freebsd-dev/contrib/llvm/utils/TableGen/X86DisassemblerTables.cpp
Dimitry Andric 91bc56ed82 Merge llvm 3.5.0 release from ^/vendor/llvm/dist, resolve conflicts, and
preserve our customizations, where necessary.
2014-11-24 17:02:24 +00:00

854 lines
27 KiB
C++

//===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler Emitter.
// It contains the implementation of the disassembler tables.
// Documentation for the disassembler emitter in general can be found in
// X86DisasemblerEmitter.h.
//
//===----------------------------------------------------------------------===//
#include "X86DisassemblerTables.h"
#include "X86DisassemblerShared.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include <map>
using namespace llvm;
using namespace X86Disassembler;
/// stringForContext - Returns a string containing the name of a particular
/// InstructionContext, usually for diagnostic purposes.
///
/// @param insnContext - The instruction class to transform to a string.
/// @return - A statically-allocated string constant that contains the
/// name of the instruction class.
static inline const char* stringForContext(InstructionContext insnContext) {
switch (insnContext) {
default:
llvm_unreachable("Unhandled instruction class");
#define ENUM_ENTRY(n, r, d) case n: return #n; break;
#define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) ENUM_ENTRY(n##_K_B, r, d)\
ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)\
ENUM_ENTRY(n##_KZ_B, r, d)
INSTRUCTION_CONTEXTS
#undef ENUM_ENTRY
#undef ENUM_ENTRY_K_B
}
}
/// stringForOperandType - Like stringForContext, but for OperandTypes.
static inline const char* stringForOperandType(OperandType type) {
switch (type) {
default:
llvm_unreachable("Unhandled type");
#define ENUM_ENTRY(i, d) case i: return #i;
TYPES
#undef ENUM_ENTRY
}
}
/// stringForOperandEncoding - like stringForContext, but for
/// OperandEncodings.
static inline const char* stringForOperandEncoding(OperandEncoding encoding) {
switch (encoding) {
default:
llvm_unreachable("Unhandled encoding");
#define ENUM_ENTRY(i, d) case i: return #i;
ENCODINGS
#undef ENUM_ENTRY
}
}
/// inheritsFrom - Indicates whether all instructions in one class also belong
/// to another class.
///
/// @param child - The class that may be the subset
/// @param parent - The class that may be the superset
/// @return - True if child is a subset of parent, false otherwise.
static inline bool inheritsFrom(InstructionContext child,
InstructionContext parent,
bool VEX_LIG = false) {
if (child == parent)
return true;
switch (parent) {
case IC:
return(inheritsFrom(child, IC_64BIT) ||
inheritsFrom(child, IC_OPSIZE) ||
inheritsFrom(child, IC_ADSIZE) ||
inheritsFrom(child, IC_XD) ||
inheritsFrom(child, IC_XS));
case IC_64BIT:
return(inheritsFrom(child, IC_64BIT_REXW) ||
inheritsFrom(child, IC_64BIT_OPSIZE) ||
inheritsFrom(child, IC_64BIT_ADSIZE) ||
inheritsFrom(child, IC_64BIT_XD) ||
inheritsFrom(child, IC_64BIT_XS));
case IC_OPSIZE:
return inheritsFrom(child, IC_64BIT_OPSIZE);
case IC_ADSIZE:
case IC_64BIT_ADSIZE:
return false;
case IC_XD:
return inheritsFrom(child, IC_64BIT_XD);
case IC_XS:
return inheritsFrom(child, IC_64BIT_XS);
case IC_XD_OPSIZE:
return inheritsFrom(child, IC_64BIT_XD_OPSIZE);
case IC_XS_OPSIZE:
return inheritsFrom(child, IC_64BIT_XS_OPSIZE);
case IC_64BIT_REXW:
return(inheritsFrom(child, IC_64BIT_REXW_XS) ||
inheritsFrom(child, IC_64BIT_REXW_XD) ||
inheritsFrom(child, IC_64BIT_REXW_OPSIZE));
case IC_64BIT_OPSIZE:
return(inheritsFrom(child, IC_64BIT_REXW_OPSIZE));
case IC_64BIT_XD:
return(inheritsFrom(child, IC_64BIT_REXW_XD));
case IC_64BIT_XS:
return(inheritsFrom(child, IC_64BIT_REXW_XS));
case IC_64BIT_XD_OPSIZE:
case IC_64BIT_XS_OPSIZE:
return false;
case IC_64BIT_REXW_XD:
case IC_64BIT_REXW_XS:
case IC_64BIT_REXW_OPSIZE:
return false;
case IC_VEX:
return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W)) ||
inheritsFrom(child, IC_VEX_W) ||
(VEX_LIG && inheritsFrom(child, IC_VEX_L));
case IC_VEX_XS:
return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS)) ||
inheritsFrom(child, IC_VEX_W_XS) ||
(VEX_LIG && inheritsFrom(child, IC_VEX_L_XS));
case IC_VEX_XD:
return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD)) ||
inheritsFrom(child, IC_VEX_W_XD) ||
(VEX_LIG && inheritsFrom(child, IC_VEX_L_XD));
case IC_VEX_OPSIZE:
return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE)) ||
inheritsFrom(child, IC_VEX_W_OPSIZE) ||
(VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE));
case IC_VEX_W:
return VEX_LIG && inheritsFrom(child, IC_VEX_L_W);
case IC_VEX_W_XS:
return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS);
case IC_VEX_W_XD:
return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD);
case IC_VEX_W_OPSIZE:
return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE);
case IC_VEX_L:
return inheritsFrom(child, IC_VEX_L_W);
case IC_VEX_L_XS:
return inheritsFrom(child, IC_VEX_L_W_XS);
case IC_VEX_L_XD:
return inheritsFrom(child, IC_VEX_L_W_XD);
case IC_VEX_L_OPSIZE:
return inheritsFrom(child, IC_VEX_L_W_OPSIZE);
case IC_VEX_L_W:
case IC_VEX_L_W_XS:
case IC_VEX_L_W_XD:
case IC_VEX_L_W_OPSIZE:
return false;
case IC_EVEX:
return inheritsFrom(child, IC_EVEX_W) ||
inheritsFrom(child, IC_EVEX_L_W);
case IC_EVEX_XS:
return inheritsFrom(child, IC_EVEX_W_XS) ||
inheritsFrom(child, IC_EVEX_L_W_XS);
case IC_EVEX_XD:
return inheritsFrom(child, IC_EVEX_W_XD) ||
inheritsFrom(child, IC_EVEX_L_W_XD);
case IC_EVEX_OPSIZE:
return inheritsFrom(child, IC_EVEX_W_OPSIZE) ||
inheritsFrom(child, IC_EVEX_L_W_OPSIZE);
case IC_EVEX_W:
case IC_EVEX_W_XS:
case IC_EVEX_W_XD:
case IC_EVEX_W_OPSIZE:
return false;
case IC_EVEX_L:
case IC_EVEX_L_XS:
case IC_EVEX_L_XD:
case IC_EVEX_L_OPSIZE:
return false;
case IC_EVEX_L_W:
case IC_EVEX_L_W_XS:
case IC_EVEX_L_W_XD:
case IC_EVEX_L_W_OPSIZE:
return false;
case IC_EVEX_L2:
case IC_EVEX_L2_XS:
case IC_EVEX_L2_XD:
case IC_EVEX_L2_OPSIZE:
return false;
case IC_EVEX_L2_W:
case IC_EVEX_L2_W_XS:
case IC_EVEX_L2_W_XD:
case IC_EVEX_L2_W_OPSIZE:
return false;
case IC_EVEX_K:
return inheritsFrom(child, IC_EVEX_W_K) ||
inheritsFrom(child, IC_EVEX_L_W_K);
case IC_EVEX_XS_K:
return inheritsFrom(child, IC_EVEX_W_XS_K) ||
inheritsFrom(child, IC_EVEX_L_W_XS_K);
case IC_EVEX_XD_K:
return inheritsFrom(child, IC_EVEX_W_XD_K) ||
inheritsFrom(child, IC_EVEX_L_W_XD_K);
case IC_EVEX_OPSIZE_K:
case IC_EVEX_OPSIZE_B:
return false;
case IC_EVEX_W_K:
case IC_EVEX_W_XS_K:
case IC_EVEX_W_XD_K:
case IC_EVEX_W_OPSIZE_K:
case IC_EVEX_W_OPSIZE_B:
return false;
case IC_EVEX_L_K:
case IC_EVEX_L_XS_K:
case IC_EVEX_L_XD_K:
case IC_EVEX_L_OPSIZE_K:
return false;
case IC_EVEX_W_KZ:
case IC_EVEX_W_XS_KZ:
case IC_EVEX_W_XD_KZ:
case IC_EVEX_W_OPSIZE_KZ:
return false;
case IC_EVEX_L_KZ:
case IC_EVEX_L_XS_KZ:
case IC_EVEX_L_XD_KZ:
case IC_EVEX_L_OPSIZE_KZ:
return false;
case IC_EVEX_L_W_K:
case IC_EVEX_L_W_XS_K:
case IC_EVEX_L_W_XD_K:
case IC_EVEX_L_W_OPSIZE_K:
case IC_EVEX_L_W_KZ:
case IC_EVEX_L_W_XS_KZ:
case IC_EVEX_L_W_XD_KZ:
case IC_EVEX_L_W_OPSIZE_KZ:
return false;
case IC_EVEX_L2_K:
case IC_EVEX_L2_B:
case IC_EVEX_L2_K_B:
case IC_EVEX_L2_KZ_B:
case IC_EVEX_L2_XS_K:
case IC_EVEX_L2_XS_B:
case IC_EVEX_L2_XD_B:
case IC_EVEX_L2_XD_K:
case IC_EVEX_L2_OPSIZE_K:
case IC_EVEX_L2_OPSIZE_B:
case IC_EVEX_L2_OPSIZE_K_B:
case IC_EVEX_L2_KZ:
case IC_EVEX_L2_XS_KZ:
case IC_EVEX_L2_XD_KZ:
case IC_EVEX_L2_OPSIZE_KZ:
case IC_EVEX_L2_OPSIZE_KZ_B:
return false;
case IC_EVEX_L2_W_K:
case IC_EVEX_L2_W_B:
case IC_EVEX_L2_W_XS_K:
case IC_EVEX_L2_W_XD_K:
case IC_EVEX_L2_W_XD_B:
case IC_EVEX_L2_W_OPSIZE_K:
case IC_EVEX_L2_W_OPSIZE_B:
case IC_EVEX_L2_W_OPSIZE_K_B:
case IC_EVEX_L2_W_KZ:
case IC_EVEX_L2_W_XS_KZ:
case IC_EVEX_L2_W_XD_KZ:
case IC_EVEX_L2_W_OPSIZE_KZ:
case IC_EVEX_L2_W_OPSIZE_KZ_B:
return false;
default:
errs() << "Unknown instruction class: " <<
stringForContext((InstructionContext)parent) << "\n";
llvm_unreachable("Unknown instruction class");
}
}
/// outranks - Indicates whether, if an instruction has two different applicable
/// classes, which class should be preferred when performing decode. This
/// imposes a total ordering (ties are resolved toward "lower")
///
/// @param upper - The class that may be preferable
/// @param lower - The class that may be less preferable
/// @return - True if upper is to be preferred, false otherwise.
static inline bool outranks(InstructionContext upper,
InstructionContext lower) {
assert(upper < IC_max);
assert(lower < IC_max);
#define ENUM_ENTRY(n, r, d) r,
#define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) \
ENUM_ENTRY(n##_K_B, r, d) ENUM_ENTRY(n##_KZ_B, r, d) \
ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)
static int ranks[IC_max] = {
INSTRUCTION_CONTEXTS
};
#undef ENUM_ENTRY
#undef ENUM_ENTRY_K_B
return (ranks[upper] > ranks[lower]);
}
/// getDecisionType - Determines whether a ModRM decision with 255 entries can
/// be compacted by eliminating redundant information.
///
/// @param decision - The decision to be compacted.
/// @return - The compactest available representation for the decision.
static ModRMDecisionType getDecisionType(ModRMDecision &decision) {
bool satisfiesOneEntry = true;
bool satisfiesSplitRM = true;
bool satisfiesSplitReg = true;
bool satisfiesSplitMisc = true;
for (unsigned index = 0; index < 256; ++index) {
if (decision.instructionIDs[index] != decision.instructionIDs[0])
satisfiesOneEntry = false;
if (((index & 0xc0) == 0xc0) &&
(decision.instructionIDs[index] != decision.instructionIDs[0xc0]))
satisfiesSplitRM = false;
if (((index & 0xc0) != 0xc0) &&
(decision.instructionIDs[index] != decision.instructionIDs[0x00]))
satisfiesSplitRM = false;
if (((index & 0xc0) == 0xc0) &&
(decision.instructionIDs[index] != decision.instructionIDs[index&0xf8]))
satisfiesSplitReg = false;
if (((index & 0xc0) != 0xc0) &&
(decision.instructionIDs[index] != decision.instructionIDs[index&0x38]))
satisfiesSplitMisc = false;
}
if (satisfiesOneEntry)
return MODRM_ONEENTRY;
if (satisfiesSplitRM)
return MODRM_SPLITRM;
if (satisfiesSplitReg && satisfiesSplitMisc)
return MODRM_SPLITREG;
if (satisfiesSplitMisc)
return MODRM_SPLITMISC;
return MODRM_FULL;
}
/// stringForDecisionType - Returns a statically-allocated string corresponding
/// to a particular decision type.
///
/// @param dt - The decision type.
/// @return - A pointer to the statically-allocated string (e.g.,
/// "MODRM_ONEENTRY" for MODRM_ONEENTRY).
static const char* stringForDecisionType(ModRMDecisionType dt) {
#define ENUM_ENTRY(n) case n: return #n;
switch (dt) {
default:
llvm_unreachable("Unknown decision type");
MODRMTYPES
};
#undef ENUM_ENTRY
}
DisassemblerTables::DisassemblerTables() {
unsigned i;
for (i = 0; i < array_lengthof(Tables); i++) {
Tables[i] = new ContextDecision;
memset(Tables[i], 0, sizeof(ContextDecision));
}
HasConflicts = false;
}
DisassemblerTables::~DisassemblerTables() {
unsigned i;
for (i = 0; i < array_lengthof(Tables); i++)
delete Tables[i];
}
void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2,
unsigned &i1, unsigned &i2,
unsigned &ModRMTableNum,
ModRMDecision &decision) const {
static uint32_t sTableNumber = 0;
static uint32_t sEntryNumber = 1;
ModRMDecisionType dt = getDecisionType(decision);
if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0)
{
o2.indent(i2) << "{ /* ModRMDecision */" << "\n";
i2++;
o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
o2.indent(i2) << 0 << " /* EmptyTable */\n";
i2--;
o2.indent(i2) << "}";
return;
}
std::vector<unsigned> ModRMDecision;
switch (dt) {
default:
llvm_unreachable("Unknown decision type");
case MODRM_ONEENTRY:
ModRMDecision.push_back(decision.instructionIDs[0]);
break;
case MODRM_SPLITRM:
ModRMDecision.push_back(decision.instructionIDs[0x00]);
ModRMDecision.push_back(decision.instructionIDs[0xc0]);
break;
case MODRM_SPLITREG:
for (unsigned index = 0; index < 64; index += 8)
ModRMDecision.push_back(decision.instructionIDs[index]);
for (unsigned index = 0xc0; index < 256; index += 8)
ModRMDecision.push_back(decision.instructionIDs[index]);
break;
case MODRM_SPLITMISC:
for (unsigned index = 0; index < 64; index += 8)
ModRMDecision.push_back(decision.instructionIDs[index]);
for (unsigned index = 0xc0; index < 256; ++index)
ModRMDecision.push_back(decision.instructionIDs[index]);
break;
case MODRM_FULL:
for (unsigned index = 0; index < 256; ++index)
ModRMDecision.push_back(decision.instructionIDs[index]);
break;
}
unsigned &EntryNumber = ModRMTable[ModRMDecision];
if (EntryNumber == 0) {
EntryNumber = ModRMTableNum;
ModRMTableNum += ModRMDecision.size();
o1 << "/* Table" << EntryNumber << " */\n";
i1++;
for (std::vector<unsigned>::const_iterator I = ModRMDecision.begin(),
E = ModRMDecision.end(); I != E; ++I) {
o1.indent(i1 * 2) << format("0x%hx", *I) << ", /* "
<< InstructionSpecifiers[*I].name << " */\n";
}
i1--;
}
o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n";
i2++;
o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
o2.indent(i2) << EntryNumber << " /* Table" << EntryNumber << " */\n";
i2--;
o2.indent(i2) << "}";
switch (dt) {
default:
llvm_unreachable("Unknown decision type");
case MODRM_ONEENTRY:
sEntryNumber += 1;
break;
case MODRM_SPLITRM:
sEntryNumber += 2;
break;
case MODRM_SPLITREG:
sEntryNumber += 16;
break;
case MODRM_SPLITMISC:
sEntryNumber += 8 + 64;
break;
case MODRM_FULL:
sEntryNumber += 256;
break;
}
// We assume that the index can fit into uint16_t.
assert(sEntryNumber < 65536U &&
"Index into ModRMDecision is too large for uint16_t!");
++sTableNumber;
}
void DisassemblerTables::emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2,
unsigned &i1, unsigned &i2,
unsigned &ModRMTableNum,
OpcodeDecision &decision) const {
o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n";
i2++;
o2.indent(i2) << "{" << "\n";
i2++;
for (unsigned index = 0; index < 256; ++index) {
o2.indent(i2);
o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n";
emitModRMDecision(o1, o2, i1, i2, ModRMTableNum,
decision.modRMDecisions[index]);
if (index < 255)
o2 << ",";
o2 << "\n";
}
i2--;
o2.indent(i2) << "}" << "\n";
i2--;
o2.indent(i2) << "}" << "\n";
}
void DisassemblerTables::emitContextDecision(raw_ostream &o1, raw_ostream &o2,
unsigned &i1, unsigned &i2,
unsigned &ModRMTableNum,
ContextDecision &decision,
const char* name) const {
o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n";
i2++;
o2.indent(i2) << "{ /* opcodeDecisions */" << "\n";
i2++;
for (unsigned index = 0; index < IC_max; ++index) {
o2.indent(i2) << "/* ";
o2 << stringForContext((InstructionContext)index);
o2 << " */";
o2 << "\n";
emitOpcodeDecision(o1, o2, i1, i2, ModRMTableNum,
decision.opcodeDecisions[index]);
if (index + 1 < IC_max)
o2 << ", ";
}
i2--;
o2.indent(i2) << "}" << "\n";
i2--;
o2.indent(i2) << "};" << "\n";
}
void DisassemblerTables::emitInstructionInfo(raw_ostream &o,
unsigned &i) const {
unsigned NumInstructions = InstructionSpecifiers.size();
o << "static const struct OperandSpecifier x86OperandSets[]["
<< X86_MAX_OPERANDS << "] = {\n";
typedef std::vector<std::pair<const char *, const char *> > OperandListTy;
std::map<OperandListTy, unsigned> OperandSets;
unsigned OperandSetNum = 0;
for (unsigned Index = 0; Index < NumInstructions; ++Index) {
OperandListTy OperandList;
for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
++OperandIndex) {
const char *Encoding =
stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[Index]
.operands[OperandIndex].encoding);
const char *Type =
stringForOperandType((OperandType)InstructionSpecifiers[Index]
.operands[OperandIndex].type);
OperandList.push_back(std::make_pair(Encoding, Type));
}
unsigned &N = OperandSets[OperandList];
if (N != 0) continue;
N = ++OperandSetNum;
o << " { /* " << (OperandSetNum - 1) << " */\n";
for (unsigned i = 0, e = OperandList.size(); i != e; ++i) {
o << " { " << OperandList[i].first << ", "
<< OperandList[i].second << " },\n";
}
o << " },\n";
}
o << "};" << "\n\n";
o.indent(i * 2) << "static const struct InstructionSpecifier ";
o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n";
i++;
for (unsigned index = 0; index < NumInstructions; ++index) {
o.indent(i * 2) << "{ /* " << index << " */" << "\n";
i++;
OperandListTy OperandList;
for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
++OperandIndex) {
const char *Encoding =
stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[index]
.operands[OperandIndex].encoding);
const char *Type =
stringForOperandType((OperandType)InstructionSpecifiers[index]
.operands[OperandIndex].type);
OperandList.push_back(std::make_pair(Encoding, Type));
}
o.indent(i * 2) << (OperandSets[OperandList] - 1) << ",\n";
o.indent(i * 2) << "/* " << InstructionSpecifiers[index].name << " */";
o << "\n";
i--;
o.indent(i * 2) << "}";
if (index + 1 < NumInstructions)
o << ",";
o << "\n";
}
i--;
o.indent(i * 2) << "};" << "\n";
}
void DisassemblerTables::emitContextTable(raw_ostream &o, unsigned &i) const {
const unsigned int tableSize = 16384;
o.indent(i * 2) << "static const uint8_t " CONTEXTS_STR
"[" << tableSize << "] = {\n";
i++;
for (unsigned index = 0; index < tableSize; ++index) {
o.indent(i * 2);
if (index & ATTR_EVEX) {
o << "IC_EVEX";
if (index & ATTR_EVEXL2)
o << "_L2";
else if (index & ATTR_EVEXL)
o << "_L";
if (index & ATTR_REXW)
o << "_W";
if (index & ATTR_OPSIZE)
o << "_OPSIZE";
else if (index & ATTR_XD)
o << "_XD";
else if (index & ATTR_XS)
o << "_XS";
if (index & ATTR_EVEXKZ)
o << "_KZ";
else if (index & ATTR_EVEXK)
o << "_K";
if (index & ATTR_EVEXB)
o << "_B";
}
else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
o << "IC_VEX_L_W_OPSIZE";
else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XD))
o << "IC_VEX_L_W_XD";
else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XS))
o << "IC_VEX_L_W_XS";
else if ((index & ATTR_VEXL) && (index & ATTR_REXW))
o << "IC_VEX_L_W";
else if ((index & ATTR_VEXL) && (index & ATTR_OPSIZE))
o << "IC_VEX_L_OPSIZE";
else if ((index & ATTR_VEXL) && (index & ATTR_XD))
o << "IC_VEX_L_XD";
else if ((index & ATTR_VEXL) && (index & ATTR_XS))
o << "IC_VEX_L_XS";
else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
o << "IC_VEX_W_OPSIZE";
else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XD))
o << "IC_VEX_W_XD";
else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XS))
o << "IC_VEX_W_XS";
else if (index & ATTR_VEXL)
o << "IC_VEX_L";
else if ((index & ATTR_VEX) && (index & ATTR_REXW))
o << "IC_VEX_W";
else if ((index & ATTR_VEX) && (index & ATTR_OPSIZE))
o << "IC_VEX_OPSIZE";
else if ((index & ATTR_VEX) && (index & ATTR_XD))
o << "IC_VEX_XD";
else if ((index & ATTR_VEX) && (index & ATTR_XS))
o << "IC_VEX_XS";
else if (index & ATTR_VEX)
o << "IC_VEX";
else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XS))
o << "IC_64BIT_REXW_XS";
else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XD))
o << "IC_64BIT_REXW_XD";
else if ((index & ATTR_64BIT) && (index & ATTR_REXW) &&
(index & ATTR_OPSIZE))
o << "IC_64BIT_REXW_OPSIZE";
else if ((index & ATTR_64BIT) && (index & ATTR_XD) && (index & ATTR_OPSIZE))
o << "IC_64BIT_XD_OPSIZE";
else if ((index & ATTR_64BIT) && (index & ATTR_XS) && (index & ATTR_OPSIZE))
o << "IC_64BIT_XS_OPSIZE";
else if ((index & ATTR_64BIT) && (index & ATTR_XS))
o << "IC_64BIT_XS";
else if ((index & ATTR_64BIT) && (index & ATTR_XD))
o << "IC_64BIT_XD";
else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE))
o << "IC_64BIT_OPSIZE";
else if ((index & ATTR_64BIT) && (index & ATTR_ADSIZE))
o << "IC_64BIT_ADSIZE";
else if ((index & ATTR_64BIT) && (index & ATTR_REXW))
o << "IC_64BIT_REXW";
else if ((index & ATTR_64BIT))
o << "IC_64BIT";
else if ((index & ATTR_XS) && (index & ATTR_OPSIZE))
o << "IC_XS_OPSIZE";
else if ((index & ATTR_XD) && (index & ATTR_OPSIZE))
o << "IC_XD_OPSIZE";
else if (index & ATTR_XS)
o << "IC_XS";
else if (index & ATTR_XD)
o << "IC_XD";
else if (index & ATTR_OPSIZE)
o << "IC_OPSIZE";
else if (index & ATTR_ADSIZE)
o << "IC_ADSIZE";
else
o << "IC";
if (index < tableSize - 1)
o << ",";
else
o << " ";
o << " /* " << index << " */";
o << "\n";
}
i--;
o.indent(i * 2) << "};" << "\n";
}
void DisassemblerTables::emitContextDecisions(raw_ostream &o1, raw_ostream &o2,
unsigned &i1, unsigned &i2,
unsigned &ModRMTableNum) const {
emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[0], ONEBYTE_STR);
emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[1], TWOBYTE_STR);
emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[2], THREEBYTE38_STR);
emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[3], THREEBYTE3A_STR);
emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[4], XOP8_MAP_STR);
emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[5], XOP9_MAP_STR);
emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[6], XOPA_MAP_STR);
}
void DisassemblerTables::emit(raw_ostream &o) const {
unsigned i1 = 0;
unsigned i2 = 0;
std::string s1;
std::string s2;
raw_string_ostream o1(s1);
raw_string_ostream o2(s2);
emitInstructionInfo(o, i2);
o << "\n";
emitContextTable(o, i2);
o << "\n";
unsigned ModRMTableNum = 0;
o << "static const InstrUID modRMTable[] = {\n";
i1++;
std::vector<unsigned> EmptyTable(1, 0);
ModRMTable[EmptyTable] = ModRMTableNum;
ModRMTableNum += EmptyTable.size();
o1 << "/* EmptyTable */\n";
o1.indent(i1 * 2) << "0x0,\n";
i1--;
emitContextDecisions(o1, o2, i1, i2, ModRMTableNum);
o << o1.str();
o << " 0x0\n";
o << "};\n";
o << "\n";
o << o2.str();
o << "\n";
o << "\n";
}
void DisassemblerTables::setTableFields(ModRMDecision &decision,
const ModRMFilter &filter,
InstrUID uid,
uint8_t opcode) {
for (unsigned index = 0; index < 256; ++index) {
if (filter.accepts(index)) {
if (decision.instructionIDs[index] == uid)
continue;
if (decision.instructionIDs[index] != 0) {
InstructionSpecifier &newInfo =
InstructionSpecifiers[uid];
InstructionSpecifier &previousInfo =
InstructionSpecifiers[decision.instructionIDs[index]];
// Instructions such as MOV8ao8 and MOV8ao8_16 differ only in the
// presence of the AdSize prefix. However, the disassembler doesn't
// care about that difference in the instruction definition; it
// handles 16-bit vs. 32-bit addressing for itself based purely
// on the 0x67 prefix and the CPU mode. So there's no need to
// disambiguate between them; just let them conflict/coexist.
if (previousInfo.name + "_16" == newInfo.name)
continue;
if(previousInfo.name == "NOOP" && (newInfo.name == "XCHG16ar" ||
newInfo.name == "XCHG32ar" ||
newInfo.name == "XCHG32ar64" ||
newInfo.name == "XCHG64ar"))
continue; // special case for XCHG*ar and NOOP
if (outranks(previousInfo.insnContext, newInfo.insnContext))
continue;
if (previousInfo.insnContext == newInfo.insnContext) {
errs() << "Error: Primary decode conflict: ";
errs() << newInfo.name << " would overwrite " << previousInfo.name;
errs() << "\n";
errs() << "ModRM " << index << "\n";
errs() << "Opcode " << (uint16_t)opcode << "\n";
errs() << "Context " << stringForContext(newInfo.insnContext) << "\n";
HasConflicts = true;
}
}
decision.instructionIDs[index] = uid;
}
}
}
void DisassemblerTables::setTableFields(OpcodeType type,
InstructionContext insnContext,
uint8_t opcode,
const ModRMFilter &filter,
InstrUID uid,
bool is32bit,
bool ignoresVEX_L) {
ContextDecision &decision = *Tables[type];
for (unsigned index = 0; index < IC_max; ++index) {
if (is32bit && inheritsFrom((InstructionContext)index, IC_64BIT))
continue;
if (inheritsFrom((InstructionContext)index,
InstructionSpecifiers[uid].insnContext, ignoresVEX_L))
setTableFields(decision.opcodeDecisions[index].modRMDecisions[opcode],
filter,
uid,
opcode);
}
}