2b426cfaa2
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
837 lines
22 KiB
C
837 lines
22 KiB
C
/* Natural loop discovery code for GNU compiler.
|
||
Copyright (C) 2000, 2001 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "rtl.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
|
||
static void flow_loops_cfg_dump PARAMS ((const struct loops *,
|
||
FILE *));
|
||
static int flow_loop_nested_p PARAMS ((struct loop *,
|
||
struct loop *));
|
||
static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
|
||
edge **));
|
||
static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
|
||
static int flow_loop_nodes_find PARAMS ((basic_block, basic_block,
|
||
sbitmap));
|
||
static void flow_loop_pre_header_scan PARAMS ((struct loop *));
|
||
static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
|
||
const sbitmap *));
|
||
static void flow_loop_tree_node_add PARAMS ((struct loop *,
|
||
struct loop *));
|
||
static void flow_loops_tree_build PARAMS ((struct loops *));
|
||
static int flow_loop_level_compute PARAMS ((struct loop *, int));
|
||
static int flow_loops_level_compute PARAMS ((struct loops *));
|
||
|
||
/* Dump loop related CFG information. */
|
||
|
||
static void
|
||
flow_loops_cfg_dump (loops, file)
|
||
const struct loops *loops;
|
||
FILE *file;
|
||
{
|
||
int i;
|
||
|
||
if (! loops->num || ! file || ! loops->cfg.dom)
|
||
return;
|
||
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
{
|
||
edge succ;
|
||
|
||
fprintf (file, ";; %d succs { ", i);
|
||
for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
|
||
fprintf (file, "%d ", succ->dest->index);
|
||
flow_nodes_print ("} dom", loops->cfg.dom[i], file);
|
||
}
|
||
|
||
/* Dump the DFS node order. */
|
||
if (loops->cfg.dfs_order)
|
||
{
|
||
fputs (";; DFS order: ", file);
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
fprintf (file, "%d ", loops->cfg.dfs_order[i]);
|
||
|
||
fputs ("\n", file);
|
||
}
|
||
|
||
/* Dump the reverse completion node order. */
|
||
if (loops->cfg.rc_order)
|
||
{
|
||
fputs (";; RC order: ", file);
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
fprintf (file, "%d ", loops->cfg.rc_order[i]);
|
||
|
||
fputs ("\n", file);
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if the nodes of LOOP are a subset of OUTER. */
|
||
|
||
static int
|
||
flow_loop_nested_p (outer, loop)
|
||
struct loop *outer;
|
||
struct loop *loop;
|
||
{
|
||
return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
|
||
}
|
||
|
||
/* Dump the loop information specified by LOOP to the stream FILE
|
||
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
|
||
|
||
void
|
||
flow_loop_dump (loop, file, loop_dump_aux, verbose)
|
||
const struct loop *loop;
|
||
FILE *file;
|
||
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
|
||
int verbose;
|
||
{
|
||
if (! loop || ! loop->header)
|
||
return;
|
||
|
||
if (loop->first->head && loop->last->end)
|
||
fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
|
||
loop->num, INSN_UID (loop->first->head),
|
||
INSN_UID (loop->last->end),
|
||
loop->shared ? " shared" : "", loop->invalid ? " invalid" : "");
|
||
else
|
||
fprintf (file, ";;\n;; Loop %d:%s%s\n", loop->num,
|
||
loop->shared ? " shared" : "", loop->invalid ? " invalid" : "");
|
||
|
||
fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
|
||
loop->header->index, loop->latch->index,
|
||
loop->pre_header ? loop->pre_header->index : -1,
|
||
loop->first->index, loop->last->index);
|
||
fprintf (file, ";; depth %d, level %d, outer %ld\n",
|
||
loop->depth, loop->level,
|
||
(long) (loop->outer ? loop->outer->num : -1));
|
||
|
||
if (loop->pre_header_edges)
|
||
flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
|
||
loop->num_pre_header_edges, file);
|
||
|
||
flow_edge_list_print (";; entry edges", loop->entry_edges,
|
||
loop->num_entries, file);
|
||
fprintf (file, ";; %d", loop->num_nodes);
|
||
flow_nodes_print (" nodes", loop->nodes, file);
|
||
flow_edge_list_print (";; exit edges", loop->exit_edges,
|
||
loop->num_exits, file);
|
||
|
||
if (loop->exits_doms)
|
||
flow_nodes_print (";; exit doms", loop->exits_doms, file);
|
||
|
||
if (loop_dump_aux)
|
||
loop_dump_aux (loop, file, verbose);
|
||
}
|
||
|
||
/* Dump the loop information specified by LOOPS to the stream FILE,
|
||
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
|
||
|
||
void
|
||
flow_loops_dump (loops, file, loop_dump_aux, verbose)
|
||
const struct loops *loops;
|
||
FILE *file;
|
||
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
|
||
int verbose;
|
||
{
|
||
int i, j;
|
||
int num_loops;
|
||
|
||
num_loops = loops->num;
|
||
if (! num_loops || ! file)
|
||
return;
|
||
|
||
fprintf (file, ";; %d loops found, %d levels\n", num_loops, loops->levels);
|
||
for (i = 0; i < num_loops; i++)
|
||
{
|
||
struct loop *loop = &loops->array[i];
|
||
|
||
flow_loop_dump (loop, file, loop_dump_aux, verbose);
|
||
if (loop->shared)
|
||
for (j = 0; j < i; j++)
|
||
{
|
||
struct loop *oloop = &loops->array[j];
|
||
|
||
if (loop->header == oloop->header)
|
||
{
|
||
int disjoint;
|
||
int smaller;
|
||
|
||
smaller = loop->num_nodes < oloop->num_nodes;
|
||
|
||
/* If the union of LOOP and OLOOP is different than
|
||
the larger of LOOP and OLOOP then LOOP and OLOOP
|
||
must be disjoint. */
|
||
disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
|
||
smaller ? oloop : loop);
|
||
fprintf (file,
|
||
";; loop header %d shared by loops %d, %d %s\n",
|
||
loop->header->index, i, j,
|
||
disjoint ? "disjoint" : "nested");
|
||
}
|
||
}
|
||
}
|
||
|
||
if (verbose)
|
||
flow_loops_cfg_dump (loops, file);
|
||
}
|
||
|
||
/* Free all the memory allocated for LOOPS. */
|
||
|
||
void
|
||
flow_loops_free (loops)
|
||
struct loops *loops;
|
||
{
|
||
if (loops->array)
|
||
{
|
||
int i;
|
||
|
||
if (! loops->num)
|
||
abort ();
|
||
|
||
/* Free the loop descriptors. */
|
||
for (i = 0; i < loops->num; i++)
|
||
{
|
||
struct loop *loop = &loops->array[i];
|
||
|
||
if (loop->pre_header_edges)
|
||
free (loop->pre_header_edges);
|
||
if (loop->nodes)
|
||
sbitmap_free (loop->nodes);
|
||
if (loop->entry_edges)
|
||
free (loop->entry_edges);
|
||
if (loop->exit_edges)
|
||
free (loop->exit_edges);
|
||
if (loop->exits_doms)
|
||
sbitmap_free (loop->exits_doms);
|
||
}
|
||
|
||
free (loops->array);
|
||
loops->array = NULL;
|
||
|
||
if (loops->cfg.dom)
|
||
sbitmap_vector_free (loops->cfg.dom);
|
||
|
||
if (loops->cfg.dfs_order)
|
||
free (loops->cfg.dfs_order);
|
||
|
||
if (loops->shared_headers)
|
||
sbitmap_free (loops->shared_headers);
|
||
}
|
||
}
|
||
|
||
/* Find the entry edges into the loop with header HEADER and nodes
|
||
NODES and store in ENTRY_EDGES array. Return the number of entry
|
||
edges from the loop. */
|
||
|
||
static int
|
||
flow_loop_entry_edges_find (header, nodes, entry_edges)
|
||
basic_block header;
|
||
const sbitmap nodes;
|
||
edge **entry_edges;
|
||
{
|
||
edge e;
|
||
int num_entries;
|
||
|
||
*entry_edges = NULL;
|
||
|
||
num_entries = 0;
|
||
for (e = header->pred; e; e = e->pred_next)
|
||
{
|
||
basic_block src = e->src;
|
||
|
||
if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
|
||
num_entries++;
|
||
}
|
||
|
||
if (! num_entries)
|
||
abort ();
|
||
|
||
*entry_edges = (edge *) xmalloc (num_entries * sizeof (edge));
|
||
|
||
num_entries = 0;
|
||
for (e = header->pred; e; e = e->pred_next)
|
||
{
|
||
basic_block src = e->src;
|
||
|
||
if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
|
||
(*entry_edges)[num_entries++] = e;
|
||
}
|
||
|
||
return num_entries;
|
||
}
|
||
|
||
/* Find the exit edges from the loop using the bitmap of loop nodes
|
||
NODES and store in EXIT_EDGES array. Return the number of
|
||
exit edges from the loop. */
|
||
|
||
static int
|
||
flow_loop_exit_edges_find (nodes, exit_edges)
|
||
const sbitmap nodes;
|
||
edge **exit_edges;
|
||
{
|
||
edge e;
|
||
int node;
|
||
int num_exits;
|
||
|
||
*exit_edges = NULL;
|
||
|
||
/* Check all nodes within the loop to see if there are any
|
||
successors not in the loop. Note that a node may have multiple
|
||
exiting edges ????? A node can have one jumping edge and one fallthru
|
||
edge so only one of these can exit the loop. */
|
||
num_exits = 0;
|
||
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
|
||
for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
|
||
{
|
||
basic_block dest = e->dest;
|
||
|
||
if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
|
||
num_exits++;
|
||
}
|
||
});
|
||
|
||
if (! num_exits)
|
||
return 0;
|
||
|
||
*exit_edges = (edge *) xmalloc (num_exits * sizeof (edge));
|
||
|
||
/* Store all exiting edges into an array. */
|
||
num_exits = 0;
|
||
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
|
||
for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
|
||
{
|
||
basic_block dest = e->dest;
|
||
|
||
if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
|
||
(*exit_edges)[num_exits++] = e;
|
||
}
|
||
});
|
||
|
||
return num_exits;
|
||
}
|
||
|
||
/* Find the nodes contained within the loop with header HEADER and
|
||
latch LATCH and store in NODES. Return the number of nodes within
|
||
the loop. */
|
||
|
||
static int
|
||
flow_loop_nodes_find (header, latch, nodes)
|
||
basic_block header;
|
||
basic_block latch;
|
||
sbitmap nodes;
|
||
{
|
||
basic_block *stack;
|
||
int sp;
|
||
int num_nodes = 0;
|
||
|
||
stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
|
||
sp = 0;
|
||
|
||
/* Start with only the loop header in the set of loop nodes. */
|
||
sbitmap_zero (nodes);
|
||
SET_BIT (nodes, header->index);
|
||
num_nodes++;
|
||
header->loop_depth++;
|
||
|
||
/* Push the loop latch on to the stack. */
|
||
if (! TEST_BIT (nodes, latch->index))
|
||
{
|
||
SET_BIT (nodes, latch->index);
|
||
latch->loop_depth++;
|
||
num_nodes++;
|
||
stack[sp++] = latch;
|
||
}
|
||
|
||
while (sp)
|
||
{
|
||
basic_block node;
|
||
edge e;
|
||
|
||
node = stack[--sp];
|
||
for (e = node->pred; e; e = e->pred_next)
|
||
{
|
||
basic_block ancestor = e->src;
|
||
|
||
/* If each ancestor not marked as part of loop, add to set of
|
||
loop nodes and push on to stack. */
|
||
if (ancestor != ENTRY_BLOCK_PTR
|
||
&& ! TEST_BIT (nodes, ancestor->index))
|
||
{
|
||
SET_BIT (nodes, ancestor->index);
|
||
ancestor->loop_depth++;
|
||
num_nodes++;
|
||
stack[sp++] = ancestor;
|
||
}
|
||
}
|
||
}
|
||
free (stack);
|
||
return num_nodes;
|
||
}
|
||
|
||
/* Find the root node of the loop pre-header extended basic block and
|
||
the edges along the trace from the root node to the loop header. */
|
||
|
||
static void
|
||
flow_loop_pre_header_scan (loop)
|
||
struct loop *loop;
|
||
{
|
||
int num;
|
||
basic_block ebb;
|
||
edge e;
|
||
|
||
loop->num_pre_header_edges = 0;
|
||
if (loop->num_entries != 1)
|
||
return;
|
||
|
||
ebb = loop->entry_edges[0]->src;
|
||
if (ebb == ENTRY_BLOCK_PTR)
|
||
return;
|
||
|
||
/* Count number of edges along trace from loop header to
|
||
root of pre-header extended basic block. Usually this is
|
||
only one or two edges. */
|
||
for (num = 1; ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next;
|
||
num++)
|
||
ebb = ebb->pred->src;
|
||
|
||
loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge));
|
||
loop->num_pre_header_edges = num;
|
||
|
||
/* Store edges in order that they are followed. The source of the first edge
|
||
is the root node of the pre-header extended basic block and the
|
||
destination of the last last edge is the loop header. */
|
||
for (e = loop->entry_edges[0]; num; e = e->src->pred)
|
||
loop->pre_header_edges[--num] = e;
|
||
}
|
||
|
||
/* Return the block for the pre-header of the loop with header
|
||
HEADER where DOM specifies the dominator information. Return NULL if
|
||
there is no pre-header. */
|
||
|
||
static basic_block
|
||
flow_loop_pre_header_find (header, dom)
|
||
basic_block header;
|
||
const sbitmap *dom;
|
||
{
|
||
basic_block pre_header;
|
||
edge e;
|
||
|
||
/* If block p is a predecessor of the header and is the only block
|
||
that the header does not dominate, then it is the pre-header. */
|
||
pre_header = NULL;
|
||
for (e = header->pred; e; e = e->pred_next)
|
||
{
|
||
basic_block node = e->src;
|
||
|
||
if (node != ENTRY_BLOCK_PTR
|
||
&& ! TEST_BIT (dom[node->index], header->index))
|
||
{
|
||
if (pre_header == NULL)
|
||
pre_header = node;
|
||
else
|
||
{
|
||
/* There are multiple edges into the header from outside
|
||
the loop so there is no pre-header block. */
|
||
pre_header = NULL;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return pre_header;
|
||
}
|
||
|
||
/* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
|
||
previously added. The insertion algorithm assumes that the loops
|
||
are added in the order found by a depth first search of the CFG. */
|
||
|
||
static void
|
||
flow_loop_tree_node_add (prevloop, loop)
|
||
struct loop *prevloop;
|
||
struct loop *loop;
|
||
{
|
||
|
||
if (flow_loop_nested_p (prevloop, loop))
|
||
{
|
||
prevloop->inner = loop;
|
||
loop->outer = prevloop;
|
||
return;
|
||
}
|
||
|
||
for (; prevloop->outer; prevloop = prevloop->outer)
|
||
if (flow_loop_nested_p (prevloop->outer, loop))
|
||
{
|
||
prevloop->next = loop;
|
||
loop->outer = prevloop->outer;
|
||
return;
|
||
}
|
||
|
||
prevloop->next = loop;
|
||
loop->outer = NULL;
|
||
}
|
||
|
||
/* Build the loop hierarchy tree for LOOPS. */
|
||
|
||
static void
|
||
flow_loops_tree_build (loops)
|
||
struct loops *loops;
|
||
{
|
||
int i;
|
||
int num_loops;
|
||
|
||
num_loops = loops->num;
|
||
if (! num_loops)
|
||
return;
|
||
|
||
/* Root the loop hierarchy tree with the first loop found.
|
||
Since we used a depth first search this should be the
|
||
outermost loop. */
|
||
loops->tree_root = &loops->array[0];
|
||
loops->tree_root->outer = loops->tree_root->inner
|
||
= loops->tree_root->next = NULL;
|
||
|
||
/* Add the remaining loops to the tree. */
|
||
for (i = 1; i < num_loops; i++)
|
||
flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
|
||
}
|
||
|
||
/* Helper function to compute loop nesting depth and enclosed loop level
|
||
for the natural loop specified by LOOP at the loop depth DEPTH.
|
||
Returns the loop level. */
|
||
|
||
static int
|
||
flow_loop_level_compute (loop, depth)
|
||
struct loop *loop;
|
||
int depth;
|
||
{
|
||
struct loop *inner;
|
||
int level = 1;
|
||
|
||
if (! loop)
|
||
return 0;
|
||
|
||
/* Traverse loop tree assigning depth and computing level as the
|
||
maximum level of all the inner loops of this loop. The loop
|
||
level is equivalent to the height of the loop in the loop tree
|
||
and corresponds to the number of enclosed loop levels (including
|
||
itself). */
|
||
for (inner = loop->inner; inner; inner = inner->next)
|
||
{
|
||
int ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
|
||
|
||
level = MAX (ilevel, level);
|
||
}
|
||
|
||
loop->level = level;
|
||
loop->depth = depth;
|
||
return level;
|
||
}
|
||
|
||
/* Compute the loop nesting depth and enclosed loop level for the loop
|
||
hierarchy tree specified by LOOPS. Return the maximum enclosed loop
|
||
level. */
|
||
|
||
static int
|
||
flow_loops_level_compute (loops)
|
||
struct loops *loops;
|
||
{
|
||
int levels = 0;
|
||
struct loop *loop;
|
||
int level;
|
||
|
||
/* Traverse all the outer level loops. */
|
||
for (loop = loops->tree_root; loop; loop = loop->next)
|
||
{
|
||
level = flow_loop_level_compute (loop, 1);
|
||
levels = MAX (levels, level);
|
||
}
|
||
|
||
return levels;
|
||
}
|
||
|
||
/* Scan a single natural loop specified by LOOP collecting information
|
||
about it specified by FLAGS. */
|
||
|
||
int
|
||
flow_loop_scan (loops, loop, flags)
|
||
struct loops *loops;
|
||
struct loop *loop;
|
||
int flags;
|
||
{
|
||
/* Determine prerequisites. */
|
||
if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
|
||
flags |= LOOP_EXIT_EDGES;
|
||
|
||
if (flags & LOOP_ENTRY_EDGES)
|
||
/* Find edges which enter the loop header. Note that the entry edges
|
||
should only enter the header of a natural loop. */
|
||
loop->num_entries = flow_loop_entry_edges_find (loop->header, loop->nodes,
|
||
&loop->entry_edges);
|
||
|
||
if (flags & LOOP_EXIT_EDGES)
|
||
/* Find edges which exit the loop. */
|
||
loop->num_exits
|
||
= flow_loop_exit_edges_find (loop->nodes, &loop->exit_edges);
|
||
|
||
if (flags & LOOP_EXITS_DOMS)
|
||
{
|
||
int j;
|
||
|
||
/* Determine which loop nodes dominate all the exits
|
||
of the loop. */
|
||
loop->exits_doms = sbitmap_alloc (n_basic_blocks);
|
||
sbitmap_copy (loop->exits_doms, loop->nodes);
|
||
for (j = 0; j < loop->num_exits; j++)
|
||
sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
|
||
loops->cfg.dom[loop->exit_edges[j]->src->index]);
|
||
|
||
/* The header of a natural loop must dominate
|
||
all exits. */
|
||
if (! TEST_BIT (loop->exits_doms, loop->header->index))
|
||
abort ();
|
||
}
|
||
|
||
if (flags & LOOP_PRE_HEADER)
|
||
{
|
||
/* Look to see if the loop has a pre-header node. */
|
||
loop->pre_header
|
||
= flow_loop_pre_header_find (loop->header, loops->cfg.dom);
|
||
|
||
/* Find the blocks within the extended basic block of
|
||
the loop pre-header. */
|
||
flow_loop_pre_header_scan (loop);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Find all the natural loops in the function and save in LOOPS structure and
|
||
recalculate loop_depth information in basic block structures. FLAGS
|
||
controls which loop information is collected. Return the number of natural
|
||
loops found. */
|
||
|
||
int
|
||
flow_loops_find (loops, flags)
|
||
struct loops *loops;
|
||
int flags;
|
||
{
|
||
int i;
|
||
int b;
|
||
int num_loops;
|
||
edge e;
|
||
sbitmap headers;
|
||
sbitmap *dom;
|
||
int *dfs_order;
|
||
int *rc_order;
|
||
|
||
/* This function cannot be repeatedly called with different
|
||
flags to build up the loop information. The loop tree
|
||
must always be built if this function is called. */
|
||
if (! (flags & LOOP_TREE))
|
||
abort ();
|
||
|
||
memset (loops, 0, sizeof *loops);
|
||
|
||
/* Taking care of this degenerate case makes the rest of
|
||
this code simpler. */
|
||
if (n_basic_blocks == 0)
|
||
return 0;
|
||
|
||
dfs_order = NULL;
|
||
rc_order = NULL;
|
||
|
||
/* Compute the dominators. */
|
||
dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||
calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
|
||
|
||
/* Count the number of loop edges (back edges). This should be the
|
||
same as the number of natural loops. */
|
||
num_loops = 0;
|
||
for (b = 0; b < n_basic_blocks; b++)
|
||
{
|
||
basic_block header;
|
||
|
||
header = BASIC_BLOCK (b);
|
||
header->loop_depth = 0;
|
||
|
||
for (e = header->pred; e; e = e->pred_next)
|
||
{
|
||
basic_block latch = e->src;
|
||
|
||
/* Look for back edges where a predecessor is dominated
|
||
by this block. A natural loop has a single entry
|
||
node (header) that dominates all the nodes in the
|
||
loop. It also has single back edge to the header
|
||
from a latch node. Note that multiple natural loops
|
||
may share the same header. */
|
||
if (b != header->index)
|
||
abort ();
|
||
|
||
if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
|
||
num_loops++;
|
||
}
|
||
}
|
||
|
||
if (num_loops)
|
||
{
|
||
/* Compute depth first search order of the CFG so that outer
|
||
natural loops will be found before inner natural loops. */
|
||
dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
|
||
rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
|
||
flow_depth_first_order_compute (dfs_order, rc_order);
|
||
|
||
/* Save CFG derived information to avoid recomputing it. */
|
||
loops->cfg.dom = dom;
|
||
loops->cfg.dfs_order = dfs_order;
|
||
loops->cfg.rc_order = rc_order;
|
||
|
||
/* Allocate loop structures. */
|
||
loops->array
|
||
= (struct loop *) xcalloc (num_loops, sizeof (struct loop));
|
||
|
||
headers = sbitmap_alloc (n_basic_blocks);
|
||
sbitmap_zero (headers);
|
||
|
||
loops->shared_headers = sbitmap_alloc (n_basic_blocks);
|
||
sbitmap_zero (loops->shared_headers);
|
||
|
||
/* Find and record information about all the natural loops
|
||
in the CFG. */
|
||
num_loops = 0;
|
||
for (b = n_basic_blocks - 1; b >= 0; b--)
|
||
{
|
||
basic_block latch;
|
||
|
||
/* Search the nodes of the CFG in reverse completion order
|
||
so that we can find outer loops first. */
|
||
latch = BASIC_BLOCK (rc_order[b]);
|
||
|
||
/* Look for all the possible headers for this latch block. */
|
||
for (e = latch->succ; e; e = e->succ_next)
|
||
{
|
||
basic_block header = e->dest;
|
||
|
||
/* Look for forward edges where this block is dominated by
|
||
a successor of this block. A natural loop has a single
|
||
entry node (header) that dominates all the nodes in the
|
||
loop. It also has single back edge to the header from a
|
||
latch node. Note that multiple natural loops may share
|
||
the same header. */
|
||
if (header != EXIT_BLOCK_PTR
|
||
&& TEST_BIT (dom[latch->index], header->index))
|
||
{
|
||
struct loop *loop;
|
||
|
||
loop = loops->array + num_loops;
|
||
|
||
loop->header = header;
|
||
loop->latch = latch;
|
||
loop->num = num_loops;
|
||
|
||
num_loops++;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < num_loops; i++)
|
||
{
|
||
struct loop *loop = &loops->array[i];
|
||
|
||
/* Keep track of blocks that are loop headers so
|
||
that we can tell which loops should be merged. */
|
||
if (TEST_BIT (headers, loop->header->index))
|
||
SET_BIT (loops->shared_headers, loop->header->index);
|
||
SET_BIT (headers, loop->header->index);
|
||
|
||
/* Find nodes contained within the loop. */
|
||
loop->nodes = sbitmap_alloc (n_basic_blocks);
|
||
loop->num_nodes
|
||
= flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
|
||
|
||
/* Compute first and last blocks within the loop.
|
||
These are often the same as the loop header and
|
||
loop latch respectively, but this is not always
|
||
the case. */
|
||
loop->first
|
||
= BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
|
||
loop->last
|
||
= BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));
|
||
|
||
flow_loop_scan (loops, loop, flags);
|
||
}
|
||
|
||
/* Natural loops with shared headers may either be disjoint or
|
||
nested. Disjoint loops with shared headers cannot be inner
|
||
loops and should be merged. For now just mark loops that share
|
||
headers. */
|
||
for (i = 0; i < num_loops; i++)
|
||
if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
|
||
loops->array[i].shared = 1;
|
||
|
||
sbitmap_free (headers);
|
||
}
|
||
else
|
||
sbitmap_vector_free (dom);
|
||
|
||
loops->num = num_loops;
|
||
|
||
/* Build the loop hierarchy tree. */
|
||
flow_loops_tree_build (loops);
|
||
|
||
/* Assign the loop nesting depth and enclosed loop level for each
|
||
loop. */
|
||
loops->levels = flow_loops_level_compute (loops);
|
||
|
||
return num_loops;
|
||
}
|
||
|
||
/* Update the information regarding the loops in the CFG
|
||
specified by LOOPS. */
|
||
|
||
int
|
||
flow_loops_update (loops, flags)
|
||
struct loops *loops;
|
||
int flags;
|
||
{
|
||
/* One day we may want to update the current loop data. For now
|
||
throw away the old stuff and rebuild what we need. */
|
||
if (loops->array)
|
||
flow_loops_free (loops);
|
||
|
||
return flow_loops_find (loops, flags);
|
||
}
|
||
|
||
/* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
|
||
|
||
int
|
||
flow_loop_outside_edge_p (loop, e)
|
||
const struct loop *loop;
|
||
edge e;
|
||
{
|
||
if (e->dest != loop->header)
|
||
abort ();
|
||
|
||
return (e->src == ENTRY_BLOCK_PTR)
|
||
|| ! TEST_BIT (loop->nodes, e->src->index);
|
||
}
|