freebsd-dev/contrib/tcpdump/print-802_11.c
Xin LI 3c602fabf9 MFV r276761: tcpdump 4.6.2.
MFC after:	1 month
2015-01-07 19:55:18 +00:00

3012 lines
83 KiB
C

/*
* Copyright (c) 2001
* Fortress Technologies, Inc. All rights reserved.
* Charlie Lenahan (clenahan@fortresstech.com)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that: (1) source code distributions
* retain the above copyright notice and this paragraph in its entirety, (2)
* distributions including binary code include the above copyright notice and
* this paragraph in its entirety in the documentation or other materials
* provided with the distribution, and (3) all advertising materials mentioning
* features or use of this software display the following acknowledgement:
* ``This product includes software developed by the University of California,
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
* the University nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#define NETDISSECT_REWORKED
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <tcpdump-stdinc.h>
#include <string.h>
#include "interface.h"
#include "addrtoname.h"
#include "extract.h"
#include "cpack.h"
/* Lengths of 802.11 header components. */
#define IEEE802_11_FC_LEN 2
#define IEEE802_11_DUR_LEN 2
#define IEEE802_11_DA_LEN 6
#define IEEE802_11_SA_LEN 6
#define IEEE802_11_BSSID_LEN 6
#define IEEE802_11_RA_LEN 6
#define IEEE802_11_TA_LEN 6
#define IEEE802_11_SEQ_LEN 2
#define IEEE802_11_CTL_LEN 2
#define IEEE802_11_IV_LEN 3
#define IEEE802_11_KID_LEN 1
/* Frame check sequence length. */
#define IEEE802_11_FCS_LEN 4
/* Lengths of beacon components. */
#define IEEE802_11_TSTAMP_LEN 8
#define IEEE802_11_BCNINT_LEN 2
#define IEEE802_11_CAPINFO_LEN 2
#define IEEE802_11_LISTENINT_LEN 2
#define IEEE802_11_AID_LEN 2
#define IEEE802_11_STATUS_LEN 2
#define IEEE802_11_REASON_LEN 2
/* Length of previous AP in reassocation frame */
#define IEEE802_11_AP_LEN 6
#define T_MGMT 0x0 /* management */
#define T_CTRL 0x1 /* control */
#define T_DATA 0x2 /* data */
#define T_RESV 0x3 /* reserved */
#define ST_ASSOC_REQUEST 0x0
#define ST_ASSOC_RESPONSE 0x1
#define ST_REASSOC_REQUEST 0x2
#define ST_REASSOC_RESPONSE 0x3
#define ST_PROBE_REQUEST 0x4
#define ST_PROBE_RESPONSE 0x5
/* RESERVED 0x6 */
/* RESERVED 0x7 */
#define ST_BEACON 0x8
#define ST_ATIM 0x9
#define ST_DISASSOC 0xA
#define ST_AUTH 0xB
#define ST_DEAUTH 0xC
#define ST_ACTION 0xD
/* RESERVED 0xE */
/* RESERVED 0xF */
static const struct tok st_str[] = {
{ ST_ASSOC_REQUEST, "Assoc Request" },
{ ST_ASSOC_RESPONSE, "Assoc Response" },
{ ST_REASSOC_REQUEST, "ReAssoc Request" },
{ ST_REASSOC_RESPONSE, "ReAssoc Response" },
{ ST_PROBE_REQUEST, "Probe Request" },
{ ST_PROBE_RESPONSE, "Probe Response" },
{ ST_BEACON, "Beacon" },
{ ST_ATIM, "ATIM" },
{ ST_DISASSOC, "Disassociation" },
{ ST_AUTH, "Authentication" },
{ ST_DEAUTH, "DeAuthentication" },
{ ST_ACTION, "Action" },
{ 0, NULL }
};
#define CTRL_CONTROL_WRAPPER 0x7
#define CTRL_BAR 0x8
#define CTRL_BA 0x9
#define CTRL_PS_POLL 0xA
#define CTRL_RTS 0xB
#define CTRL_CTS 0xC
#define CTRL_ACK 0xD
#define CTRL_CF_END 0xE
#define CTRL_END_ACK 0xF
static const struct tok ctrl_str[] = {
{ CTRL_CONTROL_WRAPPER, "Control Wrapper" },
{ CTRL_BAR, "BAR" },
{ CTRL_BA, "BA" },
{ CTRL_PS_POLL, "Power Save-Poll" },
{ CTRL_RTS, "Request-To-Send" },
{ CTRL_CTS, "Clear-To-Send" },
{ CTRL_ACK, "Acknowledgment" },
{ CTRL_CF_END, "CF-End" },
{ CTRL_END_ACK, "CF-End+CF-Ack" },
{ 0, NULL }
};
#define DATA_DATA 0x0
#define DATA_DATA_CF_ACK 0x1
#define DATA_DATA_CF_POLL 0x2
#define DATA_DATA_CF_ACK_POLL 0x3
#define DATA_NODATA 0x4
#define DATA_NODATA_CF_ACK 0x5
#define DATA_NODATA_CF_POLL 0x6
#define DATA_NODATA_CF_ACK_POLL 0x7
#define DATA_QOS_DATA 0x8
#define DATA_QOS_DATA_CF_ACK 0x9
#define DATA_QOS_DATA_CF_POLL 0xA
#define DATA_QOS_DATA_CF_ACK_POLL 0xB
#define DATA_QOS_NODATA 0xC
#define DATA_QOS_CF_POLL_NODATA 0xE
#define DATA_QOS_CF_ACK_POLL_NODATA 0xF
/*
* The subtype field of a data frame is, in effect, composed of 4 flag
* bits - CF-Ack, CF-Poll, Null (means the frame doesn't actually have
* any data), and QoS.
*/
#define DATA_FRAME_IS_CF_ACK(x) ((x) & 0x01)
#define DATA_FRAME_IS_CF_POLL(x) ((x) & 0x02)
#define DATA_FRAME_IS_NULL(x) ((x) & 0x04)
#define DATA_FRAME_IS_QOS(x) ((x) & 0x08)
/*
* Bits in the frame control field.
*/
#define FC_VERSION(fc) ((fc) & 0x3)
#define FC_TYPE(fc) (((fc) >> 2) & 0x3)
#define FC_SUBTYPE(fc) (((fc) >> 4) & 0xF)
#define FC_TO_DS(fc) ((fc) & 0x0100)
#define FC_FROM_DS(fc) ((fc) & 0x0200)
#define FC_MORE_FLAG(fc) ((fc) & 0x0400)
#define FC_RETRY(fc) ((fc) & 0x0800)
#define FC_POWER_MGMT(fc) ((fc) & 0x1000)
#define FC_MORE_DATA(fc) ((fc) & 0x2000)
#define FC_WEP(fc) ((fc) & 0x4000)
#define FC_ORDER(fc) ((fc) & 0x8000)
struct mgmt_header_t {
uint16_t fc;
uint16_t duration;
uint8_t da[6];
uint8_t sa[6];
uint8_t bssid[6];
uint16_t seq_ctrl;
};
#define MGMT_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
IEEE802_11_DA_LEN+IEEE802_11_SA_LEN+\
IEEE802_11_BSSID_LEN+IEEE802_11_SEQ_LEN)
#define CAPABILITY_ESS(cap) ((cap) & 0x0001)
#define CAPABILITY_IBSS(cap) ((cap) & 0x0002)
#define CAPABILITY_CFP(cap) ((cap) & 0x0004)
#define CAPABILITY_CFP_REQ(cap) ((cap) & 0x0008)
#define CAPABILITY_PRIVACY(cap) ((cap) & 0x0010)
struct ssid_t {
uint8_t element_id;
uint8_t length;
u_char ssid[33]; /* 32 + 1 for null */
};
struct rates_t {
uint8_t element_id;
uint8_t length;
uint8_t rate[16];
};
struct challenge_t {
uint8_t element_id;
uint8_t length;
uint8_t text[254]; /* 1-253 + 1 for null */
};
struct fh_t {
uint8_t element_id;
uint8_t length;
uint16_t dwell_time;
uint8_t hop_set;
uint8_t hop_pattern;
uint8_t hop_index;
};
struct ds_t {
uint8_t element_id;
uint8_t length;
uint8_t channel;
};
struct cf_t {
uint8_t element_id;
uint8_t length;
uint8_t count;
uint8_t period;
uint16_t max_duration;
uint16_t dur_remaing;
};
struct tim_t {
uint8_t element_id;
uint8_t length;
uint8_t count;
uint8_t period;
uint8_t bitmap_control;
uint8_t bitmap[251];
};
#define E_SSID 0
#define E_RATES 1
#define E_FH 2
#define E_DS 3
#define E_CF 4
#define E_TIM 5
#define E_IBSS 6
/* reserved 7 */
/* reserved 8 */
/* reserved 9 */
/* reserved 10 */
/* reserved 11 */
/* reserved 12 */
/* reserved 13 */
/* reserved 14 */
/* reserved 15 */
/* reserved 16 */
#define E_CHALLENGE 16
/* reserved 17 */
/* reserved 18 */
/* reserved 19 */
/* reserved 16 */
/* reserved 16 */
struct mgmt_body_t {
uint8_t timestamp[IEEE802_11_TSTAMP_LEN];
uint16_t beacon_interval;
uint16_t listen_interval;
uint16_t status_code;
uint16_t aid;
u_char ap[IEEE802_11_AP_LEN];
uint16_t reason_code;
uint16_t auth_alg;
uint16_t auth_trans_seq_num;
int challenge_present;
struct challenge_t challenge;
uint16_t capability_info;
int ssid_present;
struct ssid_t ssid;
int rates_present;
struct rates_t rates;
int ds_present;
struct ds_t ds;
int cf_present;
struct cf_t cf;
int fh_present;
struct fh_t fh;
int tim_present;
struct tim_t tim;
};
struct ctrl_rts_t {
uint16_t fc;
uint16_t duration;
uint8_t ra[6];
uint8_t ta[6];
uint8_t fcs[4];
};
#define CTRL_RTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
IEEE802_11_RA_LEN+IEEE802_11_TA_LEN)
struct ctrl_cts_t {
uint16_t fc;
uint16_t duration;
uint8_t ra[6];
uint8_t fcs[4];
};
#define CTRL_CTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
struct ctrl_ack_t {
uint16_t fc;
uint16_t duration;
uint8_t ra[6];
uint8_t fcs[4];
};
#define CTRL_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
struct ctrl_ps_poll_t {
uint16_t fc;
uint16_t aid;
uint8_t bssid[6];
uint8_t ta[6];
uint8_t fcs[4];
};
#define CTRL_PS_POLL_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_AID_LEN+\
IEEE802_11_BSSID_LEN+IEEE802_11_TA_LEN)
struct ctrl_end_t {
uint16_t fc;
uint16_t duration;
uint8_t ra[6];
uint8_t bssid[6];
uint8_t fcs[4];
};
#define CTRL_END_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
struct ctrl_end_ack_t {
uint16_t fc;
uint16_t duration;
uint8_t ra[6];
uint8_t bssid[6];
uint8_t fcs[4];
};
#define CTRL_END_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN)
struct ctrl_ba_t {
uint16_t fc;
uint16_t duration;
uint8_t ra[6];
uint8_t fcs[4];
};
#define CTRL_BA_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN)
struct ctrl_bar_t {
uint16_t fc;
uint16_t dur;
uint8_t ra[6];
uint8_t ta[6];
uint16_t ctl;
uint16_t seq;
uint8_t fcs[4];
};
#define CTRL_BAR_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\
IEEE802_11_RA_LEN+IEEE802_11_TA_LEN+\
IEEE802_11_CTL_LEN+IEEE802_11_SEQ_LEN)
struct meshcntl_t {
uint8_t flags;
uint8_t ttl;
uint8_t seq[4];
uint8_t addr4[6];
uint8_t addr5[6];
uint8_t addr6[6];
};
#define IV_IV(iv) ((iv) & 0xFFFFFF)
#define IV_PAD(iv) (((iv) >> 24) & 0x3F)
#define IV_KEYID(iv) (((iv) >> 30) & 0x03)
/* $FreeBSD$ */
/* NetBSD: ieee802_11_radio.h,v 1.2 2006/02/26 03:04:03 dyoung Exp */
/*-
* Copyright (c) 2003, 2004 David Young. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of David Young may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY DAVID YOUNG ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DAVID
* YOUNG BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
/* A generic radio capture format is desirable. It must be
* rigidly defined (e.g., units for fields should be given),
* and easily extensible.
*
* The following is an extensible radio capture format. It is
* based on a bitmap indicating which fields are present.
*
* I am trying to describe precisely what the application programmer
* should expect in the following, and for that reason I tell the
* units and origin of each measurement (where it applies), or else I
* use sufficiently weaselly language ("is a monotonically nondecreasing
* function of...") that I cannot set false expectations for lawyerly
* readers.
*/
/*
* The radio capture header precedes the 802.11 header.
*
* Note well: all radiotap fields are little-endian.
*/
struct ieee80211_radiotap_header {
uint8_t it_version; /* Version 0. Only increases
* for drastic changes,
* introduction of compatible
* new fields does not count.
*/
uint8_t it_pad;
uint16_t it_len; /* length of the whole
* header in bytes, including
* it_version, it_pad,
* it_len, and data fields.
*/
uint32_t it_present; /* A bitmap telling which
* fields are present. Set bit 31
* (0x80000000) to extend the
* bitmap by another 32 bits.
* Additional extensions are made
* by setting bit 31.
*/
};
/* Name Data type Units
* ---- --------- -----
*
* IEEE80211_RADIOTAP_TSFT uint64_t microseconds
*
* Value in microseconds of the MAC's 64-bit 802.11 Time
* Synchronization Function timer when the first bit of the
* MPDU arrived at the MAC. For received frames, only.
*
* IEEE80211_RADIOTAP_CHANNEL 2 x uint16_t MHz, bitmap
*
* Tx/Rx frequency in MHz, followed by flags (see below).
* Note that IEEE80211_RADIOTAP_XCHANNEL must be used to
* represent an HT channel as there is not enough room in
* the flags word.
*
* IEEE80211_RADIOTAP_FHSS uint16_t see below
*
* For frequency-hopping radios, the hop set (first byte)
* and pattern (second byte).
*
* IEEE80211_RADIOTAP_RATE uint8_t 500kb/s or index
*
* Tx/Rx data rate. If bit 0x80 is set then it represents an
* an MCS index and not an IEEE rate.
*
* IEEE80211_RADIOTAP_DBM_ANTSIGNAL int8_t decibels from
* one milliwatt (dBm)
*
* RF signal power at the antenna, decibel difference from
* one milliwatt.
*
* IEEE80211_RADIOTAP_DBM_ANTNOISE int8_t decibels from
* one milliwatt (dBm)
*
* RF noise power at the antenna, decibel difference from one
* milliwatt.
*
* IEEE80211_RADIOTAP_DB_ANTSIGNAL uint8_t decibel (dB)
*
* RF signal power at the antenna, decibel difference from an
* arbitrary, fixed reference.
*
* IEEE80211_RADIOTAP_DB_ANTNOISE uint8_t decibel (dB)
*
* RF noise power at the antenna, decibel difference from an
* arbitrary, fixed reference point.
*
* IEEE80211_RADIOTAP_LOCK_QUALITY uint16_t unitless
*
* Quality of Barker code lock. Unitless. Monotonically
* nondecreasing with "better" lock strength. Called "Signal
* Quality" in datasheets. (Is there a standard way to measure
* this?)
*
* IEEE80211_RADIOTAP_TX_ATTENUATION uint16_t unitless
*
* Transmit power expressed as unitless distance from max
* power set at factory calibration. 0 is max power.
* Monotonically nondecreasing with lower power levels.
*
* IEEE80211_RADIOTAP_DB_TX_ATTENUATION uint16_t decibels (dB)
*
* Transmit power expressed as decibel distance from max power
* set at factory calibration. 0 is max power. Monotonically
* nondecreasing with lower power levels.
*
* IEEE80211_RADIOTAP_DBM_TX_POWER int8_t decibels from
* one milliwatt (dBm)
*
* Transmit power expressed as dBm (decibels from a 1 milliwatt
* reference). This is the absolute power level measured at
* the antenna port.
*
* IEEE80211_RADIOTAP_FLAGS uint8_t bitmap
*
* Properties of transmitted and received frames. See flags
* defined below.
*
* IEEE80211_RADIOTAP_ANTENNA uint8_t antenna index
*
* Unitless indication of the Rx/Tx antenna for this packet.
* The first antenna is antenna 0.
*
* IEEE80211_RADIOTAP_RX_FLAGS uint16_t bitmap
*
* Properties of received frames. See flags defined below.
*
* IEEE80211_RADIOTAP_XCHANNEL uint32_t bitmap
* uint16_t MHz
* uint8_t channel number
* uint8_t .5 dBm
*
* Extended channel specification: flags (see below) followed by
* frequency in MHz, the corresponding IEEE channel number, and
* finally the maximum regulatory transmit power cap in .5 dBm
* units. This property supersedes IEEE80211_RADIOTAP_CHANNEL
* and only one of the two should be present.
*
* IEEE80211_RADIOTAP_MCS uint8_t known
* uint8_t flags
* uint8_t mcs
*
* Bitset indicating which fields have known values, followed
* by bitset of flag values, followed by the MCS rate index as
* in IEEE 802.11n.
*
* IEEE80211_RADIOTAP_VENDOR_NAMESPACE
* uint8_t OUI[3]
* uint8_t subspace
* uint16_t length
*
* The Vendor Namespace Field contains three sub-fields. The first
* sub-field is 3 bytes long. It contains the vendor's IEEE 802
* Organizationally Unique Identifier (OUI). The fourth byte is a
* vendor-specific "namespace selector."
*
*/
enum ieee80211_radiotap_type {
IEEE80211_RADIOTAP_TSFT = 0,
IEEE80211_RADIOTAP_FLAGS = 1,
IEEE80211_RADIOTAP_RATE = 2,
IEEE80211_RADIOTAP_CHANNEL = 3,
IEEE80211_RADIOTAP_FHSS = 4,
IEEE80211_RADIOTAP_DBM_ANTSIGNAL = 5,
IEEE80211_RADIOTAP_DBM_ANTNOISE = 6,
IEEE80211_RADIOTAP_LOCK_QUALITY = 7,
IEEE80211_RADIOTAP_TX_ATTENUATION = 8,
IEEE80211_RADIOTAP_DB_TX_ATTENUATION = 9,
IEEE80211_RADIOTAP_DBM_TX_POWER = 10,
IEEE80211_RADIOTAP_ANTENNA = 11,
IEEE80211_RADIOTAP_DB_ANTSIGNAL = 12,
IEEE80211_RADIOTAP_DB_ANTNOISE = 13,
IEEE80211_RADIOTAP_RX_FLAGS = 14,
/* NB: gap for netbsd definitions */
IEEE80211_RADIOTAP_XCHANNEL = 18,
IEEE80211_RADIOTAP_MCS = 19,
IEEE80211_RADIOTAP_NAMESPACE = 29,
IEEE80211_RADIOTAP_VENDOR_NAMESPACE = 30,
IEEE80211_RADIOTAP_EXT = 31
};
/* channel attributes */
#define IEEE80211_CHAN_TURBO 0x00010 /* Turbo channel */
#define IEEE80211_CHAN_CCK 0x00020 /* CCK channel */
#define IEEE80211_CHAN_OFDM 0x00040 /* OFDM channel */
#define IEEE80211_CHAN_2GHZ 0x00080 /* 2 GHz spectrum channel. */
#define IEEE80211_CHAN_5GHZ 0x00100 /* 5 GHz spectrum channel */
#define IEEE80211_CHAN_PASSIVE 0x00200 /* Only passive scan allowed */
#define IEEE80211_CHAN_DYN 0x00400 /* Dynamic CCK-OFDM channel */
#define IEEE80211_CHAN_GFSK 0x00800 /* GFSK channel (FHSS PHY) */
#define IEEE80211_CHAN_GSM 0x01000 /* 900 MHz spectrum channel */
#define IEEE80211_CHAN_STURBO 0x02000 /* 11a static turbo channel only */
#define IEEE80211_CHAN_HALF 0x04000 /* Half rate channel */
#define IEEE80211_CHAN_QUARTER 0x08000 /* Quarter rate channel */
#define IEEE80211_CHAN_HT20 0x10000 /* HT 20 channel */
#define IEEE80211_CHAN_HT40U 0x20000 /* HT 40 channel w/ ext above */
#define IEEE80211_CHAN_HT40D 0x40000 /* HT 40 channel w/ ext below */
/* Useful combinations of channel characteristics, borrowed from Ethereal */
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_B \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define IEEE80211_CHAN_G \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
#define IEEE80211_CHAN_TA \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_TURBO)
#define IEEE80211_CHAN_TG \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN | IEEE80211_CHAN_TURBO)
/* For IEEE80211_RADIOTAP_FLAGS */
#define IEEE80211_RADIOTAP_F_CFP 0x01 /* sent/received
* during CFP
*/
#define IEEE80211_RADIOTAP_F_SHORTPRE 0x02 /* sent/received
* with short
* preamble
*/
#define IEEE80211_RADIOTAP_F_WEP 0x04 /* sent/received
* with WEP encryption
*/
#define IEEE80211_RADIOTAP_F_FRAG 0x08 /* sent/received
* with fragmentation
*/
#define IEEE80211_RADIOTAP_F_FCS 0x10 /* frame includes FCS */
#define IEEE80211_RADIOTAP_F_DATAPAD 0x20 /* frame has padding between
* 802.11 header and payload
* (to 32-bit boundary)
*/
#define IEEE80211_RADIOTAP_F_BADFCS 0x40 /* does not pass FCS check */
/* For IEEE80211_RADIOTAP_RX_FLAGS */
#define IEEE80211_RADIOTAP_F_RX_BADFCS 0x0001 /* frame failed crc check */
#define IEEE80211_RADIOTAP_F_RX_PLCP_CRC 0x0002 /* frame failed PLCP CRC check */
/* For IEEE80211_RADIOTAP_MCS known */
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN 0x01
#define IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN 0x02 /* MCS index field */
#define IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN 0x04
#define IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN 0x08
#define IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN 0x10
#define IEEE80211_RADIOTAP_MCS_STBC_KNOWN 0x20
/* For IEEE80211_RADIOTAP_MCS flags */
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK 0x03
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20 0
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 1
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20L 2
#define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20U 3
#define IEEE80211_RADIOTAP_MCS_SHORT_GI 0x04 /* short guard interval */
#define IEEE80211_RADIOTAP_MCS_HT_GREENFIELD 0x08
#define IEEE80211_RADIOTAP_MCS_FEC_LDPC 0x10
#define IEEE80211_RADIOTAP_MCS_STBC_MASK 0x60
#define IEEE80211_RADIOTAP_MCS_STBC_1 1
#define IEEE80211_RADIOTAP_MCS_STBC_2 2
#define IEEE80211_RADIOTAP_MCS_STBC_3 3
#define IEEE80211_RADIOTAP_MCS_STBC_SHIFT 5
static const char tstr[] = "[|802.11]";
/* Radiotap state */
/* This is used to save state when parsing/processing parameters */
struct radiotap_state
{
uint32_t present;
uint8_t rate;
};
#define PRINT_SSID(p) \
if (p.ssid_present) { \
ND_PRINT((ndo, " (")); \
fn_print(ndo, p.ssid.ssid, NULL); \
ND_PRINT((ndo, ")")); \
}
#define PRINT_RATE(_sep, _r, _suf) \
ND_PRINT((ndo, "%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf))
#define PRINT_RATES(p) \
if (p.rates_present) { \
int z; \
const char *sep = " ["; \
for (z = 0; z < p.rates.length ; z++) { \
PRINT_RATE(sep, p.rates.rate[z], \
(p.rates.rate[z] & 0x80 ? "*" : "")); \
sep = " "; \
} \
if (p.rates.length != 0) \
ND_PRINT((ndo, " Mbit]")); \
}
#define PRINT_DS_CHANNEL(p) \
if (p.ds_present) \
ND_PRINT((ndo, " CH: %u", p.ds.channel)); \
ND_PRINT((ndo, "%s", \
CAPABILITY_PRIVACY(p.capability_info) ? ", PRIVACY" : ""));
#define MAX_MCS_INDEX 76
/*
* Indices are:
*
* the MCS index (0-76);
*
* 0 for 20 MHz, 1 for 40 MHz;
*
* 0 for a long guard interval, 1 for a short guard interval.
*/
static const float ieee80211_float_htrates[MAX_MCS_INDEX+1][2][2] = {
/* MCS 0 */
{ /* 20 Mhz */ { 6.5, /* SGI */ 7.2, },
/* 40 Mhz */ { 13.5, /* SGI */ 15.0, },
},
/* MCS 1 */
{ /* 20 Mhz */ { 13.0, /* SGI */ 14.4, },
/* 40 Mhz */ { 27.0, /* SGI */ 30.0, },
},
/* MCS 2 */
{ /* 20 Mhz */ { 19.5, /* SGI */ 21.7, },
/* 40 Mhz */ { 40.5, /* SGI */ 45.0, },
},
/* MCS 3 */
{ /* 20 Mhz */ { 26.0, /* SGI */ 28.9, },
/* 40 Mhz */ { 54.0, /* SGI */ 60.0, },
},
/* MCS 4 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 5 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 6 */
{ /* 20 Mhz */ { 58.5, /* SGI */ 65.0, },
/* 40 Mhz */ { 121.5, /* SGI */ 135.0, },
},
/* MCS 7 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 8 */
{ /* 20 Mhz */ { 13.0, /* SGI */ 14.4, },
/* 40 Mhz */ { 27.0, /* SGI */ 30.0, },
},
/* MCS 9 */
{ /* 20 Mhz */ { 26.0, /* SGI */ 28.9, },
/* 40 Mhz */ { 54.0, /* SGI */ 60.0, },
},
/* MCS 10 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 11 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 12 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 13 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 14 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 15 */
{ /* 20 Mhz */ { 130.0, /* SGI */ 144.4, },
/* 40 Mhz */ { 270.0, /* SGI */ 300.0, },
},
/* MCS 16 */
{ /* 20 Mhz */ { 19.5, /* SGI */ 21.7, },
/* 40 Mhz */ { 40.5, /* SGI */ 45.0, },
},
/* MCS 17 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 18 */
{ /* 20 Mhz */ { 58.5, /* SGI */ 65.0, },
/* 40 Mhz */ { 121.5, /* SGI */ 135.0, },
},
/* MCS 19 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 20 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 21 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 22 */
{ /* 20 Mhz */ { 175.5, /* SGI */ 195.0, },
/* 40 Mhz */ { 364.5, /* SGI */ 405.0, },
},
/* MCS 23 */
{ /* 20 Mhz */ { 195.0, /* SGI */ 216.7, },
/* 40 Mhz */ { 405.0, /* SGI */ 450.0, },
},
/* MCS 24 */
{ /* 20 Mhz */ { 26.0, /* SGI */ 28.9, },
/* 40 Mhz */ { 54.0, /* SGI */ 60.0, },
},
/* MCS 25 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 26 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 27 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 28 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 29 */
{ /* 20 Mhz */ { 208.0, /* SGI */ 231.1, },
/* 40 Mhz */ { 432.0, /* SGI */ 480.0, },
},
/* MCS 30 */
{ /* 20 Mhz */ { 234.0, /* SGI */ 260.0, },
/* 40 Mhz */ { 486.0, /* SGI */ 540.0, },
},
/* MCS 31 */
{ /* 20 Mhz */ { 260.0, /* SGI */ 288.9, },
/* 40 Mhz */ { 540.0, /* SGI */ 600.0, },
},
/* MCS 32 */
{ /* 20 Mhz */ { 0.0, /* SGI */ 0.0, }, /* not valid */
/* 40 Mhz */ { 6.0, /* SGI */ 6.7, },
},
/* MCS 33 */
{ /* 20 Mhz */ { 39.0, /* SGI */ 43.3, },
/* 40 Mhz */ { 81.0, /* SGI */ 90.0, },
},
/* MCS 34 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 35 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 36 */
{ /* 20 Mhz */ { 58.5, /* SGI */ 65.0, },
/* 40 Mhz */ { 121.5, /* SGI */ 135.0, },
},
/* MCS 37 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 38 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 39 */
{ /* 20 Mhz */ { 52.0, /* SGI */ 57.8, },
/* 40 Mhz */ { 108.0, /* SGI */ 120.0, },
},
/* MCS 40 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 41 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 42 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 43 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 44 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 45 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 46 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 47 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 48 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 49 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 50 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 51 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 52 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 53 */
{ /* 20 Mhz */ { 65.0, /* SGI */ 72.2, },
/* 40 Mhz */ { 135.0, /* SGI */ 150.0, },
},
/* MCS 54 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 55 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 56 */
{ /* 20 Mhz */ { 78.0, /* SGI */ 86.7, },
/* 40 Mhz */ { 162.0, /* SGI */ 180.0, },
},
/* MCS 57 */
{ /* 20 Mhz */ { 91.0, /* SGI */ 101.1, },
/* 40 Mhz */ { 189.0, /* SGI */ 210.0, },
},
/* MCS 58 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 59 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 60 */
{ /* 20 Mhz */ { 104.0, /* SGI */ 115.6, },
/* 40 Mhz */ { 216.0, /* SGI */ 240.0, },
},
/* MCS 61 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 62 */
{ /* 20 Mhz */ { 130.0, /* SGI */ 144.4, },
/* 40 Mhz */ { 270.0, /* SGI */ 300.0, },
},
/* MCS 63 */
{ /* 20 Mhz */ { 130.0, /* SGI */ 144.4, },
/* 40 Mhz */ { 270.0, /* SGI */ 300.0, },
},
/* MCS 64 */
{ /* 20 Mhz */ { 143.0, /* SGI */ 158.9, },
/* 40 Mhz */ { 297.0, /* SGI */ 330.0, },
},
/* MCS 65 */
{ /* 20 Mhz */ { 97.5, /* SGI */ 108.3, },
/* 40 Mhz */ { 202.5, /* SGI */ 225.0, },
},
/* MCS 66 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 67 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 68 */
{ /* 20 Mhz */ { 117.0, /* SGI */ 130.0, },
/* 40 Mhz */ { 243.0, /* SGI */ 270.0, },
},
/* MCS 69 */
{ /* 20 Mhz */ { 136.5, /* SGI */ 151.7, },
/* 40 Mhz */ { 283.5, /* SGI */ 315.0, },
},
/* MCS 70 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 71 */
{ /* 20 Mhz */ { 175.5, /* SGI */ 195.0, },
/* 40 Mhz */ { 364.5, /* SGI */ 405.0, },
},
/* MCS 72 */
{ /* 20 Mhz */ { 156.0, /* SGI */ 173.3, },
/* 40 Mhz */ { 324.0, /* SGI */ 360.0, },
},
/* MCS 73 */
{ /* 20 Mhz */ { 175.5, /* SGI */ 195.0, },
/* 40 Mhz */ { 364.5, /* SGI */ 405.0, },
},
/* MCS 74 */
{ /* 20 Mhz */ { 195.0, /* SGI */ 216.7, },
/* 40 Mhz */ { 405.0, /* SGI */ 450.0, },
},
/* MCS 75 */
{ /* 20 Mhz */ { 195.0, /* SGI */ 216.7, },
/* 40 Mhz */ { 405.0, /* SGI */ 450.0, },
},
/* MCS 76 */
{ /* 20 Mhz */ { 214.5, /* SGI */ 238.3, },
/* 40 Mhz */ { 445.5, /* SGI */ 495.0, },
},
};
static const char *auth_alg_text[]={"Open System","Shared Key","EAP"};
#define NUM_AUTH_ALGS (sizeof auth_alg_text / sizeof auth_alg_text[0])
static const char *status_text[] = {
"Successful", /* 0 */
"Unspecified failure", /* 1 */
"Reserved", /* 2 */
"Reserved", /* 3 */
"Reserved", /* 4 */
"Reserved", /* 5 */
"Reserved", /* 6 */
"Reserved", /* 7 */
"Reserved", /* 8 */
"Reserved", /* 9 */
"Cannot Support all requested capabilities in the Capability "
"Information field", /* 10 */
"Reassociation denied due to inability to confirm that association "
"exists", /* 11 */
"Association denied due to reason outside the scope of the "
"standard", /* 12 */
"Responding station does not support the specified authentication "
"algorithm ", /* 13 */
"Received an Authentication frame with authentication transaction "
"sequence number out of expected sequence", /* 14 */
"Authentication rejected because of challenge failure", /* 15 */
"Authentication rejected due to timeout waiting for next frame in "
"sequence", /* 16 */
"Association denied because AP is unable to handle additional"
"associated stations", /* 17 */
"Association denied due to requesting station not supporting all of "
"the data rates in BSSBasicRateSet parameter", /* 18 */
"Association denied due to requesting station not supporting "
"short preamble operation", /* 19 */
"Association denied due to requesting station not supporting "
"PBCC encoding", /* 20 */
"Association denied due to requesting station not supporting "
"channel agility", /* 21 */
"Association request rejected because Spectrum Management "
"capability is required", /* 22 */
"Association request rejected because the information in the "
"Power Capability element is unacceptable", /* 23 */
"Association request rejected because the information in the "
"Supported Channels element is unacceptable", /* 24 */
"Association denied due to requesting station not supporting "
"short slot operation", /* 25 */
"Association denied due to requesting station not supporting "
"DSSS-OFDM operation", /* 26 */
"Association denied because the requested STA does not support HT "
"features", /* 27 */
"Reserved", /* 28 */
"Association denied because the requested STA does not support "
"the PCO transition time required by the AP", /* 29 */
"Reserved", /* 30 */
"Reserved", /* 31 */
"Unspecified, QoS-related failure", /* 32 */
"Association denied due to QAP having insufficient bandwidth "
"to handle another QSTA", /* 33 */
"Association denied due to excessive frame loss rates and/or "
"poor conditions on current operating channel", /* 34 */
"Association (with QBSS) denied due to requesting station not "
"supporting the QoS facility", /* 35 */
"Association denied due to requesting station not supporting "
"Block Ack", /* 36 */
"The request has been declined", /* 37 */
"The request has not been successful as one or more parameters "
"have invalid values", /* 38 */
"The TS has not been created because the request cannot be honored. "
"Try again with the suggested changes to the TSPEC", /* 39 */
"Invalid Information Element", /* 40 */
"Group Cipher is not valid", /* 41 */
"Pairwise Cipher is not valid", /* 42 */
"AKMP is not valid", /* 43 */
"Unsupported RSN IE version", /* 44 */
"Invalid RSN IE Capabilities", /* 45 */
"Cipher suite is rejected per security policy", /* 46 */
"The TS has not been created. However, the HC may be capable of "
"creating a TS, in response to a request, after the time indicated "
"in the TS Delay element", /* 47 */
"Direct Link is not allowed in the BSS by policy", /* 48 */
"Destination STA is not present within this QBSS.", /* 49 */
"The Destination STA is not a QSTA.", /* 50 */
};
#define NUM_STATUSES (sizeof status_text / sizeof status_text[0])
static const char *reason_text[] = {
"Reserved", /* 0 */
"Unspecified reason", /* 1 */
"Previous authentication no longer valid", /* 2 */
"Deauthenticated because sending station is leaving (or has left) "
"IBSS or ESS", /* 3 */
"Disassociated due to inactivity", /* 4 */
"Disassociated because AP is unable to handle all currently "
" associated stations", /* 5 */
"Class 2 frame received from nonauthenticated station", /* 6 */
"Class 3 frame received from nonassociated station", /* 7 */
"Disassociated because sending station is leaving "
"(or has left) BSS", /* 8 */
"Station requesting (re)association is not authenticated with "
"responding station", /* 9 */
"Disassociated because the information in the Power Capability "
"element is unacceptable", /* 10 */
"Disassociated because the information in the SupportedChannels "
"element is unacceptable", /* 11 */
"Invalid Information Element", /* 12 */
"Reserved", /* 13 */
"Michael MIC failure", /* 14 */
"4-Way Handshake timeout", /* 15 */
"Group key update timeout", /* 16 */
"Information element in 4-Way Handshake different from (Re)Association"
"Request/Probe Response/Beacon", /* 17 */
"Group Cipher is not valid", /* 18 */
"AKMP is not valid", /* 20 */
"Unsupported RSN IE version", /* 21 */
"Invalid RSN IE Capabilities", /* 22 */
"IEEE 802.1X Authentication failed", /* 23 */
"Cipher suite is rejected per security policy", /* 24 */
"Reserved", /* 25 */
"Reserved", /* 26 */
"Reserved", /* 27 */
"Reserved", /* 28 */
"Reserved", /* 29 */
"Reserved", /* 30 */
"TS deleted because QoS AP lacks sufficient bandwidth for this "
"QoS STA due to a change in BSS service characteristics or "
"operational mode (e.g. an HT BSS change from 40 MHz channel "
"to 20 MHz channel)", /* 31 */
"Disassociated for unspecified, QoS-related reason", /* 32 */
"Disassociated because QoS AP lacks sufficient bandwidth for this "
"QoS STA", /* 33 */
"Disassociated because of excessive number of frames that need to be "
"acknowledged, but are not acknowledged for AP transmissions "
"and/or poor channel conditions", /* 34 */
"Disassociated because STA is transmitting outside the limits "
"of its TXOPs", /* 35 */
"Requested from peer STA as the STA is leaving the BSS "
"(or resetting)", /* 36 */
"Requested from peer STA as it does not want to use the "
"mechanism", /* 37 */
"Requested from peer STA as the STA received frames using the "
"mechanism for which a set up is required", /* 38 */
"Requested from peer STA due to time out", /* 39 */
"Reserved", /* 40 */
"Reserved", /* 41 */
"Reserved", /* 42 */
"Reserved", /* 43 */
"Reserved", /* 44 */
"Peer STA does not support the requested cipher suite", /* 45 */
"Association denied due to requesting STA not supporting HT "
"features", /* 46 */
};
#define NUM_REASONS (sizeof reason_text / sizeof reason_text[0])
static int
wep_print(netdissect_options *ndo,
const u_char *p)
{
uint32_t iv;
if (!ND_TTEST2(*p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN))
return 0;
iv = EXTRACT_LE_32BITS(p);
ND_PRINT((ndo, "Data IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv),
IV_KEYID(iv)));
return 1;
}
static int
parse_elements(netdissect_options *ndo,
struct mgmt_body_t *pbody, const u_char *p, int offset,
u_int length)
{
u_int elementlen;
struct ssid_t ssid;
struct challenge_t challenge;
struct rates_t rates;
struct ds_t ds;
struct cf_t cf;
struct tim_t tim;
/*
* We haven't seen any elements yet.
*/
pbody->challenge_present = 0;
pbody->ssid_present = 0;
pbody->rates_present = 0;
pbody->ds_present = 0;
pbody->cf_present = 0;
pbody->tim_present = 0;
while (length != 0) {
/* Make sure we at least have the element ID and length. */
if (!ND_TTEST2(*(p + offset), 2))
return 0;
if (length < 2)
return 0;
elementlen = *(p + offset + 1);
/* Make sure we have the entire element. */
if (!ND_TTEST2(*(p + offset + 2), elementlen))
return 0;
if (length < elementlen + 2)
return 0;
switch (*(p + offset)) {
case E_SSID:
memcpy(&ssid, p + offset, 2);
offset += 2;
length -= 2;
if (ssid.length != 0) {
if (ssid.length > sizeof(ssid.ssid) - 1)
return 0;
if (!ND_TTEST2(*(p + offset), ssid.length))
return 0;
if (length < ssid.length)
return 0;
memcpy(&ssid.ssid, p + offset, ssid.length);
offset += ssid.length;
length -= ssid.length;
}
ssid.ssid[ssid.length] = '\0';
/*
* Present and not truncated.
*
* If we haven't already seen an SSID IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->ssid_present) {
pbody->ssid = ssid;
pbody->ssid_present = 1;
}
break;
case E_CHALLENGE:
memcpy(&challenge, p + offset, 2);
offset += 2;
length -= 2;
if (challenge.length != 0) {
if (challenge.length >
sizeof(challenge.text) - 1)
return 0;
if (!ND_TTEST2(*(p + offset), challenge.length))
return 0;
if (length < challenge.length)
return 0;
memcpy(&challenge.text, p + offset,
challenge.length);
offset += challenge.length;
length -= challenge.length;
}
challenge.text[challenge.length] = '\0';
/*
* Present and not truncated.
*
* If we haven't already seen a challenge IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->challenge_present) {
pbody->challenge = challenge;
pbody->challenge_present = 1;
}
break;
case E_RATES:
memcpy(&rates, p + offset, 2);
offset += 2;
length -= 2;
if (rates.length != 0) {
if (rates.length > sizeof rates.rate)
return 0;
if (!ND_TTEST2(*(p + offset), rates.length))
return 0;
if (length < rates.length)
return 0;
memcpy(&rates.rate, p + offset, rates.length);
offset += rates.length;
length -= rates.length;
}
/*
* Present and not truncated.
*
* If we haven't already seen a rates IE,
* copy this one if it's not zero-length,
* otherwise ignore this one, so we later
* report the first one we saw.
*
* We ignore zero-length rates IEs as some
* devices seem to put a zero-length rates
* IE, followed by an SSID IE, followed by
* a non-zero-length rates IE into frames,
* even though IEEE Std 802.11-2007 doesn't
* seem to indicate that a zero-length rates
* IE is valid.
*/
if (!pbody->rates_present && rates.length != 0) {
pbody->rates = rates;
pbody->rates_present = 1;
}
break;
case E_DS:
memcpy(&ds, p + offset, 2);
offset += 2;
length -= 2;
if (ds.length != 1) {
offset += ds.length;
length -= ds.length;
break;
}
ds.channel = *(p + offset);
offset += 1;
length -= 1;
/*
* Present and not truncated.
*
* If we haven't already seen a DS IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->ds_present) {
pbody->ds = ds;
pbody->ds_present = 1;
}
break;
case E_CF:
memcpy(&cf, p + offset, 2);
offset += 2;
length -= 2;
if (cf.length != 6) {
offset += cf.length;
length -= cf.length;
break;
}
memcpy(&cf.count, p + offset, 6);
offset += 6;
length -= 6;
/*
* Present and not truncated.
*
* If we haven't already seen a CF IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->cf_present) {
pbody->cf = cf;
pbody->cf_present = 1;
}
break;
case E_TIM:
memcpy(&tim, p + offset, 2);
offset += 2;
length -= 2;
if (tim.length <= 3) {
offset += tim.length;
length -= tim.length;
break;
}
if (tim.length - 3 > (int)sizeof tim.bitmap)
return 0;
memcpy(&tim.count, p + offset, 3);
offset += 3;
length -= 3;
memcpy(tim.bitmap, p + (tim.length - 3),
(tim.length - 3));
offset += tim.length - 3;
length -= tim.length - 3;
/*
* Present and not truncated.
*
* If we haven't already seen a TIM IE,
* copy this one, otherwise ignore this one,
* so we later report the first one we saw.
*/
if (!pbody->tim_present) {
pbody->tim = tim;
pbody->tim_present = 1;
}
break;
default:
#if 0
ND_PRINT((ndo, "(1) unhandled element_id (%d) ",
*(p + offset)));
#endif
offset += 2 + elementlen;
length -= 2 + elementlen;
break;
}
}
/* No problems found. */
return 1;
}
/*********************************************************************************
* Print Handle functions for the management frame types
*********************************************************************************/
static int
handle_beacon(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN))
return 0;
if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN)
return 0;
memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
offset += IEEE802_11_TSTAMP_LEN;
length -= IEEE802_11_TSTAMP_LEN;
pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_BCNINT_LEN;
length -= IEEE802_11_BCNINT_LEN;
pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
ret = parse_elements(ndo, &pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
ND_PRINT((ndo, " %s",
CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS"));
PRINT_DS_CHANNEL(pbody);
return ret;
}
static int
handle_assoc_request(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN))
return 0;
if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN)
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_LISTENINT_LEN;
length -= IEEE802_11_LISTENINT_LEN;
ret = parse_elements(ndo, &pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
return ret;
}
static int
handle_assoc_response(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
IEEE802_11_AID_LEN))
return 0;
if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN +
IEEE802_11_AID_LEN)
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
pbody.status_code = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_STATUS_LEN;
length -= IEEE802_11_STATUS_LEN;
pbody.aid = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_AID_LEN;
length -= IEEE802_11_AID_LEN;
ret = parse_elements(ndo, &pbody, p, offset, length);
ND_PRINT((ndo, " AID(%x) :%s: %s", ((uint16_t)(pbody.aid << 2 )) >> 2 ,
CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "",
(pbody.status_code < NUM_STATUSES
? status_text[pbody.status_code]
: "n/a")));
return ret;
}
static int
handle_reassoc_request(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
IEEE802_11_AP_LEN))
return 0;
if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN +
IEEE802_11_AP_LEN)
return 0;
pbody.capability_info = EXTRACT_LE_16BITS(p);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
pbody.listen_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_LISTENINT_LEN;
length -= IEEE802_11_LISTENINT_LEN;
memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN);
offset += IEEE802_11_AP_LEN;
length -= IEEE802_11_AP_LEN;
ret = parse_elements(ndo, &pbody, p, offset, length);
PRINT_SSID(pbody);
ND_PRINT((ndo, " AP : %s", etheraddr_string(ndo, pbody.ap )));
return ret;
}
static int
handle_reassoc_response(netdissect_options *ndo,
const u_char *p, u_int length)
{
/* Same as a Association Reponse */
return handle_assoc_response(ndo, p, length);
}
static int
handle_probe_request(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
ret = parse_elements(ndo, &pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
return ret;
}
static int
handle_probe_response(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN))
return 0;
if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN +
IEEE802_11_CAPINFO_LEN)
return 0;
memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN);
offset += IEEE802_11_TSTAMP_LEN;
length -= IEEE802_11_TSTAMP_LEN;
pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_BCNINT_LEN;
length -= IEEE802_11_BCNINT_LEN;
pbody.capability_info = EXTRACT_LE_16BITS(p+offset);
offset += IEEE802_11_CAPINFO_LEN;
length -= IEEE802_11_CAPINFO_LEN;
ret = parse_elements(ndo, &pbody, p, offset, length);
PRINT_SSID(pbody);
PRINT_RATES(pbody);
PRINT_DS_CHANNEL(pbody);
return ret;
}
static int
handle_atim(void)
{
/* the frame body for ATIM is null. */
return 1;
}
static int
handle_disassoc(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, IEEE802_11_REASON_LEN))
return 0;
if (length < IEEE802_11_REASON_LEN)
return 0;
pbody.reason_code = EXTRACT_LE_16BITS(p);
ND_PRINT((ndo, ": %s",
(pbody.reason_code < NUM_REASONS)
? reason_text[pbody.reason_code]
: "Reserved"));
return 1;
}
static int
handle_auth(netdissect_options *ndo,
const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
int offset = 0;
int ret;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, 6))
return 0;
if (length < 6)
return 0;
pbody.auth_alg = EXTRACT_LE_16BITS(p);
offset += 2;
length -= 2;
pbody.auth_trans_seq_num = EXTRACT_LE_16BITS(p + offset);
offset += 2;
length -= 2;
pbody.status_code = EXTRACT_LE_16BITS(p + offset);
offset += 2;
length -= 2;
ret = parse_elements(ndo, &pbody, p, offset, length);
if ((pbody.auth_alg == 1) &&
((pbody.auth_trans_seq_num == 2) ||
(pbody.auth_trans_seq_num == 3))) {
ND_PRINT((ndo, " (%s)-%x [Challenge Text] %s",
(pbody.auth_alg < NUM_AUTH_ALGS)
? auth_alg_text[pbody.auth_alg]
: "Reserved",
pbody.auth_trans_seq_num,
((pbody.auth_trans_seq_num % 2)
? ((pbody.status_code < NUM_STATUSES)
? status_text[pbody.status_code]
: "n/a") : "")));
return ret;
}
ND_PRINT((ndo, " (%s)-%x: %s",
(pbody.auth_alg < NUM_AUTH_ALGS)
? auth_alg_text[pbody.auth_alg]
: "Reserved",
pbody.auth_trans_seq_num,
(pbody.auth_trans_seq_num % 2)
? ((pbody.status_code < NUM_STATUSES)
? status_text[pbody.status_code]
: "n/a")
: ""));
return ret;
}
static int
handle_deauth(netdissect_options *ndo,
const struct mgmt_header_t *pmh, const u_char *p, u_int length)
{
struct mgmt_body_t pbody;
const char *reason = NULL;
memset(&pbody, 0, sizeof(pbody));
if (!ND_TTEST2(*p, IEEE802_11_REASON_LEN))
return 0;
if (length < IEEE802_11_REASON_LEN)
return 0;
pbody.reason_code = EXTRACT_LE_16BITS(p);
reason = (pbody.reason_code < NUM_REASONS)
? reason_text[pbody.reason_code]
: "Reserved";
if (ndo->ndo_eflag) {
ND_PRINT((ndo, ": %s", reason));
} else {
ND_PRINT((ndo, " (%s): %s", etheraddr_string(ndo, pmh->sa), reason));
}
return 1;
}
#define PRINT_HT_ACTION(v) (\
(v) == 0 ? ND_PRINT((ndo, "TxChWidth")) : \
(v) == 1 ? ND_PRINT((ndo, "MIMOPwrSave")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_BA_ACTION(v) (\
(v) == 0 ? ND_PRINT((ndo, "ADDBA Request")) : \
(v) == 1 ? ND_PRINT((ndo, "ADDBA Response")) : \
(v) == 2 ? ND_PRINT((ndo, "DELBA")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_MESHLINK_ACTION(v) (\
(v) == 0 ? ND_PRINT((ndo, "Request")) : \
(v) == 1 ? ND_PRINT((ndo, "Report")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_MESHPEERING_ACTION(v) (\
(v) == 0 ? ND_PRINT((ndo, "Open")) : \
(v) == 1 ? ND_PRINT((ndo, "Confirm")) : \
(v) == 2 ? ND_PRINT((ndo, "Close")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_MESHPATH_ACTION(v) (\
(v) == 0 ? ND_PRINT((ndo, "Request")) : \
(v) == 1 ? ND_PRINT((ndo, "Report")) : \
(v) == 2 ? ND_PRINT((ndo, "Error")) : \
(v) == 3 ? ND_PRINT((ndo, "RootAnnouncement")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_MESH_ACTION(v) (\
(v) == 0 ? ND_PRINT((ndo, "MeshLink")) : \
(v) == 1 ? ND_PRINT((ndo, "HWMP")) : \
(v) == 2 ? ND_PRINT((ndo, "Gate Announcement")) : \
(v) == 3 ? ND_PRINT((ndo, "Congestion Control")) : \
(v) == 4 ? ND_PRINT((ndo, "MCCA Setup Request")) : \
(v) == 5 ? ND_PRINT((ndo, "MCCA Setup Reply")) : \
(v) == 6 ? ND_PRINT((ndo, "MCCA Advertisement Request")) : \
(v) == 7 ? ND_PRINT((ndo, "MCCA Advertisement")) : \
(v) == 8 ? ND_PRINT((ndo, "MCCA Teardown")) : \
(v) == 9 ? ND_PRINT((ndo, "TBTT Adjustment Request")) : \
(v) == 10 ? ND_PRINT((ndo, "TBTT Adjustment Response")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_MULTIHOP_ACTION(v) (\
(v) == 0 ? ND_PRINT((ndo, "Proxy Update")) : \
(v) == 1 ? ND_PRINT((ndo, "Proxy Update Confirmation")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
#define PRINT_SELFPROT_ACTION(v) (\
(v) == 1 ? ND_PRINT((ndo, "Peering Open")) : \
(v) == 2 ? ND_PRINT((ndo, "Peering Confirm")) : \
(v) == 3 ? ND_PRINT((ndo, "Peering Close")) : \
(v) == 4 ? ND_PRINT((ndo, "Group Key Inform")) : \
(v) == 5 ? ND_PRINT((ndo, "Group Key Acknowledge")) : \
ND_PRINT((ndo, "Act#%d", (v))) \
)
static int
handle_action(netdissect_options *ndo,
const struct mgmt_header_t *pmh, const u_char *p, u_int length)
{
if (!ND_TTEST2(*p, 2))
return 0;
if (length < 2)
return 0;
if (ndo->ndo_eflag) {
ND_PRINT((ndo, ": "));
} else {
ND_PRINT((ndo, " (%s): ", etheraddr_string(ndo, pmh->sa)));
}
switch (p[0]) {
case 0: ND_PRINT((ndo, "Spectrum Management Act#%d", p[1])); break;
case 1: ND_PRINT((ndo, "QoS Act#%d", p[1])); break;
case 2: ND_PRINT((ndo, "DLS Act#%d", p[1])); break;
case 3: ND_PRINT((ndo, "BA ")); PRINT_BA_ACTION(p[1]); break;
case 7: ND_PRINT((ndo, "HT ")); PRINT_HT_ACTION(p[1]); break;
case 13: ND_PRINT((ndo, "MeshAction ")); PRINT_MESH_ACTION(p[1]); break;
case 14:
ND_PRINT((ndo, "MultiohopAction "));
PRINT_MULTIHOP_ACTION(p[1]); break;
case 15:
ND_PRINT((ndo, "SelfprotectAction "));
PRINT_SELFPROT_ACTION(p[1]); break;
case 127: ND_PRINT((ndo, "Vendor Act#%d", p[1])); break;
default:
ND_PRINT((ndo, "Reserved(%d) Act#%d", p[0], p[1]));
break;
}
return 1;
}
/*********************************************************************************
* Print Body funcs
*********************************************************************************/
static int
mgmt_body_print(netdissect_options *ndo,
uint16_t fc, const struct mgmt_header_t *pmh,
const u_char *p, u_int length)
{
ND_PRINT((ndo, "%s", tok2str(st_str, "Unhandled Management subtype(%x)", FC_SUBTYPE(fc))));
switch (FC_SUBTYPE(fc)) {
case ST_ASSOC_REQUEST:
return handle_assoc_request(ndo, p, length);
case ST_ASSOC_RESPONSE:
return handle_assoc_response(ndo, p, length);
case ST_REASSOC_REQUEST:
return handle_reassoc_request(ndo, p, length);
case ST_REASSOC_RESPONSE:
return handle_reassoc_response(ndo, p, length);
case ST_PROBE_REQUEST:
return handle_probe_request(ndo, p, length);
case ST_PROBE_RESPONSE:
return handle_probe_response(ndo, p, length);
case ST_BEACON:
return handle_beacon(ndo, p, length);
case ST_ATIM:
return handle_atim();
case ST_DISASSOC:
return handle_disassoc(ndo, p, length);
case ST_AUTH:
if (!ND_TTEST2(*p, 3))
return 0;
if ((p[0] == 0 ) && (p[1] == 0) && (p[2] == 0)) {
ND_PRINT((ndo, "Authentication (Shared-Key)-3 "));
return wep_print(ndo, p);
}
return handle_auth(ndo, p, length);
case ST_DEAUTH:
return handle_deauth(ndo, pmh, p, length);
case ST_ACTION:
return handle_action(ndo, pmh, p, length);
default:
return 1;
}
}
/*********************************************************************************
* Handles printing all the control frame types
*********************************************************************************/
static int
ctrl_body_print(netdissect_options *ndo,
uint16_t fc, const u_char *p)
{
ND_PRINT((ndo, "%s", tok2str(ctrl_str, "Unknown Ctrl Subtype", FC_SUBTYPE(fc))));
switch (FC_SUBTYPE(fc)) {
case CTRL_CONTROL_WRAPPER:
/* XXX - requires special handling */
break;
case CTRL_BAR:
if (!ND_TTEST2(*p, CTRL_BAR_HDRLEN))
return 0;
if (!ndo->ndo_eflag)
ND_PRINT((ndo, " RA:%s TA:%s CTL(%x) SEQ(%u) ",
etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ra),
etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ta),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq))));
break;
case CTRL_BA:
if (!ND_TTEST2(*p, CTRL_BA_HDRLEN))
return 0;
if (!ndo->ndo_eflag)
ND_PRINT((ndo, " RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_ba_t *)p)->ra)));
break;
case CTRL_PS_POLL:
if (!ND_TTEST2(*p, CTRL_PS_POLL_HDRLEN))
return 0;
ND_PRINT((ndo, " AID(%x)",
EXTRACT_LE_16BITS(&(((const struct ctrl_ps_poll_t *)p)->aid))));
break;
case CTRL_RTS:
if (!ND_TTEST2(*p, CTRL_RTS_HDRLEN))
return 0;
if (!ndo->ndo_eflag)
ND_PRINT((ndo, " TA:%s ",
etheraddr_string(ndo, ((const struct ctrl_rts_t *)p)->ta)));
break;
case CTRL_CTS:
if (!ND_TTEST2(*p, CTRL_CTS_HDRLEN))
return 0;
if (!ndo->ndo_eflag)
ND_PRINT((ndo, " RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_cts_t *)p)->ra)));
break;
case CTRL_ACK:
if (!ND_TTEST2(*p, CTRL_ACK_HDRLEN))
return 0;
if (!ndo->ndo_eflag)
ND_PRINT((ndo, " RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_ack_t *)p)->ra)));
break;
case CTRL_CF_END:
if (!ND_TTEST2(*p, CTRL_END_HDRLEN))
return 0;
if (!ndo->ndo_eflag)
ND_PRINT((ndo, " RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_end_t *)p)->ra)));
break;
case CTRL_END_ACK:
if (!ND_TTEST2(*p, CTRL_END_ACK_HDRLEN))
return 0;
if (!ndo->ndo_eflag)
ND_PRINT((ndo, " RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_end_ack_t *)p)->ra)));
break;
}
return 1;
}
/*
* Print Header funcs
*/
/*
* Data Frame - Address field contents
*
* To Ds | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4
* 0 | 0 | DA | SA | BSSID | n/a
* 0 | 1 | DA | BSSID | SA | n/a
* 1 | 0 | BSSID | SA | DA | n/a
* 1 | 1 | RA | TA | DA | SA
*/
static void
data_header_print(netdissect_options *ndo,
uint16_t fc, const u_char *p, const uint8_t **srcp,
const uint8_t **dstp)
{
u_int subtype = FC_SUBTYPE(fc);
if (DATA_FRAME_IS_CF_ACK(subtype) || DATA_FRAME_IS_CF_POLL(subtype) ||
DATA_FRAME_IS_QOS(subtype)) {
ND_PRINT((ndo, "CF "));
if (DATA_FRAME_IS_CF_ACK(subtype)) {
if (DATA_FRAME_IS_CF_POLL(subtype))
ND_PRINT((ndo, "Ack/Poll"));
else
ND_PRINT((ndo, "Ack"));
} else {
if (DATA_FRAME_IS_CF_POLL(subtype))
ND_PRINT((ndo, "Poll"));
}
if (DATA_FRAME_IS_QOS(subtype))
ND_PRINT((ndo, "+QoS"));
ND_PRINT((ndo, " "));
}
#define ADDR1 (p + 4)
#define ADDR2 (p + 10)
#define ADDR3 (p + 16)
#define ADDR4 (p + 24)
if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR2;
if (dstp != NULL)
*dstp = ADDR1;
if (!ndo->ndo_eflag)
return;
ND_PRINT((ndo, "DA:%s SA:%s BSSID:%s ",
etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
etheraddr_string(ndo, ADDR3)));
} else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR3;
if (dstp != NULL)
*dstp = ADDR1;
if (!ndo->ndo_eflag)
return;
ND_PRINT((ndo, "DA:%s BSSID:%s SA:%s ",
etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
etheraddr_string(ndo, ADDR3)));
} else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR2;
if (dstp != NULL)
*dstp = ADDR3;
if (!ndo->ndo_eflag)
return;
ND_PRINT((ndo, "BSSID:%s SA:%s DA:%s ",
etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
etheraddr_string(ndo, ADDR3)));
} else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) {
if (srcp != NULL)
*srcp = ADDR4;
if (dstp != NULL)
*dstp = ADDR3;
if (!ndo->ndo_eflag)
return;
ND_PRINT((ndo, "RA:%s TA:%s DA:%s SA:%s ",
etheraddr_string(ndo, ADDR1), etheraddr_string(ndo, ADDR2),
etheraddr_string(ndo, ADDR3), etheraddr_string(ndo, ADDR4)));
}
#undef ADDR1
#undef ADDR2
#undef ADDR3
#undef ADDR4
}
static void
mgmt_header_print(netdissect_options *ndo,
const u_char *p, const uint8_t **srcp, const uint8_t **dstp)
{
const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p;
if (srcp != NULL)
*srcp = hp->sa;
if (dstp != NULL)
*dstp = hp->da;
if (!ndo->ndo_eflag)
return;
ND_PRINT((ndo, "BSSID:%s DA:%s SA:%s ",
etheraddr_string(ndo, (hp)->bssid), etheraddr_string(ndo, (hp)->da),
etheraddr_string(ndo, (hp)->sa)));
}
static void
ctrl_header_print(netdissect_options *ndo,
uint16_t fc, const u_char *p, const uint8_t **srcp,
const uint8_t **dstp)
{
if (srcp != NULL)
*srcp = NULL;
if (dstp != NULL)
*dstp = NULL;
if (!ndo->ndo_eflag)
return;
switch (FC_SUBTYPE(fc)) {
case CTRL_BAR:
ND_PRINT((ndo, " RA:%s TA:%s CTL(%x) SEQ(%u) ",
etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ra),
etheraddr_string(ndo, ((const struct ctrl_bar_t *)p)->ta),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)),
EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq))));
break;
case CTRL_BA:
ND_PRINT((ndo, "RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_ba_t *)p)->ra)));
break;
case CTRL_PS_POLL:
ND_PRINT((ndo, "BSSID:%s TA:%s ",
etheraddr_string(ndo, ((const struct ctrl_ps_poll_t *)p)->bssid),
etheraddr_string(ndo, ((const struct ctrl_ps_poll_t *)p)->ta)));
break;
case CTRL_RTS:
ND_PRINT((ndo, "RA:%s TA:%s ",
etheraddr_string(ndo, ((const struct ctrl_rts_t *)p)->ra),
etheraddr_string(ndo, ((const struct ctrl_rts_t *)p)->ta)));
break;
case CTRL_CTS:
ND_PRINT((ndo, "RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_cts_t *)p)->ra)));
break;
case CTRL_ACK:
ND_PRINT((ndo, "RA:%s ",
etheraddr_string(ndo, ((const struct ctrl_ack_t *)p)->ra)));
break;
case CTRL_CF_END:
ND_PRINT((ndo, "RA:%s BSSID:%s ",
etheraddr_string(ndo, ((const struct ctrl_end_t *)p)->ra),
etheraddr_string(ndo, ((const struct ctrl_end_t *)p)->bssid)));
break;
case CTRL_END_ACK:
ND_PRINT((ndo, "RA:%s BSSID:%s ",
etheraddr_string(ndo, ((const struct ctrl_end_ack_t *)p)->ra),
etheraddr_string(ndo, ((const struct ctrl_end_ack_t *)p)->bssid)));
break;
default:
ND_PRINT((ndo, "(H) Unknown Ctrl Subtype"));
break;
}
}
static int
extract_header_length(netdissect_options *ndo,
uint16_t fc)
{
int len;
switch (FC_TYPE(fc)) {
case T_MGMT:
return MGMT_HDRLEN;
case T_CTRL:
switch (FC_SUBTYPE(fc)) {
case CTRL_BAR:
return CTRL_BAR_HDRLEN;
case CTRL_PS_POLL:
return CTRL_PS_POLL_HDRLEN;
case CTRL_RTS:
return CTRL_RTS_HDRLEN;
case CTRL_CTS:
return CTRL_CTS_HDRLEN;
case CTRL_ACK:
return CTRL_ACK_HDRLEN;
case CTRL_CF_END:
return CTRL_END_HDRLEN;
case CTRL_END_ACK:
return CTRL_END_ACK_HDRLEN;
default:
return 0;
}
case T_DATA:
len = (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24;
if (DATA_FRAME_IS_QOS(FC_SUBTYPE(fc)))
len += 2;
return len;
default:
ND_PRINT((ndo, "unknown IEEE802.11 frame type (%d)", FC_TYPE(fc)));
return 0;
}
}
static int
extract_mesh_header_length(const u_char *p)
{
return (p[0] &~ 3) ? 0 : 6*(1 + (p[0] & 3));
}
/*
* Print the 802.11 MAC header if eflag is set, and set "*srcp" and "*dstp"
* to point to the source and destination MAC addresses in any case if
* "srcp" and "dstp" aren't null.
*/
static void
ieee_802_11_hdr_print(netdissect_options *ndo,
uint16_t fc, const u_char *p, u_int hdrlen,
u_int meshdrlen, const uint8_t **srcp,
const uint8_t **dstp)
{
if (ndo->ndo_vflag) {
if (FC_MORE_DATA(fc))
ND_PRINT((ndo, "More Data "));
if (FC_MORE_FLAG(fc))
ND_PRINT((ndo, "More Fragments "));
if (FC_POWER_MGMT(fc))
ND_PRINT((ndo, "Pwr Mgmt "));
if (FC_RETRY(fc))
ND_PRINT((ndo, "Retry "));
if (FC_ORDER(fc))
ND_PRINT((ndo, "Strictly Ordered "));
if (FC_WEP(fc))
ND_PRINT((ndo, "WEP Encrypted "));
if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL)
ND_PRINT((ndo, "%dus ",
EXTRACT_LE_16BITS(
&((const struct mgmt_header_t *)p)->duration)));
}
if (meshdrlen != 0) {
const struct meshcntl_t *mc =
(const struct meshcntl_t *)&p[hdrlen - meshdrlen];
int ae = mc->flags & 3;
ND_PRINT((ndo, "MeshData (AE %d TTL %u seq %u", ae, mc->ttl,
EXTRACT_LE_32BITS(mc->seq)));
if (ae > 0)
ND_PRINT((ndo, " A4:%s", etheraddr_string(ndo, mc->addr4)));
if (ae > 1)
ND_PRINT((ndo, " A5:%s", etheraddr_string(ndo, mc->addr5)));
if (ae > 2)
ND_PRINT((ndo, " A6:%s", etheraddr_string(ndo, mc->addr6)));
ND_PRINT((ndo, ") "));
}
switch (FC_TYPE(fc)) {
case T_MGMT:
mgmt_header_print(ndo, p, srcp, dstp);
break;
case T_CTRL:
ctrl_header_print(ndo, fc, p, srcp, dstp);
break;
case T_DATA:
data_header_print(ndo, fc, p, srcp, dstp);
break;
default:
ND_PRINT((ndo, "(header) unknown IEEE802.11 frame type (%d)",
FC_TYPE(fc)));
*srcp = NULL;
*dstp = NULL;
break;
}
}
#ifndef roundup2
#define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */
#endif
static u_int
ieee802_11_print(netdissect_options *ndo,
const u_char *p, u_int length, u_int orig_caplen, int pad,
u_int fcslen)
{
uint16_t fc;
u_int caplen, hdrlen, meshdrlen;
const uint8_t *src, *dst;
u_short extracted_ethertype;
caplen = orig_caplen;
/* Remove FCS, if present */
if (length < fcslen) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
length -= fcslen;
if (caplen > length) {
/* Amount of FCS in actual packet data, if any */
fcslen = caplen - length;
caplen -= fcslen;
ndo->ndo_snapend -= fcslen;
}
if (caplen < IEEE802_11_FC_LEN) {
ND_PRINT((ndo, "%s", tstr));
return orig_caplen;
}
fc = EXTRACT_LE_16BITS(p);
hdrlen = extract_header_length(ndo, fc);
if (pad)
hdrlen = roundup2(hdrlen, 4);
if (ndo->ndo_Hflag && FC_TYPE(fc) == T_DATA &&
DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) {
meshdrlen = extract_mesh_header_length(p+hdrlen);
hdrlen += meshdrlen;
} else
meshdrlen = 0;
if (caplen < hdrlen) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
ieee_802_11_hdr_print(ndo, fc, p, hdrlen, meshdrlen, &src, &dst);
/*
* Go past the 802.11 header.
*/
length -= hdrlen;
caplen -= hdrlen;
p += hdrlen;
switch (FC_TYPE(fc)) {
case T_MGMT:
if (!mgmt_body_print(ndo, fc,
(const struct mgmt_header_t *)(p - hdrlen), p, length)) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
break;
case T_CTRL:
if (!ctrl_body_print(ndo, fc, p - hdrlen)) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
break;
case T_DATA:
if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc)))
return hdrlen; /* no-data frame */
/* There may be a problem w/ AP not having this bit set */
if (FC_WEP(fc)) {
if (!wep_print(ndo, p)) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
} else if (llc_print(ndo, p, length, caplen, dst, src,
&extracted_ethertype) == 0) {
/*
* Some kinds of LLC packet we cannot
* handle intelligently
*/
if (!ndo->ndo_eflag)
ieee_802_11_hdr_print(ndo, fc, p - hdrlen, hdrlen,
meshdrlen, NULL, NULL);
if (extracted_ethertype)
ND_PRINT((ndo, "(LLC %s) ",
etherproto_string(
htons(extracted_ethertype))));
if (!ndo->ndo_suppress_default_print)
ND_DEFAULTPRINT(p, caplen);
}
break;
default:
ND_PRINT((ndo, "unknown 802.11 frame type (%d)", FC_TYPE(fc)));
break;
}
return hdrlen;
}
/*
* This is the top level routine of the printer. 'p' points
* to the 802.11 header of the packet, 'h->ts' is the timestamp,
* 'h->len' is the length of the packet off the wire, and 'h->caplen'
* is the number of bytes actually captured.
*/
u_int
ieee802_11_if_print(netdissect_options *ndo,
const struct pcap_pkthdr *h, const u_char *p)
{
return ieee802_11_print(ndo, p, h->len, h->caplen, 0, 0);
}
#define IEEE80211_CHAN_FHSS \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_B \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define IEEE80211_CHAN_PUREG \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_G \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
#define IS_CHAN_FHSS(flags) \
((flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS)
#define IS_CHAN_A(flags) \
((flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)
#define IS_CHAN_B(flags) \
((flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)
#define IS_CHAN_PUREG(flags) \
((flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG)
#define IS_CHAN_G(flags) \
((flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)
#define IS_CHAN_ANYG(flags) \
(IS_CHAN_PUREG(flags) || IS_CHAN_G(flags))
static void
print_chaninfo(netdissect_options *ndo,
int freq, int flags)
{
ND_PRINT((ndo, "%u MHz", freq));
if (IS_CHAN_FHSS(flags))
ND_PRINT((ndo, " FHSS"));
if (IS_CHAN_A(flags)) {
if (flags & IEEE80211_CHAN_HALF)
ND_PRINT((ndo, " 11a/10Mhz"));
else if (flags & IEEE80211_CHAN_QUARTER)
ND_PRINT((ndo, " 11a/5Mhz"));
else
ND_PRINT((ndo, " 11a"));
}
if (IS_CHAN_ANYG(flags)) {
if (flags & IEEE80211_CHAN_HALF)
ND_PRINT((ndo, " 11g/10Mhz"));
else if (flags & IEEE80211_CHAN_QUARTER)
ND_PRINT((ndo, " 11g/5Mhz"));
else
ND_PRINT((ndo, " 11g"));
} else if (IS_CHAN_B(flags))
ND_PRINT((ndo, " 11b"));
if (flags & IEEE80211_CHAN_TURBO)
ND_PRINT((ndo, " Turbo"));
if (flags & IEEE80211_CHAN_HT20)
ND_PRINT((ndo, " ht/20"));
else if (flags & IEEE80211_CHAN_HT40D)
ND_PRINT((ndo, " ht/40-"));
else if (flags & IEEE80211_CHAN_HT40U)
ND_PRINT((ndo, " ht/40+"));
ND_PRINT((ndo, " "));
}
static int
print_radiotap_field(netdissect_options *ndo,
struct cpack_state *s, uint32_t bit, uint8_t *flags,
struct radiotap_state *state, uint32_t presentflags)
{
union {
int8_t i8;
uint8_t u8;
int16_t i16;
uint16_t u16;
uint32_t u32;
uint64_t u64;
} u, u2, u3, u4;
int rc;
switch (bit) {
case IEEE80211_RADIOTAP_FLAGS:
rc = cpack_uint8(s, &u.u8);
if (rc != 0)
break;
*flags = u.u8;
break;
case IEEE80211_RADIOTAP_RATE:
rc = cpack_uint8(s, &u.u8);
if (rc != 0)
break;
/* Save state rate */
state->rate = u.u8;
break;
case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
case IEEE80211_RADIOTAP_DB_ANTNOISE:
case IEEE80211_RADIOTAP_ANTENNA:
rc = cpack_uint8(s, &u.u8);
break;
case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
case IEEE80211_RADIOTAP_DBM_ANTNOISE:
rc = cpack_int8(s, &u.i8);
break;
case IEEE80211_RADIOTAP_CHANNEL:
rc = cpack_uint16(s, &u.u16);
if (rc != 0)
break;
rc = cpack_uint16(s, &u2.u16);
break;
case IEEE80211_RADIOTAP_FHSS:
case IEEE80211_RADIOTAP_LOCK_QUALITY:
case IEEE80211_RADIOTAP_TX_ATTENUATION:
case IEEE80211_RADIOTAP_RX_FLAGS:
rc = cpack_uint16(s, &u.u16);
break;
case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
rc = cpack_uint8(s, &u.u8);
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
rc = cpack_int8(s, &u.i8);
break;
case IEEE80211_RADIOTAP_TSFT:
rc = cpack_uint64(s, &u.u64);
break;
case IEEE80211_RADIOTAP_XCHANNEL:
rc = cpack_uint32(s, &u.u32);
if (rc != 0)
break;
rc = cpack_uint16(s, &u2.u16);
if (rc != 0)
break;
rc = cpack_uint8(s, &u3.u8);
if (rc != 0)
break;
rc = cpack_uint8(s, &u4.u8);
break;
case IEEE80211_RADIOTAP_MCS:
rc = cpack_uint8(s, &u.u8);
if (rc != 0)
break;
rc = cpack_uint8(s, &u2.u8);
if (rc != 0)
break;
rc = cpack_uint8(s, &u3.u8);
break;
case IEEE80211_RADIOTAP_VENDOR_NAMESPACE: {
uint8_t vns[3];
uint16_t length;
uint8_t subspace;
if ((cpack_align_and_reserve(s, 2)) == NULL) {
rc = -1;
break;
}
rc = cpack_uint8(s, &vns[0]);
if (rc != 0)
break;
rc = cpack_uint8(s, &vns[1]);
if (rc != 0)
break;
rc = cpack_uint8(s, &vns[2]);
if (rc != 0)
break;
rc = cpack_uint8(s, &subspace);
if (rc != 0)
break;
rc = cpack_uint16(s, &length);
if (rc != 0)
break;
/* Skip up to length */
s->c_next += length;
break;
}
default:
/* this bit indicates a field whose
* size we do not know, so we cannot
* proceed. Just print the bit number.
*/
ND_PRINT((ndo, "[bit %u] ", bit));
return -1;
}
if (rc != 0) {
ND_PRINT((ndo, "%s", tstr));
return rc;
}
/* Preserve the state present flags */
state->present = presentflags;
switch (bit) {
case IEEE80211_RADIOTAP_CHANNEL:
/*
* If CHANNEL and XCHANNEL are both present, skip
* CHANNEL.
*/
if (presentflags & (1 << IEEE80211_RADIOTAP_XCHANNEL))
break;
print_chaninfo(ndo, u.u16, u2.u16);
break;
case IEEE80211_RADIOTAP_FHSS:
ND_PRINT((ndo, "fhset %d fhpat %d ", u.u16 & 0xff, (u.u16 >> 8) & 0xff));
break;
case IEEE80211_RADIOTAP_RATE:
/*
* XXX On FreeBSD rate & 0x80 means we have an MCS. On
* Linux and AirPcap it does not. (What about
* Mac OS X, NetBSD, OpenBSD, and DragonFly BSD?)
*
* This is an issue either for proprietary extensions
* to 11a or 11g, which do exist, or for 11n
* implementations that stuff a rate value into
* this field, which also appear to exist.
*
* We currently handle that by assuming that
* if the 0x80 bit is set *and* the remaining
* bits have a value between 0 and 15 it's
* an MCS value, otherwise it's a rate. If
* there are cases where systems that use
* "0x80 + MCS index" for MCS indices > 15,
* or stuff a rate value here between 64 and
* 71.5 Mb/s in here, we'll need a preference
* setting. Such rates do exist, e.g. 11n
* MCS 7 at 20 MHz with a long guard interval.
*/
if (u.u8 >= 0x80 && u.u8 <= 0x8f) {
/*
* XXX - we don't know the channel width
* or guard interval length, so we can't
* convert this to a data rate.
*
* If you want us to show a data rate,
* use the MCS field, not the Rate field;
* the MCS field includes not only the
* MCS index, it also includes bandwidth
* and guard interval information.
*
* XXX - can we get the channel width
* from XChannel and the guard interval
* information from Flags, at least on
* FreeBSD?
*/
ND_PRINT((ndo, "MCS %u ", u.u8 & 0x7f));
} else
ND_PRINT((ndo, "%2.1f Mb/s ", .5 * u.u8));
break;
case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
ND_PRINT((ndo, "%ddB signal ", u.i8));
break;
case IEEE80211_RADIOTAP_DBM_ANTNOISE:
ND_PRINT((ndo, "%ddB noise ", u.i8));
break;
case IEEE80211_RADIOTAP_DB_ANTSIGNAL:
ND_PRINT((ndo, "%ddB signal ", u.u8));
break;
case IEEE80211_RADIOTAP_DB_ANTNOISE:
ND_PRINT((ndo, "%ddB noise ", u.u8));
break;
case IEEE80211_RADIOTAP_LOCK_QUALITY:
ND_PRINT((ndo, "%u sq ", u.u16));
break;
case IEEE80211_RADIOTAP_TX_ATTENUATION:
ND_PRINT((ndo, "%d tx power ", -(int)u.u16));
break;
case IEEE80211_RADIOTAP_DB_TX_ATTENUATION:
ND_PRINT((ndo, "%ddB tx power ", -(int)u.u8));
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
ND_PRINT((ndo, "%ddBm tx power ", u.i8));
break;
case IEEE80211_RADIOTAP_FLAGS:
if (u.u8 & IEEE80211_RADIOTAP_F_CFP)
ND_PRINT((ndo, "cfp "));
if (u.u8 & IEEE80211_RADIOTAP_F_SHORTPRE)
ND_PRINT((ndo, "short preamble "));
if (u.u8 & IEEE80211_RADIOTAP_F_WEP)
ND_PRINT((ndo, "wep "));
if (u.u8 & IEEE80211_RADIOTAP_F_FRAG)
ND_PRINT((ndo, "fragmented "));
if (u.u8 & IEEE80211_RADIOTAP_F_BADFCS)
ND_PRINT((ndo, "bad-fcs "));
break;
case IEEE80211_RADIOTAP_ANTENNA:
ND_PRINT((ndo, "antenna %d ", u.u8));
break;
case IEEE80211_RADIOTAP_TSFT:
ND_PRINT((ndo, "%" PRIu64 "us tsft ", u.u64));
break;
case IEEE80211_RADIOTAP_RX_FLAGS:
/* Do nothing for now */
break;
case IEEE80211_RADIOTAP_XCHANNEL:
print_chaninfo(ndo, u2.u16, u.u32);
break;
case IEEE80211_RADIOTAP_MCS: {
static const char *bandwidth[4] = {
"20 MHz",
"40 MHz",
"20 MHz (L)",
"20 MHz (U)"
};
float htrate;
if (u.u8 & IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN) {
/*
* We know the MCS index.
*/
if (u3.u8 <= MAX_MCS_INDEX) {
/*
* And it's in-range.
*/
if (u.u8 & (IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN|IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN)) {
/*
* And we know both the bandwidth and
* the guard interval, so we can look
* up the rate.
*/
htrate =
ieee80211_float_htrates \
[u3.u8] \
[((u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK) == IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 ? 1 : 0)] \
[((u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ? 1 : 0)];
} else {
/*
* We don't know both the bandwidth
* and the guard interval, so we can
* only report the MCS index.
*/
htrate = 0.0;
}
} else {
/*
* The MCS value is out of range.
*/
htrate = 0.0;
}
if (htrate != 0.0) {
/*
* We have the rate.
* Print it.
*/
ND_PRINT((ndo, "%.1f Mb/s MCS %u ", htrate, u3.u8));
} else {
/*
* We at least have the MCS index.
* Print it.
*/
ND_PRINT((ndo, "MCS %u ", u3.u8));
}
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN) {
ND_PRINT((ndo, "%s ",
bandwidth[u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK]));
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN) {
ND_PRINT((ndo, "%s GI ",
(u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ?
"short" : "lon"));
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN) {
ND_PRINT((ndo, "%s ",
(u2.u8 & IEEE80211_RADIOTAP_MCS_HT_GREENFIELD) ?
"greenfield" : "mixed"));
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN) {
ND_PRINT((ndo, "%s FEC ",
(u2.u8 & IEEE80211_RADIOTAP_MCS_FEC_LDPC) ?
"LDPC" : "BCC"));
}
if (u.u8 & IEEE80211_RADIOTAP_MCS_STBC_KNOWN) {
ND_PRINT((ndo, "RX-STBC%u ",
(u2.u8 & IEEE80211_RADIOTAP_MCS_STBC_MASK) >> IEEE80211_RADIOTAP_MCS_STBC_SHIFT));
}
break;
}
}
return 0;
}
static u_int
ieee802_11_radio_print(netdissect_options *ndo,
const u_char *p, u_int length, u_int caplen)
{
#define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x)))
#define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x)))
#define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x)))
#define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x)))
#define BITNO_2(x) (((x) & 2) ? 1 : 0)
#define BIT(n) (1U << n)
#define IS_EXTENDED(__p) \
(EXTRACT_LE_32BITS(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0
struct cpack_state cpacker;
struct ieee80211_radiotap_header *hdr;
uint32_t present, next_present;
uint32_t presentflags = 0;
uint32_t *presentp, *last_presentp;
enum ieee80211_radiotap_type bit;
int bit0;
u_int len;
uint8_t flags;
int pad;
u_int fcslen;
struct radiotap_state state;
if (caplen < sizeof(*hdr)) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
hdr = (struct ieee80211_radiotap_header *)p;
len = EXTRACT_LE_16BITS(&hdr->it_len);
if (caplen < len) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
cpack_init(&cpacker, (uint8_t *)hdr, len); /* align against header start */
cpack_advance(&cpacker, sizeof(*hdr)); /* includes the 1st bitmap */
for (last_presentp = &hdr->it_present;
IS_EXTENDED(last_presentp) &&
(u_char*)(last_presentp + 1) <= p + len;
last_presentp++)
cpack_advance(&cpacker, sizeof(hdr->it_present)); /* more bitmaps */
/* are there more bitmap extensions than bytes in header? */
if (IS_EXTENDED(last_presentp)) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
/* Assume no flags */
flags = 0;
/* Assume no Atheros padding between 802.11 header and body */
pad = 0;
/* Assume no FCS at end of frame */
fcslen = 0;
for (bit0 = 0, presentp = &hdr->it_present; presentp <= last_presentp;
presentp++, bit0 += 32) {
presentflags = EXTRACT_LE_32BITS(presentp);
/* Clear state. */
memset(&state, 0, sizeof(state));
for (present = EXTRACT_LE_32BITS(presentp); present;
present = next_present) {
/* clear the least significant bit that is set */
next_present = present & (present - 1);
/* extract the least significant bit that is set */
bit = (enum ieee80211_radiotap_type)
(bit0 + BITNO_32(present ^ next_present));
if (print_radiotap_field(ndo, &cpacker, bit, &flags, &state, presentflags) != 0)
goto out;
}
}
out:
if (flags & IEEE80211_RADIOTAP_F_DATAPAD)
pad = 1; /* Atheros padding */
if (flags & IEEE80211_RADIOTAP_F_FCS)
fcslen = 4; /* FCS at end of packet */
return len + ieee802_11_print(ndo, p + len, length - len, caplen - len, pad,
fcslen);
#undef BITNO_32
#undef BITNO_16
#undef BITNO_8
#undef BITNO_4
#undef BITNO_2
#undef BIT
}
static u_int
ieee802_11_avs_radio_print(netdissect_options *ndo,
const u_char *p, u_int length, u_int caplen)
{
uint32_t caphdr_len;
if (caplen < 8) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
caphdr_len = EXTRACT_32BITS(p + 4);
if (caphdr_len < 8) {
/*
* Yow! The capture header length is claimed not
* to be large enough to include even the version
* cookie or capture header length!
*/
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
if (caplen < caphdr_len) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
return caphdr_len + ieee802_11_print(ndo, p + caphdr_len,
length - caphdr_len, caplen - caphdr_len, 0, 0);
}
#define PRISM_HDR_LEN 144
#define WLANCAP_MAGIC_COOKIE_BASE 0x80211000
#define WLANCAP_MAGIC_COOKIE_V1 0x80211001
#define WLANCAP_MAGIC_COOKIE_V2 0x80211002
/*
* For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header,
* containing information such as radio information, which we
* currently ignore.
*
* If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1 or
* WLANCAP_MAGIC_COOKIE_V2, it's really DLT_IEEE802_11_RADIO_AVS
* (currently, on Linux, there's no ARPHRD_ type for
* DLT_IEEE802_11_RADIO_AVS, as there is a ARPHRD_IEEE80211_PRISM
* for DLT_PRISM_HEADER, so ARPHRD_IEEE80211_PRISM is used for
* the AVS header, and the first 4 bytes of the header are used to
* indicate whether it's a Prism header or an AVS header).
*/
u_int
prism_if_print(netdissect_options *ndo,
const struct pcap_pkthdr *h, const u_char *p)
{
u_int caplen = h->caplen;
u_int length = h->len;
uint32_t msgcode;
if (caplen < 4) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
msgcode = EXTRACT_32BITS(p);
if (msgcode == WLANCAP_MAGIC_COOKIE_V1 ||
msgcode == WLANCAP_MAGIC_COOKIE_V2)
return ieee802_11_avs_radio_print(ndo, p, length, caplen);
if (caplen < PRISM_HDR_LEN) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
return PRISM_HDR_LEN + ieee802_11_print(ndo, p + PRISM_HDR_LEN,
length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN, 0, 0);
}
/*
* For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra
* header, containing information such as radio information.
*/
u_int
ieee802_11_radio_if_print(netdissect_options *ndo,
const struct pcap_pkthdr *h, const u_char *p)
{
return ieee802_11_radio_print(ndo, p, h->len, h->caplen);
}
/*
* For DLT_IEEE802_11_RADIO_AVS; like DLT_IEEE802_11, but with an
* extra header, containing information such as radio information,
* which we currently ignore.
*/
u_int
ieee802_11_radio_avs_if_print(netdissect_options *ndo,
const struct pcap_pkthdr *h, const u_char *p)
{
return ieee802_11_avs_radio_print(ndo, p, h->len, h->caplen);
}