56429daea2
- Adds FW logging support - Once enabled, this lets the firmware print event and error messages to the log, increasing the visibility into what the hardware is doing; this is useful for debugging - General bug fixes - Adds inital DCB support to the driver - Notably, this adds support for DCBX to the driver; now with the fw_lldp sysctl set to 1, the driver and adapter will adopt a DCBX configuration sent from a link partner - Adds statistcs sysctls for priority flow control frames - Adds new configuration sysctls for DCB-related features: (VLAN) user priority to TC mapping; ETS bandwidth allocation; priority flow control - Remove unused SR-IOV files (until support gets added) Signed-off-by: Eric Joyner <erj@FreeBSD.org> Tested by: jeffrey.e.pieper@intel.com MFC after: 3 days MFC with:213e91399b
,e438f0a975
Relnotes: yes Sponsored by: Intel Corporation Differential Revision: https://reviews.freebsd.org/D34024
6114 lines
175 KiB
C
6114 lines
175 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause */
|
|
/* Copyright (c) 2021, Intel Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*$FreeBSD$*/
|
|
|
|
#include "ice_common.h"
|
|
#include "ice_sched.h"
|
|
#include "ice_adminq_cmd.h"
|
|
|
|
#include "ice_flow.h"
|
|
#include "ice_switch.h"
|
|
|
|
#define ICE_PF_RESET_WAIT_COUNT 300
|
|
|
|
/**
|
|
* dump_phy_type - helper function that prints PHY type strings
|
|
* @hw: pointer to the HW structure
|
|
* @phy: 64 bit PHY type to decipher
|
|
* @i: bit index within phy
|
|
* @phy_string: string corresponding to bit i in phy
|
|
* @prefix: prefix string to differentiate multiple dumps
|
|
*/
|
|
static void
|
|
dump_phy_type(struct ice_hw *hw, u64 phy, u8 i, const char *phy_string,
|
|
const char *prefix)
|
|
{
|
|
if (phy & BIT_ULL(i))
|
|
ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", prefix, i,
|
|
phy_string);
|
|
}
|
|
|
|
/**
|
|
* ice_dump_phy_type_low - helper function to dump phy_type_low
|
|
* @hw: pointer to the HW structure
|
|
* @low: 64 bit value for phy_type_low
|
|
* @prefix: prefix string to differentiate multiple dumps
|
|
*/
|
|
static void
|
|
ice_dump_phy_type_low(struct ice_hw *hw, u64 low, const char *prefix)
|
|
{
|
|
ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix,
|
|
(unsigned long long)low);
|
|
|
|
dump_phy_type(hw, low, 0, "100BASE_TX", prefix);
|
|
dump_phy_type(hw, low, 1, "100M_SGMII", prefix);
|
|
dump_phy_type(hw, low, 2, "1000BASE_T", prefix);
|
|
dump_phy_type(hw, low, 3, "1000BASE_SX", prefix);
|
|
dump_phy_type(hw, low, 4, "1000BASE_LX", prefix);
|
|
dump_phy_type(hw, low, 5, "1000BASE_KX", prefix);
|
|
dump_phy_type(hw, low, 6, "1G_SGMII", prefix);
|
|
dump_phy_type(hw, low, 7, "2500BASE_T", prefix);
|
|
dump_phy_type(hw, low, 8, "2500BASE_X", prefix);
|
|
dump_phy_type(hw, low, 9, "2500BASE_KX", prefix);
|
|
dump_phy_type(hw, low, 10, "5GBASE_T", prefix);
|
|
dump_phy_type(hw, low, 11, "5GBASE_KR", prefix);
|
|
dump_phy_type(hw, low, 12, "10GBASE_T", prefix);
|
|
dump_phy_type(hw, low, 13, "10G_SFI_DA", prefix);
|
|
dump_phy_type(hw, low, 14, "10GBASE_SR", prefix);
|
|
dump_phy_type(hw, low, 15, "10GBASE_LR", prefix);
|
|
dump_phy_type(hw, low, 16, "10GBASE_KR_CR1", prefix);
|
|
dump_phy_type(hw, low, 17, "10G_SFI_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 18, "10G_SFI_C2C", prefix);
|
|
dump_phy_type(hw, low, 19, "25GBASE_T", prefix);
|
|
dump_phy_type(hw, low, 20, "25GBASE_CR", prefix);
|
|
dump_phy_type(hw, low, 21, "25GBASE_CR_S", prefix);
|
|
dump_phy_type(hw, low, 22, "25GBASE_CR1", prefix);
|
|
dump_phy_type(hw, low, 23, "25GBASE_SR", prefix);
|
|
dump_phy_type(hw, low, 24, "25GBASE_LR", prefix);
|
|
dump_phy_type(hw, low, 25, "25GBASE_KR", prefix);
|
|
dump_phy_type(hw, low, 26, "25GBASE_KR_S", prefix);
|
|
dump_phy_type(hw, low, 27, "25GBASE_KR1", prefix);
|
|
dump_phy_type(hw, low, 28, "25G_AUI_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 29, "25G_AUI_C2C", prefix);
|
|
dump_phy_type(hw, low, 30, "40GBASE_CR4", prefix);
|
|
dump_phy_type(hw, low, 31, "40GBASE_SR4", prefix);
|
|
dump_phy_type(hw, low, 32, "40GBASE_LR4", prefix);
|
|
dump_phy_type(hw, low, 33, "40GBASE_KR4", prefix);
|
|
dump_phy_type(hw, low, 34, "40G_XLAUI_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 35, "40G_XLAUI", prefix);
|
|
dump_phy_type(hw, low, 36, "50GBASE_CR2", prefix);
|
|
dump_phy_type(hw, low, 37, "50GBASE_SR2", prefix);
|
|
dump_phy_type(hw, low, 38, "50GBASE_LR2", prefix);
|
|
dump_phy_type(hw, low, 39, "50GBASE_KR2", prefix);
|
|
dump_phy_type(hw, low, 40, "50G_LAUI2_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 41, "50G_LAUI2", prefix);
|
|
dump_phy_type(hw, low, 42, "50G_AUI2_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 43, "50G_AUI2", prefix);
|
|
dump_phy_type(hw, low, 44, "50GBASE_CP", prefix);
|
|
dump_phy_type(hw, low, 45, "50GBASE_SR", prefix);
|
|
dump_phy_type(hw, low, 46, "50GBASE_FR", prefix);
|
|
dump_phy_type(hw, low, 47, "50GBASE_LR", prefix);
|
|
dump_phy_type(hw, low, 48, "50GBASE_KR_PAM4", prefix);
|
|
dump_phy_type(hw, low, 49, "50G_AUI1_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 50, "50G_AUI1", prefix);
|
|
dump_phy_type(hw, low, 51, "100GBASE_CR4", prefix);
|
|
dump_phy_type(hw, low, 52, "100GBASE_SR4", prefix);
|
|
dump_phy_type(hw, low, 53, "100GBASE_LR4", prefix);
|
|
dump_phy_type(hw, low, 54, "100GBASE_KR4", prefix);
|
|
dump_phy_type(hw, low, 55, "100G_CAUI4_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 56, "100G_CAUI4", prefix);
|
|
dump_phy_type(hw, low, 57, "100G_AUI4_AOC_ACC", prefix);
|
|
dump_phy_type(hw, low, 58, "100G_AUI4", prefix);
|
|
dump_phy_type(hw, low, 59, "100GBASE_CR_PAM4", prefix);
|
|
dump_phy_type(hw, low, 60, "100GBASE_KR_PAM4", prefix);
|
|
dump_phy_type(hw, low, 61, "100GBASE_CP2", prefix);
|
|
dump_phy_type(hw, low, 62, "100GBASE_SR2", prefix);
|
|
dump_phy_type(hw, low, 63, "100GBASE_DR", prefix);
|
|
}
|
|
|
|
/**
|
|
* ice_dump_phy_type_high - helper function to dump phy_type_high
|
|
* @hw: pointer to the HW structure
|
|
* @high: 64 bit value for phy_type_high
|
|
* @prefix: prefix string to differentiate multiple dumps
|
|
*/
|
|
static void
|
|
ice_dump_phy_type_high(struct ice_hw *hw, u64 high, const char *prefix)
|
|
{
|
|
ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix,
|
|
(unsigned long long)high);
|
|
|
|
dump_phy_type(hw, high, 0, "100GBASE_KR2_PAM4", prefix);
|
|
dump_phy_type(hw, high, 1, "100G_CAUI2_AOC_ACC", prefix);
|
|
dump_phy_type(hw, high, 2, "100G_CAUI2", prefix);
|
|
dump_phy_type(hw, high, 3, "100G_AUI2_AOC_ACC", prefix);
|
|
dump_phy_type(hw, high, 4, "100G_AUI2", prefix);
|
|
}
|
|
|
|
/**
|
|
* ice_set_mac_type - Sets MAC type
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function sets the MAC type of the adapter based on the
|
|
* vendor ID and device ID stored in the HW structure.
|
|
*/
|
|
enum ice_status ice_set_mac_type(struct ice_hw *hw)
|
|
{
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
|
|
return ICE_ERR_DEVICE_NOT_SUPPORTED;
|
|
|
|
switch (hw->device_id) {
|
|
case ICE_DEV_ID_E810C_BACKPLANE:
|
|
case ICE_DEV_ID_E810C_QSFP:
|
|
case ICE_DEV_ID_E810C_SFP:
|
|
case ICE_DEV_ID_E810_XXV_BACKPLANE:
|
|
case ICE_DEV_ID_E810_XXV_QSFP:
|
|
case ICE_DEV_ID_E810_XXV_SFP:
|
|
hw->mac_type = ICE_MAC_E810;
|
|
break;
|
|
case ICE_DEV_ID_E822C_10G_BASE_T:
|
|
case ICE_DEV_ID_E822C_BACKPLANE:
|
|
case ICE_DEV_ID_E822C_QSFP:
|
|
case ICE_DEV_ID_E822C_SFP:
|
|
case ICE_DEV_ID_E822C_SGMII:
|
|
case ICE_DEV_ID_E822L_10G_BASE_T:
|
|
case ICE_DEV_ID_E822L_BACKPLANE:
|
|
case ICE_DEV_ID_E822L_SFP:
|
|
case ICE_DEV_ID_E822L_SGMII:
|
|
case ICE_DEV_ID_E823L_10G_BASE_T:
|
|
case ICE_DEV_ID_E823L_1GBE:
|
|
case ICE_DEV_ID_E823L_BACKPLANE:
|
|
case ICE_DEV_ID_E823L_QSFP:
|
|
case ICE_DEV_ID_E823L_SFP:
|
|
case ICE_DEV_ID_E823C_10G_BASE_T:
|
|
case ICE_DEV_ID_E823C_BACKPLANE:
|
|
case ICE_DEV_ID_E823C_QSFP:
|
|
case ICE_DEV_ID_E823C_SFP:
|
|
case ICE_DEV_ID_E823C_SGMII:
|
|
hw->mac_type = ICE_MAC_GENERIC;
|
|
break;
|
|
default:
|
|
hw->mac_type = ICE_MAC_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_is_e810
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* returns true if the device is E810 based, false if not.
|
|
*/
|
|
bool ice_is_e810(struct ice_hw *hw)
|
|
{
|
|
return hw->mac_type == ICE_MAC_E810;
|
|
}
|
|
|
|
/**
|
|
* ice_is_e810t
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* returns true if the device is E810T based, false if not.
|
|
*/
|
|
bool ice_is_e810t(struct ice_hw *hw)
|
|
{
|
|
switch (hw->device_id) {
|
|
case ICE_DEV_ID_E810C_SFP:
|
|
if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T ||
|
|
hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
|
|
return true;
|
|
break;
|
|
case ICE_DEV_ID_E810C_QSFP:
|
|
if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
|
|
return true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_pf_cfg - Clear PF configuration
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
|
|
* configuration, flow director filters, etc.).
|
|
*/
|
|
enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_manage_mac_read - manage MAC address read command
|
|
* @hw: pointer to the HW struct
|
|
* @buf: a virtual buffer to hold the manage MAC read response
|
|
* @buf_size: Size of the virtual buffer
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function is used to return per PF station MAC address (0x0107).
|
|
* NOTE: Upon successful completion of this command, MAC address information
|
|
* is returned in user specified buffer. Please interpret user specified
|
|
* buffer as "manage_mac_read" response.
|
|
* Response such as various MAC addresses are stored in HW struct (port.mac)
|
|
* ice_discover_dev_caps is expected to be called before this function is
|
|
* called.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_manage_mac_read_resp *resp;
|
|
struct ice_aqc_manage_mac_read *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u16 flags;
|
|
u8 i;
|
|
|
|
cmd = &desc.params.mac_read;
|
|
|
|
if (buf_size < sizeof(*resp))
|
|
return ICE_ERR_BUF_TOO_SHORT;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
if (status)
|
|
return status;
|
|
|
|
resp = (struct ice_aqc_manage_mac_read_resp *)buf;
|
|
flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
|
|
|
|
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
|
|
ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
|
|
return ICE_ERR_CFG;
|
|
}
|
|
|
|
/* A single port can report up to two (LAN and WoL) addresses */
|
|
for (i = 0; i < cmd->num_addr; i++)
|
|
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
|
|
ice_memcpy(hw->port_info->mac.lan_addr,
|
|
resp[i].mac_addr, ETH_ALEN,
|
|
ICE_DMA_TO_NONDMA);
|
|
ice_memcpy(hw->port_info->mac.perm_addr,
|
|
resp[i].mac_addr,
|
|
ETH_ALEN, ICE_DMA_TO_NONDMA);
|
|
break;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_phy_caps - returns PHY capabilities
|
|
* @pi: port information structure
|
|
* @qual_mods: report qualified modules
|
|
* @report_mode: report mode capabilities
|
|
* @pcaps: structure for PHY capabilities to be filled
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Returns the various PHY capabilities supported on the Port (0x0600)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
|
|
struct ice_aqc_get_phy_caps_data *pcaps,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_phy_caps *cmd;
|
|
u16 pcaps_size = sizeof(*pcaps);
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
const char *prefix;
|
|
struct ice_hw *hw;
|
|
|
|
cmd = &desc.params.get_phy;
|
|
|
|
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
|
|
return ICE_ERR_PARAM;
|
|
hw = pi->hw;
|
|
|
|
if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
|
|
!ice_fw_supports_report_dflt_cfg(hw))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
|
|
|
|
if (qual_mods)
|
|
cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
|
|
|
|
cmd->param0 |= CPU_TO_LE16(report_mode);
|
|
status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
|
|
|
|
if (report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA)
|
|
prefix = "phy_caps_media";
|
|
else if (report_mode == ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA)
|
|
prefix = "phy_caps_no_media";
|
|
else if (report_mode == ICE_AQC_REPORT_ACTIVE_CFG)
|
|
prefix = "phy_caps_active";
|
|
else if (report_mode == ICE_AQC_REPORT_DFLT_CFG)
|
|
prefix = "phy_caps_default";
|
|
else
|
|
prefix = "phy_caps_invalid";
|
|
|
|
ice_dump_phy_type_low(hw, LE64_TO_CPU(pcaps->phy_type_low), prefix);
|
|
ice_dump_phy_type_high(hw, LE64_TO_CPU(pcaps->phy_type_high), prefix);
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
|
|
prefix, report_mode);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
|
|
pcaps->low_power_ctrl_an);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
|
|
pcaps->eee_cap);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
|
|
pcaps->eeer_value);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
|
|
pcaps->link_fec_options);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
|
|
prefix, pcaps->module_compliance_enforcement);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
|
|
prefix, pcaps->extended_compliance_code);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
|
|
pcaps->module_type[0]);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
|
|
pcaps->module_type[1]);
|
|
ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
|
|
pcaps->module_type[2]);
|
|
|
|
if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
|
|
pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
|
|
pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
|
|
ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
|
|
sizeof(pi->phy.link_info.module_type),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_netlist_node
|
|
* @hw: pointer to the hw struct
|
|
* @cmd: get_link_topo AQ structure
|
|
* @node_part_number: output node part number if node found
|
|
* @node_handle: output node handle parameter if node found
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
|
|
u8 *node_part_number, u16 *node_handle)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
|
|
desc.params.get_link_topo = *cmd;
|
|
|
|
if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
|
|
return ICE_ERR_NOT_SUPPORTED;
|
|
|
|
if (node_handle)
|
|
*node_handle =
|
|
LE16_TO_CPU(desc.params.get_link_topo.addr.handle);
|
|
if (node_part_number)
|
|
*node_part_number = desc.params.get_link_topo.node_part_num;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
#define MAX_NETLIST_SIZE 10
|
|
/**
|
|
* ice_find_netlist_node
|
|
* @hw: pointer to the hw struct
|
|
* @node_type_ctx: type of netlist node to look for
|
|
* @node_part_number: node part number to look for
|
|
* @node_handle: output parameter if node found - optional
|
|
*
|
|
* Find and return the node handle for a given node type and part number in the
|
|
* netlist. When found ICE_SUCCESS is returned, ICE_ERR_DOES_NOT_EXIST
|
|
* otherwise. If @node_handle provided, it would be set to found node handle.
|
|
*/
|
|
enum ice_status
|
|
ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, u8 node_part_number,
|
|
u16 *node_handle)
|
|
{
|
|
struct ice_aqc_get_link_topo cmd;
|
|
u8 rec_node_part_number;
|
|
enum ice_status status;
|
|
u16 rec_node_handle;
|
|
u8 idx;
|
|
|
|
for (idx = 0; idx < MAX_NETLIST_SIZE; idx++) {
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.addr.topo_params.node_type_ctx =
|
|
(node_type_ctx << ICE_AQC_LINK_TOPO_NODE_TYPE_S);
|
|
cmd.addr.topo_params.index = idx;
|
|
|
|
status = ice_aq_get_netlist_node(hw, &cmd,
|
|
&rec_node_part_number,
|
|
&rec_node_handle);
|
|
if (status)
|
|
return status;
|
|
|
|
if (rec_node_part_number == node_part_number) {
|
|
if (node_handle)
|
|
*node_handle = rec_node_handle;
|
|
return ICE_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return ICE_ERR_DOES_NOT_EXIST;
|
|
}
|
|
|
|
/**
|
|
* ice_is_media_cage_present
|
|
* @pi: port information structure
|
|
*
|
|
* Returns true if media cage is present, else false. If no cage, then
|
|
* media type is backplane or BASE-T.
|
|
*/
|
|
static bool ice_is_media_cage_present(struct ice_port_info *pi)
|
|
{
|
|
struct ice_aqc_get_link_topo *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.get_link_topo;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
|
|
|
|
cmd->addr.topo_params.node_type_ctx =
|
|
(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
|
|
ICE_AQC_LINK_TOPO_NODE_CTX_S);
|
|
|
|
/* set node type */
|
|
cmd->addr.topo_params.node_type_ctx |=
|
|
(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
|
|
ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE);
|
|
|
|
/* Node type cage can be used to determine if cage is present. If AQC
|
|
* returns error (ENOENT), then no cage present. If no cage present then
|
|
* connection type is backplane or BASE-T.
|
|
*/
|
|
return ice_aq_get_netlist_node(pi->hw, cmd, NULL, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_get_media_type - Gets media type
|
|
* @pi: port information structure
|
|
*/
|
|
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
|
|
{
|
|
struct ice_link_status *hw_link_info;
|
|
|
|
if (!pi)
|
|
return ICE_MEDIA_UNKNOWN;
|
|
|
|
hw_link_info = &pi->phy.link_info;
|
|
if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
|
|
/* If more than one media type is selected, report unknown */
|
|
return ICE_MEDIA_UNKNOWN;
|
|
|
|
if (hw_link_info->phy_type_low) {
|
|
/* 1G SGMII is a special case where some DA cable PHYs
|
|
* may show this as an option when it really shouldn't
|
|
* be since SGMII is meant to be between a MAC and a PHY
|
|
* in a backplane. Try to detect this case and handle it
|
|
*/
|
|
if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
|
|
(hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
|
|
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
|
|
hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
|
|
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
|
|
return ICE_MEDIA_DA;
|
|
|
|
switch (hw_link_info->phy_type_low) {
|
|
case ICE_PHY_TYPE_LOW_1000BASE_SX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_LX:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_FR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_DR:
|
|
return ICE_MEDIA_FIBER;
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
|
|
return ICE_MEDIA_FIBER;
|
|
case ICE_PHY_TYPE_LOW_100BASE_TX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_T:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_T:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_T:
|
|
return ICE_MEDIA_BASET;
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CP:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
|
|
return ICE_MEDIA_DA;
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4:
|
|
if (ice_is_media_cage_present(pi))
|
|
return ICE_MEDIA_AUI;
|
|
/* fall-through */
|
|
case ICE_PHY_TYPE_LOW_1000BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_X:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
|
|
return ICE_MEDIA_BACKPLANE;
|
|
}
|
|
} else {
|
|
switch (hw_link_info->phy_type_high) {
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
|
|
if (ice_is_media_cage_present(pi))
|
|
return ICE_MEDIA_AUI;
|
|
/* fall-through */
|
|
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
|
|
return ICE_MEDIA_BACKPLANE;
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
|
|
return ICE_MEDIA_FIBER;
|
|
}
|
|
}
|
|
return ICE_MEDIA_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_link_info
|
|
* @pi: port information structure
|
|
* @ena_lse: enable/disable LinkStatusEvent reporting
|
|
* @link: pointer to link status structure - optional
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get Link Status (0x607). Returns the link status of the adapter.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
|
|
struct ice_link_status *link, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_link_status_data link_data = { 0 };
|
|
struct ice_aqc_get_link_status *resp;
|
|
struct ice_link_status *li_old, *li;
|
|
enum ice_media_type *hw_media_type;
|
|
struct ice_fc_info *hw_fc_info;
|
|
bool tx_pause, rx_pause;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
struct ice_hw *hw;
|
|
u16 cmd_flags;
|
|
|
|
if (!pi)
|
|
return ICE_ERR_PARAM;
|
|
hw = pi->hw;
|
|
|
|
li_old = &pi->phy.link_info_old;
|
|
hw_media_type = &pi->phy.media_type;
|
|
li = &pi->phy.link_info;
|
|
hw_fc_info = &pi->fc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
|
|
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
|
|
resp = &desc.params.get_link_status;
|
|
resp->cmd_flags = CPU_TO_LE16(cmd_flags);
|
|
resp->lport_num = pi->lport;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
|
|
|
|
if (status != ICE_SUCCESS)
|
|
return status;
|
|
|
|
/* save off old link status information */
|
|
*li_old = *li;
|
|
|
|
/* update current link status information */
|
|
li->link_speed = LE16_TO_CPU(link_data.link_speed);
|
|
li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
|
|
li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
|
|
*hw_media_type = ice_get_media_type(pi);
|
|
li->link_info = link_data.link_info;
|
|
li->link_cfg_err = link_data.link_cfg_err;
|
|
li->an_info = link_data.an_info;
|
|
li->ext_info = link_data.ext_info;
|
|
li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
|
|
li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
|
|
li->topo_media_conflict = link_data.topo_media_conflict;
|
|
li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
|
|
ICE_AQ_CFG_PACING_TYPE_M);
|
|
|
|
/* update fc info */
|
|
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
|
|
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
|
|
if (tx_pause && rx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_FULL;
|
|
else if (tx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
|
|
else if (rx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
|
|
else
|
|
hw_fc_info->current_mode = ICE_FC_NONE;
|
|
|
|
li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "get link info\n");
|
|
ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
|
|
(unsigned long long)li->phy_type_low);
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
|
|
(unsigned long long)li->phy_type_high);
|
|
ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
|
|
ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
|
|
ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
|
|
ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
|
|
ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
|
|
li->max_frame_size);
|
|
ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
|
|
|
|
/* save link status information */
|
|
if (link)
|
|
*link = *li;
|
|
|
|
/* flag cleared so calling functions don't call AQ again */
|
|
pi->phy.get_link_info = false;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_tx_timer_and_fc_thresh
|
|
* @hw: pointer to the HW struct
|
|
* @cmd: pointer to MAC cfg structure
|
|
*
|
|
* Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
|
|
* descriptor
|
|
*/
|
|
static void
|
|
ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
|
|
struct ice_aqc_set_mac_cfg *cmd)
|
|
{
|
|
u16 fc_thres_val, tx_timer_val;
|
|
u32 val;
|
|
|
|
/* We read back the transmit timer and fc threshold value of
|
|
* LFC. Thus, we will use index =
|
|
* PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
|
|
*
|
|
* Also, because we are operating on transmit timer and fc
|
|
* threshold of LFC, we don't turn on any bit in tx_tmr_priority
|
|
*/
|
|
#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
|
|
|
|
/* Retrieve the transmit timer */
|
|
val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
|
|
tx_timer_val = val &
|
|
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
|
|
cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
|
|
|
|
/* Retrieve the fc threshold */
|
|
val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
|
|
fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
|
|
|
|
cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_mac_cfg
|
|
* @hw: pointer to the HW struct
|
|
* @max_frame_size: Maximum Frame Size to be supported
|
|
* @auto_drop: Tell HW to drop packets if TC queue is blocked
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set MAC configuration (0x0603)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, bool auto_drop,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_mac_cfg *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_mac_cfg;
|
|
|
|
if (max_frame_size == 0)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
|
|
|
|
cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
|
|
|
|
if (ice_is_fw_auto_drop_supported(hw) && auto_drop)
|
|
cmd->drop_opts |= ICE_AQ_SET_MAC_AUTO_DROP_BLOCKING_PKTS;
|
|
ice_fill_tx_timer_and_fc_thresh(hw, cmd);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw;
|
|
enum ice_status status;
|
|
|
|
hw->switch_info = (struct ice_switch_info *)
|
|
ice_malloc(hw, sizeof(*hw->switch_info));
|
|
|
|
sw = hw->switch_info;
|
|
|
|
if (!sw)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
INIT_LIST_HEAD(&sw->vsi_list_map_head);
|
|
sw->prof_res_bm_init = 0;
|
|
|
|
status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
|
|
if (status) {
|
|
ice_free(hw, hw->switch_info);
|
|
return status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
|
|
* @hw: pointer to the HW struct
|
|
* @sw: pointer to switch info struct for which function clears filters
|
|
*/
|
|
static void
|
|
ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
|
|
{
|
|
struct ice_vsi_list_map_info *v_pos_map;
|
|
struct ice_vsi_list_map_info *v_tmp_map;
|
|
struct ice_sw_recipe *recps;
|
|
u8 i;
|
|
|
|
if (!sw)
|
|
return;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
|
|
ice_vsi_list_map_info, list_entry) {
|
|
LIST_DEL(&v_pos_map->list_entry);
|
|
ice_free(hw, v_pos_map);
|
|
}
|
|
recps = sw->recp_list;
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
|
|
|
|
recps[i].root_rid = i;
|
|
LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
|
|
&recps[i].rg_list, ice_recp_grp_entry,
|
|
l_entry) {
|
|
LIST_DEL(&rg_entry->l_entry);
|
|
ice_free(hw, rg_entry);
|
|
}
|
|
|
|
if (recps[i].adv_rule) {
|
|
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
|
|
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
|
|
|
|
ice_destroy_lock(&recps[i].filt_rule_lock);
|
|
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
|
|
&recps[i].filt_rules,
|
|
ice_adv_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
LIST_DEL(&lst_itr->list_entry);
|
|
ice_free(hw, lst_itr->lkups);
|
|
ice_free(hw, lst_itr);
|
|
}
|
|
} else {
|
|
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
|
|
|
|
ice_destroy_lock(&recps[i].filt_rule_lock);
|
|
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
|
|
&recps[i].filt_rules,
|
|
ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
LIST_DEL(&lst_itr->list_entry);
|
|
ice_free(hw, lst_itr);
|
|
}
|
|
}
|
|
if (recps[i].root_buf)
|
|
ice_free(hw, recps[i].root_buf);
|
|
}
|
|
ice_rm_sw_replay_rule_info(hw, sw);
|
|
ice_free(hw, sw->recp_list);
|
|
ice_free(hw, sw);
|
|
}
|
|
|
|
/**
|
|
* ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
|
|
{
|
|
ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
|
|
}
|
|
|
|
/**
|
|
* ice_get_itr_intrl_gran
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Determines the ITR/INTRL granularities based on the maximum aggregate
|
|
* bandwidth according to the device's configuration during power-on.
|
|
*/
|
|
static void ice_get_itr_intrl_gran(struct ice_hw *hw)
|
|
{
|
|
u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
|
|
GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
|
|
GL_PWR_MODE_CTL_CAR_MAX_BW_S;
|
|
|
|
switch (max_agg_bw) {
|
|
case ICE_MAX_AGG_BW_200G:
|
|
case ICE_MAX_AGG_BW_100G:
|
|
case ICE_MAX_AGG_BW_50G:
|
|
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
|
|
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
|
|
break;
|
|
case ICE_MAX_AGG_BW_25G:
|
|
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
|
|
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_print_rollback_msg - print FW rollback message
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_print_rollback_msg(struct ice_hw *hw)
|
|
{
|
|
char nvm_str[ICE_NVM_VER_LEN] = { 0 };
|
|
struct ice_orom_info *orom;
|
|
struct ice_nvm_info *nvm;
|
|
|
|
orom = &hw->flash.orom;
|
|
nvm = &hw->flash.nvm;
|
|
|
|
SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
|
|
nvm->major, nvm->minor, nvm->eetrack, orom->major,
|
|
orom->build, orom->patch);
|
|
ice_warn(hw,
|
|
"Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
|
|
nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
|
|
}
|
|
|
|
/**
|
|
* ice_set_umac_shared
|
|
* @hw: pointer to the hw struct
|
|
*
|
|
* Set boolean flag to allow unicast MAC sharing
|
|
*/
|
|
void ice_set_umac_shared(struct ice_hw *hw)
|
|
{
|
|
hw->umac_shared = true;
|
|
}
|
|
|
|
/**
|
|
* ice_init_hw - main hardware initialization routine
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
enum ice_status ice_init_hw(struct ice_hw *hw)
|
|
{
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
enum ice_status status;
|
|
u16 mac_buf_len;
|
|
void *mac_buf;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
/* Set MAC type based on DeviceID */
|
|
status = ice_set_mac_type(hw);
|
|
if (status)
|
|
return status;
|
|
|
|
hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
|
|
PF_FUNC_RID_FUNCTION_NUMBER_M) >>
|
|
PF_FUNC_RID_FUNCTION_NUMBER_S;
|
|
|
|
status = ice_reset(hw, ICE_RESET_PFR);
|
|
if (status)
|
|
return status;
|
|
ice_get_itr_intrl_gran(hw);
|
|
|
|
status = ice_create_all_ctrlq(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
ice_fwlog_set_support_ena(hw);
|
|
status = ice_fwlog_set(hw, &hw->fwlog_cfg);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging, status %d.\n",
|
|
status);
|
|
} else {
|
|
if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_REGISTER_ON_INIT) {
|
|
status = ice_fwlog_register(hw);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to register for FW logging events, status %d.\n",
|
|
status);
|
|
} else {
|
|
status = ice_fwlog_unregister(hw);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to unregister for FW logging events, status %d.\n",
|
|
status);
|
|
}
|
|
}
|
|
|
|
status = ice_init_nvm(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
|
|
ice_print_rollback_msg(hw);
|
|
|
|
status = ice_clear_pf_cfg(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
ice_clear_pxe_mode(hw);
|
|
|
|
status = ice_get_caps(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
hw->port_info = (struct ice_port_info *)
|
|
ice_malloc(hw, sizeof(*hw->port_info));
|
|
if (!hw->port_info) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll_cqinit;
|
|
}
|
|
|
|
/* set the back pointer to HW */
|
|
hw->port_info->hw = hw;
|
|
|
|
/* Initialize port_info struct with switch configuration data */
|
|
status = ice_get_initial_sw_cfg(hw);
|
|
if (status)
|
|
goto err_unroll_alloc;
|
|
|
|
hw->evb_veb = true;
|
|
/* Query the allocated resources for Tx scheduler */
|
|
status = ice_sched_query_res_alloc(hw);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
|
|
goto err_unroll_alloc;
|
|
}
|
|
ice_sched_get_psm_clk_freq(hw);
|
|
|
|
/* Initialize port_info struct with scheduler data */
|
|
status = ice_sched_init_port(hw->port_info);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(hw, sizeof(*pcaps));
|
|
if (!pcaps) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll_sched;
|
|
}
|
|
|
|
/* Initialize port_info struct with PHY capabilities */
|
|
status = ice_aq_get_phy_caps(hw->port_info, false,
|
|
ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
|
|
ice_free(hw, pcaps);
|
|
if (status)
|
|
ice_warn(hw, "Get PHY capabilities failed status = %d, continuing anyway\n",
|
|
status);
|
|
|
|
/* Initialize port_info struct with link information */
|
|
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
/* need a valid SW entry point to build a Tx tree */
|
|
if (!hw->sw_entry_point_layer) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
|
|
status = ICE_ERR_CFG;
|
|
goto err_unroll_sched;
|
|
}
|
|
INIT_LIST_HEAD(&hw->agg_list);
|
|
/* Initialize max burst size */
|
|
if (!hw->max_burst_size)
|
|
ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
|
|
status = ice_init_fltr_mgmt_struct(hw);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
|
|
/* Get MAC information */
|
|
|
|
/* A single port can report up to two (LAN and WoL) addresses */
|
|
mac_buf = ice_calloc(hw, 2,
|
|
sizeof(struct ice_aqc_manage_mac_read_resp));
|
|
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
|
|
|
|
if (!mac_buf) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
}
|
|
|
|
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
|
|
ice_free(hw, mac_buf);
|
|
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
|
|
/* enable jumbo frame support at MAC level */
|
|
status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, false,
|
|
NULL);
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
|
|
status = ice_init_hw_tbls(hw);
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
ice_init_lock(&hw->tnl_lock);
|
|
|
|
return ICE_SUCCESS;
|
|
|
|
err_unroll_fltr_mgmt_struct:
|
|
ice_cleanup_fltr_mgmt_struct(hw);
|
|
err_unroll_sched:
|
|
ice_sched_cleanup_all(hw);
|
|
err_unroll_alloc:
|
|
ice_free(hw, hw->port_info);
|
|
hw->port_info = NULL;
|
|
err_unroll_cqinit:
|
|
ice_destroy_all_ctrlq(hw);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* This should be called only during nominal operation, not as a result of
|
|
* ice_init_hw() failing since ice_init_hw() will take care of unrolling
|
|
* applicable initializations if it fails for any reason.
|
|
*/
|
|
void ice_deinit_hw(struct ice_hw *hw)
|
|
{
|
|
ice_cleanup_fltr_mgmt_struct(hw);
|
|
|
|
ice_sched_cleanup_all(hw);
|
|
ice_sched_clear_agg(hw);
|
|
ice_free_seg(hw);
|
|
ice_free_hw_tbls(hw);
|
|
ice_destroy_lock(&hw->tnl_lock);
|
|
|
|
if (hw->port_info) {
|
|
ice_free(hw, hw->port_info);
|
|
hw->port_info = NULL;
|
|
}
|
|
|
|
ice_destroy_all_ctrlq(hw);
|
|
|
|
/* Clear VSI contexts if not already cleared */
|
|
ice_clear_all_vsi_ctx(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_check_reset - Check to see if a global reset is complete
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
enum ice_status ice_check_reset(struct ice_hw *hw)
|
|
{
|
|
u32 cnt, reg = 0, grst_timeout, uld_mask;
|
|
|
|
/* Poll for Device Active state in case a recent CORER, GLOBR,
|
|
* or EMPR has occurred. The grst delay value is in 100ms units.
|
|
* Add 1sec for outstanding AQ commands that can take a long time.
|
|
*/
|
|
grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
|
|
GLGEN_RSTCTL_GRSTDEL_S) + 10;
|
|
|
|
for (cnt = 0; cnt < grst_timeout; cnt++) {
|
|
ice_msec_delay(100, true);
|
|
reg = rd32(hw, GLGEN_RSTAT);
|
|
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
|
|
break;
|
|
}
|
|
|
|
if (cnt == grst_timeout) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
|
|
return ICE_ERR_RESET_FAILED;
|
|
}
|
|
|
|
#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
|
|
GLNVM_ULD_PCIER_DONE_1_M |\
|
|
GLNVM_ULD_CORER_DONE_M |\
|
|
GLNVM_ULD_GLOBR_DONE_M |\
|
|
GLNVM_ULD_POR_DONE_M |\
|
|
GLNVM_ULD_POR_DONE_1_M |\
|
|
GLNVM_ULD_PCIER_DONE_2_M)
|
|
|
|
uld_mask = ICE_RESET_DONE_MASK;
|
|
|
|
/* Device is Active; check Global Reset processes are done */
|
|
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
|
|
reg = rd32(hw, GLNVM_ULD) & uld_mask;
|
|
if (reg == uld_mask) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
|
|
break;
|
|
}
|
|
ice_msec_delay(10, true);
|
|
}
|
|
|
|
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
|
|
reg);
|
|
return ICE_ERR_RESET_FAILED;
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_pf_reset - Reset the PF
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* If a global reset has been triggered, this function checks
|
|
* for its completion and then issues the PF reset
|
|
*/
|
|
static enum ice_status ice_pf_reset(struct ice_hw *hw)
|
|
{
|
|
u32 cnt, reg;
|
|
|
|
/* If at function entry a global reset was already in progress, i.e.
|
|
* state is not 'device active' or any of the reset done bits are not
|
|
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
|
|
* global reset is done.
|
|
*/
|
|
if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
|
|
(rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
|
|
/* poll on global reset currently in progress until done */
|
|
if (ice_check_reset(hw))
|
|
return ICE_ERR_RESET_FAILED;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* Reset the PF */
|
|
reg = rd32(hw, PFGEN_CTRL);
|
|
|
|
wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
|
|
|
|
/* Wait for the PFR to complete. The wait time is the global config lock
|
|
* timeout plus the PFR timeout which will account for a possible reset
|
|
* that is occurring during a download package operation.
|
|
*/
|
|
for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
|
|
ICE_PF_RESET_WAIT_COUNT; cnt++) {
|
|
reg = rd32(hw, PFGEN_CTRL);
|
|
if (!(reg & PFGEN_CTRL_PFSWR_M))
|
|
break;
|
|
|
|
ice_msec_delay(1, true);
|
|
}
|
|
|
|
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
|
|
ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
|
|
return ICE_ERR_RESET_FAILED;
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_reset - Perform different types of reset
|
|
* @hw: pointer to the hardware structure
|
|
* @req: reset request
|
|
*
|
|
* This function triggers a reset as specified by the req parameter.
|
|
*
|
|
* Note:
|
|
* If anything other than a PF reset is triggered, PXE mode is restored.
|
|
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
|
|
* interface has been restored in the rebuild flow.
|
|
*/
|
|
enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
|
|
{
|
|
u32 val = 0;
|
|
|
|
switch (req) {
|
|
case ICE_RESET_PFR:
|
|
return ice_pf_reset(hw);
|
|
case ICE_RESET_CORER:
|
|
ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
|
|
val = GLGEN_RTRIG_CORER_M;
|
|
break;
|
|
case ICE_RESET_GLOBR:
|
|
ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
|
|
val = GLGEN_RTRIG_GLOBR_M;
|
|
break;
|
|
default:
|
|
return ICE_ERR_PARAM;
|
|
}
|
|
|
|
val |= rd32(hw, GLGEN_RTRIG);
|
|
wr32(hw, GLGEN_RTRIG, val);
|
|
ice_flush(hw);
|
|
|
|
/* wait for the FW to be ready */
|
|
return ice_check_reset(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_copy_rxq_ctx_to_hw
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_rxq_ctx: pointer to the rxq context
|
|
* @rxq_index: the index of the Rx queue
|
|
*
|
|
* Copies rxq context from dense structure to HW register space
|
|
*/
|
|
static enum ice_status
|
|
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (!ice_rxq_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
if (rxq_index > QRX_CTRL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Copy each dword separately to HW */
|
|
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
|
|
wr32(hw, QRX_CONTEXT(i, rxq_index),
|
|
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
|
|
|
|
ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
|
|
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Rx Queue Context */
|
|
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
|
|
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
|
|
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
|
|
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
|
|
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
|
|
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
|
|
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
|
|
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
|
|
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
|
|
ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_write_rxq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @rlan_ctx: pointer to the rxq context
|
|
* @rxq_index: the index of the Rx queue
|
|
*
|
|
* Converts rxq context from sparse to dense structure and then writes
|
|
* it to HW register space and enables the hardware to prefetch descriptors
|
|
* instead of only fetching them on demand
|
|
*/
|
|
enum ice_status
|
|
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
|
|
u32 rxq_index)
|
|
{
|
|
u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
|
|
|
|
if (!rlan_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
rlan_ctx->prefena = 1;
|
|
|
|
ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
|
|
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_rxq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @rxq_index: the index of the Rx queue to clear
|
|
*
|
|
* Clears rxq context in HW register space
|
|
*/
|
|
enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (rxq_index > QRX_CTRL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Clear each dword register separately */
|
|
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
|
|
wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Tx Queue Context */
|
|
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
|
|
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
|
|
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
|
|
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
|
|
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
|
|
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
|
|
ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
|
|
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
|
|
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
|
|
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
|
|
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
|
|
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
|
|
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
|
|
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
|
|
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
|
|
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
|
|
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
|
|
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_copy_tx_cmpltnq_ctx_to_hw
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
|
|
* @tx_cmpltnq_index: the index of the completion queue
|
|
*
|
|
* Copies Tx completion queue context from dense structure to HW register space
|
|
*/
|
|
static enum ice_status
|
|
ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
|
|
u32 tx_cmpltnq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (!ice_tx_cmpltnq_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Copy each dword separately to HW */
|
|
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
|
|
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
|
|
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
|
|
|
|
ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
|
|
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Tx Completion Queue Context */
|
|
static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base, 57, 0),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len, 18, 64),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation, 1, 96),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr, 22, 97),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num, 3, 128),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num, 10, 131),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type, 2, 141),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr, 1, 160),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid, 8, 161),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache, 512, 192),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_write_tx_cmpltnq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_cmpltnq_ctx: pointer to the completion queue context
|
|
* @tx_cmpltnq_index: the index of the completion queue
|
|
*
|
|
* Converts completion queue context from sparse to dense structure and then
|
|
* writes it to HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
|
|
struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
|
|
u32 tx_cmpltnq_index)
|
|
{
|
|
u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
|
|
|
|
ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
|
|
return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_tx_cmpltnq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_cmpltnq_index: the index of the completion queue to clear
|
|
*
|
|
* Clears Tx completion queue context in HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Clear each dword register separately */
|
|
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
|
|
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_copy_tx_drbell_q_ctx_to_hw
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
|
|
* @tx_drbell_q_index: the index of the doorbell queue
|
|
*
|
|
* Copies doorbell queue context from dense structure to HW register space
|
|
*/
|
|
static enum ice_status
|
|
ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
|
|
u32 tx_drbell_q_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (!ice_tx_drbell_q_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Copy each dword separately to HW */
|
|
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
|
|
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
|
|
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
|
|
|
|
ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
|
|
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Tx Doorbell Queue Context info */
|
|
static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, base, 57, 0),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len, 13, 64),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num, 3, 80),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num, 8, 84),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type, 2, 94),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid, 8, 96),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd, 1, 104),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr, 1, 108),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en, 1, 112),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head, 13, 128),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail, 13, 144),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_write_tx_drbell_q_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_drbell_q_ctx: pointer to the doorbell queue context
|
|
* @tx_drbell_q_index: the index of the doorbell queue
|
|
*
|
|
* Converts doorbell queue context from sparse to dense structure and then
|
|
* writes it to HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
|
|
struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
|
|
u32 tx_drbell_q_index)
|
|
{
|
|
u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
|
|
|
|
ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
|
|
ice_tx_drbell_q_ctx_info);
|
|
return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_tx_drbell_q_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_drbell_q_index: the index of the doorbell queue to clear
|
|
*
|
|
* Clears doorbell queue context in HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Clear each dword register separately */
|
|
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
|
|
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* FW Admin Queue command wrappers */
|
|
|
|
/**
|
|
* ice_should_retry_sq_send_cmd
|
|
* @opcode: AQ opcode
|
|
*
|
|
* Decide if we should retry the send command routine for the ATQ, depending
|
|
* on the opcode.
|
|
*/
|
|
static bool ice_should_retry_sq_send_cmd(u16 opcode)
|
|
{
|
|
switch (opcode) {
|
|
case ice_aqc_opc_dnl_get_status:
|
|
case ice_aqc_opc_dnl_run:
|
|
case ice_aqc_opc_dnl_call:
|
|
case ice_aqc_opc_dnl_read_sto:
|
|
case ice_aqc_opc_dnl_write_sto:
|
|
case ice_aqc_opc_dnl_set_breakpoints:
|
|
case ice_aqc_opc_dnl_read_log:
|
|
case ice_aqc_opc_get_link_topo:
|
|
case ice_aqc_opc_done_alt_write:
|
|
case ice_aqc_opc_lldp_stop:
|
|
case ice_aqc_opc_lldp_start:
|
|
case ice_aqc_opc_lldp_filter_ctrl:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
|
|
* @hw: pointer to the HW struct
|
|
* @cq: pointer to the specific Control queue
|
|
* @desc: prefilled descriptor describing the command
|
|
* @buf: buffer to use for indirect commands (or NULL for direct commands)
|
|
* @buf_size: size of buffer for indirect commands (or 0 for direct commands)
|
|
* @cd: pointer to command details structure
|
|
*
|
|
* Retry sending the FW Admin Queue command, multiple times, to the FW Admin
|
|
* Queue if the EBUSY AQ error is returned.
|
|
*/
|
|
static enum ice_status
|
|
ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
|
|
struct ice_aq_desc *desc, void *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc_cpy;
|
|
enum ice_status status;
|
|
bool is_cmd_for_retry;
|
|
u8 *buf_cpy = NULL;
|
|
u8 idx = 0;
|
|
u16 opcode;
|
|
|
|
opcode = LE16_TO_CPU(desc->opcode);
|
|
is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
|
|
ice_memset(&desc_cpy, 0, sizeof(desc_cpy), ICE_NONDMA_MEM);
|
|
|
|
if (is_cmd_for_retry) {
|
|
if (buf) {
|
|
buf_cpy = (u8 *)ice_malloc(hw, buf_size);
|
|
if (!buf_cpy)
|
|
return ICE_ERR_NO_MEMORY;
|
|
}
|
|
|
|
ice_memcpy(&desc_cpy, desc, sizeof(desc_cpy),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
}
|
|
|
|
do {
|
|
status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
|
|
|
|
if (!is_cmd_for_retry || status == ICE_SUCCESS ||
|
|
hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
|
|
break;
|
|
|
|
if (buf_cpy)
|
|
ice_memcpy(buf, buf_cpy, buf_size,
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
ice_memcpy(desc, &desc_cpy, sizeof(desc_cpy),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
|
|
|
|
} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
|
|
|
|
if (buf_cpy)
|
|
ice_free(hw, buf_cpy);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
|
|
* @hw: pointer to the HW struct
|
|
* @desc: descriptor describing the command
|
|
* @buf: buffer to use for indirect commands (NULL for direct commands)
|
|
* @buf_size: size of buffer for indirect commands (0 for direct commands)
|
|
* @cd: pointer to command details structure
|
|
*
|
|
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
|
|
u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_fw_ver
|
|
* @hw: pointer to the HW struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get the firmware version (0x0001) from the admin queue commands
|
|
*/
|
|
enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_ver *resp;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
resp = &desc.params.get_ver;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
|
|
if (!status) {
|
|
hw->fw_branch = resp->fw_branch;
|
|
hw->fw_maj_ver = resp->fw_major;
|
|
hw->fw_min_ver = resp->fw_minor;
|
|
hw->fw_patch = resp->fw_patch;
|
|
hw->fw_build = LE32_TO_CPU(resp->fw_build);
|
|
hw->api_branch = resp->api_branch;
|
|
hw->api_maj_ver = resp->api_major;
|
|
hw->api_min_ver = resp->api_minor;
|
|
hw->api_patch = resp->api_patch;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_send_driver_ver
|
|
* @hw: pointer to the HW struct
|
|
* @dv: driver's major, minor version
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Send the driver version (0x0002) to the firmware
|
|
*/
|
|
enum ice_status
|
|
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_driver_ver *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 len;
|
|
|
|
cmd = &desc.params.driver_ver;
|
|
|
|
if (!dv)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
cmd->major_ver = dv->major_ver;
|
|
cmd->minor_ver = dv->minor_ver;
|
|
cmd->build_ver = dv->build_ver;
|
|
cmd->subbuild_ver = dv->subbuild_ver;
|
|
|
|
len = 0;
|
|
while (len < sizeof(dv->driver_string) &&
|
|
IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
|
|
len++;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_q_shutdown
|
|
* @hw: pointer to the HW struct
|
|
* @unloading: is the driver unloading itself
|
|
*
|
|
* Tell the Firmware that we're shutting down the AdminQ and whether
|
|
* or not the driver is unloading as well (0x0003).
|
|
*/
|
|
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
|
|
{
|
|
struct ice_aqc_q_shutdown *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.q_shutdown;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
|
|
|
|
if (unloading)
|
|
cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_req_res
|
|
* @hw: pointer to the HW struct
|
|
* @res: resource ID
|
|
* @access: access type
|
|
* @sdp_number: resource number
|
|
* @timeout: the maximum time in ms that the driver may hold the resource
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Requests common resource using the admin queue commands (0x0008).
|
|
* When attempting to acquire the Global Config Lock, the driver can
|
|
* learn of three states:
|
|
* 1) ICE_SUCCESS - acquired lock, and can perform download package
|
|
* 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
|
|
* 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
|
|
* successfully downloaded the package; the driver does
|
|
* not have to download the package and can continue
|
|
* loading
|
|
*
|
|
* Note that if the caller is in an acquire lock, perform action, release lock
|
|
* phase of operation, it is possible that the FW may detect a timeout and issue
|
|
* a CORER. In this case, the driver will receive a CORER interrupt and will
|
|
* have to determine its cause. The calling thread that is handling this flow
|
|
* will likely get an error propagated back to it indicating the Download
|
|
* Package, Update Package or the Release Resource AQ commands timed out.
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
|
|
enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_req_res *cmd_resp;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd_resp = &desc.params.res_owner;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
|
|
|
|
cmd_resp->res_id = CPU_TO_LE16(res);
|
|
cmd_resp->access_type = CPU_TO_LE16(access);
|
|
cmd_resp->res_number = CPU_TO_LE32(sdp_number);
|
|
cmd_resp->timeout = CPU_TO_LE32(*timeout);
|
|
*timeout = 0;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
|
|
/* The completion specifies the maximum time in ms that the driver
|
|
* may hold the resource in the Timeout field.
|
|
*/
|
|
|
|
/* Global config lock response utilizes an additional status field.
|
|
*
|
|
* If the Global config lock resource is held by some other driver, the
|
|
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
|
|
* and the timeout field indicates the maximum time the current owner
|
|
* of the resource has to free it.
|
|
*/
|
|
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
|
|
if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
|
|
*timeout = LE32_TO_CPU(cmd_resp->timeout);
|
|
return ICE_SUCCESS;
|
|
} else if (LE16_TO_CPU(cmd_resp->status) ==
|
|
ICE_AQ_RES_GLBL_IN_PROG) {
|
|
*timeout = LE32_TO_CPU(cmd_resp->timeout);
|
|
return ICE_ERR_AQ_ERROR;
|
|
} else if (LE16_TO_CPU(cmd_resp->status) ==
|
|
ICE_AQ_RES_GLBL_DONE) {
|
|
return ICE_ERR_AQ_NO_WORK;
|
|
}
|
|
|
|
/* invalid FW response, force a timeout immediately */
|
|
*timeout = 0;
|
|
return ICE_ERR_AQ_ERROR;
|
|
}
|
|
|
|
/* If the resource is held by some other driver, the command completes
|
|
* with a busy return value and the timeout field indicates the maximum
|
|
* time the current owner of the resource has to free it.
|
|
*/
|
|
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
|
|
*timeout = LE32_TO_CPU(cmd_resp->timeout);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_release_res
|
|
* @hw: pointer to the HW struct
|
|
* @res: resource ID
|
|
* @sdp_number: resource number
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* release common resource using the admin queue commands (0x0009)
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_req_res *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd = &desc.params.res_owner;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
|
|
|
|
cmd->res_id = CPU_TO_LE16(res);
|
|
cmd->res_number = CPU_TO_LE32(sdp_number);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_acquire_res
|
|
* @hw: pointer to the HW structure
|
|
* @res: resource ID
|
|
* @access: access type (read or write)
|
|
* @timeout: timeout in milliseconds
|
|
*
|
|
* This function will attempt to acquire the ownership of a resource.
|
|
*/
|
|
enum ice_status
|
|
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
|
|
enum ice_aq_res_access_type access, u32 timeout)
|
|
{
|
|
#define ICE_RES_POLLING_DELAY_MS 10
|
|
u32 delay = ICE_RES_POLLING_DELAY_MS;
|
|
u32 time_left = timeout;
|
|
enum ice_status status;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
|
|
|
|
/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
|
|
* previously acquired the resource and performed any necessary updates;
|
|
* in this case the caller does not obtain the resource and has no
|
|
* further work to do.
|
|
*/
|
|
if (status == ICE_ERR_AQ_NO_WORK)
|
|
goto ice_acquire_res_exit;
|
|
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
|
|
|
|
/* If necessary, poll until the current lock owner timeouts */
|
|
timeout = time_left;
|
|
while (status && timeout && time_left) {
|
|
ice_msec_delay(delay, true);
|
|
timeout = (timeout > delay) ? timeout - delay : 0;
|
|
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
|
|
|
|
if (status == ICE_ERR_AQ_NO_WORK)
|
|
/* lock free, but no work to do */
|
|
break;
|
|
|
|
if (!status)
|
|
/* lock acquired */
|
|
break;
|
|
}
|
|
if (status && status != ICE_ERR_AQ_NO_WORK)
|
|
ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
|
|
|
|
ice_acquire_res_exit:
|
|
if (status == ICE_ERR_AQ_NO_WORK) {
|
|
if (access == ICE_RES_WRITE)
|
|
ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
|
|
else
|
|
ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_release_res
|
|
* @hw: pointer to the HW structure
|
|
* @res: resource ID
|
|
*
|
|
* This function will release a resource using the proper Admin Command.
|
|
*/
|
|
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
|
|
{
|
|
enum ice_status status;
|
|
u32 total_delay = 0;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
status = ice_aq_release_res(hw, res, 0, NULL);
|
|
|
|
/* there are some rare cases when trying to release the resource
|
|
* results in an admin queue timeout, so handle them correctly
|
|
*/
|
|
while ((status == ICE_ERR_AQ_TIMEOUT) &&
|
|
(total_delay < hw->adminq.sq_cmd_timeout)) {
|
|
ice_msec_delay(1, true);
|
|
status = ice_aq_release_res(hw, res, 0, NULL);
|
|
total_delay++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alloc_free_res - command to allocate/free resources
|
|
* @hw: pointer to the HW struct
|
|
* @num_entries: number of resource entries in buffer
|
|
* @buf: Indirect buffer to hold data parameters and response
|
|
* @buf_size: size of buffer for indirect commands
|
|
* @opc: pass in the command opcode
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Helper function to allocate/free resources using the admin queue commands
|
|
*/
|
|
enum ice_status
|
|
ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
|
|
struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
|
|
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_alloc_free_res_cmd *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd = &desc.params.sw_res_ctrl;
|
|
|
|
if (!buf)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, opc);
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->num_entries = CPU_TO_LE16(num_entries);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_hw_res - allocate resource
|
|
* @hw: pointer to the HW struct
|
|
* @type: type of resource
|
|
* @num: number of resources to allocate
|
|
* @btm: allocate from bottom
|
|
* @res: pointer to array that will receive the resources
|
|
*/
|
|
enum ice_status
|
|
ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
buf_len = ice_struct_size(buf, elem, num);
|
|
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
|
|
if (!buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Prepare buffer to allocate resource. */
|
|
buf->num_elems = CPU_TO_LE16(num);
|
|
buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
|
|
ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
|
|
if (btm)
|
|
buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
|
|
ice_aqc_opc_alloc_res, NULL);
|
|
if (status)
|
|
goto ice_alloc_res_exit;
|
|
|
|
ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
ice_alloc_res_exit:
|
|
ice_free(hw, buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_free_hw_res - free allocated HW resource
|
|
* @hw: pointer to the HW struct
|
|
* @type: type of resource to free
|
|
* @num: number of resources
|
|
* @res: pointer to array that contains the resources to free
|
|
*/
|
|
enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
buf_len = ice_struct_size(buf, elem, num);
|
|
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
|
|
if (!buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Prepare buffer to free resource. */
|
|
buf->num_elems = CPU_TO_LE16(num);
|
|
buf->res_type = CPU_TO_LE16(type);
|
|
ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
|
|
ice_aqc_opc_free_res, NULL);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
|
|
|
|
ice_free(hw, buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_num_per_func - determine number of resources per PF
|
|
* @hw: pointer to the HW structure
|
|
* @max: value to be evenly split between each PF
|
|
*
|
|
* Determine the number of valid functions by going through the bitmap returned
|
|
* from parsing capabilities and use this to calculate the number of resources
|
|
* per PF based on the max value passed in.
|
|
*/
|
|
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
|
|
{
|
|
u8 funcs;
|
|
|
|
#define ICE_CAPS_VALID_FUNCS_M 0xFF
|
|
funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
|
|
ICE_CAPS_VALID_FUNCS_M);
|
|
|
|
if (!funcs)
|
|
return 0;
|
|
|
|
return max / funcs;
|
|
}
|
|
|
|
/**
|
|
* ice_print_led_caps - print LED capabilities
|
|
* @hw: pointer to the ice_hw instance
|
|
* @caps: pointer to common caps instance
|
|
* @prefix: string to prefix when printing
|
|
* @dbg: set to indicate debug print
|
|
*/
|
|
static void
|
|
ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
|
|
char const *prefix, bool dbg)
|
|
{
|
|
u8 i;
|
|
|
|
if (dbg)
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
|
|
caps->led_pin_num);
|
|
else
|
|
ice_info(hw, "%s: led_pin_num = %d\n", prefix,
|
|
caps->led_pin_num);
|
|
|
|
for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
|
|
if (!caps->led[i])
|
|
continue;
|
|
|
|
if (dbg)
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
|
|
prefix, i, caps->led[i]);
|
|
else
|
|
ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
|
|
caps->led[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_print_sdp_caps - print SDP capabilities
|
|
* @hw: pointer to the ice_hw instance
|
|
* @caps: pointer to common caps instance
|
|
* @prefix: string to prefix when printing
|
|
* @dbg: set to indicate debug print
|
|
*/
|
|
static void
|
|
ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
|
|
char const *prefix, bool dbg)
|
|
{
|
|
u8 i;
|
|
|
|
if (dbg)
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
|
|
caps->sdp_pin_num);
|
|
else
|
|
ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
|
|
caps->sdp_pin_num);
|
|
|
|
for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
|
|
if (!caps->sdp[i])
|
|
continue;
|
|
|
|
if (dbg)
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
|
|
prefix, i, caps->sdp[i]);
|
|
else
|
|
ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
|
|
i, caps->sdp[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_parse_common_caps - parse common device/function capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @caps: pointer to common capabilities structure
|
|
* @elem: the capability element to parse
|
|
* @prefix: message prefix for tracing capabilities
|
|
*
|
|
* Given a capability element, extract relevant details into the common
|
|
* capability structure.
|
|
*
|
|
* Returns: true if the capability matches one of the common capability ids,
|
|
* false otherwise.
|
|
*/
|
|
static bool
|
|
ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
|
|
struct ice_aqc_list_caps_elem *elem, const char *prefix)
|
|
{
|
|
u32 logical_id = LE32_TO_CPU(elem->logical_id);
|
|
u32 phys_id = LE32_TO_CPU(elem->phys_id);
|
|
u32 number = LE32_TO_CPU(elem->number);
|
|
u16 cap = LE16_TO_CPU(elem->cap);
|
|
bool found = true;
|
|
|
|
switch (cap) {
|
|
case ICE_AQC_CAPS_SWITCHING_MODE:
|
|
caps->switching_mode = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
|
|
caps->switching_mode);
|
|
break;
|
|
case ICE_AQC_CAPS_MANAGEABILITY_MODE:
|
|
caps->mgmt_mode = number;
|
|
caps->mgmt_protocols_mctp = logical_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
|
|
caps->mgmt_mode);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
|
|
caps->mgmt_protocols_mctp);
|
|
break;
|
|
case ICE_AQC_CAPS_OS2BMC:
|
|
caps->os2bmc = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix, caps->os2bmc);
|
|
break;
|
|
case ICE_AQC_CAPS_VALID_FUNCTIONS:
|
|
caps->valid_functions = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
|
|
caps->valid_functions);
|
|
break;
|
|
case ICE_AQC_CAPS_SRIOV:
|
|
caps->sr_iov_1_1 = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
|
|
caps->sr_iov_1_1);
|
|
break;
|
|
case ICE_AQC_CAPS_802_1QBG:
|
|
caps->evb_802_1_qbg = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix, number);
|
|
break;
|
|
case ICE_AQC_CAPS_802_1BR:
|
|
caps->evb_802_1_qbh = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix, number);
|
|
break;
|
|
case ICE_AQC_CAPS_DCB:
|
|
caps->dcb = (number == 1);
|
|
caps->active_tc_bitmap = logical_id;
|
|
caps->maxtc = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
|
|
caps->active_tc_bitmap);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
|
|
break;
|
|
case ICE_AQC_CAPS_ISCSI:
|
|
caps->iscsi = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
|
|
break;
|
|
case ICE_AQC_CAPS_RSS:
|
|
caps->rss_table_size = number;
|
|
caps->rss_table_entry_width = logical_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
|
|
caps->rss_table_size);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
|
|
caps->rss_table_entry_width);
|
|
break;
|
|
case ICE_AQC_CAPS_RXQS:
|
|
caps->num_rxq = number;
|
|
caps->rxq_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
|
|
caps->num_rxq);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
|
|
caps->rxq_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_TXQS:
|
|
caps->num_txq = number;
|
|
caps->txq_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
|
|
caps->num_txq);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
|
|
caps->txq_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_MSIX:
|
|
caps->num_msix_vectors = number;
|
|
caps->msix_vector_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
|
|
caps->num_msix_vectors);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
|
|
caps->msix_vector_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_NVM_VER:
|
|
break;
|
|
case ICE_AQC_CAPS_NVM_MGMT:
|
|
caps->sec_rev_disabled =
|
|
(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
|
|
true : false;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
|
|
caps->sec_rev_disabled);
|
|
caps->update_disabled =
|
|
(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
|
|
true : false;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
|
|
caps->update_disabled);
|
|
caps->nvm_unified_update =
|
|
(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
|
|
true : false;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
|
|
caps->nvm_unified_update);
|
|
break;
|
|
case ICE_AQC_CAPS_CEM:
|
|
caps->mgmt_cem = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
|
|
caps->mgmt_cem);
|
|
break;
|
|
case ICE_AQC_CAPS_LED:
|
|
if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
|
|
caps->led[phys_id] = true;
|
|
caps->led_pin_num++;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix, phys_id);
|
|
}
|
|
break;
|
|
case ICE_AQC_CAPS_SDP:
|
|
if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
|
|
caps->sdp[phys_id] = true;
|
|
caps->sdp_pin_num++;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix, phys_id);
|
|
}
|
|
break;
|
|
case ICE_AQC_CAPS_WR_CSR_PROT:
|
|
caps->wr_csr_prot = number;
|
|
caps->wr_csr_prot |= (u64)logical_id << 32;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
|
|
(unsigned long long)caps->wr_csr_prot);
|
|
break;
|
|
case ICE_AQC_CAPS_WOL_PROXY:
|
|
caps->num_wol_proxy_fltr = number;
|
|
caps->wol_proxy_vsi_seid = logical_id;
|
|
caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
|
|
caps->acpi_prog_mthd = !!(phys_id &
|
|
ICE_ACPI_PROG_MTHD_M);
|
|
caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
|
|
caps->num_wol_proxy_fltr);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
|
|
caps->wol_proxy_vsi_seid);
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: apm_wol_support = %d\n",
|
|
prefix, caps->apm_wol_support);
|
|
break;
|
|
case ICE_AQC_CAPS_MAX_MTU:
|
|
caps->max_mtu = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
|
|
prefix, caps->max_mtu);
|
|
break;
|
|
case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
|
|
caps->pcie_reset_avoidance = (number > 0);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: pcie_reset_avoidance = %d\n", prefix,
|
|
caps->pcie_reset_avoidance);
|
|
break;
|
|
case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
|
|
caps->reset_restrict_support = (number == 1);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: reset_restrict_support = %d\n", prefix,
|
|
caps->reset_restrict_support);
|
|
break;
|
|
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
|
|
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
|
|
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
|
|
case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
|
|
{
|
|
u8 index = cap - ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0;
|
|
|
|
caps->ext_topo_dev_img_ver_high[index] = number;
|
|
caps->ext_topo_dev_img_ver_low[index] = logical_id;
|
|
caps->ext_topo_dev_img_part_num[index] =
|
|
(phys_id & ICE_EXT_TOPO_DEV_IMG_PART_NUM_M) >>
|
|
ICE_EXT_TOPO_DEV_IMG_PART_NUM_S;
|
|
caps->ext_topo_dev_img_load_en[index] =
|
|
(phys_id & ICE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
|
|
caps->ext_topo_dev_img_prog_en[index] =
|
|
(phys_id & ICE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: ext_topo_dev_img_ver_high[%d] = %d\n",
|
|
prefix, index,
|
|
caps->ext_topo_dev_img_ver_high[index]);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: ext_topo_dev_img_ver_low[%d] = %d\n",
|
|
prefix, index,
|
|
caps->ext_topo_dev_img_ver_low[index]);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: ext_topo_dev_img_part_num[%d] = %d\n",
|
|
prefix, index,
|
|
caps->ext_topo_dev_img_part_num[index]);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: ext_topo_dev_img_load_en[%d] = %d\n",
|
|
prefix, index,
|
|
caps->ext_topo_dev_img_load_en[index]);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: ext_topo_dev_img_prog_en[%d] = %d\n",
|
|
prefix, index,
|
|
caps->ext_topo_dev_img_prog_en[index]);
|
|
break;
|
|
}
|
|
default:
|
|
/* Not one of the recognized common capabilities */
|
|
found = false;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/**
|
|
* ice_recalc_port_limited_caps - Recalculate port limited capabilities
|
|
* @hw: pointer to the HW structure
|
|
* @caps: pointer to capabilities structure to fix
|
|
*
|
|
* Re-calculate the capabilities that are dependent on the number of physical
|
|
* ports; i.e. some features are not supported or function differently on
|
|
* devices with more than 4 ports.
|
|
*/
|
|
static void
|
|
ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
|
|
{
|
|
/* This assumes device capabilities are always scanned before function
|
|
* capabilities during the initialization flow.
|
|
*/
|
|
if (hw->dev_caps.num_funcs > 4) {
|
|
/* Max 4 TCs per port */
|
|
caps->maxtc = 4;
|
|
ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
|
|
caps->maxtc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
* @cap: pointer to the capability element to parse
|
|
*
|
|
* Extract function capabilities for ICE_AQC_CAPS_VF.
|
|
*/
|
|
static void
|
|
ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = LE32_TO_CPU(cap->number);
|
|
u32 logical_id = LE32_TO_CPU(cap->logical_id);
|
|
|
|
func_p->num_allocd_vfs = number;
|
|
func_p->vf_base_id = logical_id;
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
|
|
func_p->num_allocd_vfs);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
|
|
func_p->vf_base_id);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
* @cap: pointer to the capability element to parse
|
|
*
|
|
* Extract function capabilities for ICE_AQC_CAPS_VSI.
|
|
*/
|
|
static void
|
|
ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
|
|
LE32_TO_CPU(cap->number));
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
|
|
func_p->guar_num_vsi);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_func_caps - Parse function capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @func_p: pointer to function capabilities structure
|
|
* @buf: buffer containing the function capability records
|
|
* @cap_count: the number of capabilities
|
|
*
|
|
* Helper function to parse function (0x000A) capabilities list. For
|
|
* capabilities shared between device and function, this relies on
|
|
* ice_parse_common_caps.
|
|
*
|
|
* Loop through the list of provided capabilities and extract the relevant
|
|
* data into the function capabilities structured.
|
|
*/
|
|
static void
|
|
ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
|
|
void *buf, u32 cap_count)
|
|
{
|
|
struct ice_aqc_list_caps_elem *cap_resp;
|
|
u32 i;
|
|
|
|
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
|
|
|
|
ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
|
|
|
|
for (i = 0; i < cap_count; i++) {
|
|
u16 cap = LE16_TO_CPU(cap_resp[i].cap);
|
|
bool found;
|
|
|
|
found = ice_parse_common_caps(hw, &func_p->common_cap,
|
|
&cap_resp[i], "func caps");
|
|
|
|
switch (cap) {
|
|
case ICE_AQC_CAPS_VF:
|
|
ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_VSI:
|
|
ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
|
|
break;
|
|
default:
|
|
/* Don't list common capabilities as unknown */
|
|
if (!found)
|
|
ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
|
|
i, cap);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
|
|
ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
|
|
|
|
ice_recalc_port_limited_caps(hw, &func_p->common_cap);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = LE32_TO_CPU(cap->number);
|
|
|
|
dev_p->num_funcs = ice_hweight32(number);
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
|
|
dev_p->num_funcs);
|
|
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_VF for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = LE32_TO_CPU(cap->number);
|
|
|
|
dev_p->num_vfs_exposed = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
|
|
dev_p->num_vfs_exposed);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @cap: capability element to parse
|
|
*
|
|
* Parse ICE_AQC_CAPS_VSI for device capabilities.
|
|
*/
|
|
static void
|
|
ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
struct ice_aqc_list_caps_elem *cap)
|
|
{
|
|
u32 number = LE32_TO_CPU(cap->number);
|
|
|
|
dev_p->num_vsi_allocd_to_host = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
|
|
dev_p->num_vsi_allocd_to_host);
|
|
}
|
|
|
|
/**
|
|
* ice_parse_dev_caps - Parse device capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @dev_p: pointer to device capabilities structure
|
|
* @buf: buffer containing the device capability records
|
|
* @cap_count: the number of capabilities
|
|
*
|
|
* Helper device to parse device (0x000B) capabilities list. For
|
|
* capabilities shared between device and function, this relies on
|
|
* ice_parse_common_caps.
|
|
*
|
|
* Loop through the list of provided capabilities and extract the relevant
|
|
* data into the device capabilities structured.
|
|
*/
|
|
static void
|
|
ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
|
|
void *buf, u32 cap_count)
|
|
{
|
|
struct ice_aqc_list_caps_elem *cap_resp;
|
|
u32 i;
|
|
|
|
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
|
|
|
|
ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
|
|
|
|
for (i = 0; i < cap_count; i++) {
|
|
u16 cap = LE16_TO_CPU(cap_resp[i].cap);
|
|
bool found;
|
|
|
|
found = ice_parse_common_caps(hw, &dev_p->common_cap,
|
|
&cap_resp[i], "dev caps");
|
|
|
|
switch (cap) {
|
|
case ICE_AQC_CAPS_VALID_FUNCTIONS:
|
|
ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_VF:
|
|
ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
case ICE_AQC_CAPS_VSI:
|
|
ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
|
|
break;
|
|
default:
|
|
/* Don't list common capabilities as unknown */
|
|
if (!found)
|
|
ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
|
|
i, cap);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
|
|
ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
|
|
|
|
ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_list_caps - query function/device capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @buf: a buffer to hold the capabilities
|
|
* @buf_size: size of the buffer
|
|
* @cap_count: if not NULL, set to the number of capabilities reported
|
|
* @opc: capabilities type to discover, device or function
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get the function (0x000A) or device (0x000B) capabilities description from
|
|
* firmware and store it in the buffer.
|
|
*
|
|
* If the cap_count pointer is not NULL, then it is set to the number of
|
|
* capabilities firmware will report. Note that if the buffer size is too
|
|
* small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
|
|
* cap_count will still be updated in this case. It is recommended that the
|
|
* buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
|
|
* firmware could return) to avoid this.
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
|
|
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_list_caps *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.get_cap;
|
|
|
|
if (opc != ice_aqc_opc_list_func_caps &&
|
|
opc != ice_aqc_opc_list_dev_caps)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, opc);
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
|
|
if (cap_count)
|
|
*cap_count = LE32_TO_CPU(cmd->count);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_discover_dev_caps - Read and extract device capabilities
|
|
* @hw: pointer to the hardware structure
|
|
* @dev_caps: pointer to device capabilities structure
|
|
*
|
|
* Read the device capabilities and extract them into the dev_caps structure
|
|
* for later use.
|
|
*/
|
|
static enum ice_status
|
|
ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
|
|
{
|
|
enum ice_status status;
|
|
u32 cap_count = 0;
|
|
void *cbuf;
|
|
|
|
cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
|
|
if (!cbuf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Although the driver doesn't know the number of capabilities the
|
|
* device will return, we can simply send a 4KB buffer, the maximum
|
|
* possible size that firmware can return.
|
|
*/
|
|
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
|
|
|
|
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
|
|
ice_aqc_opc_list_dev_caps, NULL);
|
|
if (!status)
|
|
ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
|
|
ice_free(hw, cbuf);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_discover_func_caps - Read and extract function capabilities
|
|
* @hw: pointer to the hardware structure
|
|
* @func_caps: pointer to function capabilities structure
|
|
*
|
|
* Read the function capabilities and extract them into the func_caps structure
|
|
* for later use.
|
|
*/
|
|
static enum ice_status
|
|
ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
|
|
{
|
|
enum ice_status status;
|
|
u32 cap_count = 0;
|
|
void *cbuf;
|
|
|
|
cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
|
|
if (!cbuf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Although the driver doesn't know the number of capabilities the
|
|
* device will return, we can simply send a 4KB buffer, the maximum
|
|
* possible size that firmware can return.
|
|
*/
|
|
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
|
|
|
|
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
|
|
ice_aqc_opc_list_func_caps, NULL);
|
|
if (!status)
|
|
ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
|
|
ice_free(hw, cbuf);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_set_safe_mode_caps(struct ice_hw *hw)
|
|
{
|
|
struct ice_hw_func_caps *func_caps = &hw->func_caps;
|
|
struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
|
|
struct ice_hw_common_caps cached_caps;
|
|
u32 num_funcs;
|
|
|
|
/* cache some func_caps values that should be restored after memset */
|
|
cached_caps = func_caps->common_cap;
|
|
|
|
/* unset func capabilities */
|
|
memset(func_caps, 0, sizeof(*func_caps));
|
|
|
|
#define ICE_RESTORE_FUNC_CAP(name) \
|
|
func_caps->common_cap.name = cached_caps.name
|
|
|
|
/* restore cached values */
|
|
ICE_RESTORE_FUNC_CAP(valid_functions);
|
|
ICE_RESTORE_FUNC_CAP(txq_first_id);
|
|
ICE_RESTORE_FUNC_CAP(rxq_first_id);
|
|
ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
|
|
ICE_RESTORE_FUNC_CAP(max_mtu);
|
|
ICE_RESTORE_FUNC_CAP(nvm_unified_update);
|
|
|
|
/* one Tx and one Rx queue in safe mode */
|
|
func_caps->common_cap.num_rxq = 1;
|
|
func_caps->common_cap.num_txq = 1;
|
|
|
|
/* two MSIX vectors, one for traffic and one for misc causes */
|
|
func_caps->common_cap.num_msix_vectors = 2;
|
|
func_caps->guar_num_vsi = 1;
|
|
|
|
/* cache some dev_caps values that should be restored after memset */
|
|
cached_caps = dev_caps->common_cap;
|
|
num_funcs = dev_caps->num_funcs;
|
|
|
|
/* unset dev capabilities */
|
|
memset(dev_caps, 0, sizeof(*dev_caps));
|
|
|
|
#define ICE_RESTORE_DEV_CAP(name) \
|
|
dev_caps->common_cap.name = cached_caps.name
|
|
|
|
/* restore cached values */
|
|
ICE_RESTORE_DEV_CAP(valid_functions);
|
|
ICE_RESTORE_DEV_CAP(txq_first_id);
|
|
ICE_RESTORE_DEV_CAP(rxq_first_id);
|
|
ICE_RESTORE_DEV_CAP(msix_vector_first_id);
|
|
ICE_RESTORE_DEV_CAP(max_mtu);
|
|
ICE_RESTORE_DEV_CAP(nvm_unified_update);
|
|
dev_caps->num_funcs = num_funcs;
|
|
|
|
/* one Tx and one Rx queue per function in safe mode */
|
|
dev_caps->common_cap.num_rxq = num_funcs;
|
|
dev_caps->common_cap.num_txq = num_funcs;
|
|
|
|
/* two MSIX vectors per function */
|
|
dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
|
|
}
|
|
|
|
/**
|
|
* ice_get_caps - get info about the HW
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
enum ice_status ice_get_caps(struct ice_hw *hw)
|
|
{
|
|
enum ice_status status;
|
|
|
|
status = ice_discover_dev_caps(hw, &hw->dev_caps);
|
|
if (status)
|
|
return status;
|
|
|
|
return ice_discover_func_caps(hw, &hw->func_caps);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_manage_mac_write - manage MAC address write command
|
|
* @hw: pointer to the HW struct
|
|
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
|
|
* @flags: flags to control write behavior
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function is used to write MAC address to the NVM (0x0108).
|
|
*/
|
|
enum ice_status
|
|
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_manage_mac_write *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.mac_write;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
|
|
|
|
cmd->flags = flags;
|
|
ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_clear_pxe_mode
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Tell the firmware that the driver is taking over from PXE (0x0110).
|
|
*/
|
|
static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
|
|
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_pxe_mode - clear pxe operations mode
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Make sure all PXE mode settings are cleared, including things
|
|
* like descriptor fetch/write-back mode.
|
|
*/
|
|
void ice_clear_pxe_mode(struct ice_hw *hw)
|
|
{
|
|
if (ice_check_sq_alive(hw, &hw->adminq))
|
|
ice_aq_clear_pxe_mode(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_port_params - set physical port parameters.
|
|
* @pi: pointer to the port info struct
|
|
* @bad_frame_vsi: defines the VSI to which bad frames are forwarded
|
|
* @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
|
|
* @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
|
|
* @double_vlan: if set double VLAN is enabled
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set Physical port parameters (0x0203)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
|
|
bool save_bad_pac, bool pad_short_pac, bool double_vlan,
|
|
struct ice_sq_cd *cd)
|
|
|
|
{
|
|
struct ice_aqc_set_port_params *cmd;
|
|
struct ice_hw *hw = pi->hw;
|
|
struct ice_aq_desc desc;
|
|
u16 cmd_flags = 0;
|
|
|
|
cmd = &desc.params.set_port_params;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
|
|
cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
|
|
if (save_bad_pac)
|
|
cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
|
|
if (pad_short_pac)
|
|
cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
|
|
if (double_vlan)
|
|
cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
|
|
cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_is_100m_speed_supported
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* returns true if 100M speeds are supported by the device,
|
|
* false otherwise.
|
|
*/
|
|
bool ice_is_100m_speed_supported(struct ice_hw *hw)
|
|
{
|
|
switch (hw->device_id) {
|
|
case ICE_DEV_ID_E822C_10G_BASE_T:
|
|
case ICE_DEV_ID_E822C_SGMII:
|
|
case ICE_DEV_ID_E822L_10G_BASE_T:
|
|
case ICE_DEV_ID_E822L_SGMII:
|
|
case ICE_DEV_ID_E823L_10G_BASE_T:
|
|
case ICE_DEV_ID_E823L_1GBE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_speed_based_on_phy_type - returns link speed
|
|
* @phy_type_low: lower part of phy_type
|
|
* @phy_type_high: higher part of phy_type
|
|
*
|
|
* This helper function will convert an entry in PHY type structure
|
|
* [phy_type_low, phy_type_high] to its corresponding link speed.
|
|
* Note: In the structure of [phy_type_low, phy_type_high], there should
|
|
* be one bit set, as this function will convert one PHY type to its
|
|
* speed.
|
|
* If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
|
|
* If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
|
|
*/
|
|
static u16
|
|
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
|
|
{
|
|
u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
|
|
switch (phy_type_low) {
|
|
case ICE_PHY_TYPE_LOW_100BASE_TX:
|
|
case ICE_PHY_TYPE_LOW_100M_SGMII:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_1000BASE_T:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_SX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_LX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_1G_SGMII:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_2500BASE_T:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_X:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_KX:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_5GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_KR:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_10GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_25GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CP:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_FR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_DR:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
|
|
break;
|
|
default:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
switch (phy_type_high) {
|
|
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2:
|
|
speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
|
|
break;
|
|
default:
|
|
speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return speed_phy_type_low;
|
|
else
|
|
return speed_phy_type_high;
|
|
}
|
|
|
|
/**
|
|
* ice_update_phy_type
|
|
* @phy_type_low: pointer to the lower part of phy_type
|
|
* @phy_type_high: pointer to the higher part of phy_type
|
|
* @link_speeds_bitmap: targeted link speeds bitmap
|
|
*
|
|
* Note: For the link_speeds_bitmap structure, you can check it at
|
|
* [ice_aqc_get_link_status->link_speed]. Caller can pass in
|
|
* link_speeds_bitmap include multiple speeds.
|
|
*
|
|
* Each entry in this [phy_type_low, phy_type_high] structure will
|
|
* present a certain link speed. This helper function will turn on bits
|
|
* in [phy_type_low, phy_type_high] structure based on the value of
|
|
* link_speeds_bitmap input parameter.
|
|
*/
|
|
void
|
|
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
|
|
u16 link_speeds_bitmap)
|
|
{
|
|
u64 pt_high;
|
|
u64 pt_low;
|
|
int index;
|
|
u16 speed;
|
|
|
|
/* We first check with low part of phy_type */
|
|
for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
|
|
pt_low = BIT_ULL(index);
|
|
speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
|
|
|
|
if (link_speeds_bitmap & speed)
|
|
*phy_type_low |= BIT_ULL(index);
|
|
}
|
|
|
|
/* We then check with high part of phy_type */
|
|
for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
|
|
pt_high = BIT_ULL(index);
|
|
speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
|
|
|
|
if (link_speeds_bitmap & speed)
|
|
*phy_type_high |= BIT_ULL(index);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_phy_cfg
|
|
* @hw: pointer to the HW struct
|
|
* @pi: port info structure of the interested logical port
|
|
* @cfg: structure with PHY configuration data to be set
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set the various PHY configuration parameters supported on the Port.
|
|
* One or more of the Set PHY config parameters may be ignored in an MFP
|
|
* mode as the PF may not have the privilege to set some of the PHY Config
|
|
* parameters. This status will be indicated by the command response (0x0601).
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
|
|
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
if (!cfg)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Ensure that only valid bits of cfg->caps can be turned on. */
|
|
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
|
|
ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
|
|
cfg->caps);
|
|
|
|
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
|
|
}
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
|
|
desc.params.set_phy.lport_num = pi->lport;
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
|
|
(unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
|
|
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
|
|
(unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
|
|
ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
|
|
ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
|
|
cfg->low_power_ctrl_an);
|
|
ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
|
|
ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
|
|
ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
|
|
cfg->link_fec_opt);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
|
|
|
|
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
|
|
status = ICE_SUCCESS;
|
|
|
|
if (!status)
|
|
pi->phy.curr_user_phy_cfg = *cfg;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_link_info - update status of the HW network link
|
|
* @pi: port info structure of the interested logical port
|
|
*/
|
|
enum ice_status ice_update_link_info(struct ice_port_info *pi)
|
|
{
|
|
struct ice_link_status *li;
|
|
enum ice_status status;
|
|
|
|
if (!pi)
|
|
return ICE_ERR_PARAM;
|
|
|
|
li = &pi->phy.link_info;
|
|
|
|
status = ice_aq_get_link_info(pi, true, NULL, NULL);
|
|
if (status)
|
|
return status;
|
|
|
|
if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
struct ice_hw *hw;
|
|
|
|
hw = pi->hw;
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(hw, sizeof(*pcaps));
|
|
if (!pcaps)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
|
|
pcaps, NULL);
|
|
|
|
if (status == ICE_SUCCESS)
|
|
ice_memcpy(li->module_type, &pcaps->module_type,
|
|
sizeof(li->module_type),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
ice_free(hw, pcaps);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cache_phy_user_req
|
|
* @pi: port information structure
|
|
* @cache_data: PHY logging data
|
|
* @cache_mode: PHY logging mode
|
|
*
|
|
* Log the user request on (FC, FEC, SPEED) for later user.
|
|
*/
|
|
static void
|
|
ice_cache_phy_user_req(struct ice_port_info *pi,
|
|
struct ice_phy_cache_mode_data cache_data,
|
|
enum ice_phy_cache_mode cache_mode)
|
|
{
|
|
if (!pi)
|
|
return;
|
|
|
|
switch (cache_mode) {
|
|
case ICE_FC_MODE:
|
|
pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
|
|
break;
|
|
case ICE_SPEED_MODE:
|
|
pi->phy.curr_user_speed_req =
|
|
cache_data.data.curr_user_speed_req;
|
|
break;
|
|
case ICE_FEC_MODE:
|
|
pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_caps_to_fc_mode
|
|
* @caps: PHY capabilities
|
|
*
|
|
* Convert PHY FC capabilities to ice FC mode
|
|
*/
|
|
enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
|
|
{
|
|
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
|
|
caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
|
|
return ICE_FC_FULL;
|
|
|
|
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
|
|
return ICE_FC_TX_PAUSE;
|
|
|
|
if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
|
|
return ICE_FC_RX_PAUSE;
|
|
|
|
return ICE_FC_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_caps_to_fec_mode
|
|
* @caps: PHY capabilities
|
|
* @fec_options: Link FEC options
|
|
*
|
|
* Convert PHY FEC capabilities to ice FEC mode
|
|
*/
|
|
enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
|
|
{
|
|
if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
|
|
return ICE_FEC_AUTO;
|
|
|
|
if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
|
|
ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
|
|
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
|
|
ICE_AQC_PHY_FEC_25G_KR_REQ))
|
|
return ICE_FEC_BASER;
|
|
|
|
if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_544_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
|
|
return ICE_FEC_RS;
|
|
|
|
return ICE_FEC_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_phy_fc - Configure PHY FC data based on FC mode
|
|
* @pi: port information structure
|
|
* @cfg: PHY configuration data to set FC mode
|
|
* @req_mode: FC mode to configure
|
|
*/
|
|
static enum ice_status
|
|
ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
|
|
enum ice_fc_mode req_mode)
|
|
{
|
|
struct ice_phy_cache_mode_data cache_data;
|
|
u8 pause_mask = 0x0;
|
|
|
|
if (!pi || !cfg)
|
|
return ICE_ERR_BAD_PTR;
|
|
switch (req_mode) {
|
|
case ICE_FC_AUTO:
|
|
{
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
enum ice_status status;
|
|
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(pi->hw, sizeof(*pcaps));
|
|
if (!pcaps)
|
|
return ICE_ERR_NO_MEMORY;
|
|
/* Query the value of FC that both the NIC and attached media
|
|
* can do.
|
|
*/
|
|
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
|
|
pcaps, NULL);
|
|
if (status) {
|
|
ice_free(pi->hw, pcaps);
|
|
return status;
|
|
}
|
|
|
|
pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
|
|
pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
|
|
|
|
ice_free(pi->hw, pcaps);
|
|
break;
|
|
}
|
|
case ICE_FC_FULL:
|
|
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
|
|
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
|
|
break;
|
|
case ICE_FC_RX_PAUSE:
|
|
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
|
|
break;
|
|
case ICE_FC_TX_PAUSE:
|
|
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* clear the old pause settings */
|
|
cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
|
|
ICE_AQC_PHY_EN_RX_LINK_PAUSE);
|
|
|
|
/* set the new capabilities */
|
|
cfg->caps |= pause_mask;
|
|
|
|
/* Cache user FC request */
|
|
cache_data.data.curr_user_fc_req = req_mode;
|
|
ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_set_fc
|
|
* @pi: port information structure
|
|
* @aq_failures: pointer to status code, specific to ice_set_fc routine
|
|
* @ena_auto_link_update: enable automatic link update
|
|
*
|
|
* Set the requested flow control mode.
|
|
*/
|
|
enum ice_status
|
|
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
|
|
{
|
|
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
enum ice_status status;
|
|
struct ice_hw *hw;
|
|
|
|
if (!pi || !aq_failures)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
*aq_failures = 0;
|
|
hw = pi->hw;
|
|
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(hw, sizeof(*pcaps));
|
|
if (!pcaps)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Get the current PHY config */
|
|
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
|
|
pcaps, NULL);
|
|
|
|
if (status) {
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
|
|
goto out;
|
|
}
|
|
|
|
ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
|
|
|
|
/* Configure the set PHY data */
|
|
status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
|
|
if (status) {
|
|
if (status != ICE_ERR_BAD_PTR)
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* If the capabilities have changed, then set the new config */
|
|
if (cfg.caps != pcaps->caps) {
|
|
int retry_count, retry_max = 10;
|
|
|
|
/* Auto restart link so settings take effect */
|
|
if (ena_auto_link_update)
|
|
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
|
|
|
|
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
|
|
if (status) {
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
|
|
goto out;
|
|
}
|
|
|
|
/* Update the link info
|
|
* It sometimes takes a really long time for link to
|
|
* come back from the atomic reset. Thus, we wait a
|
|
* little bit.
|
|
*/
|
|
for (retry_count = 0; retry_count < retry_max; retry_count++) {
|
|
status = ice_update_link_info(pi);
|
|
|
|
if (status == ICE_SUCCESS)
|
|
break;
|
|
|
|
ice_msec_delay(100, true);
|
|
}
|
|
|
|
if (status)
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
|
|
}
|
|
|
|
out:
|
|
ice_free(hw, pcaps);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_caps_equals_cfg
|
|
* @phy_caps: PHY capabilities
|
|
* @phy_cfg: PHY configuration
|
|
*
|
|
* Helper function to determine if PHY capabilities matches PHY
|
|
* configuration
|
|
*/
|
|
bool
|
|
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
|
|
struct ice_aqc_set_phy_cfg_data *phy_cfg)
|
|
{
|
|
u8 caps_mask, cfg_mask;
|
|
|
|
if (!phy_caps || !phy_cfg)
|
|
return false;
|
|
|
|
/* These bits are not common between capabilities and configuration.
|
|
* Do not use them to determine equality.
|
|
*/
|
|
caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
|
|
ICE_AQC_PHY_EN_MOD_QUAL);
|
|
cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
|
|
|
|
if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
|
|
phy_caps->phy_type_high != phy_cfg->phy_type_high ||
|
|
((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
|
|
phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
|
|
phy_caps->eee_cap != phy_cfg->eee_cap ||
|
|
phy_caps->eeer_value != phy_cfg->eeer_value ||
|
|
phy_caps->link_fec_options != phy_cfg->link_fec_opt)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
|
|
* @pi: port information structure
|
|
* @caps: PHY ability structure to copy data from
|
|
* @cfg: PHY configuration structure to copy data to
|
|
*
|
|
* Helper function to copy AQC PHY get ability data to PHY set configuration
|
|
* data structure
|
|
*/
|
|
void
|
|
ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
|
|
struct ice_aqc_get_phy_caps_data *caps,
|
|
struct ice_aqc_set_phy_cfg_data *cfg)
|
|
{
|
|
if (!pi || !caps || !cfg)
|
|
return;
|
|
|
|
ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
|
|
cfg->phy_type_low = caps->phy_type_low;
|
|
cfg->phy_type_high = caps->phy_type_high;
|
|
cfg->caps = caps->caps;
|
|
cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
|
|
cfg->eee_cap = caps->eee_cap;
|
|
cfg->eeer_value = caps->eeer_value;
|
|
cfg->link_fec_opt = caps->link_fec_options;
|
|
cfg->module_compliance_enforcement =
|
|
caps->module_compliance_enforcement;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
|
|
* @pi: port information structure
|
|
* @cfg: PHY configuration data to set FEC mode
|
|
* @fec: FEC mode to configure
|
|
*/
|
|
enum ice_status
|
|
ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
|
|
enum ice_fec_mode fec)
|
|
{
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
struct ice_hw *hw;
|
|
|
|
if (!pi || !cfg)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
hw = pi->hw;
|
|
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(hw, sizeof(*pcaps));
|
|
if (!pcaps)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
status = ice_aq_get_phy_caps(pi, false,
|
|
(ice_fw_supports_report_dflt_cfg(hw) ?
|
|
ICE_AQC_REPORT_DFLT_CFG :
|
|
ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
|
|
|
|
if (status)
|
|
goto out;
|
|
|
|
cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
|
|
cfg->link_fec_opt = pcaps->link_fec_options;
|
|
|
|
switch (fec) {
|
|
case ICE_FEC_BASER:
|
|
/* Clear RS bits, and AND BASE-R ability
|
|
* bits and OR request bits.
|
|
*/
|
|
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
|
|
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
|
|
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
|
|
ICE_AQC_PHY_FEC_25G_KR_REQ;
|
|
break;
|
|
case ICE_FEC_RS:
|
|
/* Clear BASE-R bits, and AND RS ability
|
|
* bits and OR request bits.
|
|
*/
|
|
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
|
|
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_544_REQ;
|
|
break;
|
|
case ICE_FEC_NONE:
|
|
/* Clear all FEC option bits. */
|
|
cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
|
|
break;
|
|
case ICE_FEC_AUTO:
|
|
/* AND auto FEC bit, and all caps bits. */
|
|
cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
|
|
cfg->link_fec_opt |= pcaps->link_fec_options;
|
|
break;
|
|
default:
|
|
status = ICE_ERR_PARAM;
|
|
break;
|
|
}
|
|
|
|
if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
|
|
!ice_fw_supports_report_dflt_cfg(pi->hw)) {
|
|
struct ice_link_default_override_tlv tlv;
|
|
|
|
if (ice_get_link_default_override(&tlv, pi))
|
|
goto out;
|
|
|
|
if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
|
|
(tlv.options & ICE_LINK_OVERRIDE_EN))
|
|
cfg->link_fec_opt = tlv.fec_options;
|
|
}
|
|
|
|
out:
|
|
ice_free(hw, pcaps);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_status - get status of the HW network link
|
|
* @pi: port information structure
|
|
* @link_up: pointer to bool (true/false = linkup/linkdown)
|
|
*
|
|
* Variable link_up is true if link is up, false if link is down.
|
|
* The variable link_up is invalid if status is non zero. As a
|
|
* result of this call, link status reporting becomes enabled
|
|
*/
|
|
enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
|
|
{
|
|
struct ice_phy_info *phy_info;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
if (!pi || !link_up)
|
|
return ICE_ERR_PARAM;
|
|
|
|
phy_info = &pi->phy;
|
|
|
|
if (phy_info->get_link_info) {
|
|
status = ice_update_link_info(pi);
|
|
|
|
if (status)
|
|
ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
|
|
status);
|
|
}
|
|
|
|
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_link_restart_an
|
|
* @pi: pointer to the port information structure
|
|
* @ena_link: if true: enable link, if false: disable link
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Sets up the link and restarts the Auto-Negotiation over the link.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_restart_an *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.restart_an;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
|
|
|
|
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
|
|
cmd->lport_num = pi->lport;
|
|
if (ena_link)
|
|
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
|
|
else
|
|
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
|
|
|
|
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_event_mask
|
|
* @hw: pointer to the HW struct
|
|
* @port_num: port number of the physical function
|
|
* @mask: event mask to be set
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set event mask (0x0613)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_event_mask *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_event_mask;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
|
|
|
|
cmd->lport_num = port_num;
|
|
|
|
cmd->event_mask = CPU_TO_LE16(mask);
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_mac_loopback
|
|
* @hw: pointer to the HW struct
|
|
* @ena_lpbk: Enable or Disable loopback
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Enable/disable loopback on a given port
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_mac_lb *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_mac_lb;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
|
|
if (ena_lpbk)
|
|
cmd->lb_mode = ICE_AQ_MAC_LB_EN;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_port_id_led
|
|
* @pi: pointer to the port information
|
|
* @is_orig_mode: is this LED set to original mode (by the net-list)
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set LED value for the given port (0x06e9)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_port_id_led *cmd;
|
|
struct ice_hw *hw = pi->hw;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_port_id_led;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
|
|
|
|
if (is_orig_mode)
|
|
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
|
|
else
|
|
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_sff_eeprom
|
|
* @hw: pointer to the HW struct
|
|
* @lport: bits [7:0] = logical port, bit [8] = logical port valid
|
|
* @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
|
|
* @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
|
|
* @page: QSFP page
|
|
* @set_page: set or ignore the page
|
|
* @data: pointer to data buffer to be read/written to the I2C device.
|
|
* @length: 1-16 for read, 1 for write.
|
|
* @write: 0 read, 1 for write.
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Read/Write SFF EEPROM (0x06EE)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
|
|
u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
|
|
bool write, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_sff_eeprom *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
if (!data || (mem_addr & 0xff00))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
|
|
cmd = &desc.params.read_write_sff_param;
|
|
desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
cmd->lport_num = (u8)(lport & 0xff);
|
|
cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
|
|
cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
|
|
ICE_AQC_SFF_I2CBUS_7BIT_M) |
|
|
((set_page <<
|
|
ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
|
|
ICE_AQC_SFF_SET_EEPROM_PAGE_M));
|
|
cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
|
|
cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
|
|
if (write)
|
|
cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_prog_topo_dev_nvm
|
|
* @hw: pointer to the hardware structure
|
|
* @topo_params: pointer to structure storing topology parameters for a device
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Program Topology Device NVM (0x06F2)
|
|
*
|
|
*/
|
|
enum ice_status
|
|
ice_aq_prog_topo_dev_nvm(struct ice_hw *hw,
|
|
struct ice_aqc_link_topo_params *topo_params,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_prog_topo_dev_nvm *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.prog_topo_dev_nvm;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_prog_topo_dev_nvm);
|
|
|
|
ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_read_topo_dev_nvm
|
|
* @hw: pointer to the hardware structure
|
|
* @topo_params: pointer to structure storing topology parameters for a device
|
|
* @start_address: byte offset in the topology device NVM
|
|
* @data: pointer to data buffer
|
|
* @data_size: number of bytes to be read from the topology device NVM
|
|
* @cd: pointer to command details structure or NULL
|
|
* Read Topology Device NVM (0x06F3)
|
|
*
|
|
*/
|
|
enum ice_status
|
|
ice_aq_read_topo_dev_nvm(struct ice_hw *hw,
|
|
struct ice_aqc_link_topo_params *topo_params,
|
|
u32 start_address, u8 *data, u8 data_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_read_topo_dev_nvm *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
if (!data || data_size == 0 ||
|
|
data_size > ICE_AQC_READ_TOPO_DEV_NVM_DATA_READ_SIZE)
|
|
return ICE_ERR_PARAM;
|
|
|
|
cmd = &desc.params.read_topo_dev_nvm;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_topo_dev_nvm);
|
|
|
|
desc.datalen = data_size;
|
|
ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
cmd->start_address = CPU_TO_LE32(start_address);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (status)
|
|
return status;
|
|
|
|
ice_memcpy(data, cmd->data_read, data_size, ICE_NONDMA_TO_NONDMA);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* __ice_aq_get_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @params: RSS LUT parameters
|
|
* @set: set true to set the table, false to get the table
|
|
*
|
|
* Internal function to get (0x0B05) or set (0x0B03) RSS look up table
|
|
*/
|
|
static enum ice_status
|
|
__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
|
|
{
|
|
u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
|
|
struct ice_aqc_get_set_rss_lut *cmd_resp;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u8 *lut;
|
|
|
|
if (!params)
|
|
return ICE_ERR_PARAM;
|
|
|
|
vsi_handle = params->vsi_handle;
|
|
lut = params->lut;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
|
|
return ICE_ERR_PARAM;
|
|
|
|
lut_size = params->lut_size;
|
|
lut_type = params->lut_type;
|
|
glob_lut_idx = params->global_lut_id;
|
|
vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
cmd_resp = &desc.params.get_set_rss_lut;
|
|
|
|
if (set) {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
} else {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
|
|
}
|
|
|
|
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
|
|
ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
|
|
ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
|
|
ICE_AQC_GSET_RSS_LUT_VSI_VALID);
|
|
|
|
switch (lut_type) {
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
|
|
flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
|
|
break;
|
|
default:
|
|
status = ICE_ERR_PARAM;
|
|
goto ice_aq_get_set_rss_lut_exit;
|
|
}
|
|
|
|
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
|
|
flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
|
|
ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
|
|
|
|
if (!set)
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
|
|
if (!set)
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
} else {
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
}
|
|
|
|
/* LUT size is only valid for Global and PF table types */
|
|
switch (lut_size) {
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
|
|
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
}
|
|
/* fall-through */
|
|
default:
|
|
status = ICE_ERR_PARAM;
|
|
goto ice_aq_get_set_rss_lut_exit;
|
|
}
|
|
|
|
ice_aq_get_set_rss_lut_send:
|
|
cmd_resp->flags = CPU_TO_LE16(flags);
|
|
status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
|
|
|
|
ice_aq_get_set_rss_lut_exit:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @get_params: RSS LUT parameters used to specify which RSS LUT to get
|
|
*
|
|
* get the RSS lookup table, PF or VSI type
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
|
|
{
|
|
return __ice_aq_get_set_rss_lut(hw, get_params, false);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @set_params: RSS LUT parameters used to specify how to set the RSS LUT
|
|
*
|
|
* set the RSS lookup table, PF or VSI type
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
|
|
{
|
|
return __ice_aq_get_set_rss_lut(hw, set_params, true);
|
|
}
|
|
|
|
/**
|
|
* __ice_aq_get_set_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_id: VSI FW index
|
|
* @key: pointer to key info struct
|
|
* @set: set true to set the key, false to get the key
|
|
*
|
|
* get (0x0B04) or set (0x0B02) the RSS key per VSI
|
|
*/
|
|
static enum
|
|
ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
|
|
struct ice_aqc_get_set_rss_keys *key,
|
|
bool set)
|
|
{
|
|
struct ice_aqc_get_set_rss_key *cmd_resp;
|
|
u16 key_size = sizeof(*key);
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd_resp = &desc.params.get_set_rss_key;
|
|
|
|
if (set) {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
} else {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
|
|
}
|
|
|
|
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
|
|
ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
|
|
ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
|
|
ICE_AQC_GSET_RSS_KEY_VSI_VALID);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @key: pointer to key info struct
|
|
*
|
|
* get the RSS key per VSI
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_aqc_get_set_rss_keys *key)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
|
|
return ICE_ERR_PARAM;
|
|
|
|
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
key, false);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @keys: pointer to key info struct
|
|
*
|
|
* set the RSS key per VSI
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_aqc_get_set_rss_keys *keys)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
|
|
return ICE_ERR_PARAM;
|
|
|
|
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
keys, true);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_add_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qgrps: Number of added queue groups
|
|
* @qg_list: list of queue groups to be added
|
|
* @buf_size: size of buffer for indirect command
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add Tx LAN queue (0x0C30)
|
|
*
|
|
* NOTE:
|
|
* Prior to calling add Tx LAN queue:
|
|
* Initialize the following as part of the Tx queue context:
|
|
* Completion queue ID if the queue uses Completion queue, Quanta profile,
|
|
* Cache profile and Packet shaper profile.
|
|
*
|
|
* After add Tx LAN queue AQ command is completed:
|
|
* Interrupts should be associated with specific queues,
|
|
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
|
|
* flow.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
|
struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_tx_qgrp *list;
|
|
struct ice_aqc_add_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 i, sum_size = 0;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd = &desc.params.add_txqs;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
|
|
|
|
if (!qg_list)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
|
|
return ICE_ERR_PARAM;
|
|
|
|
for (i = 0, list = qg_list; i < num_qgrps; i++) {
|
|
sum_size += ice_struct_size(list, txqs, list->num_txqs);
|
|
list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
|
|
list->num_txqs);
|
|
}
|
|
|
|
if (buf_size != sum_size)
|
|
return ICE_ERR_PARAM;
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->num_qgrps = num_qgrps;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_dis_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qgrps: number of groups in the list
|
|
* @qg_list: the list of groups to disable
|
|
* @buf_size: the total size of the qg_list buffer in bytes
|
|
* @rst_src: if called due to reset, specifies the reset source
|
|
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Disable LAN Tx queue (0x0C31)
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
|
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
|
|
enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_dis_txq_item *item;
|
|
struct ice_aqc_dis_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u16 i, sz = 0;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
cmd = &desc.params.dis_txqs;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
|
|
|
|
/* qg_list can be NULL only in VM/VF reset flow */
|
|
if (!qg_list && !rst_src)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
|
|
return ICE_ERR_PARAM;
|
|
|
|
cmd->num_entries = num_qgrps;
|
|
|
|
cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
|
|
ICE_AQC_Q_DIS_TIMEOUT_M);
|
|
|
|
switch (rst_src) {
|
|
case ICE_VM_RESET:
|
|
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
|
|
cmd->vmvf_and_timeout |=
|
|
CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
|
|
break;
|
|
case ICE_VF_RESET:
|
|
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
|
|
/* In this case, FW expects vmvf_num to be absolute VF ID */
|
|
cmd->vmvf_and_timeout |=
|
|
CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
|
|
ICE_AQC_Q_DIS_VMVF_NUM_M);
|
|
break;
|
|
case ICE_NO_RESET:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* flush pipe on time out */
|
|
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
|
|
/* If no queue group info, we are in a reset flow. Issue the AQ */
|
|
if (!qg_list)
|
|
goto do_aq;
|
|
|
|
/* set RD bit to indicate that command buffer is provided by the driver
|
|
* and it needs to be read by the firmware
|
|
*/
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
for (i = 0, item = qg_list; i < num_qgrps; i++) {
|
|
u16 item_size = ice_struct_size(item, q_id, item->num_qs);
|
|
|
|
/* If the num of queues is even, add 2 bytes of padding */
|
|
if ((item->num_qs % 2) == 0)
|
|
item_size += 2;
|
|
|
|
sz += item_size;
|
|
|
|
item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
|
|
}
|
|
|
|
if (buf_size != sz)
|
|
return ICE_ERR_PARAM;
|
|
|
|
do_aq:
|
|
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
|
|
if (status) {
|
|
if (!qg_list)
|
|
ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
|
|
vmvf_num, hw->adminq.sq_last_status);
|
|
else
|
|
ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
|
|
LE16_TO_CPU(qg_list[0].q_id[0]),
|
|
hw->adminq.sq_last_status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_move_recfg_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qs: number of queues to move/reconfigure
|
|
* @is_move: true if this operation involves node movement
|
|
* @is_tc_change: true if this operation involves a TC change
|
|
* @subseq_call: true if this operation is a subsequent call
|
|
* @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
|
|
* @timeout: timeout in units of 100 usec (valid values 0-50)
|
|
* @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
|
|
* @buf: struct containing src/dest TEID and per-queue info
|
|
* @buf_size: size of buffer for indirect command
|
|
* @txqs_moved: out param, number of queues successfully moved
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Move / Reconfigure Tx LAN queues (0x0C32)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
|
|
bool is_tc_change, bool subseq_call, bool flush_pipe,
|
|
u8 timeout, u32 *blocked_cgds,
|
|
struct ice_aqc_move_txqs_data *buf, u16 buf_size,
|
|
u8 *txqs_moved, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_move_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.move_txqs;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
|
|
|
|
#define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
|
|
if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (is_tc_change && !flush_pipe && !blocked_cgds)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (!is_move && !is_tc_change)
|
|
return ICE_ERR_PARAM;
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
if (is_move)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
|
|
|
|
if (is_tc_change)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
|
|
|
|
if (subseq_call)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
|
|
|
|
if (flush_pipe)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
|
|
|
|
cmd->num_qs = num_qs;
|
|
cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
|
|
ICE_AQC_Q_CMD_TIMEOUT_M);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
|
|
if (!status && txqs_moved)
|
|
*txqs_moved = cmd->num_qs;
|
|
|
|
if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
|
|
is_tc_change && !flush_pipe)
|
|
*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
|
|
|
|
return status;
|
|
}
|
|
|
|
/* End of FW Admin Queue command wrappers */
|
|
|
|
/**
|
|
* ice_write_byte - write a byte to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u8 src_byte, dest_byte, mask;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = (u8)(BIT(ce_info->width) - 1);
|
|
|
|
src_byte = *from;
|
|
src_byte &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_byte <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_byte &= ~mask; /* get the bits not changing */
|
|
dest_byte |= src_byte; /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_write_word - write a word to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u16 src_word, mask;
|
|
__le16 dest_word;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = BIT(ce_info->width) - 1;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_word = *(u16 *)from;
|
|
src_word &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_word <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_word &= ~(CPU_TO_LE16(mask)); /* get the bits not changing */
|
|
dest_word |= CPU_TO_LE16(src_word); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_write_dword - write a dword to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u32 src_dword, mask;
|
|
__le32 dest_dword;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 32 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 5 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 32)
|
|
mask = BIT(ce_info->width) - 1;
|
|
else
|
|
mask = (u32)~0;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_dword = *(u32 *)from;
|
|
src_dword &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_dword <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_dword &= ~(CPU_TO_LE32(mask)); /* get the bits not changing */
|
|
dest_dword |= CPU_TO_LE32(src_dword); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_write_qword - write a qword to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u64 src_qword, mask;
|
|
__le64 dest_qword;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 64 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 6 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 64)
|
|
mask = BIT_ULL(ce_info->width) - 1;
|
|
else
|
|
mask = (u64)~0;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_qword = *(u64 *)from;
|
|
src_qword &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_qword <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_qword &= ~(CPU_TO_LE64(mask)); /* get the bits not changing */
|
|
dest_qword |= CPU_TO_LE64(src_qword); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_set_ctx - set context bits in packed structure
|
|
* @hw: pointer to the hardware structure
|
|
* @src_ctx: pointer to a generic non-packed context structure
|
|
* @dest_ctx: pointer to memory for the packed structure
|
|
* @ce_info: a description of the structure to be transformed
|
|
*/
|
|
enum ice_status
|
|
ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
|
|
const struct ice_ctx_ele *ce_info)
|
|
{
|
|
int f;
|
|
|
|
for (f = 0; ce_info[f].width; f++) {
|
|
/* We have to deal with each element of the FW response
|
|
* using the correct size so that we are correct regardless
|
|
* of the endianness of the machine.
|
|
*/
|
|
if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
|
|
ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
|
|
f, ce_info[f].width, ce_info[f].size_of);
|
|
continue;
|
|
}
|
|
switch (ce_info[f].size_of) {
|
|
case sizeof(u8):
|
|
ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u16):
|
|
ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u32):
|
|
ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u64):
|
|
ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
default:
|
|
return ICE_ERR_INVAL_SIZE;
|
|
}
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_internal_data
|
|
* @hw: pointer to the hardware structure
|
|
* @cluster_id: specific cluster to dump
|
|
* @table_id: table ID within cluster
|
|
* @start: index of line in the block to read
|
|
* @buf: dump buffer
|
|
* @buf_size: dump buffer size
|
|
* @ret_buf_size: return buffer size (returned by FW)
|
|
* @ret_next_table: next block to read (returned by FW)
|
|
* @ret_next_index: next index to read (returned by FW)
|
|
* @cd: pointer to command details structure
|
|
*
|
|
* Get internal FW/HW data (0xFF08) for debug purposes.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_internal_data(struct ice_hw *hw, u8 cluster_id, u16 table_id,
|
|
u32 start, void *buf, u16 buf_size, u16 *ret_buf_size,
|
|
u16 *ret_next_table, u32 *ret_next_index,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_debug_dump_internals *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.debug_dump;
|
|
|
|
if (buf_size == 0 || !buf)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_debug_dump_internals);
|
|
|
|
cmd->cluster_id = cluster_id;
|
|
cmd->table_id = CPU_TO_LE16(table_id);
|
|
cmd->idx = CPU_TO_LE32(start);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
|
|
if (!status) {
|
|
if (ret_buf_size)
|
|
*ret_buf_size = LE16_TO_CPU(desc.datalen);
|
|
if (ret_next_table)
|
|
*ret_next_table = LE16_TO_CPU(cmd->table_id);
|
|
if (ret_next_index)
|
|
*ret_next_index = LE32_TO_CPU(cmd->idx);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_read_byte - read context byte into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u8 dest_byte, mask;
|
|
u8 *src, *target;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = (u8)(BIT(ce_info->width) - 1);
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_byte &= ~(mask);
|
|
|
|
dest_byte >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_read_word - read context word into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u16 dest_word, mask;
|
|
u8 *src, *target;
|
|
__le16 src_word;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = BIT(ce_info->width) - 1;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
|
|
|
|
/* the data in the memory is stored as little endian so mask it
|
|
* correctly
|
|
*/
|
|
src_word &= ~(CPU_TO_LE16(mask));
|
|
|
|
/* get the data back into host order before shifting */
|
|
dest_word = LE16_TO_CPU(src_word);
|
|
|
|
dest_word >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_read_dword - read context dword into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u32 dest_dword, mask;
|
|
__le32 src_dword;
|
|
u8 *src, *target;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 32 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 5 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 32)
|
|
mask = BIT(ce_info->width) - 1;
|
|
else
|
|
mask = (u32)~0;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
|
|
|
|
/* the data in the memory is stored as little endian so mask it
|
|
* correctly
|
|
*/
|
|
src_dword &= ~(CPU_TO_LE32(mask));
|
|
|
|
/* get the data back into host order before shifting */
|
|
dest_dword = LE32_TO_CPU(src_dword);
|
|
|
|
dest_dword >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_read_qword - read context qword into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u64 dest_qword, mask;
|
|
__le64 src_qword;
|
|
u8 *src, *target;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 64 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 6 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 64)
|
|
mask = BIT_ULL(ce_info->width) - 1;
|
|
else
|
|
mask = (u64)~0;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
|
|
|
|
/* the data in the memory is stored as little endian so mask it
|
|
* correctly
|
|
*/
|
|
src_qword &= ~(CPU_TO_LE64(mask));
|
|
|
|
/* get the data back into host order before shifting */
|
|
dest_qword = LE64_TO_CPU(src_qword);
|
|
|
|
dest_qword >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_get_ctx - extract context bits from a packed structure
|
|
* @src_ctx: pointer to a generic packed context structure
|
|
* @dest_ctx: pointer to a generic non-packed context structure
|
|
* @ce_info: a description of the structure to be read from
|
|
*/
|
|
enum ice_status
|
|
ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
int f;
|
|
|
|
for (f = 0; ce_info[f].width; f++) {
|
|
switch (ce_info[f].size_of) {
|
|
case 1:
|
|
ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case 2:
|
|
ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case 4:
|
|
ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case 8:
|
|
ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
default:
|
|
/* nothing to do, just keep going */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @q_handle: software queue handle
|
|
*/
|
|
struct ice_q_ctx *
|
|
ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
|
|
{
|
|
struct ice_vsi_ctx *vsi;
|
|
struct ice_q_ctx *q_ctx;
|
|
|
|
vsi = ice_get_vsi_ctx(hw, vsi_handle);
|
|
if (!vsi)
|
|
return NULL;
|
|
if (q_handle >= vsi->num_lan_q_entries[tc])
|
|
return NULL;
|
|
if (!vsi->lan_q_ctx[tc])
|
|
return NULL;
|
|
q_ctx = vsi->lan_q_ctx[tc];
|
|
return &q_ctx[q_handle];
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vsi_txq
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @q_handle: software queue handle
|
|
* @num_qgrps: Number of added queue groups
|
|
* @buf: list of queue groups to be added
|
|
* @buf_size: size of buffer for indirect command
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function adds one LAN queue
|
|
*/
|
|
enum ice_status
|
|
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
|
|
u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_txsched_elem_data node = { 0 };
|
|
struct ice_sched_node *parent;
|
|
struct ice_q_ctx *q_ctx;
|
|
enum ice_status status;
|
|
struct ice_hw *hw;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return ICE_ERR_CFG;
|
|
|
|
if (num_qgrps > 1 || buf->num_txqs > 1)
|
|
return ICE_ERR_MAX_LIMIT;
|
|
|
|
hw = pi->hw;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_acquire_lock(&pi->sched_lock);
|
|
|
|
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
|
|
if (!q_ctx) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
|
|
q_handle);
|
|
status = ICE_ERR_PARAM;
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
/* find a parent node */
|
|
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
|
|
ICE_SCHED_NODE_OWNER_LAN);
|
|
if (!parent) {
|
|
status = ICE_ERR_PARAM;
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
buf->parent_teid = parent->info.node_teid;
|
|
node.parent_teid = parent->info.node_teid;
|
|
/* Mark that the values in the "generic" section as valid. The default
|
|
* value in the "generic" section is zero. This means that :
|
|
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
|
|
* - 0 priority among siblings, indicated by Bit 1-3.
|
|
* - WFQ, indicated by Bit 4.
|
|
* - 0 Adjustment value is used in PSM credit update flow, indicated by
|
|
* Bit 5-6.
|
|
* - Bit 7 is reserved.
|
|
* Without setting the generic section as valid in valid_sections, the
|
|
* Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
|
|
*/
|
|
buf->txqs[0].info.valid_sections =
|
|
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
|
|
ICE_AQC_ELEM_VALID_EIR;
|
|
buf->txqs[0].info.generic = 0;
|
|
buf->txqs[0].info.cir_bw.bw_profile_idx =
|
|
CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
|
|
buf->txqs[0].info.cir_bw.bw_alloc =
|
|
CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
|
|
buf->txqs[0].info.eir_bw.bw_profile_idx =
|
|
CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
|
|
buf->txqs[0].info.eir_bw.bw_alloc =
|
|
CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
|
|
|
|
/* add the LAN queue */
|
|
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
|
|
if (status != ICE_SUCCESS) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
|
|
LE16_TO_CPU(buf->txqs[0].txq_id),
|
|
hw->adminq.sq_last_status);
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
node.node_teid = buf->txqs[0].q_teid;
|
|
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
|
|
q_ctx->q_handle = q_handle;
|
|
q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
|
|
|
|
/* add a leaf node into scheduler tree queue layer */
|
|
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
|
|
if (!status)
|
|
status = ice_sched_replay_q_bw(pi, q_ctx);
|
|
|
|
ena_txq_exit:
|
|
ice_release_lock(&pi->sched_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_dis_vsi_txq
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @num_queues: number of queues
|
|
* @q_handles: pointer to software queue handle array
|
|
* @q_ids: pointer to the q_id array
|
|
* @q_teids: pointer to queue node teids
|
|
* @rst_src: if called due to reset, specifies the reset source
|
|
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function removes queues and their corresponding nodes in SW DB
|
|
*/
|
|
enum ice_status
|
|
ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
|
|
u16 *q_handles, u16 *q_ids, u32 *q_teids,
|
|
enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
|
|
struct ice_aqc_dis_txq_item *qg_list;
|
|
struct ice_q_ctx *q_ctx;
|
|
struct ice_hw *hw;
|
|
u16 i, buf_size;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return ICE_ERR_CFG;
|
|
|
|
hw = pi->hw;
|
|
|
|
if (!num_queues) {
|
|
/* if queue is disabled already yet the disable queue command
|
|
* has to be sent to complete the VF reset, then call
|
|
* ice_aq_dis_lan_txq without any queue information
|
|
*/
|
|
if (rst_src)
|
|
return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
|
|
vmvf_num, NULL);
|
|
return ICE_ERR_CFG;
|
|
}
|
|
|
|
buf_size = ice_struct_size(qg_list, q_id, 1);
|
|
qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
|
|
if (!qg_list)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
ice_acquire_lock(&pi->sched_lock);
|
|
|
|
for (i = 0; i < num_queues; i++) {
|
|
struct ice_sched_node *node;
|
|
|
|
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
|
|
if (!node)
|
|
continue;
|
|
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
|
|
if (!q_ctx) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
|
|
q_handles[i]);
|
|
continue;
|
|
}
|
|
if (q_ctx->q_handle != q_handles[i]) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
|
|
q_ctx->q_handle, q_handles[i]);
|
|
continue;
|
|
}
|
|
qg_list->parent_teid = node->info.parent_teid;
|
|
qg_list->num_qs = 1;
|
|
qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
|
|
status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
|
|
vmvf_num, cd);
|
|
|
|
if (status != ICE_SUCCESS)
|
|
break;
|
|
ice_free_sched_node(pi, node);
|
|
q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
|
|
}
|
|
ice_release_lock(&pi->sched_lock);
|
|
ice_free(hw, qg_list);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_vsi_qs - configure the new/existing VSI queues
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc_bitmap: TC bitmap
|
|
* @maxqs: max queues array per TC
|
|
* @owner: LAN or RDMA
|
|
*
|
|
* This function adds/updates the VSI queues per TC.
|
|
*/
|
|
static enum ice_status
|
|
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
|
|
u16 *maxqs, u8 owner)
|
|
{
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u8 i;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return ICE_ERR_CFG;
|
|
|
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_acquire_lock(&pi->sched_lock);
|
|
|
|
ice_for_each_traffic_class(i) {
|
|
/* configuration is possible only if TC node is present */
|
|
if (!ice_sched_get_tc_node(pi, i))
|
|
continue;
|
|
|
|
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
|
|
ice_is_tc_ena(tc_bitmap, i));
|
|
if (status)
|
|
break;
|
|
}
|
|
|
|
ice_release_lock(&pi->sched_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_vsi_lan - configure VSI LAN queues
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc_bitmap: TC bitmap
|
|
* @max_lanqs: max LAN queues array per TC
|
|
*
|
|
* This function adds/updates the VSI LAN queues per TC.
|
|
*/
|
|
enum ice_status
|
|
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
|
|
u16 *max_lanqs)
|
|
{
|
|
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
|
|
ICE_SCHED_NODE_OWNER_LAN);
|
|
}
|
|
|
|
/**
|
|
* ice_is_main_vsi - checks whether the VSI is main VSI
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: VSI handle
|
|
*
|
|
* Checks whether the VSI is the main VSI (the first PF VSI created on
|
|
* given PF).
|
|
*/
|
|
static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
|
|
}
|
|
|
|
/**
|
|
* ice_replay_pre_init - replay pre initialization
|
|
* @hw: pointer to the HW struct
|
|
* @sw: pointer to switch info struct for which function initializes filters
|
|
*
|
|
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
|
|
*/
|
|
enum ice_status
|
|
ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
|
|
{
|
|
enum ice_status status;
|
|
u8 i;
|
|
|
|
/* Delete old entries from replay filter list head if there is any */
|
|
ice_rm_sw_replay_rule_info(hw, sw);
|
|
/* In start of replay, move entries into replay_rules list, it
|
|
* will allow adding rules entries back to filt_rules list,
|
|
* which is operational list.
|
|
*/
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
|
|
LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
|
|
&sw->recp_list[i].filt_replay_rules);
|
|
ice_sched_replay_agg_vsi_preinit(hw);
|
|
|
|
status = ice_sched_replay_root_node_bw(hw->port_info);
|
|
if (status)
|
|
return status;
|
|
|
|
return ice_sched_replay_tc_node_bw(hw->port_info);
|
|
}
|
|
|
|
/**
|
|
* ice_replay_vsi - replay VSI configuration
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: driver VSI handle
|
|
*
|
|
* Restore all VSI configuration after reset. It is required to call this
|
|
* function with main VSI first.
|
|
*/
|
|
enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_port_info *pi = hw->port_info;
|
|
enum ice_status status;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Replay pre-initialization if there is any */
|
|
if (ice_is_main_vsi(hw, vsi_handle)) {
|
|
status = ice_replay_pre_init(hw, sw);
|
|
if (status)
|
|
return status;
|
|
}
|
|
/* Replay per VSI all RSS configurations */
|
|
status = ice_replay_rss_cfg(hw, vsi_handle);
|
|
if (status)
|
|
return status;
|
|
/* Replay per VSI all filters */
|
|
status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
|
|
if (!status)
|
|
status = ice_replay_vsi_agg(hw, vsi_handle);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_post - post replay configuration cleanup
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Post replay cleanup.
|
|
*/
|
|
void ice_replay_post(struct ice_hw *hw)
|
|
{
|
|
/* Delete old entries from replay filter list head */
|
|
ice_rm_all_sw_replay_rule_info(hw);
|
|
ice_sched_replay_agg(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @reg: offset of 64 bit HW register to read from
|
|
* @prev_stat_loaded: bool to specify if previous stats are loaded
|
|
* @prev_stat: ptr to previous loaded stat value
|
|
* @cur_stat: ptr to current stat value
|
|
*/
|
|
void
|
|
ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
|
|
u64 *prev_stat, u64 *cur_stat)
|
|
{
|
|
u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
|
|
|
|
/* device stats are not reset at PFR, they likely will not be zeroed
|
|
* when the driver starts. Thus, save the value from the first read
|
|
* without adding to the statistic value so that we report stats which
|
|
* count up from zero.
|
|
*/
|
|
if (!prev_stat_loaded) {
|
|
*prev_stat = new_data;
|
|
return;
|
|
}
|
|
|
|
/* Calculate the difference between the new and old values, and then
|
|
* add it to the software stat value.
|
|
*/
|
|
if (new_data >= *prev_stat)
|
|
*cur_stat += new_data - *prev_stat;
|
|
else
|
|
/* to manage the potential roll-over */
|
|
*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
|
|
|
|
/* Update the previously stored value to prepare for next read */
|
|
*prev_stat = new_data;
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @reg: offset of HW register to read from
|
|
* @prev_stat_loaded: bool to specify if previous stats are loaded
|
|
* @prev_stat: ptr to previous loaded stat value
|
|
* @cur_stat: ptr to current stat value
|
|
*/
|
|
void
|
|
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
|
|
u64 *prev_stat, u64 *cur_stat)
|
|
{
|
|
u32 new_data;
|
|
|
|
new_data = rd32(hw, reg);
|
|
|
|
/* device stats are not reset at PFR, they likely will not be zeroed
|
|
* when the driver starts. Thus, save the value from the first read
|
|
* without adding to the statistic value so that we report stats which
|
|
* count up from zero.
|
|
*/
|
|
if (!prev_stat_loaded) {
|
|
*prev_stat = new_data;
|
|
return;
|
|
}
|
|
|
|
/* Calculate the difference between the new and old values, and then
|
|
* add it to the software stat value.
|
|
*/
|
|
if (new_data >= *prev_stat)
|
|
*cur_stat += new_data - *prev_stat;
|
|
else
|
|
/* to manage the potential roll-over */
|
|
*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
|
|
|
|
/* Update the previously stored value to prepare for next read */
|
|
*prev_stat = new_data;
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @vsi_handle: VSI handle
|
|
* @prev_stat_loaded: bool to specify if the previous stat values are loaded
|
|
* @cur_stats: ptr to current stats structure
|
|
*
|
|
* The GLV_REPC statistic register actually tracks two 16bit statistics, and
|
|
* thus cannot be read using the normal ice_stat_update32 function.
|
|
*
|
|
* Read the GLV_REPC register associated with the given VSI, and update the
|
|
* rx_no_desc and rx_error values in the ice_eth_stats structure.
|
|
*
|
|
* Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
|
|
* cleared each time it's read.
|
|
*
|
|
* Note that the GLV_RDPC register also counts the causes that would trigger
|
|
* GLV_REPC. However, it does not give the finer grained detail about why the
|
|
* packets are being dropped. The GLV_REPC values can be used to distinguish
|
|
* whether Rx packets are dropped due to errors or due to no available
|
|
* descriptors.
|
|
*/
|
|
void
|
|
ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
|
|
struct ice_eth_stats *cur_stats)
|
|
{
|
|
u16 vsi_num, no_desc, error_cnt;
|
|
u32 repc;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return;
|
|
|
|
vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
/* If we haven't loaded stats yet, just clear the current value */
|
|
if (!prev_stat_loaded) {
|
|
wr32(hw, GLV_REPC(vsi_num), 0);
|
|
return;
|
|
}
|
|
|
|
repc = rd32(hw, GLV_REPC(vsi_num));
|
|
no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
|
|
error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
|
|
|
|
/* Clear the count by writing to the stats register */
|
|
wr32(hw, GLV_REPC(vsi_num), 0);
|
|
|
|
cur_stats->rx_no_desc += no_desc;
|
|
cur_stats->rx_errors += error_cnt;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alternate_write
|
|
* @hw: pointer to the hardware structure
|
|
* @reg_addr0: address of first dword to be written
|
|
* @reg_val0: value to be written under 'reg_addr0'
|
|
* @reg_addr1: address of second dword to be written
|
|
* @reg_val1: value to be written under 'reg_addr1'
|
|
*
|
|
* Write one or two dwords to alternate structure. Fields are indicated
|
|
* by 'reg_addr0' and 'reg_addr1' register numbers.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
|
|
u32 reg_addr1, u32 reg_val1)
|
|
{
|
|
struct ice_aqc_read_write_alt_direct *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.read_write_alt_direct;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
|
|
cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
|
|
cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
|
|
cmd->dword0_value = CPU_TO_LE32(reg_val0);
|
|
cmd->dword1_value = CPU_TO_LE32(reg_val1);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alternate_read
|
|
* @hw: pointer to the hardware structure
|
|
* @reg_addr0: address of first dword to be read
|
|
* @reg_val0: pointer for data read from 'reg_addr0'
|
|
* @reg_addr1: address of second dword to be read
|
|
* @reg_val1: pointer for data read from 'reg_addr1'
|
|
*
|
|
* Read one or two dwords from alternate structure. Fields are indicated
|
|
* by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
|
|
* is not passed then only register at 'reg_addr0' is read.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
|
|
u32 reg_addr1, u32 *reg_val1)
|
|
{
|
|
struct ice_aqc_read_write_alt_direct *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.read_write_alt_direct;
|
|
|
|
if (!reg_val0)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
|
|
cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
|
|
cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
|
|
if (status == ICE_SUCCESS) {
|
|
*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
|
|
|
|
if (reg_val1)
|
|
*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alternate_write_done
|
|
* @hw: pointer to the HW structure.
|
|
* @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
|
|
* @reset_needed: indicates the SW should trigger GLOBAL reset
|
|
*
|
|
* Indicates to the FW that alternate structures have been changed.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
|
|
{
|
|
struct ice_aqc_done_alt_write *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.done_alt_write;
|
|
|
|
if (!reset_needed)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
|
|
cmd->flags = bios_mode;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
if (!status)
|
|
*reset_needed = (LE16_TO_CPU(cmd->flags) &
|
|
ICE_AQC_RESP_RESET_NEEDED) != 0;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alternate_clear
|
|
* @hw: pointer to the HW structure.
|
|
*
|
|
* Clear the alternate structures of the port from which the function
|
|
* is called.
|
|
*/
|
|
enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_sched_query_elem - query element information from HW
|
|
* @hw: pointer to the HW struct
|
|
* @node_teid: node TEID to be queried
|
|
* @buf: buffer to element information
|
|
*
|
|
* This function queries HW element information
|
|
*/
|
|
enum ice_status
|
|
ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
|
|
struct ice_aqc_txsched_elem_data *buf)
|
|
{
|
|
u16 buf_size, num_elem_ret = 0;
|
|
enum ice_status status;
|
|
|
|
buf_size = sizeof(*buf);
|
|
ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
|
|
buf->node_teid = CPU_TO_LE32(node_teid);
|
|
status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
|
|
NULL);
|
|
if (status != ICE_SUCCESS || num_elem_ret != 1)
|
|
ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_fw_mode - returns FW mode
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
|
|
{
|
|
#define ICE_FW_MODE_DBG_M BIT(0)
|
|
#define ICE_FW_MODE_REC_M BIT(1)
|
|
#define ICE_FW_MODE_ROLLBACK_M BIT(2)
|
|
u32 fw_mode;
|
|
|
|
/* check the current FW mode */
|
|
fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
|
|
if (fw_mode & ICE_FW_MODE_DBG_M)
|
|
return ICE_FW_MODE_DBG;
|
|
else if (fw_mode & ICE_FW_MODE_REC_M)
|
|
return ICE_FW_MODE_REC;
|
|
else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
|
|
return ICE_FW_MODE_ROLLBACK;
|
|
else
|
|
return ICE_FW_MODE_NORMAL;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_get_cur_lldp_persist_status
|
|
* @hw: pointer to the HW struct
|
|
* @lldp_status: return value of LLDP persistent status
|
|
*
|
|
* Get the current status of LLDP persistent
|
|
*/
|
|
enum ice_status
|
|
ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
|
|
{
|
|
struct ice_port_info *pi = hw->port_info;
|
|
enum ice_status ret;
|
|
__le32 raw_data;
|
|
u32 data, mask;
|
|
|
|
if (!lldp_status)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
ret = ice_acquire_nvm(hw, ICE_RES_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
|
|
ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
|
|
ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
|
|
false, true, NULL);
|
|
if (!ret) {
|
|
data = LE32_TO_CPU(raw_data);
|
|
mask = ICE_AQC_NVM_LLDP_STATUS_M <<
|
|
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
|
|
data = data & mask;
|
|
*lldp_status = data >>
|
|
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
|
|
}
|
|
|
|
ice_release_nvm(hw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_get_dflt_lldp_persist_status
|
|
* @hw: pointer to the HW struct
|
|
* @lldp_status: return value of LLDP persistent status
|
|
*
|
|
* Get the default status of LLDP persistent
|
|
*/
|
|
enum ice_status
|
|
ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
|
|
{
|
|
struct ice_port_info *pi = hw->port_info;
|
|
u32 data, mask, loc_data, loc_data_tmp;
|
|
enum ice_status ret;
|
|
__le16 loc_raw_data;
|
|
__le32 raw_data;
|
|
|
|
if (!lldp_status)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
ret = ice_acquire_nvm(hw, ICE_RES_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read the offset of EMP_SR_PTR */
|
|
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
|
|
ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
|
|
ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
|
|
&loc_raw_data, false, true, NULL);
|
|
if (ret)
|
|
goto exit;
|
|
|
|
loc_data = LE16_TO_CPU(loc_raw_data);
|
|
if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
|
|
loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
|
|
loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
|
|
} else {
|
|
loc_data *= ICE_AQC_NVM_WORD_UNIT;
|
|
}
|
|
|
|
/* Read the offset of LLDP configuration pointer */
|
|
loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
|
|
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
|
|
ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
|
|
false, true, NULL);
|
|
if (ret)
|
|
goto exit;
|
|
|
|
loc_data_tmp = LE16_TO_CPU(loc_raw_data);
|
|
loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
|
|
loc_data += loc_data_tmp;
|
|
|
|
/* We need to skip LLDP configuration section length (2 bytes) */
|
|
loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
|
|
|
|
/* Read the LLDP Default Configure */
|
|
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
|
|
ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
|
|
true, NULL);
|
|
if (!ret) {
|
|
data = LE32_TO_CPU(raw_data);
|
|
mask = ICE_AQC_NVM_LLDP_STATUS_M <<
|
|
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
|
|
data = data & mask;
|
|
*lldp_status = data >>
|
|
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
|
|
}
|
|
|
|
exit:
|
|
ice_release_nvm(hw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_read_i2c
|
|
* @hw: pointer to the hw struct
|
|
* @topo_addr: topology address for a device to communicate with
|
|
* @bus_addr: 7-bit I2C bus address
|
|
* @addr: I2C memory address (I2C offset) with up to 16 bits
|
|
* @params: I2C parameters: bit [7] - Repeated start, bits [6:5] data offset size,
|
|
* bit [4] - I2C address type, bits [3:0] - data size to read (0-16 bytes)
|
|
* @data: pointer to data (0 to 16 bytes) to be read from the I2C device
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Read I2C (0x06E2)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
|
|
u16 bus_addr, __le16 addr, u8 params, u8 *data,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc = { 0 };
|
|
struct ice_aqc_i2c *cmd;
|
|
enum ice_status status;
|
|
u8 data_size;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
|
|
cmd = &desc.params.read_write_i2c;
|
|
|
|
if (!data)
|
|
return ICE_ERR_PARAM;
|
|
|
|
data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
|
|
|
|
cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
|
|
cmd->topo_addr = topo_addr;
|
|
cmd->i2c_params = params;
|
|
cmd->i2c_addr = addr;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (!status) {
|
|
struct ice_aqc_read_i2c_resp *resp;
|
|
u8 i;
|
|
|
|
resp = &desc.params.read_i2c_resp;
|
|
for (i = 0; i < data_size; i++) {
|
|
*data = resp->i2c_data[i];
|
|
data++;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_write_i2c
|
|
* @hw: pointer to the hw struct
|
|
* @topo_addr: topology address for a device to communicate with
|
|
* @bus_addr: 7-bit I2C bus address
|
|
* @addr: I2C memory address (I2C offset) with up to 16 bits
|
|
* @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
|
|
* @data: pointer to data (0 to 4 bytes) to be written to the I2C device
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Write I2C (0x06E3)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
|
|
u16 bus_addr, __le16 addr, u8 params, u8 *data,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc = { 0 };
|
|
struct ice_aqc_i2c *cmd;
|
|
u8 i, data_size;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
|
|
cmd = &desc.params.read_write_i2c;
|
|
|
|
data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
|
|
|
|
/* data_size limited to 4 */
|
|
if (data_size > 4)
|
|
return ICE_ERR_PARAM;
|
|
|
|
cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
|
|
cmd->topo_addr = topo_addr;
|
|
cmd->i2c_params = params;
|
|
cmd->i2c_addr = addr;
|
|
|
|
for (i = 0; i < data_size; i++) {
|
|
cmd->i2c_data[i] = *data;
|
|
data++;
|
|
}
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_gpio
|
|
* @hw: pointer to the hw struct
|
|
* @gpio_ctrl_handle: GPIO controller node handle
|
|
* @pin_idx: IO Number of the GPIO that needs to be set
|
|
* @value: SW provide IO value to set in the LSB
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_gpio *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
|
|
cmd = &desc.params.read_write_gpio;
|
|
cmd->gpio_ctrl_handle = gpio_ctrl_handle;
|
|
cmd->gpio_num = pin_idx;
|
|
cmd->gpio_val = value ? 1 : 0;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_gpio
|
|
* @hw: pointer to the hw struct
|
|
* @gpio_ctrl_handle: GPIO controller node handle
|
|
* @pin_idx: IO Number of the GPIO that needs to be set
|
|
* @value: IO value read
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
|
|
* the topology
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
|
|
bool *value, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_gpio *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
|
|
cmd = &desc.params.read_write_gpio;
|
|
cmd->gpio_ctrl_handle = gpio_ctrl_handle;
|
|
cmd->gpio_num = pin_idx;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (status)
|
|
return status;
|
|
|
|
*value = !!cmd->gpio_val;
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_fw_supports_link_override
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Checks if the firmware supports link override
|
|
*/
|
|
bool ice_fw_supports_link_override(struct ice_hw *hw)
|
|
{
|
|
if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
|
|
if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
|
|
return true;
|
|
if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
|
|
hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
|
|
return true;
|
|
} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_default_override
|
|
* @ldo: pointer to the link default override struct
|
|
* @pi: pointer to the port info struct
|
|
*
|
|
* Gets the link default override for a port
|
|
*/
|
|
enum ice_status
|
|
ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
|
|
struct ice_port_info *pi)
|
|
{
|
|
u16 i, tlv, tlv_len, tlv_start, buf, offset;
|
|
struct ice_hw *hw = pi->hw;
|
|
enum ice_status status;
|
|
|
|
status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
|
|
ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
|
|
return status;
|
|
}
|
|
|
|
/* Each port has its own config; calculate for our port */
|
|
tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
|
|
ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
|
|
|
|
/* link options first */
|
|
status = ice_read_sr_word(hw, tlv_start, &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
|
|
return status;
|
|
}
|
|
ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
|
|
ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
|
|
ICE_LINK_OVERRIDE_PHY_CFG_S;
|
|
|
|
/* link PHY config */
|
|
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
|
|
status = ice_read_sr_word(hw, offset, &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
|
|
return status;
|
|
}
|
|
ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
|
|
|
|
/* PHY types low */
|
|
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
|
|
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
|
|
status = ice_read_sr_word(hw, (offset + i), &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
|
|
return status;
|
|
}
|
|
/* shift 16 bits at a time to fill 64 bits */
|
|
ldo->phy_type_low |= ((u64)buf << (i * 16));
|
|
}
|
|
|
|
/* PHY types high */
|
|
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
|
|
ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
|
|
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
|
|
status = ice_read_sr_word(hw, (offset + i), &buf);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
|
|
return status;
|
|
}
|
|
/* shift 16 bits at a time to fill 64 bits */
|
|
ldo->phy_type_high |= ((u64)buf << (i * 16));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
|
|
* @caps: get PHY capability data
|
|
*/
|
|
bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
|
|
{
|
|
if (caps->caps & ICE_AQC_PHY_AN_MODE ||
|
|
caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
|
|
ICE_AQC_PHY_AN_EN_CLAUSE73 |
|
|
ICE_AQC_PHY_AN_EN_CLAUSE37))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_is_fw_health_report_supported
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Return true if firmware supports health status reports,
|
|
* false otherwise
|
|
*/
|
|
bool ice_is_fw_health_report_supported(struct ice_hw *hw)
|
|
{
|
|
if (hw->api_maj_ver > ICE_FW_API_HEALTH_REPORT_MAJ)
|
|
return true;
|
|
|
|
if (hw->api_maj_ver == ICE_FW_API_HEALTH_REPORT_MAJ) {
|
|
if (hw->api_min_ver > ICE_FW_API_HEALTH_REPORT_MIN)
|
|
return true;
|
|
if (hw->api_min_ver == ICE_FW_API_HEALTH_REPORT_MIN &&
|
|
hw->api_patch >= ICE_FW_API_HEALTH_REPORT_PATCH)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_health_status_config - Configure FW health events
|
|
* @hw: pointer to the HW struct
|
|
* @event_source: type of diagnostic events to enable
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Configure the health status event types that the firmware will send to this
|
|
* PF. The supported event types are: PF-specific, all PFs, and global
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_health_status_config(struct ice_hw *hw, u8 event_source,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_health_status_config *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_health_status_config;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc,
|
|
ice_aqc_opc_set_health_status_config);
|
|
|
|
cmd->event_source = event_source;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_port_options
|
|
* @hw: pointer to the hw struct
|
|
* @options: buffer for the resultant port options
|
|
* @option_count: input - size of the buffer in port options structures,
|
|
* output - number of returned port options
|
|
* @lport: logical port to call the command with (optional)
|
|
* @lport_valid: when false, FW uses port owned by the PF instead of lport,
|
|
* when PF owns more than 1 port it must be true
|
|
* @active_option_idx: index of active port option in returned buffer
|
|
* @active_option_valid: active option in returned buffer is valid
|
|
*
|
|
* Calls Get Port Options AQC (0x06ea) and verifies result.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_port_options(struct ice_hw *hw,
|
|
struct ice_aqc_get_port_options_elem *options,
|
|
u8 *option_count, u8 lport, bool lport_valid,
|
|
u8 *active_option_idx, bool *active_option_valid)
|
|
{
|
|
struct ice_aqc_get_port_options *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u8 pmd_count;
|
|
u8 max_speed;
|
|
u8 i;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
/* options buffer shall be able to hold max returned options */
|
|
if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
|
|
return ICE_ERR_PARAM;
|
|
|
|
cmd = &desc.params.get_port_options;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
|
|
|
|
if (lport_valid)
|
|
cmd->lport_num = lport;
|
|
cmd->lport_num_valid = lport_valid;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, options,
|
|
*option_count * sizeof(*options), NULL);
|
|
if (status != ICE_SUCCESS)
|
|
return status;
|
|
|
|
/* verify direct FW response & set output parameters */
|
|
*option_count = cmd->port_options_count & ICE_AQC_PORT_OPT_COUNT_M;
|
|
ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
|
|
*active_option_valid = cmd->port_options & ICE_AQC_PORT_OPT_VALID;
|
|
if (*active_option_valid) {
|
|
*active_option_idx = cmd->port_options &
|
|
ICE_AQC_PORT_OPT_ACTIVE_M;
|
|
if (*active_option_idx > (*option_count - 1))
|
|
return ICE_ERR_OUT_OF_RANGE;
|
|
ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
|
|
*active_option_idx);
|
|
}
|
|
|
|
/* verify indirect FW response & mask output options fields */
|
|
for (i = 0; i < *option_count; i++) {
|
|
options[i].pmd &= ICE_AQC_PORT_OPT_PMD_COUNT_M;
|
|
options[i].max_lane_speed &= ICE_AQC_PORT_OPT_MAX_LANE_M;
|
|
pmd_count = options[i].pmd;
|
|
max_speed = options[i].max_lane_speed;
|
|
ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
|
|
pmd_count, max_speed);
|
|
|
|
/* check only entries containing valid max pmd speed values,
|
|
* other reserved values may be returned, when logical port
|
|
* used is unrelated to specific option
|
|
*/
|
|
if (max_speed <= ICE_AQC_PORT_OPT_MAX_LANE_100G) {
|
|
if (pmd_count > ICE_MAX_PORT_PER_PCI_DEV)
|
|
return ICE_ERR_OUT_OF_RANGE;
|
|
if (pmd_count > 2 &&
|
|
max_speed > ICE_AQC_PORT_OPT_MAX_LANE_25G)
|
|
return ICE_ERR_CFG;
|
|
if (pmd_count > 7 &&
|
|
max_speed > ICE_AQC_PORT_OPT_MAX_LANE_10G)
|
|
return ICE_ERR_CFG;
|
|
}
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_lldp_mib - Set the LLDP MIB
|
|
* @hw: pointer to the HW struct
|
|
* @mib_type: Local, Remote or both Local and Remote MIBs
|
|
* @buf: pointer to the caller-supplied buffer to store the MIB block
|
|
* @buf_size: size of the buffer (in bytes)
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set the LLDP MIB. (0x0A08)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_lldp_set_local_mib *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.lldp_set_mib;
|
|
|
|
if (buf_size == 0 || !buf)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
|
|
|
|
desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
|
|
desc.datalen = CPU_TO_LE16(buf_size);
|
|
|
|
cmd->type = mib_type;
|
|
cmd->length = CPU_TO_LE16(buf_size);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
|
|
* @hw: pointer to HW struct
|
|
*/
|
|
bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
|
|
{
|
|
if (hw->mac_type != ICE_MAC_E810)
|
|
return false;
|
|
|
|
if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
|
|
if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
|
|
return true;
|
|
if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
|
|
hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
|
|
return true;
|
|
} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
|
|
* @hw: pointer to HW struct
|
|
* @vsi_num: absolute HW index for VSI
|
|
* @add: boolean for if adding or removing a filter
|
|
*/
|
|
enum ice_status
|
|
ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
|
|
{
|
|
struct ice_aqc_lldp_filter_ctrl *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.lldp_filter_ctrl;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
|
|
|
|
if (add)
|
|
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
|
|
else
|
|
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
|
|
|
|
cmd->vsi_num = CPU_TO_LE16(vsi_num);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_fw_supports_report_dflt_cfg
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Checks if the firmware supports report default configuration
|
|
*/
|
|
bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
|
|
{
|
|
if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
|
|
if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
|
|
return true;
|
|
if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
|
|
hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
|
|
return true;
|
|
} else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_is_fw_auto_drop_supported
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Checks if the firmware supports auto drop feature
|
|
*/
|
|
bool ice_is_fw_auto_drop_supported(struct ice_hw *hw)
|
|
{
|
|
if (hw->api_maj_ver >= ICE_FW_API_AUTO_DROP_MAJ &&
|
|
hw->api_min_ver >= ICE_FW_API_AUTO_DROP_MIN)
|
|
return true;
|
|
return false;
|
|
}
|