howto_names[] = {
{"boot_askname", RB_ASKNAME},
{"boot_single", RB_SINGLE},
{"boot_nosync", RB_NOSYNC},
{"boot_halt", RB_ASKNAME},
{"boot_serial", RB_SERIAL},
{"boot_cdrom", RB_CDROM},
{"boot_gdb", RB_GDB},
{"boot_gdb_pause", RB_RESERVED1},
{"boot_verbose", RB_VERBOSE},
{"boot_multicons", RB_MULTIPLE},
{NULL, 0}
};
int
xen_boothowto(char *envp)
{
int i, howto = 0;
/* get equivalents from the environment */
for (i = 0; howto_names[i].ev != NULL; i++)
if (getenv(howto_names[i].ev) != NULL)
howto |= howto_names[i].mask;
return howto;
}
#define PRINTK_BUFSIZE 1024
void
printk(const char *fmt, ...)
{
__va_list ap;
int retval;
static char buf[PRINTK_BUFSIZE];
va_start(ap, fmt);
retval = vsnprintf(buf, PRINTK_BUFSIZE - 1, fmt, ap);
va_end(ap);
buf[retval] = 0;
(void)HYPERVISOR_console_write(buf, retval);
}
#define XPQUEUE_SIZE 128
struct mmu_log {
char *file;
int line;
};
#ifdef SMP
/* per-cpu queues and indices */
#ifdef INVARIANTS
static struct mmu_log xpq_queue_log[MAX_VIRT_CPUS][XPQUEUE_SIZE];
#endif
static int xpq_idx[MAX_VIRT_CPUS];
static mmu_update_t xpq_queue[MAX_VIRT_CPUS][XPQUEUE_SIZE];
#define XPQ_QUEUE_LOG xpq_queue_log[vcpu]
#define XPQ_QUEUE xpq_queue[vcpu]
#define XPQ_IDX xpq_idx[vcpu]
#define SET_VCPU() int vcpu = smp_processor_id()
#else
static mmu_update_t xpq_queue[XPQUEUE_SIZE];
static struct mmu_log xpq_queue_log[XPQUEUE_SIZE];
static int xpq_idx = 0;
#define XPQ_QUEUE_LOG xpq_queue_log
#define XPQ_QUEUE xpq_queue
#define XPQ_IDX xpq_idx
#define SET_VCPU()
#endif /* !SMP */
#define XPQ_IDX_INC atomic_add_int(&XPQ_IDX, 1);
#if 0
static void
xen_dump_queue(void)
{
int _xpq_idx = XPQ_IDX;
int i;
if (_xpq_idx <= 1)
return;
printk("xen_dump_queue(): %u entries\n", _xpq_idx);
for (i = 0; i < _xpq_idx; i++) {
printk(" val: %llx ptr: %llx\n", XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
}
}
#endif
static __inline void
_xen_flush_queue(void)
{
SET_VCPU();
int _xpq_idx = XPQ_IDX;
int error, i;
#ifdef INVARIANTS
if (__predict_true(gdtset))
CRITICAL_ASSERT(curthread);
#endif
XPQ_IDX = 0;
/* Make sure index is cleared first to avoid double updates. */
error = HYPERVISOR_mmu_update((mmu_update_t *)&XPQ_QUEUE,
_xpq_idx, NULL, DOMID_SELF);
#if 0
if (__predict_true(gdtset))
for (i = _xpq_idx; i > 0;) {
if (i >= 3) {
CTR6(KTR_PMAP, "mmu:val: %lx ptr: %lx val: %lx "
"ptr: %lx val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff),
(XPQ_QUEUE[i-2].val & 0xffffffff),
(XPQ_QUEUE[i-2].ptr & 0xffffffff),
(XPQ_QUEUE[i-3].val & 0xffffffff),
(XPQ_QUEUE[i-3].ptr & 0xffffffff));
i -= 3;
} else if (i == 2) {
CTR4(KTR_PMAP, "mmu: val: %lx ptr: %lx val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff),
(XPQ_QUEUE[i-2].val & 0xffffffff),
(XPQ_QUEUE[i-2].ptr & 0xffffffff));
i = 0;
} else {
CTR2(KTR_PMAP, "mmu: val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff));
i = 0;
}
}
#endif
if (__predict_false(error < 0)) {
for (i = 0; i < _xpq_idx; i++)
printf("val: %llx ptr: %llx\n",
XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
panic("Failed to execute MMU updates: %d", error);
}
}
void
xen_flush_queue(void)
{
SET_VCPU();
if (__predict_true(gdtset))
critical_enter();
if (XPQ_IDX != 0) _xen_flush_queue();
if (__predict_true(gdtset))
critical_exit();
}
static __inline void
xen_increment_idx(void)
{
SET_VCPU();
XPQ_IDX++;
if (__predict_false(XPQ_IDX == XPQUEUE_SIZE))
xen_flush_queue();
}
void
xen_check_queue(void)
{
#ifdef INVARIANTS
SET_VCPU();
KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
#endif
}
void
xen_invlpg(vm_offset_t va)
{
struct mmuext_op op;
op.cmd = MMUEXT_INVLPG_ALL;
op.arg1.linear_addr = va & ~PAGE_MASK;
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_load_cr3(u_int val)
{
struct mmuext_op op;
#ifdef INVARIANTS
SET_VCPU();
KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
#endif
op.cmd = MMUEXT_NEW_BASEPTR;
op.arg1.mfn = xpmap_ptom(val) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
#ifdef KTR
static __inline u_int
rebp(void)
{
u_int data;
__asm __volatile("movl 4(%%ebp),%0" : "=r" (data));
return (data);
}
#endif
u_int
read_eflags(void)
{
vcpu_info_t *_vcpu;
u_int eflags;
eflags = _read_eflags();
_vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()];
if (_vcpu->evtchn_upcall_mask)
eflags &= ~PSL_I;
return (eflags);
}
void
write_eflags(u_int eflags)
{
u_int intr;
CTR2(KTR_SPARE2, "%x xen_restore_flags eflags %x", rebp(), eflags);
intr = ((eflags & PSL_I) == 0);
__restore_flags(intr);
_write_eflags(eflags);
}
void
xen_cli(void)
{
CTR1(KTR_SPARE2, "%x xen_cli disabling interrupts", rebp());
__cli();
}
void
xen_sti(void)
{
CTR1(KTR_SPARE2, "%x xen_sti enabling interrupts", rebp());
__sti();
}
u_int
xen_rcr2(void)
{
return (HYPERVISOR_shared_info->vcpu_info[curcpu].arch.cr2);
}
void
_xen_machphys_update(vm_paddr_t mfn, vm_paddr_t pfn, char *file, int line)
{
SET_VCPU();
if (__predict_true(gdtset))
critical_enter();
XPQ_QUEUE[XPQ_IDX].ptr = (mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE;
XPQ_QUEUE[XPQ_IDX].val = pfn;
#ifdef INVARIANTS
XPQ_QUEUE_LOG[XPQ_IDX].file = file;
XPQ_QUEUE_LOG[XPQ_IDX].line = line;
#endif
xen_increment_idx();
if (__predict_true(gdtset))
critical_exit();
}
extern struct rwlock pvh_global_lock;
void
_xen_queue_pt_update(vm_paddr_t ptr, vm_paddr_t val, char *file, int line)
{
SET_VCPU();
if (__predict_true(gdtset))
rw_assert(&pvh_global_lock, RA_WLOCKED);
KASSERT((ptr & 7) == 0, ("misaligned update"));
if (__predict_true(gdtset))
critical_enter();
XPQ_QUEUE[XPQ_IDX].ptr = ((uint64_t)ptr) | MMU_NORMAL_PT_UPDATE;
XPQ_QUEUE[XPQ_IDX].val = (uint64_t)val;
#ifdef INVARIANTS
XPQ_QUEUE_LOG[XPQ_IDX].file = file;
XPQ_QUEUE_LOG[XPQ_IDX].line = line;
#endif
xen_increment_idx();
if (__predict_true(gdtset))
critical_exit();
}
void
xen_pgdpt_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L3_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pgd_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L2_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pgd_unpin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_UNPIN_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pt_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L1_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pt_unpin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_UNPIN_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_set_ldt(vm_paddr_t ptr, unsigned long len)
{
struct mmuext_op op;
op.cmd = MMUEXT_SET_LDT;
op.arg1.linear_addr = ptr;
op.arg2.nr_ents = len;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void xen_tlb_flush(void)
{
struct mmuext_op op;
op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_update_descriptor(union descriptor *table, union descriptor *entry)
{
vm_paddr_t pa;
pt_entry_t *ptp;
ptp = vtopte((vm_offset_t)table);
pa = (*ptp & PG_FRAME) | ((vm_offset_t)table & PAGE_MASK);
if (HYPERVISOR_update_descriptor(pa, *(uint64_t *)entry))
panic("HYPERVISOR_update_descriptor failed\n");
}
#if 0
/*
* Bitmap is indexed by page number. If bit is set, the page is part of a
* xen_create_contiguous_region() area of memory.
*/
unsigned long *contiguous_bitmap;
static void
contiguous_bitmap_set(unsigned long first_page, unsigned long nr_pages)
{
unsigned long start_off, end_off, curr_idx, end_idx;
curr_idx = first_page / BITS_PER_LONG;
start_off = first_page & (BITS_PER_LONG-1);
end_idx = (first_page + nr_pages) / BITS_PER_LONG;
end_off = (first_page + nr_pages) & (BITS_PER_LONG-1);
if (curr_idx == end_idx) {
contiguous_bitmap[curr_idx] |=
((1UL<<end_off)-1) & -(1UL<<start_off);
} else {
contiguous_bitmap[curr_idx] |= -(1UL<<start_off);
while ( ++curr_idx < end_idx )
contiguous_bitmap[curr_idx] = ~0UL;
contiguous_bitmap[curr_idx] |= (1UL<<end_off)-1;
}
}
static void
contiguous_bitmap_clear(unsigned long first_page, unsigned long nr_pages)
{
unsigned long start_off, end_off, curr_idx, end_idx;
curr_idx = first_page / BITS_PER_LONG;
start_off = first_page & (BITS_PER_LONG-1);
end_idx = (first_page + nr_pages) / BITS_PER_LONG;
end_off = (first_page + nr_pages) & (BITS_PER_LONG-1);
if (curr_idx == end_idx) {
contiguous_bitmap[curr_idx] &=
-(1UL<<end_off) | ((1UL<<start_off)-1);
} else {
contiguous_bitmap[curr_idx] &= (1UL<<start_off)-1;
while ( ++curr_idx != end_idx )
contiguous_bitmap[curr_idx] = 0;
contiguous_bitmap[curr_idx] &= -(1UL<<end_off);
}
}
#endif
/* Ensure multi-page extents are contiguous in machine memory. */
int
xen_create_contiguous_region(vm_page_t pages, int npages)
{
unsigned long mfn, i, flags;
int order;
struct xen_memory_reservation reservation = {
.nr_extents = 1,
.extent_order = 0,
.domid = DOMID_SELF
};
set_xen_guest_handle(reservation.extent_start, &mfn);
balloon_lock(flags);
/* can currently only handle power of two allocation */
PANIC_IF(ffs(npages) != fls(npages));
/* 0. determine order */
order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
/* 1. give away machine pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
mfn = PFNTOMFN(pfn);
PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
PANIC_IF(HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation) != 1);
}
/* 2. Get a new contiguous memory extent. */
reservation.extent_order = order;
/* xenlinux hardcodes this because of aacraid - maybe set to 0 if we're not
* running with a broxen driver XXXEN
*/
reservation.address_bits = 31;
if (HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1)
goto fail;
/* 3. Map the new extent in place of old pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
xen_machphys_update(mfn+i, pfn);
PFNTOMFN(pfn) = mfn+i;
}
xen_tlb_flush();
#if 0
contiguous_bitmap_set(VM_PAGE_TO_PHYS(&pages[0]) >> PAGE_SHIFT, 1UL << order);
#endif
balloon_unlock(flags);
return 0;
fail:
reservation.extent_order = 0;
reservation.address_bits = 0;
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_memory_op(
XENMEM_increase_reservation, &reservation) != 1);
xen_machphys_update(mfn, pfn);
PFNTOMFN(pfn) = mfn;
}
xen_tlb_flush();
balloon_unlock(flags);
return ENOMEM;
}
void
xen_destroy_contiguous_region(void *addr, int npages)
{
unsigned long mfn, i, flags, order, pfn0;
struct xen_memory_reservation reservation = {
.nr_extents = 1,
.extent_order = 0,
.domid = DOMID_SELF
};
set_xen_guest_handle(reservation.extent_start, &mfn);
pfn0 = vtophys(addr) >> PAGE_SHIFT;
#if 0
scrub_pages(vstart, 1 << order);
#endif
/* can currently only handle power of two allocation */
PANIC_IF(ffs(npages) != fls(npages));
/* 0. determine order */
order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
balloon_lock(flags);
#if 0
contiguous_bitmap_clear(vtophys(addr) >> PAGE_SHIFT, 1UL << order);
#endif
/* 1. Zap current PTEs, giving away the underlying pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
uint64_t new_val = 0;
pfn = vtomach((char *)addr + i*PAGE_SIZE) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)((char *)addr + (i * PAGE_SIZE)), new_val, 0));
PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
PANIC_IF(HYPERVISOR_memory_op(
XENMEM_decrease_reservation, &reservation) != 1);
}
/* 2. Map new pages in place of old pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
uint64_t new_val;
pfn = pfn0 + i;
PANIC_IF(HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1);
new_val = mfn << PAGE_SHIFT;
PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)addr + (i * PAGE_SIZE),
new_val, PG_KERNEL));
xen_machphys_update(mfn, pfn);
PFNTOMFN(pfn) = mfn;
}
xen_tlb_flush();
balloon_unlock(flags);
}
extern vm_offset_t proc0kstack;
extern int vm86paddr, vm86phystk;
char *bootmem_start, *bootmem_current, *bootmem_end;
pteinfo_t *pteinfo_list;
void initvalues(start_info_t *startinfo);
struct xenstore_domain_interface;
extern struct xenstore_domain_interface *xen_store;
char *console_page;
void *
bootmem_alloc(unsigned int size)
{
char *retptr;
retptr = bootmem_current;
PANIC_IF(retptr + size > bootmem_end);
bootmem_current += size;
return retptr;
}
void
bootmem_free(void *ptr, unsigned int size)
{
char *tptr;
tptr = ptr;
PANIC_IF(tptr != bootmem_current - size ||
bootmem_current - size < bootmem_start);
bootmem_current -= size;
}
#if 0
static vm_paddr_t
xpmap_mtop2(vm_paddr_t mpa)
{
return ((machine_to_phys_mapping[mpa >> PAGE_SHIFT] << PAGE_SHIFT)
) | (mpa & ~PG_FRAME);
}
static pd_entry_t
xpmap_get_bootpde(vm_paddr_t va)
{
return ((pd_entry_t *)xen_start_info->pt_base)[va >> 22];
}
static pd_entry_t
xpmap_get_vbootpde(vm_paddr_t va)
{
pd_entry_t pde;
pde = xpmap_get_bootpde(va);
if ((pde & PG_V) == 0)
return (pde & ~PG_FRAME);
return (pde & ~PG_FRAME) |
(xpmap_mtop2(pde & PG_FRAME) + KERNBASE);
}
static pt_entry_t 8*
xpmap_get_bootptep(vm_paddr_t va)
{
pd_entry_t pde;
pde = xpmap_get_vbootpde(va);
if ((pde & PG_V) == 0)
return (void *)-1;
#define PT_MASK 0x003ff000 /* page table address bits */
return &(((pt_entry_t *)(pde & PG_FRAME))[(va & PT_MASK) >> PAGE_SHIFT]);
}
static pt_entry_t
xpmap_get_bootpte(vm_paddr_t va)
{
return xpmap_get_bootptep(va)[0];
}
#endif
#ifdef ADD_ISA_HOLE
static void
shift_phys_machine(unsigned long *phys_machine, int nr_pages)
{
unsigned long *tmp_page, *current_page, *next_page;
int i;
tmp_page = bootmem_alloc(PAGE_SIZE);
current_page = phys_machine + nr_pages - (PAGE_SIZE/sizeof(unsigned long));
next_page = current_page - (PAGE_SIZE/sizeof(unsigned long));
bcopy(phys_machine, tmp_page, PAGE_SIZE);
while (current_page > phys_machine) {
/* save next page */
bcopy(next_page, tmp_page, PAGE_SIZE);
/* shift down page */
bcopy(current_page, next_page, PAGE_SIZE);
/* finish swap */
bcopy(tmp_page, current_page, PAGE_SIZE);
current_page -= (PAGE_SIZE/sizeof(unsigned long));
next_page -= (PAGE_SIZE/sizeof(unsigned long));
}
bootmem_free(tmp_page, PAGE_SIZE);
for (i = 0; i < nr_pages; i++) {
xen_machphys_update(phys_machine[i], i);
}
memset(phys_machine, INVALID_P2M_ENTRY, PAGE_SIZE);
}
#endif /* ADD_ISA_HOLE */
/*
* Build a directory of the pages that make up our Physical to Machine
* mapping table. The Xen suspend/restore code uses this to find our
* mapping table.
*/
static void
init_frame_list_list(void *arg)
{
unsigned long nr_pages = xen_start_info->nr_pages;
#define FPP (PAGE_SIZE/sizeof(xen_pfn_t))
int i, j, k;
xen_pfn_to_mfn_frame_list_list = malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
for (i = 0, j = 0, k = -1; i < nr_pages;
i += FPP, j++) {
if ((j & (FPP - 1)) == 0) {
k++;
xen_pfn_to_mfn_frame_list[k] =
malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
xen_pfn_to_mfn_frame_list_list[k] =
VTOMFN(xen_pfn_to_mfn_frame_list[k]);
j = 0;
}
xen_pfn_to_mfn_frame_list[k][j] =
VTOMFN(&xen_phys_machine[i]);
}
HYPERVISOR_shared_info->arch.max_pfn = nr_pages;
HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list
= VTOMFN(xen_pfn_to_mfn_frame_list_list);
}
SYSINIT(init_fll, SI_SUB_DEVFS, SI_ORDER_ANY, init_frame_list_list, NULL);
extern unsigned long physfree;
int pdir, curoffset;
extern int nkpt;
extern uint32_t kernbase;
void
initvalues(start_info_t *startinfo)
{
vm_offset_t cur_space, cur_space_pt;
struct physdev_set_iopl set_iopl;
int l3_pages, l2_pages, l1_pages, offset;
vm_paddr_t console_page_ma, xen_store_ma;
vm_offset_t tmpva;
vm_paddr_t shinfo;
#ifdef PAE
vm_paddr_t IdlePDPTma, IdlePDPTnewma;
vm_paddr_t IdlePTDnewma[4];
pd_entry_t *IdlePDPTnew, *IdlePTDnew;
vm_paddr_t IdlePTDma[4];
#else
vm_paddr_t IdlePTDma[1];
#endif
unsigned long i;
int ncpus = MAXCPU;
nkpt = min(
min(
max((startinfo->nr_pages >> NPGPTD_SHIFT), nkpt),
NPGPTD*NPDEPG - KPTDI),
(HYPERVISOR_VIRT_START - KERNBASE) >> PDRSHIFT);
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
#ifdef notyet
/*
* need to install handler
*/
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments_notify);
#endif
xen_start_info = startinfo;
xen_phys_machine = (xen_pfn_t *)startinfo->mfn_list;
IdlePTD = (pd_entry_t *)((uint8_t *)startinfo->pt_base + PAGE_SIZE);
l1_pages = 0;
#ifdef PAE
l3_pages = 1;
l2_pages = 0;
IdlePDPT = (pd_entry_t *)startinfo->pt_base;
IdlePDPTma = VTOM(startinfo->pt_base);
for (i = (KERNBASE >> 30);
(i < 4) && (IdlePDPT[i] != 0); i++)
l2_pages++;
/*
* Note that only one page directory has been allocated at this point.
* Thus, if KERNBASE
*/
for (i = 0; i < l2_pages; i++)
IdlePTDma[i] = VTOM(IdlePTD + i*PAGE_SIZE);
l2_pages = (l2_pages == 0) ? 1 : l2_pages;
#else
l3_pages = 0;
l2_pages = 1;
#endif
for (i = (((KERNBASE>>18) & PAGE_MASK)>>PAGE_SHIFT);
(i<l2_pages*NPDEPG) && (i<(VM_MAX_KERNEL_ADDRESS>>PDRSHIFT)); i++) {
if (IdlePTD[i] == 0)
break;
l1_pages++;
}
/* number of pages allocated after the pts + 1*/;
cur_space = xen_start_info->pt_base +
(l3_pages + l2_pages + l1_pages + 1)*PAGE_SIZE;
printk("initvalues(): wooh - availmem=%x,%x\n", avail_space, cur_space);
printk("KERNBASE=%x,pt_base=%x, VTOPFN(base)=%x, nr_pt_frames=%x\n",
KERNBASE,xen_start_info->pt_base, VTOPFN(xen_start_info->pt_base),
xen_start_info->nr_pt_frames);
xendebug_flags = 0; /* 0xffffffff; */
#ifdef ADD_ISA_HOLE
shift_phys_machine(xen_phys_machine, xen_start_info->nr_pages);
#endif
XENPRINTF("IdlePTD %p\n", IdlePTD);
XENPRINTF("nr_pages: %ld shared_info: 0x%lx flags: 0x%lx pt_base: 0x%lx "
"mod_start: 0x%lx mod_len: 0x%lx\n",
xen_start_info->nr_pages, xen_start_info->shared_info,
xen_start_info->flags, xen_start_info->pt_base,
xen_start_info->mod_start, xen_start_info->mod_len);
#ifdef PAE
IdlePDPTnew = (pd_entry_t *)cur_space; cur_space += PAGE_SIZE;
bzero(IdlePDPTnew, PAGE_SIZE);
IdlePDPTnewma = VTOM(IdlePDPTnew);
IdlePTDnew = (pd_entry_t *)cur_space; cur_space += 4*PAGE_SIZE;
bzero(IdlePTDnew, 4*PAGE_SIZE);
for (i = 0; i < 4; i++)
IdlePTDnewma[i] = VTOM((uint8_t *)IdlePTDnew + i*PAGE_SIZE);
/*
* L3
*
* Copy the 4 machine addresses of the new PTDs in to the PDPT
*
*/
for (i = 0; i < 4; i++)
IdlePDPTnew[i] = IdlePTDnewma[i] | PG_V;
__asm__("nop;");
/*
*
* re-map the new PDPT read-only
*/
PT_SET_MA(IdlePDPTnew, IdlePDPTnewma | PG_V);
/*
*
* Unpin the current PDPT
*/
xen_pt_unpin(IdlePDPTma);
#endif /* PAE */
/* Map proc0's KSTACK */
proc0kstack = cur_space; cur_space += (KSTACK_PAGES * PAGE_SIZE);
printk("proc0kstack=%u\n", proc0kstack);
/* vm86/bios stack */
cur_space += PAGE_SIZE;
/* Map space for the vm86 region */
vm86paddr = (vm_offset_t)cur_space;
cur_space += (PAGE_SIZE * 3);
/* allocate 4 pages for bootmem allocator */
bootmem_start = bootmem_current = (char *)cur_space;
cur_space += (4 * PAGE_SIZE);
bootmem_end = (char *)cur_space;
/* allocate pages for gdt */
gdt = (union descriptor *)cur_space;
cur_space += PAGE_SIZE*ncpus;
/* allocate page for ldt */
ldt = (union descriptor *)cur_space; cur_space += PAGE_SIZE;
cur_space += PAGE_SIZE;
/* unmap remaining pages from initial chunk
*
*/
for (tmpva = cur_space; tmpva < (((uint32_t)&kernbase) + (l1_pages<<PDRSHIFT));
tmpva += PAGE_SIZE) {
bzero((char *)tmpva, PAGE_SIZE);
PT_SET_MA(tmpva, (vm_paddr_t)0);
}
PT_UPDATES_FLUSH();
memcpy(((uint8_t *)IdlePTDnew) + ((unsigned int)(KERNBASE >> 18)),
((uint8_t *)IdlePTD) + ((KERNBASE >> 18) & PAGE_MASK),
l1_pages*sizeof(pt_entry_t));
for (i = 0; i < 4; i++) {
PT_SET_MA((uint8_t *)IdlePTDnew + i*PAGE_SIZE,
IdlePTDnewma[i] | PG_V);
}
xen_load_cr3(VTOP(IdlePDPTnew));
xen_pgdpt_pin(VTOM(IdlePDPTnew));
/* allocate remainder of nkpt pages */
cur_space_pt = cur_space;
for (offset = (KERNBASE >> PDRSHIFT), i = l1_pages; i < nkpt;
i++, cur_space += PAGE_SIZE) {
pdir = (offset + i) / NPDEPG;
curoffset = ((offset + i) % NPDEPG);
if (((offset + i) << PDRSHIFT) == VM_MAX_KERNEL_ADDRESS)
break;
/*
* make sure that all the initial page table pages
* have been zeroed
*/
PT_SET_MA(cur_space, VTOM(cur_space) | PG_V | PG_RW);
bzero((char *)cur_space, PAGE_SIZE);
PT_SET_MA(cur_space, (vm_paddr_t)0);
xen_pt_pin(VTOM(cur_space));
xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
curoffset*sizeof(vm_paddr_t)),
VTOM(cur_space) | PG_KERNEL);
PT_UPDATES_FLUSH();
}
for (i = 0; i < 4; i++) {
pdir = (PTDPTDI + i) / NPDEPG;
curoffset = (PTDPTDI + i) % NPDEPG;
xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
curoffset*sizeof(vm_paddr_t)),
IdlePTDnewma[i] | PG_V);
}
PT_UPDATES_FLUSH();
IdlePTD = IdlePTDnew;
IdlePDPT = IdlePDPTnew;
IdlePDPTma = IdlePDPTnewma;
HYPERVISOR_shared_info = (shared_info_t *)cur_space;
cur_space += PAGE_SIZE;
xen_store = (struct xenstore_domain_interface *)cur_space;
cur_space += PAGE_SIZE;
console_page = (char *)cur_space;
cur_space += PAGE_SIZE;
/*
* shared_info is an unsigned long so this will randomly break if
* it is allocated above 4GB - I guess people are used to that
* sort of thing with Xen ... sigh
*/
shinfo = xen_start_info->shared_info;
PT_SET_MA(HYPERVISOR_shared_info, shinfo | PG_KERNEL);
printk("#4\n");
xen_store_ma = (((vm_paddr_t)xen_start_info->store_mfn) << PAGE_SHIFT);
PT_SET_MA(xen_store, xen_store_ma | PG_KERNEL);
console_page_ma = (((vm_paddr_t)xen_start_info->console.domU.mfn) << PAGE_SHIFT);
PT_SET_MA(console_page, console_page_ma | PG_KERNEL);
printk("#5\n");
set_iopl.iopl = 1;
PANIC_IF(HYPERVISOR_physdev_op(PHYSDEVOP_SET_IOPL, &set_iopl));
printk("#6\n");
#if 0
/* add page table for KERNBASE */
xen_queue_pt_update(IdlePTDma + KPTDI*sizeof(vm_paddr_t),
VTOM(cur_space) | PG_KERNEL);
xen_flush_queue();
#ifdef PAE
xen_queue_pt_update(pdir_shadow_ma[3] + KPTDI*sizeof(vm_paddr_t),
VTOM(cur_space) | PG_V | PG_A);
#else
xen_queue_pt_update(pdir_shadow_ma + KPTDI*sizeof(vm_paddr_t),
VTOM(cur_space) | PG_V | PG_A);
#endif
xen_flush_queue();
cur_space += PAGE_SIZE;
printk("#6\n");
#endif /* 0 */
#ifdef notyet
if (xen_start_info->flags & SIF_INITDOMAIN) {
/* Map first megabyte */
for (i = 0; i < (256 << PAGE_SHIFT); i += PAGE_SIZE)
PT_SET_MA(KERNBASE + i, i | PG_KERNEL | PG_NC_PCD);
xen_flush_queue();
}
#endif
/*
* re-map kernel text read-only
*
*/
for (i = (((vm_offset_t)&btext) & ~PAGE_MASK);
i < (((vm_offset_t)&etext) & ~PAGE_MASK); i += PAGE_SIZE)
PT_SET_MA(i, VTOM(i) | PG_V | PG_A);
printk("#7\n");
physfree = VTOP(cur_space);
init_first = physfree >> PAGE_SHIFT;
IdlePTD = (pd_entry_t *)VTOP(IdlePTD);
IdlePDPT = (pd_entry_t *)VTOP(IdlePDPT);
setup_xen_features();
printk("#8, proc0kstack=%u\n", proc0kstack);
}
trap_info_t trap_table[] = {
{ 0, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(div)},
{ 1, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dbg)},
{ 3, 3|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bpt)},
{ 4, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ofl)},
/* This is UPL on Linux and KPL on BSD */
{ 5, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bnd)},
{ 6, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ill)},
{ 7, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dna)},
/*
* { 8, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(XXX)},
* no handler for double fault
*/
{ 9, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpusegm)},
{10, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(tss)},
{11, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(missing)},
{12, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(stk)},
{13, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(prot)},
{14, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(page)},
{15, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(rsvd)},
{16, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpu)},
{17, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(align)},
{18, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(mchk)},
{19, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(xmm)},
{0x80, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(int0x80_syscall)},
{ 0, 0, 0, 0 }
};
/* Perform a multicall and check that individual calls succeeded. */
int
HYPERVISOR_multicall(struct multicall_entry * call_list, int nr_calls)
{
int ret = 0;
int i;
/* Perform the multicall. */
PANIC_IF(_HYPERVISOR_multicall(call_list, nr_calls));
/* Check the results of individual hypercalls. */
for (i = 0; i < nr_calls; i++)
if (unlikely(call_list[i].result < 0))
ret++;
if (unlikely(ret > 0))
panic("%d multicall(s) failed: cpu %d\n",
ret, smp_processor_id());
/* If we didn't panic already, everything succeeded. */
return (0);
}
/********** CODE WORTH KEEPING ABOVE HERE *****************/
void xen_failsafe_handler(void);
void
xen_failsafe_handler(void)
{
panic("xen_failsafe_handler called!\n");
}
void xen_handle_thread_switch(struct pcb *pcb);
/* This is called by cpu_switch() when switching threads. */
/* The pcb arg refers to the process control block of the */
/* next thread which is to run */
void
xen_handle_thread_switch(struct pcb *pcb)
{
uint32_t *a = (uint32_t *)&PCPU_GET(fsgs_gdt)[0];
uint32_t *b = (uint32_t *)&pcb->pcb_fsd;
multicall_entry_t mcl[3];
int i = 0;
/* Notify Xen of task switch */
mcl[i].op = __HYPERVISOR_stack_switch;
mcl[i].args[0] = GSEL(GDATA_SEL, SEL_KPL);
mcl[i++].args[1] = (unsigned long)pcb;
/* Check for update of fsd */
if (*a != *b || *(a+1) != *(b+1)) {
mcl[i].op = __HYPERVISOR_update_descriptor;
*(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
*(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
}
a += 2;
b += 2;
/* Check for update of gsd */
if (*a != *b || *(a+1) != *(b+1)) {
mcl[i].op = __HYPERVISOR_update_descriptor;
*(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
*(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
}
(void)HYPERVISOR_multicall(mcl, i);
}