59d1ed5b20
and preserve our customizations, where necessary.
867 lines
29 KiB
C++
867 lines
29 KiB
C++
//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements uninitialized values analysis for source-level CFGs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
|
|
#include "clang/Analysis/Analyses/UninitializedValues.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PackedVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include <utility>
|
|
|
|
using namespace clang;
|
|
|
|
#define DEBUG_LOGGING 0
|
|
|
|
static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
|
|
if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
|
|
!vd->isExceptionVariable() && !vd->isInitCapture() &&
|
|
vd->getDeclContext() == dc) {
|
|
QualType ty = vd->getType();
|
|
return ty->isScalarType() || ty->isVectorType();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// DeclToIndex: a mapping from Decls we track to value indices.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
class DeclToIndex {
|
|
llvm::DenseMap<const VarDecl *, unsigned> map;
|
|
public:
|
|
DeclToIndex() {}
|
|
|
|
/// Compute the actual mapping from declarations to bits.
|
|
void computeMap(const DeclContext &dc);
|
|
|
|
/// Return the number of declarations in the map.
|
|
unsigned size() const { return map.size(); }
|
|
|
|
/// Returns the bit vector index for a given declaration.
|
|
Optional<unsigned> getValueIndex(const VarDecl *d) const;
|
|
};
|
|
}
|
|
|
|
void DeclToIndex::computeMap(const DeclContext &dc) {
|
|
unsigned count = 0;
|
|
DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
|
|
E(dc.decls_end());
|
|
for ( ; I != E; ++I) {
|
|
const VarDecl *vd = *I;
|
|
if (isTrackedVar(vd, &dc))
|
|
map[vd] = count++;
|
|
}
|
|
}
|
|
|
|
Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
|
|
llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
|
|
if (I == map.end())
|
|
return None;
|
|
return I->second;
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// CFGBlockValues: dataflow values for CFG blocks.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
// These values are defined in such a way that a merge can be done using
|
|
// a bitwise OR.
|
|
enum Value { Unknown = 0x0, /* 00 */
|
|
Initialized = 0x1, /* 01 */
|
|
Uninitialized = 0x2, /* 10 */
|
|
MayUninitialized = 0x3 /* 11 */ };
|
|
|
|
static bool isUninitialized(const Value v) {
|
|
return v >= Uninitialized;
|
|
}
|
|
static bool isAlwaysUninit(const Value v) {
|
|
return v == Uninitialized;
|
|
}
|
|
|
|
namespace {
|
|
|
|
typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
|
|
|
|
class CFGBlockValues {
|
|
const CFG &cfg;
|
|
SmallVector<ValueVector, 8> vals;
|
|
ValueVector scratch;
|
|
DeclToIndex declToIndex;
|
|
public:
|
|
CFGBlockValues(const CFG &cfg);
|
|
|
|
unsigned getNumEntries() const { return declToIndex.size(); }
|
|
|
|
void computeSetOfDeclarations(const DeclContext &dc);
|
|
ValueVector &getValueVector(const CFGBlock *block) {
|
|
return vals[block->getBlockID()];
|
|
}
|
|
|
|
void setAllScratchValues(Value V);
|
|
void mergeIntoScratch(ValueVector const &source, bool isFirst);
|
|
bool updateValueVectorWithScratch(const CFGBlock *block);
|
|
|
|
bool hasNoDeclarations() const {
|
|
return declToIndex.size() == 0;
|
|
}
|
|
|
|
void resetScratch();
|
|
|
|
ValueVector::reference operator[](const VarDecl *vd);
|
|
|
|
Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
|
|
const VarDecl *vd) {
|
|
const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
|
|
assert(idx.hasValue());
|
|
return getValueVector(block)[idx.getValue()];
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
|
|
|
|
void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
|
|
declToIndex.computeMap(dc);
|
|
unsigned decls = declToIndex.size();
|
|
scratch.resize(decls);
|
|
unsigned n = cfg.getNumBlockIDs();
|
|
if (!n)
|
|
return;
|
|
vals.resize(n);
|
|
for (unsigned i = 0; i < n; ++i)
|
|
vals[i].resize(decls);
|
|
}
|
|
|
|
#if DEBUG_LOGGING
|
|
static void printVector(const CFGBlock *block, ValueVector &bv,
|
|
unsigned num) {
|
|
llvm::errs() << block->getBlockID() << " :";
|
|
for (unsigned i = 0; i < bv.size(); ++i) {
|
|
llvm::errs() << ' ' << bv[i];
|
|
}
|
|
llvm::errs() << " : " << num << '\n';
|
|
}
|
|
#endif
|
|
|
|
void CFGBlockValues::setAllScratchValues(Value V) {
|
|
for (unsigned I = 0, E = scratch.size(); I != E; ++I)
|
|
scratch[I] = V;
|
|
}
|
|
|
|
void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
|
|
bool isFirst) {
|
|
if (isFirst)
|
|
scratch = source;
|
|
else
|
|
scratch |= source;
|
|
}
|
|
|
|
bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
|
|
ValueVector &dst = getValueVector(block);
|
|
bool changed = (dst != scratch);
|
|
if (changed)
|
|
dst = scratch;
|
|
#if DEBUG_LOGGING
|
|
printVector(block, scratch, 0);
|
|
#endif
|
|
return changed;
|
|
}
|
|
|
|
void CFGBlockValues::resetScratch() {
|
|
scratch.reset();
|
|
}
|
|
|
|
ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
|
|
const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
|
|
assert(idx.hasValue());
|
|
return scratch[idx.getValue()];
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// Worklist: worklist for dataflow analysis.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
class DataflowWorklist {
|
|
PostOrderCFGView::iterator PO_I, PO_E;
|
|
SmallVector<const CFGBlock *, 20> worklist;
|
|
llvm::BitVector enqueuedBlocks;
|
|
public:
|
|
DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
|
|
: PO_I(view.begin()), PO_E(view.end()),
|
|
enqueuedBlocks(cfg.getNumBlockIDs(), true) {
|
|
// Treat the first block as already analyzed.
|
|
if (PO_I != PO_E) {
|
|
assert(*PO_I == &cfg.getEntry());
|
|
enqueuedBlocks[(*PO_I)->getBlockID()] = false;
|
|
++PO_I;
|
|
}
|
|
}
|
|
|
|
void enqueueSuccessors(const CFGBlock *block);
|
|
const CFGBlock *dequeue();
|
|
};
|
|
}
|
|
|
|
void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
|
|
for (CFGBlock::const_succ_iterator I = block->succ_begin(),
|
|
E = block->succ_end(); I != E; ++I) {
|
|
const CFGBlock *Successor = *I;
|
|
if (!Successor || enqueuedBlocks[Successor->getBlockID()])
|
|
continue;
|
|
worklist.push_back(Successor);
|
|
enqueuedBlocks[Successor->getBlockID()] = true;
|
|
}
|
|
}
|
|
|
|
const CFGBlock *DataflowWorklist::dequeue() {
|
|
const CFGBlock *B = nullptr;
|
|
|
|
// First dequeue from the worklist. This can represent
|
|
// updates along backedges that we want propagated as quickly as possible.
|
|
if (!worklist.empty())
|
|
B = worklist.pop_back_val();
|
|
|
|
// Next dequeue from the initial reverse post order. This is the
|
|
// theoretical ideal in the presence of no back edges.
|
|
else if (PO_I != PO_E) {
|
|
B = *PO_I;
|
|
++PO_I;
|
|
}
|
|
else {
|
|
return nullptr;
|
|
}
|
|
|
|
assert(enqueuedBlocks[B->getBlockID()] == true);
|
|
enqueuedBlocks[B->getBlockID()] = false;
|
|
return B;
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// Classification of DeclRefExprs as use or initialization.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
class FindVarResult {
|
|
const VarDecl *vd;
|
|
const DeclRefExpr *dr;
|
|
public:
|
|
FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
|
|
|
|
const DeclRefExpr *getDeclRefExpr() const { return dr; }
|
|
const VarDecl *getDecl() const { return vd; }
|
|
};
|
|
|
|
static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
|
|
while (Ex) {
|
|
Ex = Ex->IgnoreParenNoopCasts(C);
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
|
|
if (CE->getCastKind() == CK_LValueBitCast) {
|
|
Ex = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return Ex;
|
|
}
|
|
|
|
/// If E is an expression comprising a reference to a single variable, find that
|
|
/// variable.
|
|
static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
|
|
if (const DeclRefExpr *DRE =
|
|
dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
|
if (isTrackedVar(VD, DC))
|
|
return FindVarResult(VD, DRE);
|
|
return FindVarResult(nullptr, nullptr);
|
|
}
|
|
|
|
/// \brief Classify each DeclRefExpr as an initialization or a use. Any
|
|
/// DeclRefExpr which isn't explicitly classified will be assumed to have
|
|
/// escaped the analysis and will be treated as an initialization.
|
|
class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
|
|
public:
|
|
enum Class {
|
|
Init,
|
|
Use,
|
|
SelfInit,
|
|
Ignore
|
|
};
|
|
|
|
private:
|
|
const DeclContext *DC;
|
|
llvm::DenseMap<const DeclRefExpr*, Class> Classification;
|
|
|
|
bool isTrackedVar(const VarDecl *VD) const {
|
|
return ::isTrackedVar(VD, DC);
|
|
}
|
|
|
|
void classify(const Expr *E, Class C);
|
|
|
|
public:
|
|
ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
|
|
|
|
void VisitDeclStmt(DeclStmt *DS);
|
|
void VisitUnaryOperator(UnaryOperator *UO);
|
|
void VisitBinaryOperator(BinaryOperator *BO);
|
|
void VisitCallExpr(CallExpr *CE);
|
|
void VisitCastExpr(CastExpr *CE);
|
|
|
|
void operator()(Stmt *S) { Visit(S); }
|
|
|
|
Class get(const DeclRefExpr *DRE) const {
|
|
llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
|
|
= Classification.find(DRE);
|
|
if (I != Classification.end())
|
|
return I->second;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
|
|
if (!VD || !isTrackedVar(VD))
|
|
return Ignore;
|
|
|
|
return Init;
|
|
}
|
|
};
|
|
}
|
|
|
|
static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
|
|
if (Expr *Init = VD->getInit()) {
|
|
const DeclRefExpr *DRE
|
|
= dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
|
|
if (DRE && DRE->getDecl() == VD)
|
|
return DRE;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void ClassifyRefs::classify(const Expr *E, Class C) {
|
|
// The result of a ?: could also be an lvalue.
|
|
E = E->IgnoreParens();
|
|
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
const Expr *TrueExpr = CO->getTrueExpr();
|
|
if (!isa<OpaqueValueExpr>(TrueExpr))
|
|
classify(TrueExpr, C);
|
|
classify(CO->getFalseExpr(), C);
|
|
return;
|
|
}
|
|
|
|
FindVarResult Var = findVar(E, DC);
|
|
if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
|
|
Classification[DRE] = std::max(Classification[DRE], C);
|
|
}
|
|
|
|
void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
|
|
for (auto *DI : DS->decls()) {
|
|
VarDecl *VD = dyn_cast<VarDecl>(DI);
|
|
if (VD && isTrackedVar(VD))
|
|
if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
|
|
Classification[DRE] = SelfInit;
|
|
}
|
|
}
|
|
|
|
void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
|
|
// Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
|
|
// is not a compound-assignment, we will treat it as initializing the variable
|
|
// when TransferFunctions visits it. A compound-assignment does not affect
|
|
// whether a variable is uninitialized, and there's no point counting it as a
|
|
// use.
|
|
if (BO->isCompoundAssignmentOp())
|
|
classify(BO->getLHS(), Use);
|
|
else if (BO->getOpcode() == BO_Assign)
|
|
classify(BO->getLHS(), Ignore);
|
|
}
|
|
|
|
void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
|
|
// Increment and decrement are uses despite there being no lvalue-to-rvalue
|
|
// conversion.
|
|
if (UO->isIncrementDecrementOp())
|
|
classify(UO->getSubExpr(), Use);
|
|
}
|
|
|
|
void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
|
|
// If a value is passed by const reference to a function, we should not assume
|
|
// that it is initialized by the call, and we conservatively do not assume
|
|
// that it is used.
|
|
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
|
|
I != E; ++I)
|
|
if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
|
|
classify(*I, Ignore);
|
|
}
|
|
|
|
void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
|
|
if (CE->getCastKind() == CK_LValueToRValue)
|
|
classify(CE->getSubExpr(), Use);
|
|
else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
|
|
if (CSE->getType()->isVoidType()) {
|
|
// Squelch any detected load of an uninitialized value if
|
|
// we cast it to void.
|
|
// e.g. (void) x;
|
|
classify(CSE->getSubExpr(), Ignore);
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// Transfer function for uninitialized values analysis.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
class TransferFunctions : public StmtVisitor<TransferFunctions> {
|
|
CFGBlockValues &vals;
|
|
const CFG &cfg;
|
|
const CFGBlock *block;
|
|
AnalysisDeclContext ∾
|
|
const ClassifyRefs &classification;
|
|
ObjCNoReturn objCNoRet;
|
|
UninitVariablesHandler &handler;
|
|
|
|
public:
|
|
TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
|
|
const CFGBlock *block, AnalysisDeclContext &ac,
|
|
const ClassifyRefs &classification,
|
|
UninitVariablesHandler &handler)
|
|
: vals(vals), cfg(cfg), block(block), ac(ac),
|
|
classification(classification), objCNoRet(ac.getASTContext()),
|
|
handler(handler) {}
|
|
|
|
void reportUse(const Expr *ex, const VarDecl *vd);
|
|
|
|
void VisitBinaryOperator(BinaryOperator *bo);
|
|
void VisitBlockExpr(BlockExpr *be);
|
|
void VisitCallExpr(CallExpr *ce);
|
|
void VisitDeclRefExpr(DeclRefExpr *dr);
|
|
void VisitDeclStmt(DeclStmt *ds);
|
|
void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
|
|
void VisitObjCMessageExpr(ObjCMessageExpr *ME);
|
|
|
|
bool isTrackedVar(const VarDecl *vd) {
|
|
return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
|
|
}
|
|
|
|
FindVarResult findVar(const Expr *ex) {
|
|
return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
|
|
}
|
|
|
|
UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
|
|
UninitUse Use(ex, isAlwaysUninit(v));
|
|
|
|
assert(isUninitialized(v));
|
|
if (Use.getKind() == UninitUse::Always)
|
|
return Use;
|
|
|
|
// If an edge which leads unconditionally to this use did not initialize
|
|
// the variable, we can say something stronger than 'may be uninitialized':
|
|
// we can say 'either it's used uninitialized or you have dead code'.
|
|
//
|
|
// We track the number of successors of a node which have been visited, and
|
|
// visit a node once we have visited all of its successors. Only edges where
|
|
// the variable might still be uninitialized are followed. Since a variable
|
|
// can't transfer from being initialized to being uninitialized, this will
|
|
// trace out the subgraph which inevitably leads to the use and does not
|
|
// initialize the variable. We do not want to skip past loops, since their
|
|
// non-termination might be correlated with the initialization condition.
|
|
//
|
|
// For example:
|
|
//
|
|
// void f(bool a, bool b) {
|
|
// block1: int n;
|
|
// if (a) {
|
|
// block2: if (b)
|
|
// block3: n = 1;
|
|
// block4: } else if (b) {
|
|
// block5: while (!a) {
|
|
// block6: do_work(&a);
|
|
// n = 2;
|
|
// }
|
|
// }
|
|
// block7: if (a)
|
|
// block8: g();
|
|
// block9: return n;
|
|
// }
|
|
//
|
|
// Starting from the maybe-uninitialized use in block 9:
|
|
// * Block 7 is not visited because we have only visited one of its two
|
|
// successors.
|
|
// * Block 8 is visited because we've visited its only successor.
|
|
// From block 8:
|
|
// * Block 7 is visited because we've now visited both of its successors.
|
|
// From block 7:
|
|
// * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
|
|
// of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
|
|
// * Block 3 is not visited because it initializes 'n'.
|
|
// Now the algorithm terminates, having visited blocks 7 and 8, and having
|
|
// found the frontier is blocks 2, 4, and 5.
|
|
//
|
|
// 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
|
|
// and 4), so we report that any time either of those edges is taken (in
|
|
// each case when 'b == false'), 'n' is used uninitialized.
|
|
SmallVector<const CFGBlock*, 32> Queue;
|
|
SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
|
|
Queue.push_back(block);
|
|
// Specify that we've already visited all successors of the starting block.
|
|
// This has the dual purpose of ensuring we never add it to the queue, and
|
|
// of marking it as not being a candidate element of the frontier.
|
|
SuccsVisited[block->getBlockID()] = block->succ_size();
|
|
while (!Queue.empty()) {
|
|
const CFGBlock *B = Queue.pop_back_val();
|
|
|
|
// If the use is always reached from the entry block, make a note of that.
|
|
if (B == &cfg.getEntry())
|
|
Use.setUninitAfterCall();
|
|
|
|
for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
|
|
I != E; ++I) {
|
|
const CFGBlock *Pred = *I;
|
|
if (!Pred)
|
|
continue;
|
|
|
|
Value AtPredExit = vals.getValue(Pred, B, vd);
|
|
if (AtPredExit == Initialized)
|
|
// This block initializes the variable.
|
|
continue;
|
|
if (AtPredExit == MayUninitialized &&
|
|
vals.getValue(B, nullptr, vd) == Uninitialized) {
|
|
// This block declares the variable (uninitialized), and is reachable
|
|
// from a block that initializes the variable. We can't guarantee to
|
|
// give an earlier location for the diagnostic (and it appears that
|
|
// this code is intended to be reachable) so give a diagnostic here
|
|
// and go no further down this path.
|
|
Use.setUninitAfterDecl();
|
|
continue;
|
|
}
|
|
|
|
unsigned &SV = SuccsVisited[Pred->getBlockID()];
|
|
if (!SV) {
|
|
// When visiting the first successor of a block, mark all NULL
|
|
// successors as having been visited.
|
|
for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
|
|
SE = Pred->succ_end();
|
|
SI != SE; ++SI)
|
|
if (!*SI)
|
|
++SV;
|
|
}
|
|
|
|
if (++SV == Pred->succ_size())
|
|
// All paths from this block lead to the use and don't initialize the
|
|
// variable.
|
|
Queue.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
// Scan the frontier, looking for blocks where the variable was
|
|
// uninitialized.
|
|
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
|
|
const CFGBlock *Block = *BI;
|
|
unsigned BlockID = Block->getBlockID();
|
|
const Stmt *Term = Block->getTerminator();
|
|
if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
|
|
Term) {
|
|
// This block inevitably leads to the use. If we have an edge from here
|
|
// to a post-dominator block, and the variable is uninitialized on that
|
|
// edge, we have found a bug.
|
|
for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
|
|
E = Block->succ_end(); I != E; ++I) {
|
|
const CFGBlock *Succ = *I;
|
|
if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
|
|
vals.getValue(Block, Succ, vd) == Uninitialized) {
|
|
// Switch cases are a special case: report the label to the caller
|
|
// as the 'terminator', not the switch statement itself. Suppress
|
|
// situations where no label matched: we can't be sure that's
|
|
// possible.
|
|
if (isa<SwitchStmt>(Term)) {
|
|
const Stmt *Label = Succ->getLabel();
|
|
if (!Label || !isa<SwitchCase>(Label))
|
|
// Might not be possible.
|
|
continue;
|
|
UninitUse::Branch Branch;
|
|
Branch.Terminator = Label;
|
|
Branch.Output = 0; // Ignored.
|
|
Use.addUninitBranch(Branch);
|
|
} else {
|
|
UninitUse::Branch Branch;
|
|
Branch.Terminator = Term;
|
|
Branch.Output = I - Block->succ_begin();
|
|
Use.addUninitBranch(Branch);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Use;
|
|
}
|
|
};
|
|
}
|
|
|
|
void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
|
|
Value v = vals[vd];
|
|
if (isUninitialized(v))
|
|
handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
|
|
}
|
|
|
|
void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
|
|
// This represents an initialization of the 'element' value.
|
|
if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
|
|
const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
|
|
if (isTrackedVar(VD))
|
|
vals[VD] = Initialized;
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
|
|
const BlockDecl *bd = be->getBlockDecl();
|
|
for (const auto &I : bd->captures()) {
|
|
const VarDecl *vd = I.getVariable();
|
|
if (!isTrackedVar(vd))
|
|
continue;
|
|
if (I.isByRef()) {
|
|
vals[vd] = Initialized;
|
|
continue;
|
|
}
|
|
reportUse(be, vd);
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitCallExpr(CallExpr *ce) {
|
|
if (Decl *Callee = ce->getCalleeDecl()) {
|
|
if (Callee->hasAttr<ReturnsTwiceAttr>()) {
|
|
// After a call to a function like setjmp or vfork, any variable which is
|
|
// initialized anywhere within this function may now be initialized. For
|
|
// now, just assume such a call initializes all variables. FIXME: Only
|
|
// mark variables as initialized if they have an initializer which is
|
|
// reachable from here.
|
|
vals.setAllScratchValues(Initialized);
|
|
}
|
|
else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
|
|
// Functions labeled like "analyzer_noreturn" are often used to denote
|
|
// "panic" functions that in special debug situations can still return,
|
|
// but for the most part should not be treated as returning. This is a
|
|
// useful annotation borrowed from the static analyzer that is useful for
|
|
// suppressing branch-specific false positives when we call one of these
|
|
// functions but keep pretending the path continues (when in reality the
|
|
// user doesn't care).
|
|
vals.setAllScratchValues(Unknown);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
|
|
switch (classification.get(dr)) {
|
|
case ClassifyRefs::Ignore:
|
|
break;
|
|
case ClassifyRefs::Use:
|
|
reportUse(dr, cast<VarDecl>(dr->getDecl()));
|
|
break;
|
|
case ClassifyRefs::Init:
|
|
vals[cast<VarDecl>(dr->getDecl())] = Initialized;
|
|
break;
|
|
case ClassifyRefs::SelfInit:
|
|
handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
|
|
if (BO->getOpcode() == BO_Assign) {
|
|
FindVarResult Var = findVar(BO->getLHS());
|
|
if (const VarDecl *VD = Var.getDecl())
|
|
vals[VD] = Initialized;
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
|
|
for (auto *DI : DS->decls()) {
|
|
VarDecl *VD = dyn_cast<VarDecl>(DI);
|
|
if (VD && isTrackedVar(VD)) {
|
|
if (getSelfInitExpr(VD)) {
|
|
// If the initializer consists solely of a reference to itself, we
|
|
// explicitly mark the variable as uninitialized. This allows code
|
|
// like the following:
|
|
//
|
|
// int x = x;
|
|
//
|
|
// to deliberately leave a variable uninitialized. Different analysis
|
|
// clients can detect this pattern and adjust their reporting
|
|
// appropriately, but we need to continue to analyze subsequent uses
|
|
// of the variable.
|
|
vals[VD] = Uninitialized;
|
|
} else if (VD->getInit()) {
|
|
// Treat the new variable as initialized.
|
|
vals[VD] = Initialized;
|
|
} else {
|
|
// No initializer: the variable is now uninitialized. This matters
|
|
// for cases like:
|
|
// while (...) {
|
|
// int n;
|
|
// use(n);
|
|
// n = 0;
|
|
// }
|
|
// FIXME: Mark the variable as uninitialized whenever its scope is
|
|
// left, since its scope could be re-entered by a jump over the
|
|
// declaration.
|
|
vals[VD] = Uninitialized;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
|
|
// If the Objective-C message expression is an implicit no-return that
|
|
// is not modeled in the CFG, set the tracked dataflow values to Unknown.
|
|
if (objCNoRet.isImplicitNoReturn(ME)) {
|
|
vals.setAllScratchValues(Unknown);
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// High-level "driver" logic for uninitialized values analysis.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
|
|
AnalysisDeclContext &ac, CFGBlockValues &vals,
|
|
const ClassifyRefs &classification,
|
|
llvm::BitVector &wasAnalyzed,
|
|
UninitVariablesHandler &handler) {
|
|
wasAnalyzed[block->getBlockID()] = true;
|
|
vals.resetScratch();
|
|
// Merge in values of predecessor blocks.
|
|
bool isFirst = true;
|
|
for (CFGBlock::const_pred_iterator I = block->pred_begin(),
|
|
E = block->pred_end(); I != E; ++I) {
|
|
const CFGBlock *pred = *I;
|
|
if (!pred)
|
|
continue;
|
|
if (wasAnalyzed[pred->getBlockID()]) {
|
|
vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
|
|
isFirst = false;
|
|
}
|
|
}
|
|
// Apply the transfer function.
|
|
TransferFunctions tf(vals, cfg, block, ac, classification, handler);
|
|
for (CFGBlock::const_iterator I = block->begin(), E = block->end();
|
|
I != E; ++I) {
|
|
if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
|
|
tf.Visit(const_cast<Stmt*>(cs->getStmt()));
|
|
}
|
|
return vals.updateValueVectorWithScratch(block);
|
|
}
|
|
|
|
/// PruneBlocksHandler is a special UninitVariablesHandler that is used
|
|
/// to detect when a CFGBlock has any *potential* use of an uninitialized
|
|
/// variable. It is mainly used to prune out work during the final
|
|
/// reporting pass.
|
|
namespace {
|
|
struct PruneBlocksHandler : public UninitVariablesHandler {
|
|
PruneBlocksHandler(unsigned numBlocks)
|
|
: hadUse(numBlocks, false), hadAnyUse(false),
|
|
currentBlock(0) {}
|
|
|
|
virtual ~PruneBlocksHandler() {}
|
|
|
|
/// Records if a CFGBlock had a potential use of an uninitialized variable.
|
|
llvm::BitVector hadUse;
|
|
|
|
/// Records if any CFGBlock had a potential use of an uninitialized variable.
|
|
bool hadAnyUse;
|
|
|
|
/// The current block to scribble use information.
|
|
unsigned currentBlock;
|
|
|
|
void handleUseOfUninitVariable(const VarDecl *vd,
|
|
const UninitUse &use) override {
|
|
hadUse[currentBlock] = true;
|
|
hadAnyUse = true;
|
|
}
|
|
|
|
/// Called when the uninitialized variable analysis detects the
|
|
/// idiom 'int x = x'. All other uses of 'x' within the initializer
|
|
/// are handled by handleUseOfUninitVariable.
|
|
void handleSelfInit(const VarDecl *vd) override {
|
|
hadUse[currentBlock] = true;
|
|
hadAnyUse = true;
|
|
}
|
|
};
|
|
}
|
|
|
|
void clang::runUninitializedVariablesAnalysis(
|
|
const DeclContext &dc,
|
|
const CFG &cfg,
|
|
AnalysisDeclContext &ac,
|
|
UninitVariablesHandler &handler,
|
|
UninitVariablesAnalysisStats &stats) {
|
|
CFGBlockValues vals(cfg);
|
|
vals.computeSetOfDeclarations(dc);
|
|
if (vals.hasNoDeclarations())
|
|
return;
|
|
|
|
stats.NumVariablesAnalyzed = vals.getNumEntries();
|
|
|
|
// Precompute which expressions are uses and which are initializations.
|
|
ClassifyRefs classification(ac);
|
|
cfg.VisitBlockStmts(classification);
|
|
|
|
// Mark all variables uninitialized at the entry.
|
|
const CFGBlock &entry = cfg.getEntry();
|
|
ValueVector &vec = vals.getValueVector(&entry);
|
|
const unsigned n = vals.getNumEntries();
|
|
for (unsigned j = 0; j < n ; ++j) {
|
|
vec[j] = Uninitialized;
|
|
}
|
|
|
|
// Proceed with the workist.
|
|
DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
|
|
llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
|
|
worklist.enqueueSuccessors(&cfg.getEntry());
|
|
llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
|
|
wasAnalyzed[cfg.getEntry().getBlockID()] = true;
|
|
PruneBlocksHandler PBH(cfg.getNumBlockIDs());
|
|
|
|
while (const CFGBlock *block = worklist.dequeue()) {
|
|
PBH.currentBlock = block->getBlockID();
|
|
|
|
// Did the block change?
|
|
bool changed = runOnBlock(block, cfg, ac, vals,
|
|
classification, wasAnalyzed, PBH);
|
|
++stats.NumBlockVisits;
|
|
if (changed || !previouslyVisited[block->getBlockID()])
|
|
worklist.enqueueSuccessors(block);
|
|
previouslyVisited[block->getBlockID()] = true;
|
|
}
|
|
|
|
if (!PBH.hadAnyUse)
|
|
return;
|
|
|
|
// Run through the blocks one more time, and report uninitialized variables.
|
|
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
|
|
const CFGBlock *block = *BI;
|
|
if (PBH.hadUse[block->getBlockID()]) {
|
|
runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
|
|
++stats.NumBlockVisits;
|
|
}
|
|
}
|
|
}
|
|
|
|
UninitVariablesHandler::~UninitVariablesHandler() {}
|