9474 lines
290 KiB
C
9474 lines
290 KiB
C
/* Convert tree expression to rtl instructions, for GNU compiler.
|
||
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
|
||
Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "machmode.h"
|
||
#include "real.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "except.h"
|
||
#include "function.h"
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
#include "libfuncs.h"
|
||
#include "recog.h"
|
||
#include "reload.h"
|
||
#include "output.h"
|
||
#include "typeclass.h"
|
||
#include "toplev.h"
|
||
#include "ggc.h"
|
||
#include "langhooks.h"
|
||
#include "intl.h"
|
||
#include "tm_p.h"
|
||
#include "tree-iterator.h"
|
||
#include "tree-pass.h"
|
||
#include "tree-flow.h"
|
||
#include "target.h"
|
||
#include "timevar.h"
|
||
|
||
/* Decide whether a function's arguments should be processed
|
||
from first to last or from last to first.
|
||
|
||
They should if the stack and args grow in opposite directions, but
|
||
only if we have push insns. */
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
|
||
#ifndef PUSH_ARGS_REVERSED
|
||
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
|
||
#define PUSH_ARGS_REVERSED /* If it's last to first. */
|
||
#endif
|
||
#endif
|
||
|
||
#endif
|
||
|
||
#ifndef STACK_PUSH_CODE
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
#define STACK_PUSH_CODE PRE_DEC
|
||
#else
|
||
#define STACK_PUSH_CODE PRE_INC
|
||
#endif
|
||
#endif
|
||
|
||
|
||
/* If this is nonzero, we do not bother generating VOLATILE
|
||
around volatile memory references, and we are willing to
|
||
output indirect addresses. If cse is to follow, we reject
|
||
indirect addresses so a useful potential cse is generated;
|
||
if it is used only once, instruction combination will produce
|
||
the same indirect address eventually. */
|
||
int cse_not_expected;
|
||
|
||
/* This structure is used by move_by_pieces to describe the move to
|
||
be performed. */
|
||
struct move_by_pieces
|
||
{
|
||
rtx to;
|
||
rtx to_addr;
|
||
int autinc_to;
|
||
int explicit_inc_to;
|
||
rtx from;
|
||
rtx from_addr;
|
||
int autinc_from;
|
||
int explicit_inc_from;
|
||
unsigned HOST_WIDE_INT len;
|
||
HOST_WIDE_INT offset;
|
||
int reverse;
|
||
};
|
||
|
||
/* This structure is used by store_by_pieces to describe the clear to
|
||
be performed. */
|
||
|
||
struct store_by_pieces
|
||
{
|
||
rtx to;
|
||
rtx to_addr;
|
||
int autinc_to;
|
||
int explicit_inc_to;
|
||
unsigned HOST_WIDE_INT len;
|
||
HOST_WIDE_INT offset;
|
||
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
|
||
void *constfundata;
|
||
int reverse;
|
||
};
|
||
|
||
static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
|
||
unsigned int,
|
||
unsigned int);
|
||
static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
|
||
struct move_by_pieces *);
|
||
static bool block_move_libcall_safe_for_call_parm (void);
|
||
static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
|
||
static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
|
||
static tree emit_block_move_libcall_fn (int);
|
||
static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
|
||
static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
|
||
static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
|
||
static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
|
||
static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
|
||
struct store_by_pieces *);
|
||
static rtx clear_storage_via_libcall (rtx, rtx, bool);
|
||
static tree clear_storage_libcall_fn (int);
|
||
static rtx compress_float_constant (rtx, rtx);
|
||
static rtx get_subtarget (rtx);
|
||
static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
|
||
HOST_WIDE_INT, enum machine_mode,
|
||
tree, tree, int, int);
|
||
static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
|
||
static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
|
||
tree, tree, int);
|
||
|
||
static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
|
||
|
||
static int is_aligning_offset (tree, tree);
|
||
static void expand_operands (tree, tree, rtx, rtx*, rtx*,
|
||
enum expand_modifier);
|
||
static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
|
||
static rtx do_store_flag (tree, rtx, enum machine_mode, int);
|
||
#ifdef PUSH_ROUNDING
|
||
static void emit_single_push_insn (enum machine_mode, rtx, tree);
|
||
#endif
|
||
static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
|
||
static rtx const_vector_from_tree (tree);
|
||
static void write_complex_part (rtx, rtx, bool);
|
||
|
||
/* Record for each mode whether we can move a register directly to or
|
||
from an object of that mode in memory. If we can't, we won't try
|
||
to use that mode directly when accessing a field of that mode. */
|
||
|
||
static char direct_load[NUM_MACHINE_MODES];
|
||
static char direct_store[NUM_MACHINE_MODES];
|
||
|
||
/* Record for each mode whether we can float-extend from memory. */
|
||
|
||
static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
|
||
|
||
/* This macro is used to determine whether move_by_pieces should be called
|
||
to perform a structure copy. */
|
||
#ifndef MOVE_BY_PIECES_P
|
||
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
|
||
(move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
|
||
< (unsigned int) MOVE_RATIO)
|
||
#endif
|
||
|
||
/* This macro is used to determine whether clear_by_pieces should be
|
||
called to clear storage. */
|
||
#ifndef CLEAR_BY_PIECES_P
|
||
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
|
||
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
|
||
< (unsigned int) CLEAR_RATIO)
|
||
#endif
|
||
|
||
/* This macro is used to determine whether store_by_pieces should be
|
||
called to "memset" storage with byte values other than zero, or
|
||
to "memcpy" storage when the source is a constant string. */
|
||
#ifndef STORE_BY_PIECES_P
|
||
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
|
||
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
|
||
< (unsigned int) MOVE_RATIO)
|
||
#endif
|
||
|
||
/* This array records the insn_code of insns to perform block moves. */
|
||
enum insn_code movmem_optab[NUM_MACHINE_MODES];
|
||
|
||
/* This array records the insn_code of insns to perform block sets. */
|
||
enum insn_code setmem_optab[NUM_MACHINE_MODES];
|
||
|
||
/* These arrays record the insn_code of three different kinds of insns
|
||
to perform block compares. */
|
||
enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
|
||
enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
|
||
enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
|
||
|
||
/* Synchronization primitives. */
|
||
enum insn_code sync_add_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_and_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
|
||
enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
|
||
enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
|
||
enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
|
||
enum insn_code sync_lock_release[NUM_MACHINE_MODES];
|
||
|
||
/* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
|
||
|
||
#ifndef SLOW_UNALIGNED_ACCESS
|
||
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
|
||
#endif
|
||
|
||
/* This is run once per compilation to set up which modes can be used
|
||
directly in memory and to initialize the block move optab. */
|
||
|
||
void
|
||
init_expr_once (void)
|
||
{
|
||
rtx insn, pat;
|
||
enum machine_mode mode;
|
||
int num_clobbers;
|
||
rtx mem, mem1;
|
||
rtx reg;
|
||
|
||
/* Try indexing by frame ptr and try by stack ptr.
|
||
It is known that on the Convex the stack ptr isn't a valid index.
|
||
With luck, one or the other is valid on any machine. */
|
||
mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
|
||
mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
|
||
|
||
/* A scratch register we can modify in-place below to avoid
|
||
useless RTL allocations. */
|
||
reg = gen_rtx_REG (VOIDmode, -1);
|
||
|
||
insn = rtx_alloc (INSN);
|
||
pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
|
||
PATTERN (insn) = pat;
|
||
|
||
for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
|
||
mode = (enum machine_mode) ((int) mode + 1))
|
||
{
|
||
int regno;
|
||
|
||
direct_load[(int) mode] = direct_store[(int) mode] = 0;
|
||
PUT_MODE (mem, mode);
|
||
PUT_MODE (mem1, mode);
|
||
PUT_MODE (reg, mode);
|
||
|
||
/* See if there is some register that can be used in this mode and
|
||
directly loaded or stored from memory. */
|
||
|
||
if (mode != VOIDmode && mode != BLKmode)
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER
|
||
&& (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
|
||
regno++)
|
||
{
|
||
if (! HARD_REGNO_MODE_OK (regno, mode))
|
||
continue;
|
||
|
||
REGNO (reg) = regno;
|
||
|
||
SET_SRC (pat) = mem;
|
||
SET_DEST (pat) = reg;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_load[(int) mode] = 1;
|
||
|
||
SET_SRC (pat) = mem1;
|
||
SET_DEST (pat) = reg;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_load[(int) mode] = 1;
|
||
|
||
SET_SRC (pat) = reg;
|
||
SET_DEST (pat) = mem;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_store[(int) mode] = 1;
|
||
|
||
SET_SRC (pat) = reg;
|
||
SET_DEST (pat) = mem1;
|
||
if (recog (pat, insn, &num_clobbers) >= 0)
|
||
direct_store[(int) mode] = 1;
|
||
}
|
||
}
|
||
|
||
mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
enum machine_mode srcmode;
|
||
for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
|
||
srcmode = GET_MODE_WIDER_MODE (srcmode))
|
||
{
|
||
enum insn_code ic;
|
||
|
||
ic = can_extend_p (mode, srcmode, 0);
|
||
if (ic == CODE_FOR_nothing)
|
||
continue;
|
||
|
||
PUT_MODE (mem, srcmode);
|
||
|
||
if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
|
||
float_extend_from_mem[mode][srcmode] = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This is run at the start of compiling a function. */
|
||
|
||
void
|
||
init_expr (void)
|
||
{
|
||
cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
|
||
}
|
||
|
||
/* Copy data from FROM to TO, where the machine modes are not the same.
|
||
Both modes may be integer, or both may be floating.
|
||
UNSIGNEDP should be nonzero if FROM is an unsigned type.
|
||
This causes zero-extension instead of sign-extension. */
|
||
|
||
void
|
||
convert_move (rtx to, rtx from, int unsignedp)
|
||
{
|
||
enum machine_mode to_mode = GET_MODE (to);
|
||
enum machine_mode from_mode = GET_MODE (from);
|
||
int to_real = SCALAR_FLOAT_MODE_P (to_mode);
|
||
int from_real = SCALAR_FLOAT_MODE_P (from_mode);
|
||
enum insn_code code;
|
||
rtx libcall;
|
||
|
||
/* rtx code for making an equivalent value. */
|
||
enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
|
||
: (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
|
||
|
||
|
||
gcc_assert (to_real == from_real);
|
||
|
||
/* If the source and destination are already the same, then there's
|
||
nothing to do. */
|
||
if (to == from)
|
||
return;
|
||
|
||
/* If FROM is a SUBREG that indicates that we have already done at least
|
||
the required extension, strip it. We don't handle such SUBREGs as
|
||
TO here. */
|
||
|
||
if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
|
||
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
|
||
>= GET_MODE_SIZE (to_mode))
|
||
&& SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
|
||
from = gen_lowpart (to_mode, from), from_mode = to_mode;
|
||
|
||
gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
|
||
|
||
if (to_mode == from_mode
|
||
|| (from_mode == VOIDmode && CONSTANT_P (from)))
|
||
{
|
||
emit_move_insn (to, from);
|
||
return;
|
||
}
|
||
|
||
if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
|
||
{
|
||
gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
|
||
|
||
if (VECTOR_MODE_P (to_mode))
|
||
from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
|
||
else
|
||
to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
|
||
|
||
emit_move_insn (to, from);
|
||
return;
|
||
}
|
||
|
||
if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
|
||
{
|
||
convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
|
||
convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
|
||
return;
|
||
}
|
||
|
||
if (to_real)
|
||
{
|
||
rtx value, insns;
|
||
convert_optab tab;
|
||
|
||
gcc_assert ((GET_MODE_PRECISION (from_mode)
|
||
!= GET_MODE_PRECISION (to_mode))
|
||
|| (DECIMAL_FLOAT_MODE_P (from_mode)
|
||
!= DECIMAL_FLOAT_MODE_P (to_mode)));
|
||
|
||
if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
|
||
/* Conversion between decimal float and binary float, same size. */
|
||
tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
|
||
else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
|
||
tab = sext_optab;
|
||
else
|
||
tab = trunc_optab;
|
||
|
||
/* Try converting directly if the insn is supported. */
|
||
|
||
code = tab->handlers[to_mode][from_mode].insn_code;
|
||
if (code != CODE_FOR_nothing)
|
||
{
|
||
emit_unop_insn (code, to, from,
|
||
tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
|
||
return;
|
||
}
|
||
|
||
/* Otherwise use a libcall. */
|
||
libcall = tab->handlers[to_mode][from_mode].libfunc;
|
||
|
||
/* Is this conversion implemented yet? */
|
||
gcc_assert (libcall);
|
||
|
||
start_sequence ();
|
||
value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
|
||
1, from, from_mode);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_libcall_block (insns, to, value,
|
||
tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
|
||
from)
|
||
: gen_rtx_FLOAT_EXTEND (to_mode, from));
|
||
return;
|
||
}
|
||
|
||
/* Handle pointer conversion. */ /* SPEE 900220. */
|
||
/* Targets are expected to provide conversion insns between PxImode and
|
||
xImode for all MODE_PARTIAL_INT modes they use, but no others. */
|
||
if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
|
||
{
|
||
enum machine_mode full_mode
|
||
= smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
|
||
|
||
gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
|
||
!= CODE_FOR_nothing);
|
||
|
||
if (full_mode != from_mode)
|
||
from = convert_to_mode (full_mode, from, unsignedp);
|
||
emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
|
||
to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
|
||
{
|
||
rtx new_from;
|
||
enum machine_mode full_mode
|
||
= smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
|
||
|
||
gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
|
||
!= CODE_FOR_nothing);
|
||
|
||
if (to_mode == full_mode)
|
||
{
|
||
emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
|
||
to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
|
||
new_from = gen_reg_rtx (full_mode);
|
||
emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
|
||
new_from, from, UNKNOWN);
|
||
|
||
/* else proceed to integer conversions below. */
|
||
from_mode = full_mode;
|
||
from = new_from;
|
||
}
|
||
|
||
/* Now both modes are integers. */
|
||
|
||
/* Handle expanding beyond a word. */
|
||
if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
|
||
&& GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
|
||
{
|
||
rtx insns;
|
||
rtx lowpart;
|
||
rtx fill_value;
|
||
rtx lowfrom;
|
||
int i;
|
||
enum machine_mode lowpart_mode;
|
||
int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
|
||
|
||
/* Try converting directly if the insn is supported. */
|
||
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
/* If FROM is a SUBREG, put it into a register. Do this
|
||
so that we always generate the same set of insns for
|
||
better cse'ing; if an intermediate assignment occurred,
|
||
we won't be doing the operation directly on the SUBREG. */
|
||
if (optimize > 0 && GET_CODE (from) == SUBREG)
|
||
from = force_reg (from_mode, from);
|
||
emit_unop_insn (code, to, from, equiv_code);
|
||
return;
|
||
}
|
||
/* Next, try converting via full word. */
|
||
else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
|
||
&& ((code = can_extend_p (to_mode, word_mode, unsignedp))
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
if (REG_P (to))
|
||
{
|
||
if (reg_overlap_mentioned_p (to, from))
|
||
from = force_reg (from_mode, from);
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
|
||
}
|
||
convert_move (gen_lowpart (word_mode, to), from, unsignedp);
|
||
emit_unop_insn (code, to,
|
||
gen_lowpart (word_mode, to), equiv_code);
|
||
return;
|
||
}
|
||
|
||
/* No special multiword conversion insn; do it by hand. */
|
||
start_sequence ();
|
||
|
||
/* Since we will turn this into a no conflict block, we must ensure
|
||
that the source does not overlap the target. */
|
||
|
||
if (reg_overlap_mentioned_p (to, from))
|
||
from = force_reg (from_mode, from);
|
||
|
||
/* Get a copy of FROM widened to a word, if necessary. */
|
||
if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
|
||
lowpart_mode = word_mode;
|
||
else
|
||
lowpart_mode = from_mode;
|
||
|
||
lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
|
||
|
||
lowpart = gen_lowpart (lowpart_mode, to);
|
||
emit_move_insn (lowpart, lowfrom);
|
||
|
||
/* Compute the value to put in each remaining word. */
|
||
if (unsignedp)
|
||
fill_value = const0_rtx;
|
||
else
|
||
{
|
||
#ifdef HAVE_slt
|
||
if (HAVE_slt
|
||
&& insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
|
||
&& STORE_FLAG_VALUE == -1)
|
||
{
|
||
emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
|
||
lowpart_mode, 0);
|
||
fill_value = gen_reg_rtx (word_mode);
|
||
emit_insn (gen_slt (fill_value));
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
fill_value
|
||
= expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
|
||
size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
|
||
NULL_RTX, 0);
|
||
fill_value = convert_to_mode (word_mode, fill_value, 1);
|
||
}
|
||
}
|
||
|
||
/* Fill the remaining words. */
|
||
for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
|
||
{
|
||
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
||
rtx subword = operand_subword (to, index, 1, to_mode);
|
||
|
||
gcc_assert (subword);
|
||
|
||
if (fill_value != subword)
|
||
emit_move_insn (subword, fill_value);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (insns, to, from, NULL_RTX,
|
||
gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
|
||
return;
|
||
}
|
||
|
||
/* Truncating multi-word to a word or less. */
|
||
if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
|
||
&& GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
|
||
{
|
||
if (!((MEM_P (from)
|
||
&& ! MEM_VOLATILE_P (from)
|
||
&& direct_load[(int) to_mode]
|
||
&& ! mode_dependent_address_p (XEXP (from, 0)))
|
||
|| REG_P (from)
|
||
|| GET_CODE (from) == SUBREG))
|
||
from = force_reg (from_mode, from);
|
||
convert_move (to, gen_lowpart (word_mode, from), 0);
|
||
return;
|
||
}
|
||
|
||
/* Now follow all the conversions between integers
|
||
no more than a word long. */
|
||
|
||
/* For truncation, usually we can just refer to FROM in a narrower mode. */
|
||
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
|
||
GET_MODE_BITSIZE (from_mode)))
|
||
{
|
||
if (!((MEM_P (from)
|
||
&& ! MEM_VOLATILE_P (from)
|
||
&& direct_load[(int) to_mode]
|
||
&& ! mode_dependent_address_p (XEXP (from, 0)))
|
||
|| REG_P (from)
|
||
|| GET_CODE (from) == SUBREG))
|
||
from = force_reg (from_mode, from);
|
||
if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
|
||
&& ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
|
||
from = copy_to_reg (from);
|
||
emit_move_insn (to, gen_lowpart (to_mode, from));
|
||
return;
|
||
}
|
||
|
||
/* Handle extension. */
|
||
if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
|
||
{
|
||
/* Convert directly if that works. */
|
||
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
emit_unop_insn (code, to, from, equiv_code);
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
enum machine_mode intermediate;
|
||
rtx tmp;
|
||
tree shift_amount;
|
||
|
||
/* Search for a mode to convert via. */
|
||
for (intermediate = from_mode; intermediate != VOIDmode;
|
||
intermediate = GET_MODE_WIDER_MODE (intermediate))
|
||
if (((can_extend_p (to_mode, intermediate, unsignedp)
|
||
!= CODE_FOR_nothing)
|
||
|| (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
|
||
GET_MODE_BITSIZE (intermediate))))
|
||
&& (can_extend_p (intermediate, from_mode, unsignedp)
|
||
!= CODE_FOR_nothing))
|
||
{
|
||
convert_move (to, convert_to_mode (intermediate, from,
|
||
unsignedp), unsignedp);
|
||
return;
|
||
}
|
||
|
||
/* No suitable intermediate mode.
|
||
Generate what we need with shifts. */
|
||
shift_amount = build_int_cst (NULL_TREE,
|
||
GET_MODE_BITSIZE (to_mode)
|
||
- GET_MODE_BITSIZE (from_mode));
|
||
from = gen_lowpart (to_mode, force_reg (from_mode, from));
|
||
tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
|
||
to, unsignedp);
|
||
tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
|
||
to, unsignedp);
|
||
if (tmp != to)
|
||
emit_move_insn (to, tmp);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Support special truncate insns for certain modes. */
|
||
if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
|
||
to, from, UNKNOWN);
|
||
return;
|
||
}
|
||
|
||
/* Handle truncation of volatile memrefs, and so on;
|
||
the things that couldn't be truncated directly,
|
||
and for which there was no special instruction.
|
||
|
||
??? Code above formerly short-circuited this, for most integer
|
||
mode pairs, with a force_reg in from_mode followed by a recursive
|
||
call to this routine. Appears always to have been wrong. */
|
||
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
|
||
{
|
||
rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
|
||
emit_move_insn (to, temp);
|
||
return;
|
||
}
|
||
|
||
/* Mode combination is not recognized. */
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Return an rtx for a value that would result
|
||
from converting X to mode MODE.
|
||
Both X and MODE may be floating, or both integer.
|
||
UNSIGNEDP is nonzero if X is an unsigned value.
|
||
This can be done by referring to a part of X in place
|
||
or by copying to a new temporary with conversion. */
|
||
|
||
rtx
|
||
convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
|
||
{
|
||
return convert_modes (mode, VOIDmode, x, unsignedp);
|
||
}
|
||
|
||
/* Return an rtx for a value that would result
|
||
from converting X from mode OLDMODE to mode MODE.
|
||
Both modes may be floating, or both integer.
|
||
UNSIGNEDP is nonzero if X is an unsigned value.
|
||
|
||
This can be done by referring to a part of X in place
|
||
or by copying to a new temporary with conversion.
|
||
|
||
You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
|
||
|
||
rtx
|
||
convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
|
||
{
|
||
rtx temp;
|
||
|
||
/* If FROM is a SUBREG that indicates that we have already done at least
|
||
the required extension, strip it. */
|
||
|
||
if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
|
||
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
|
||
&& SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
|
||
x = gen_lowpart (mode, x);
|
||
|
||
if (GET_MODE (x) != VOIDmode)
|
||
oldmode = GET_MODE (x);
|
||
|
||
if (mode == oldmode)
|
||
return x;
|
||
|
||
/* There is one case that we must handle specially: If we are converting
|
||
a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
|
||
we are to interpret the constant as unsigned, gen_lowpart will do
|
||
the wrong if the constant appears negative. What we want to do is
|
||
make the high-order word of the constant zero, not all ones. */
|
||
|
||
if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
|
||
{
|
||
HOST_WIDE_INT val = INTVAL (x);
|
||
|
||
if (oldmode != VOIDmode
|
||
&& HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
|
||
{
|
||
int width = GET_MODE_BITSIZE (oldmode);
|
||
|
||
/* We need to zero extend VAL. */
|
||
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
}
|
||
|
||
return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
|
||
}
|
||
|
||
/* We can do this with a gen_lowpart if both desired and current modes
|
||
are integer, and this is either a constant integer, a register, or a
|
||
non-volatile MEM. Except for the constant case where MODE is no
|
||
wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
|
||
|
||
if ((GET_CODE (x) == CONST_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
|| (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_CLASS (oldmode) == MODE_INT
|
||
&& (GET_CODE (x) == CONST_DOUBLE
|
||
|| (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
|
||
&& ((MEM_P (x) && ! MEM_VOLATILE_P (x)
|
||
&& direct_load[(int) mode])
|
||
|| (REG_P (x)
|
||
&& (! HARD_REGISTER_P (x)
|
||
|| HARD_REGNO_MODE_OK (REGNO (x), mode))
|
||
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
||
GET_MODE_BITSIZE (GET_MODE (x)))))))))
|
||
{
|
||
/* ?? If we don't know OLDMODE, we have to assume here that
|
||
X does not need sign- or zero-extension. This may not be
|
||
the case, but it's the best we can do. */
|
||
if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
|
||
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
|
||
{
|
||
HOST_WIDE_INT val = INTVAL (x);
|
||
int width = GET_MODE_BITSIZE (oldmode);
|
||
|
||
/* We must sign or zero-extend in this case. Start by
|
||
zero-extending, then sign extend if we need to. */
|
||
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
if (! unsignedp
|
||
&& (val & ((HOST_WIDE_INT) 1 << (width - 1))))
|
||
val |= (HOST_WIDE_INT) (-1) << width;
|
||
|
||
return gen_int_mode (val, mode);
|
||
}
|
||
|
||
return gen_lowpart (mode, x);
|
||
}
|
||
|
||
/* Converting from integer constant into mode is always equivalent to an
|
||
subreg operation. */
|
||
if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
|
||
{
|
||
gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
|
||
return simplify_gen_subreg (mode, x, oldmode, 0);
|
||
}
|
||
|
||
temp = gen_reg_rtx (mode);
|
||
convert_move (temp, x, unsignedp);
|
||
return temp;
|
||
}
|
||
|
||
/* STORE_MAX_PIECES is the number of bytes at a time that we can
|
||
store efficiently. Due to internal GCC limitations, this is
|
||
MOVE_MAX_PIECES limited by the number of bytes GCC can represent
|
||
for an immediate constant. */
|
||
|
||
#define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
|
||
|
||
/* Determine whether the LEN bytes can be moved by using several move
|
||
instructions. Return nonzero if a call to move_by_pieces should
|
||
succeed. */
|
||
|
||
int
|
||
can_move_by_pieces (unsigned HOST_WIDE_INT len,
|
||
unsigned int align ATTRIBUTE_UNUSED)
|
||
{
|
||
return MOVE_BY_PIECES_P (len, align);
|
||
}
|
||
|
||
/* Generate several move instructions to copy LEN bytes from block FROM to
|
||
block TO. (These are MEM rtx's with BLKmode).
|
||
|
||
If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
|
||
used to push FROM to the stack.
|
||
|
||
ALIGN is maximum stack alignment we can assume.
|
||
|
||
If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
|
||
mempcpy, and if ENDP is 2 return memory the end minus one byte ala
|
||
stpcpy. */
|
||
|
||
rtx
|
||
move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
|
||
unsigned int align, int endp)
|
||
{
|
||
struct move_by_pieces data;
|
||
rtx to_addr, from_addr = XEXP (from, 0);
|
||
unsigned int max_size = MOVE_MAX_PIECES + 1;
|
||
enum machine_mode mode = VOIDmode, tmode;
|
||
enum insn_code icode;
|
||
|
||
align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
|
||
|
||
data.offset = 0;
|
||
data.from_addr = from_addr;
|
||
if (to)
|
||
{
|
||
to_addr = XEXP (to, 0);
|
||
data.to = to;
|
||
data.autinc_to
|
||
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|
||
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
|
||
data.reverse
|
||
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
|
||
}
|
||
else
|
||
{
|
||
to_addr = NULL_RTX;
|
||
data.to = NULL_RTX;
|
||
data.autinc_to = 1;
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
data.reverse = 1;
|
||
#else
|
||
data.reverse = 0;
|
||
#endif
|
||
}
|
||
data.to_addr = to_addr;
|
||
data.from = from;
|
||
data.autinc_from
|
||
= (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
|
||
|| GET_CODE (from_addr) == POST_INC
|
||
|| GET_CODE (from_addr) == POST_DEC);
|
||
|
||
data.explicit_inc_from = 0;
|
||
data.explicit_inc_to = 0;
|
||
if (data.reverse) data.offset = len;
|
||
data.len = len;
|
||
|
||
/* If copying requires more than two move insns,
|
||
copy addresses to registers (to make displacements shorter)
|
||
and use post-increment if available. */
|
||
if (!(data.autinc_from && data.autinc_to)
|
||
&& move_by_pieces_ninsns (len, align, max_size) > 2)
|
||
{
|
||
/* Find the mode of the largest move... */
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
|
||
{
|
||
data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
|
||
data.autinc_from = 1;
|
||
data.explicit_inc_from = -1;
|
||
}
|
||
if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
|
||
{
|
||
data.from_addr = copy_addr_to_reg (from_addr);
|
||
data.autinc_from = 1;
|
||
data.explicit_inc_from = 1;
|
||
}
|
||
if (!data.autinc_from && CONSTANT_P (from_addr))
|
||
data.from_addr = copy_addr_to_reg (from_addr);
|
||
if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
|
||
{
|
||
data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
|
||
data.autinc_to = 1;
|
||
data.explicit_inc_to = -1;
|
||
}
|
||
if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
|
||
{
|
||
data.to_addr = copy_addr_to_reg (to_addr);
|
||
data.autinc_to = 1;
|
||
data.explicit_inc_to = 1;
|
||
}
|
||
if (!data.autinc_to && CONSTANT_P (to_addr))
|
||
data.to_addr = copy_addr_to_reg (to_addr);
|
||
}
|
||
|
||
tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
||
if (align >= GET_MODE_ALIGNMENT (tmode))
|
||
align = GET_MODE_ALIGNMENT (tmode);
|
||
else
|
||
{
|
||
enum machine_mode xmode;
|
||
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
||
tmode != VOIDmode;
|
||
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
|
||
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
||
break;
|
||
|
||
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
||
}
|
||
|
||
/* First move what we can in the largest integer mode, then go to
|
||
successively smaller modes. */
|
||
|
||
while (max_size > 1)
|
||
{
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (mode == VOIDmode)
|
||
break;
|
||
|
||
icode = mov_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
|
||
move_by_pieces_1 (GEN_FCN (icode), mode, &data);
|
||
|
||
max_size = GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* The code above should have handled everything. */
|
||
gcc_assert (!data.len);
|
||
|
||
if (endp)
|
||
{
|
||
rtx to1;
|
||
|
||
gcc_assert (!data.reverse);
|
||
if (data.autinc_to)
|
||
{
|
||
if (endp == 2)
|
||
{
|
||
if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
|
||
emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
|
||
else
|
||
data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
|
||
-1));
|
||
}
|
||
to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
|
||
data.offset);
|
||
}
|
||
else
|
||
{
|
||
if (endp == 2)
|
||
--data.offset;
|
||
to1 = adjust_address (data.to, QImode, data.offset);
|
||
}
|
||
return to1;
|
||
}
|
||
else
|
||
return data.to;
|
||
}
|
||
|
||
/* Return number of insns required to move L bytes by pieces.
|
||
ALIGN (in bits) is maximum alignment we can assume. */
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
|
||
unsigned int max_size)
|
||
{
|
||
unsigned HOST_WIDE_INT n_insns = 0;
|
||
enum machine_mode tmode;
|
||
|
||
tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
||
if (align >= GET_MODE_ALIGNMENT (tmode))
|
||
align = GET_MODE_ALIGNMENT (tmode);
|
||
else
|
||
{
|
||
enum machine_mode tmode, xmode;
|
||
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
||
tmode != VOIDmode;
|
||
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
|
||
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
||
break;
|
||
|
||
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
||
}
|
||
|
||
while (max_size > 1)
|
||
{
|
||
enum machine_mode mode = VOIDmode;
|
||
enum insn_code icode;
|
||
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (mode == VOIDmode)
|
||
break;
|
||
|
||
icode = mov_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
|
||
n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
|
||
|
||
max_size = GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
gcc_assert (!l);
|
||
return n_insns;
|
||
}
|
||
|
||
/* Subroutine of move_by_pieces. Move as many bytes as appropriate
|
||
with move instructions for mode MODE. GENFUN is the gen_... function
|
||
to make a move insn for that mode. DATA has all the other info. */
|
||
|
||
static void
|
||
move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
|
||
struct move_by_pieces *data)
|
||
{
|
||
unsigned int size = GET_MODE_SIZE (mode);
|
||
rtx to1 = NULL_RTX, from1;
|
||
|
||
while (data->len >= size)
|
||
{
|
||
if (data->reverse)
|
||
data->offset -= size;
|
||
|
||
if (data->to)
|
||
{
|
||
if (data->autinc_to)
|
||
to1 = adjust_automodify_address (data->to, mode, data->to_addr,
|
||
data->offset);
|
||
else
|
||
to1 = adjust_address (data->to, mode, data->offset);
|
||
}
|
||
|
||
if (data->autinc_from)
|
||
from1 = adjust_automodify_address (data->from, mode, data->from_addr,
|
||
data->offset);
|
||
else
|
||
from1 = adjust_address (data->from, mode, data->offset);
|
||
|
||
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
|
||
emit_insn (gen_add2_insn (data->to_addr,
|
||
GEN_INT (-(HOST_WIDE_INT)size)));
|
||
if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
|
||
emit_insn (gen_add2_insn (data->from_addr,
|
||
GEN_INT (-(HOST_WIDE_INT)size)));
|
||
|
||
if (data->to)
|
||
emit_insn ((*genfun) (to1, from1));
|
||
else
|
||
{
|
||
#ifdef PUSH_ROUNDING
|
||
emit_single_push_insn (mode, from1, NULL);
|
||
#else
|
||
gcc_unreachable ();
|
||
#endif
|
||
}
|
||
|
||
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
|
||
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
|
||
if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
|
||
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
|
||
|
||
if (! data->reverse)
|
||
data->offset += size;
|
||
|
||
data->len -= size;
|
||
}
|
||
}
|
||
|
||
/* Emit code to move a block Y to a block X. This may be done with
|
||
string-move instructions, with multiple scalar move instructions,
|
||
or with a library call.
|
||
|
||
Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
|
||
SIZE is an rtx that says how long they are.
|
||
ALIGN is the maximum alignment we can assume they have.
|
||
METHOD describes what kind of copy this is, and what mechanisms may be used.
|
||
|
||
Return the address of the new block, if memcpy is called and returns it,
|
||
0 otherwise. */
|
||
|
||
rtx
|
||
emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
|
||
{
|
||
bool may_use_call;
|
||
rtx retval = 0;
|
||
unsigned int align;
|
||
|
||
switch (method)
|
||
{
|
||
case BLOCK_OP_NORMAL:
|
||
case BLOCK_OP_TAILCALL:
|
||
may_use_call = true;
|
||
break;
|
||
|
||
case BLOCK_OP_CALL_PARM:
|
||
may_use_call = block_move_libcall_safe_for_call_parm ();
|
||
|
||
/* Make inhibit_defer_pop nonzero around the library call
|
||
to force it to pop the arguments right away. */
|
||
NO_DEFER_POP;
|
||
break;
|
||
|
||
case BLOCK_OP_NO_LIBCALL:
|
||
may_use_call = false;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
|
||
|
||
gcc_assert (MEM_P (x));
|
||
gcc_assert (MEM_P (y));
|
||
gcc_assert (size);
|
||
|
||
/* Make sure we've got BLKmode addresses; store_one_arg can decide that
|
||
block copy is more efficient for other large modes, e.g. DCmode. */
|
||
x = adjust_address (x, BLKmode, 0);
|
||
y = adjust_address (y, BLKmode, 0);
|
||
|
||
/* Set MEM_SIZE as appropriate for this block copy. The main place this
|
||
can be incorrect is coming from __builtin_memcpy. */
|
||
if (GET_CODE (size) == CONST_INT)
|
||
{
|
||
if (INTVAL (size) == 0)
|
||
return 0;
|
||
|
||
x = shallow_copy_rtx (x);
|
||
y = shallow_copy_rtx (y);
|
||
set_mem_size (x, size);
|
||
set_mem_size (y, size);
|
||
}
|
||
|
||
if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
|
||
move_by_pieces (x, y, INTVAL (size), align, 0);
|
||
else if (emit_block_move_via_movmem (x, y, size, align))
|
||
;
|
||
else if (may_use_call)
|
||
retval = emit_block_move_via_libcall (x, y, size,
|
||
method == BLOCK_OP_TAILCALL);
|
||
else
|
||
emit_block_move_via_loop (x, y, size, align);
|
||
|
||
if (method == BLOCK_OP_CALL_PARM)
|
||
OK_DEFER_POP;
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* A subroutine of emit_block_move. Returns true if calling the
|
||
block move libcall will not clobber any parameters which may have
|
||
already been placed on the stack. */
|
||
|
||
static bool
|
||
block_move_libcall_safe_for_call_parm (void)
|
||
{
|
||
/* If arguments are pushed on the stack, then they're safe. */
|
||
if (PUSH_ARGS)
|
||
return true;
|
||
|
||
/* If registers go on the stack anyway, any argument is sure to clobber
|
||
an outgoing argument. */
|
||
#if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
|
||
{
|
||
tree fn = emit_block_move_libcall_fn (false);
|
||
(void) fn;
|
||
if (REG_PARM_STACK_SPACE (fn) != 0)
|
||
return false;
|
||
}
|
||
#endif
|
||
|
||
/* If any argument goes in memory, then it might clobber an outgoing
|
||
argument. */
|
||
{
|
||
CUMULATIVE_ARGS args_so_far;
|
||
tree fn, arg;
|
||
|
||
fn = emit_block_move_libcall_fn (false);
|
||
INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
|
||
|
||
arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
||
for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
|
||
{
|
||
enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
|
||
rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
|
||
if (!tmp || !REG_P (tmp))
|
||
return false;
|
||
if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
|
||
return false;
|
||
FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* A subroutine of emit_block_move. Expand a movmem pattern;
|
||
return true if successful. */
|
||
|
||
static bool
|
||
emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
|
||
{
|
||
rtx opalign = GEN_INT (align / BITS_PER_UNIT);
|
||
int save_volatile_ok = volatile_ok;
|
||
enum machine_mode mode;
|
||
|
||
/* Since this is a move insn, we don't care about volatility. */
|
||
volatile_ok = 1;
|
||
|
||
/* Try the most limited insn first, because there's no point
|
||
including more than one in the machine description unless
|
||
the more limited one has some advantage. */
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
enum insn_code code = movmem_optab[(int) mode];
|
||
insn_operand_predicate_fn pred;
|
||
|
||
if (code != CODE_FOR_nothing
|
||
/* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
|
||
here because if SIZE is less than the mode mask, as it is
|
||
returned by the macro, it will definitely be less than the
|
||
actual mode mask. */
|
||
&& ((GET_CODE (size) == CONST_INT
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
|
||
<= (GET_MODE_MASK (mode) >> 1)))
|
||
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
|
||
&& ((pred = insn_data[(int) code].operand[0].predicate) == 0
|
||
|| (*pred) (x, BLKmode))
|
||
&& ((pred = insn_data[(int) code].operand[1].predicate) == 0
|
||
|| (*pred) (y, BLKmode))
|
||
&& ((pred = insn_data[(int) code].operand[3].predicate) == 0
|
||
|| (*pred) (opalign, VOIDmode)))
|
||
{
|
||
rtx op2;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
op2 = convert_to_mode (mode, size, 1);
|
||
pred = insn_data[(int) code].operand[2].predicate;
|
||
if (pred != 0 && ! (*pred) (op2, mode))
|
||
op2 = copy_to_mode_reg (mode, op2);
|
||
|
||
/* ??? When called via emit_block_move_for_call, it'd be
|
||
nice if there were some way to inform the backend, so
|
||
that it doesn't fail the expansion because it thinks
|
||
emitting the libcall would be more efficient. */
|
||
|
||
pat = GEN_FCN ((int) code) (x, y, op2, opalign);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
volatile_ok = save_volatile_ok;
|
||
return true;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
volatile_ok = save_volatile_ok;
|
||
return false;
|
||
}
|
||
|
||
/* A subroutine of emit_block_move. Expand a call to memcpy.
|
||
Return the return value from memcpy, 0 otherwise. */
|
||
|
||
static rtx
|
||
emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
|
||
{
|
||
rtx dst_addr, src_addr;
|
||
tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
|
||
enum machine_mode size_mode;
|
||
rtx retval;
|
||
|
||
/* Emit code to copy the addresses of DST and SRC and SIZE into new
|
||
pseudos. We can then place those new pseudos into a VAR_DECL and
|
||
use them later. */
|
||
|
||
dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
|
||
src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
|
||
|
||
dst_addr = convert_memory_address (ptr_mode, dst_addr);
|
||
src_addr = convert_memory_address (ptr_mode, src_addr);
|
||
|
||
dst_tree = make_tree (ptr_type_node, dst_addr);
|
||
src_tree = make_tree (ptr_type_node, src_addr);
|
||
|
||
size_mode = TYPE_MODE (sizetype);
|
||
|
||
size = convert_to_mode (size_mode, size, 1);
|
||
size = copy_to_mode_reg (size_mode, size);
|
||
|
||
/* It is incorrect to use the libcall calling conventions to call
|
||
memcpy in this context. This could be a user call to memcpy and
|
||
the user may wish to examine the return value from memcpy. For
|
||
targets where libcalls and normal calls have different conventions
|
||
for returning pointers, we could end up generating incorrect code. */
|
||
|
||
size_tree = make_tree (sizetype, size);
|
||
|
||
fn = emit_block_move_libcall_fn (true);
|
||
arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
|
||
arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
|
||
arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
|
||
|
||
/* Now we have to build up the CALL_EXPR itself. */
|
||
call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
|
||
call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
|
||
call_expr, arg_list, NULL_TREE);
|
||
CALL_EXPR_TAILCALL (call_expr) = tailcall;
|
||
|
||
retval = expand_normal (call_expr);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* A subroutine of emit_block_move_via_libcall. Create the tree node
|
||
for the function we use for block copies. The first time FOR_CALL
|
||
is true, we call assemble_external. */
|
||
|
||
static GTY(()) tree block_move_fn;
|
||
|
||
void
|
||
init_block_move_fn (const char *asmspec)
|
||
{
|
||
if (!block_move_fn)
|
||
{
|
||
tree args, fn;
|
||
|
||
fn = get_identifier ("memcpy");
|
||
args = build_function_type_list (ptr_type_node, ptr_type_node,
|
||
const_ptr_type_node, sizetype,
|
||
NULL_TREE);
|
||
|
||
fn = build_decl (FUNCTION_DECL, fn, args);
|
||
DECL_EXTERNAL (fn) = 1;
|
||
TREE_PUBLIC (fn) = 1;
|
||
DECL_ARTIFICIAL (fn) = 1;
|
||
TREE_NOTHROW (fn) = 1;
|
||
DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
|
||
DECL_VISIBILITY_SPECIFIED (fn) = 1;
|
||
|
||
block_move_fn = fn;
|
||
}
|
||
|
||
if (asmspec)
|
||
set_user_assembler_name (block_move_fn, asmspec);
|
||
}
|
||
|
||
static tree
|
||
emit_block_move_libcall_fn (int for_call)
|
||
{
|
||
static bool emitted_extern;
|
||
|
||
if (!block_move_fn)
|
||
init_block_move_fn (NULL);
|
||
|
||
if (for_call && !emitted_extern)
|
||
{
|
||
emitted_extern = true;
|
||
make_decl_rtl (block_move_fn);
|
||
assemble_external (block_move_fn);
|
||
}
|
||
|
||
return block_move_fn;
|
||
}
|
||
|
||
/* A subroutine of emit_block_move. Copy the data via an explicit
|
||
loop. This is used only when libcalls are forbidden. */
|
||
/* ??? It'd be nice to copy in hunks larger than QImode. */
|
||
|
||
static void
|
||
emit_block_move_via_loop (rtx x, rtx y, rtx size,
|
||
unsigned int align ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
|
||
enum machine_mode iter_mode;
|
||
|
||
iter_mode = GET_MODE (size);
|
||
if (iter_mode == VOIDmode)
|
||
iter_mode = word_mode;
|
||
|
||
top_label = gen_label_rtx ();
|
||
cmp_label = gen_label_rtx ();
|
||
iter = gen_reg_rtx (iter_mode);
|
||
|
||
emit_move_insn (iter, const0_rtx);
|
||
|
||
x_addr = force_operand (XEXP (x, 0), NULL_RTX);
|
||
y_addr = force_operand (XEXP (y, 0), NULL_RTX);
|
||
do_pending_stack_adjust ();
|
||
|
||
emit_jump (cmp_label);
|
||
emit_label (top_label);
|
||
|
||
tmp = convert_modes (Pmode, iter_mode, iter, true);
|
||
x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
|
||
y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
|
||
x = change_address (x, QImode, x_addr);
|
||
y = change_address (y, QImode, y_addr);
|
||
|
||
emit_move_insn (x, y);
|
||
|
||
tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
|
||
true, OPTAB_LIB_WIDEN);
|
||
if (tmp != iter)
|
||
emit_move_insn (iter, tmp);
|
||
|
||
emit_label (cmp_label);
|
||
|
||
emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
|
||
true, top_label);
|
||
}
|
||
|
||
/* Copy all or part of a value X into registers starting at REGNO.
|
||
The number of registers to be filled is NREGS. */
|
||
|
||
void
|
||
move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
|
||
{
|
||
int i;
|
||
#ifdef HAVE_load_multiple
|
||
rtx pat;
|
||
rtx last;
|
||
#endif
|
||
|
||
if (nregs == 0)
|
||
return;
|
||
|
||
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
|
||
x = validize_mem (force_const_mem (mode, x));
|
||
|
||
/* See if the machine can do this with a load multiple insn. */
|
||
#ifdef HAVE_load_multiple
|
||
if (HAVE_load_multiple)
|
||
{
|
||
last = get_last_insn ();
|
||
pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
|
||
GEN_INT (nregs));
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
#endif
|
||
|
||
for (i = 0; i < nregs; i++)
|
||
emit_move_insn (gen_rtx_REG (word_mode, regno + i),
|
||
operand_subword_force (x, i, mode));
|
||
}
|
||
|
||
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
|
||
The number of registers to be filled is NREGS. */
|
||
|
||
void
|
||
move_block_from_reg (int regno, rtx x, int nregs)
|
||
{
|
||
int i;
|
||
|
||
if (nregs == 0)
|
||
return;
|
||
|
||
/* See if the machine can do this with a store multiple insn. */
|
||
#ifdef HAVE_store_multiple
|
||
if (HAVE_store_multiple)
|
||
{
|
||
rtx last = get_last_insn ();
|
||
rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
|
||
GEN_INT (nregs));
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
#endif
|
||
|
||
for (i = 0; i < nregs; i++)
|
||
{
|
||
rtx tem = operand_subword (x, i, 1, BLKmode);
|
||
|
||
gcc_assert (tem);
|
||
|
||
emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
|
||
}
|
||
}
|
||
|
||
/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
|
||
ORIG, where ORIG is a non-consecutive group of registers represented by
|
||
a PARALLEL. The clone is identical to the original except in that the
|
||
original set of registers is replaced by a new set of pseudo registers.
|
||
The new set has the same modes as the original set. */
|
||
|
||
rtx
|
||
gen_group_rtx (rtx orig)
|
||
{
|
||
int i, length;
|
||
rtx *tmps;
|
||
|
||
gcc_assert (GET_CODE (orig) == PARALLEL);
|
||
|
||
length = XVECLEN (orig, 0);
|
||
tmps = alloca (sizeof (rtx) * length);
|
||
|
||
/* Skip a NULL entry in first slot. */
|
||
i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
|
||
|
||
if (i)
|
||
tmps[0] = 0;
|
||
|
||
for (; i < length; i++)
|
||
{
|
||
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
|
||
rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
|
||
|
||
tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
|
||
}
|
||
|
||
return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
|
||
}
|
||
|
||
/* A subroutine of emit_group_load. Arguments as for emit_group_load,
|
||
except that values are placed in TMPS[i], and must later be moved
|
||
into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
|
||
|
||
static void
|
||
emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
|
||
{
|
||
rtx src;
|
||
int start, i;
|
||
enum machine_mode m = GET_MODE (orig_src);
|
||
|
||
gcc_assert (GET_CODE (dst) == PARALLEL);
|
||
|
||
if (m != VOIDmode
|
||
&& !SCALAR_INT_MODE_P (m)
|
||
&& !MEM_P (orig_src)
|
||
&& GET_CODE (orig_src) != CONCAT)
|
||
{
|
||
enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
|
||
if (imode == BLKmode)
|
||
src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
|
||
else
|
||
src = gen_reg_rtx (imode);
|
||
if (imode != BLKmode)
|
||
src = gen_lowpart (GET_MODE (orig_src), src);
|
||
emit_move_insn (src, orig_src);
|
||
/* ...and back again. */
|
||
if (imode != BLKmode)
|
||
src = gen_lowpart (imode, src);
|
||
emit_group_load_1 (tmps, dst, src, type, ssize);
|
||
return;
|
||
}
|
||
|
||
/* Check for a NULL entry, used to indicate that the parameter goes
|
||
both on the stack and in registers. */
|
||
if (XEXP (XVECEXP (dst, 0, 0), 0))
|
||
start = 0;
|
||
else
|
||
start = 1;
|
||
|
||
/* Process the pieces. */
|
||
for (i = start; i < XVECLEN (dst, 0); i++)
|
||
{
|
||
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
|
||
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
|
||
unsigned int bytelen = GET_MODE_SIZE (mode);
|
||
int shift = 0;
|
||
|
||
/* Handle trailing fragments that run over the size of the struct. */
|
||
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
|
||
{
|
||
/* Arrange to shift the fragment to where it belongs.
|
||
extract_bit_field loads to the lsb of the reg. */
|
||
if (
|
||
#ifdef BLOCK_REG_PADDING
|
||
BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
|
||
== (BYTES_BIG_ENDIAN ? upward : downward)
|
||
#else
|
||
BYTES_BIG_ENDIAN
|
||
#endif
|
||
)
|
||
shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
|
||
bytelen = ssize - bytepos;
|
||
gcc_assert (bytelen > 0);
|
||
}
|
||
|
||
/* If we won't be loading directly from memory, protect the real source
|
||
from strange tricks we might play; but make sure that the source can
|
||
be loaded directly into the destination. */
|
||
src = orig_src;
|
||
if (!MEM_P (orig_src)
|
||
&& (!CONSTANT_P (orig_src)
|
||
|| (GET_MODE (orig_src) != mode
|
||
&& GET_MODE (orig_src) != VOIDmode)))
|
||
{
|
||
if (GET_MODE (orig_src) == VOIDmode)
|
||
src = gen_reg_rtx (mode);
|
||
else
|
||
src = gen_reg_rtx (GET_MODE (orig_src));
|
||
|
||
emit_move_insn (src, orig_src);
|
||
}
|
||
|
||
/* Optimize the access just a bit. */
|
||
if (MEM_P (src)
|
||
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
|
||
|| MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
|
||
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
|
||
&& bytelen == GET_MODE_SIZE (mode))
|
||
{
|
||
tmps[i] = gen_reg_rtx (mode);
|
||
emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
|
||
}
|
||
else if (COMPLEX_MODE_P (mode)
|
||
&& GET_MODE (src) == mode
|
||
&& bytelen == GET_MODE_SIZE (mode))
|
||
/* Let emit_move_complex do the bulk of the work. */
|
||
tmps[i] = src;
|
||
else if (GET_CODE (src) == CONCAT)
|
||
{
|
||
unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
|
||
unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
|
||
|
||
if ((bytepos == 0 && bytelen == slen0)
|
||
|| (bytepos != 0 && bytepos + bytelen <= slen))
|
||
{
|
||
/* The following assumes that the concatenated objects all
|
||
have the same size. In this case, a simple calculation
|
||
can be used to determine the object and the bit field
|
||
to be extracted. */
|
||
tmps[i] = XEXP (src, bytepos / slen0);
|
||
if (! CONSTANT_P (tmps[i])
|
||
&& (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
|
||
tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
|
||
(bytepos % slen0) * BITS_PER_UNIT,
|
||
1, NULL_RTX, mode, mode);
|
||
}
|
||
else
|
||
{
|
||
rtx mem;
|
||
|
||
gcc_assert (!bytepos);
|
||
mem = assign_stack_temp (GET_MODE (src), slen, 0);
|
||
emit_move_insn (mem, src);
|
||
tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
|
||
0, 1, NULL_RTX, mode, mode);
|
||
}
|
||
}
|
||
/* FIXME: A SIMD parallel will eventually lead to a subreg of a
|
||
SIMD register, which is currently broken. While we get GCC
|
||
to emit proper RTL for these cases, let's dump to memory. */
|
||
else if (VECTOR_MODE_P (GET_MODE (dst))
|
||
&& REG_P (src))
|
||
{
|
||
int slen = GET_MODE_SIZE (GET_MODE (src));
|
||
rtx mem;
|
||
|
||
mem = assign_stack_temp (GET_MODE (src), slen, 0);
|
||
emit_move_insn (mem, src);
|
||
tmps[i] = adjust_address (mem, mode, (int) bytepos);
|
||
}
|
||
else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
|
||
&& XVECLEN (dst, 0) > 1)
|
||
tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
|
||
else if (CONSTANT_P (src)
|
||
|| (REG_P (src) && GET_MODE (src) == mode))
|
||
tmps[i] = src;
|
||
else
|
||
tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
|
||
bytepos * BITS_PER_UNIT, 1, NULL_RTX,
|
||
mode, mode);
|
||
|
||
if (shift)
|
||
tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
|
||
build_int_cst (NULL_TREE, shift), tmps[i], 0);
|
||
}
|
||
}
|
||
|
||
/* Emit code to move a block SRC of type TYPE to a block DST,
|
||
where DST is non-consecutive registers represented by a PARALLEL.
|
||
SSIZE represents the total size of block ORIG_SRC in bytes, or -1
|
||
if not known. */
|
||
|
||
void
|
||
emit_group_load (rtx dst, rtx src, tree type, int ssize)
|
||
{
|
||
rtx *tmps;
|
||
int i;
|
||
|
||
tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
|
||
emit_group_load_1 (tmps, dst, src, type, ssize);
|
||
|
||
/* Copy the extracted pieces into the proper (probable) hard regs. */
|
||
for (i = 0; i < XVECLEN (dst, 0); i++)
|
||
{
|
||
rtx d = XEXP (XVECEXP (dst, 0, i), 0);
|
||
if (d == NULL)
|
||
continue;
|
||
emit_move_insn (d, tmps[i]);
|
||
}
|
||
}
|
||
|
||
/* Similar, but load SRC into new pseudos in a format that looks like
|
||
PARALLEL. This can later be fed to emit_group_move to get things
|
||
in the right place. */
|
||
|
||
rtx
|
||
emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
|
||
{
|
||
rtvec vec;
|
||
int i;
|
||
|
||
vec = rtvec_alloc (XVECLEN (parallel, 0));
|
||
emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
|
||
|
||
/* Convert the vector to look just like the original PARALLEL, except
|
||
with the computed values. */
|
||
for (i = 0; i < XVECLEN (parallel, 0); i++)
|
||
{
|
||
rtx e = XVECEXP (parallel, 0, i);
|
||
rtx d = XEXP (e, 0);
|
||
|
||
if (d)
|
||
{
|
||
d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
|
||
e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
|
||
}
|
||
RTVEC_ELT (vec, i) = e;
|
||
}
|
||
|
||
return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
|
||
}
|
||
|
||
/* Emit code to move a block SRC to block DST, where SRC and DST are
|
||
non-consecutive groups of registers, each represented by a PARALLEL. */
|
||
|
||
void
|
||
emit_group_move (rtx dst, rtx src)
|
||
{
|
||
int i;
|
||
|
||
gcc_assert (GET_CODE (src) == PARALLEL
|
||
&& GET_CODE (dst) == PARALLEL
|
||
&& XVECLEN (src, 0) == XVECLEN (dst, 0));
|
||
|
||
/* Skip first entry if NULL. */
|
||
for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
|
||
emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
|
||
XEXP (XVECEXP (src, 0, i), 0));
|
||
}
|
||
|
||
/* Move a group of registers represented by a PARALLEL into pseudos. */
|
||
|
||
rtx
|
||
emit_group_move_into_temps (rtx src)
|
||
{
|
||
rtvec vec = rtvec_alloc (XVECLEN (src, 0));
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (src, 0); i++)
|
||
{
|
||
rtx e = XVECEXP (src, 0, i);
|
||
rtx d = XEXP (e, 0);
|
||
|
||
if (d)
|
||
e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
|
||
RTVEC_ELT (vec, i) = e;
|
||
}
|
||
|
||
return gen_rtx_PARALLEL (GET_MODE (src), vec);
|
||
}
|
||
|
||
/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
|
||
where SRC is non-consecutive registers represented by a PARALLEL.
|
||
SSIZE represents the total size of block ORIG_DST, or -1 if not
|
||
known. */
|
||
|
||
void
|
||
emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
|
||
{
|
||
rtx *tmps, dst;
|
||
int start, finish, i;
|
||
enum machine_mode m = GET_MODE (orig_dst);
|
||
|
||
gcc_assert (GET_CODE (src) == PARALLEL);
|
||
|
||
if (!SCALAR_INT_MODE_P (m)
|
||
&& !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
|
||
{
|
||
enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
|
||
if (imode == BLKmode)
|
||
dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
|
||
else
|
||
dst = gen_reg_rtx (imode);
|
||
emit_group_store (dst, src, type, ssize);
|
||
if (imode != BLKmode)
|
||
dst = gen_lowpart (GET_MODE (orig_dst), dst);
|
||
emit_move_insn (orig_dst, dst);
|
||
return;
|
||
}
|
||
|
||
/* Check for a NULL entry, used to indicate that the parameter goes
|
||
both on the stack and in registers. */
|
||
if (XEXP (XVECEXP (src, 0, 0), 0))
|
||
start = 0;
|
||
else
|
||
start = 1;
|
||
finish = XVECLEN (src, 0);
|
||
|
||
tmps = alloca (sizeof (rtx) * finish);
|
||
|
||
/* Copy the (probable) hard regs into pseudos. */
|
||
for (i = start; i < finish; i++)
|
||
{
|
||
rtx reg = XEXP (XVECEXP (src, 0, i), 0);
|
||
if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
tmps[i] = gen_reg_rtx (GET_MODE (reg));
|
||
emit_move_insn (tmps[i], reg);
|
||
}
|
||
else
|
||
tmps[i] = reg;
|
||
}
|
||
|
||
/* If we won't be storing directly into memory, protect the real destination
|
||
from strange tricks we might play. */
|
||
dst = orig_dst;
|
||
if (GET_CODE (dst) == PARALLEL)
|
||
{
|
||
rtx temp;
|
||
|
||
/* We can get a PARALLEL dst if there is a conditional expression in
|
||
a return statement. In that case, the dst and src are the same,
|
||
so no action is necessary. */
|
||
if (rtx_equal_p (dst, src))
|
||
return;
|
||
|
||
/* It is unclear if we can ever reach here, but we may as well handle
|
||
it. Allocate a temporary, and split this into a store/load to/from
|
||
the temporary. */
|
||
|
||
temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
|
||
emit_group_store (temp, src, type, ssize);
|
||
emit_group_load (dst, temp, type, ssize);
|
||
return;
|
||
}
|
||
else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
|
||
{
|
||
enum machine_mode outer = GET_MODE (dst);
|
||
enum machine_mode inner;
|
||
HOST_WIDE_INT bytepos;
|
||
bool done = false;
|
||
rtx temp;
|
||
|
||
if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
|
||
dst = gen_reg_rtx (outer);
|
||
|
||
/* Make life a bit easier for combine. */
|
||
/* If the first element of the vector is the low part
|
||
of the destination mode, use a paradoxical subreg to
|
||
initialize the destination. */
|
||
if (start < finish)
|
||
{
|
||
inner = GET_MODE (tmps[start]);
|
||
bytepos = subreg_lowpart_offset (inner, outer);
|
||
if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
|
||
{
|
||
temp = simplify_gen_subreg (outer, tmps[start],
|
||
inner, 0);
|
||
if (temp)
|
||
{
|
||
emit_move_insn (dst, temp);
|
||
done = true;
|
||
start++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the first element wasn't the low part, try the last. */
|
||
if (!done
|
||
&& start < finish - 1)
|
||
{
|
||
inner = GET_MODE (tmps[finish - 1]);
|
||
bytepos = subreg_lowpart_offset (inner, outer);
|
||
if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
|
||
{
|
||
temp = simplify_gen_subreg (outer, tmps[finish - 1],
|
||
inner, 0);
|
||
if (temp)
|
||
{
|
||
emit_move_insn (dst, temp);
|
||
done = true;
|
||
finish--;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Otherwise, simply initialize the result to zero. */
|
||
if (!done)
|
||
emit_move_insn (dst, CONST0_RTX (outer));
|
||
}
|
||
|
||
/* Process the pieces. */
|
||
for (i = start; i < finish; i++)
|
||
{
|
||
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
|
||
enum machine_mode mode = GET_MODE (tmps[i]);
|
||
unsigned int bytelen = GET_MODE_SIZE (mode);
|
||
rtx dest = dst;
|
||
|
||
/* Handle trailing fragments that run over the size of the struct. */
|
||
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
|
||
{
|
||
/* store_bit_field always takes its value from the lsb.
|
||
Move the fragment to the lsb if it's not already there. */
|
||
if (
|
||
#ifdef BLOCK_REG_PADDING
|
||
BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
|
||
== (BYTES_BIG_ENDIAN ? upward : downward)
|
||
#else
|
||
BYTES_BIG_ENDIAN
|
||
#endif
|
||
)
|
||
{
|
||
int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
|
||
tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
|
||
build_int_cst (NULL_TREE, shift),
|
||
tmps[i], 0);
|
||
}
|
||
bytelen = ssize - bytepos;
|
||
}
|
||
|
||
if (GET_CODE (dst) == CONCAT)
|
||
{
|
||
if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
|
||
dest = XEXP (dst, 0);
|
||
else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
|
||
{
|
||
bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
|
||
dest = XEXP (dst, 1);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (bytepos == 0 && XVECLEN (src, 0));
|
||
dest = assign_stack_temp (GET_MODE (dest),
|
||
GET_MODE_SIZE (GET_MODE (dest)), 0);
|
||
emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
|
||
tmps[i]);
|
||
dst = dest;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Optimize the access just a bit. */
|
||
if (MEM_P (dest)
|
||
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
|
||
|| MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
|
||
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
|
||
&& bytelen == GET_MODE_SIZE (mode))
|
||
emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
|
||
else
|
||
store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
|
||
mode, tmps[i]);
|
||
}
|
||
|
||
/* Copy from the pseudo into the (probable) hard reg. */
|
||
if (orig_dst != dst)
|
||
emit_move_insn (orig_dst, dst);
|
||
}
|
||
|
||
/* Generate code to copy a BLKmode object of TYPE out of a
|
||
set of registers starting with SRCREG into TGTBLK. If TGTBLK
|
||
is null, a stack temporary is created. TGTBLK is returned.
|
||
|
||
The purpose of this routine is to handle functions that return
|
||
BLKmode structures in registers. Some machines (the PA for example)
|
||
want to return all small structures in registers regardless of the
|
||
structure's alignment. */
|
||
|
||
rtx
|
||
copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
|
||
{
|
||
unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
|
||
rtx src = NULL, dst = NULL;
|
||
unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
|
||
unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
|
||
|
||
if (tgtblk == 0)
|
||
{
|
||
tgtblk = assign_temp (build_qualified_type (type,
|
||
(TYPE_QUALS (type)
|
||
| TYPE_QUAL_CONST)),
|
||
0, 1, 1);
|
||
preserve_temp_slots (tgtblk);
|
||
}
|
||
|
||
/* This code assumes srcreg is at least a full word. If it isn't, copy it
|
||
into a new pseudo which is a full word. */
|
||
|
||
if (GET_MODE (srcreg) != BLKmode
|
||
&& GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
|
||
srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
|
||
|
||
/* If the structure doesn't take up a whole number of words, see whether
|
||
SRCREG is padded on the left or on the right. If it's on the left,
|
||
set PADDING_CORRECTION to the number of bits to skip.
|
||
|
||
In most ABIs, the structure will be returned at the least end of
|
||
the register, which translates to right padding on little-endian
|
||
targets and left padding on big-endian targets. The opposite
|
||
holds if the structure is returned at the most significant
|
||
end of the register. */
|
||
if (bytes % UNITS_PER_WORD != 0
|
||
&& (targetm.calls.return_in_msb (type)
|
||
? !BYTES_BIG_ENDIAN
|
||
: BYTES_BIG_ENDIAN))
|
||
padding_correction
|
||
= (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
|
||
|
||
/* Copy the structure BITSIZE bites at a time.
|
||
|
||
We could probably emit more efficient code for machines which do not use
|
||
strict alignment, but it doesn't seem worth the effort at the current
|
||
time. */
|
||
for (bitpos = 0, xbitpos = padding_correction;
|
||
bitpos < bytes * BITS_PER_UNIT;
|
||
bitpos += bitsize, xbitpos += bitsize)
|
||
{
|
||
/* We need a new source operand each time xbitpos is on a
|
||
word boundary and when xbitpos == padding_correction
|
||
(the first time through). */
|
||
if (xbitpos % BITS_PER_WORD == 0
|
||
|| xbitpos == padding_correction)
|
||
src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
|
||
GET_MODE (srcreg));
|
||
|
||
/* We need a new destination operand each time bitpos is on
|
||
a word boundary. */
|
||
if (bitpos % BITS_PER_WORD == 0)
|
||
dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
|
||
|
||
/* Use xbitpos for the source extraction (right justified) and
|
||
xbitpos for the destination store (left justified). */
|
||
store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
|
||
extract_bit_field (src, bitsize,
|
||
xbitpos % BITS_PER_WORD, 1,
|
||
NULL_RTX, word_mode, word_mode));
|
||
}
|
||
|
||
return tgtblk;
|
||
}
|
||
|
||
/* Add a USE expression for REG to the (possibly empty) list pointed
|
||
to by CALL_FUSAGE. REG must denote a hard register. */
|
||
|
||
void
|
||
use_reg (rtx *call_fusage, rtx reg)
|
||
{
|
||
gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
|
||
|
||
*call_fusage
|
||
= gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_USE (VOIDmode, reg), *call_fusage);
|
||
}
|
||
|
||
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
|
||
starting at REGNO. All of these registers must be hard registers. */
|
||
|
||
void
|
||
use_regs (rtx *call_fusage, int regno, int nregs)
|
||
{
|
||
int i;
|
||
|
||
gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
|
||
|
||
for (i = 0; i < nregs; i++)
|
||
use_reg (call_fusage, regno_reg_rtx[regno + i]);
|
||
}
|
||
|
||
/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
|
||
PARALLEL REGS. This is for calls that pass values in multiple
|
||
non-contiguous locations. The Irix 6 ABI has examples of this. */
|
||
|
||
void
|
||
use_group_regs (rtx *call_fusage, rtx regs)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (regs, 0); i++)
|
||
{
|
||
rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
|
||
|
||
/* A NULL entry means the parameter goes both on the stack and in
|
||
registers. This can also be a MEM for targets that pass values
|
||
partially on the stack and partially in registers. */
|
||
if (reg != 0 && REG_P (reg))
|
||
use_reg (call_fusage, reg);
|
||
}
|
||
}
|
||
|
||
|
||
/* Determine whether the LEN bytes generated by CONSTFUN can be
|
||
stored to memory using several move instructions. CONSTFUNDATA is
|
||
a pointer which will be passed as argument in every CONSTFUN call.
|
||
ALIGN is maximum alignment we can assume. Return nonzero if a
|
||
call to store_by_pieces should succeed. */
|
||
|
||
int
|
||
can_store_by_pieces (unsigned HOST_WIDE_INT len,
|
||
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
|
||
void *constfundata, unsigned int align)
|
||
{
|
||
unsigned HOST_WIDE_INT l;
|
||
unsigned int max_size;
|
||
HOST_WIDE_INT offset = 0;
|
||
enum machine_mode mode, tmode;
|
||
enum insn_code icode;
|
||
int reverse;
|
||
rtx cst;
|
||
|
||
if (len == 0)
|
||
return 1;
|
||
|
||
if (! STORE_BY_PIECES_P (len, align))
|
||
return 0;
|
||
|
||
tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
||
if (align >= GET_MODE_ALIGNMENT (tmode))
|
||
align = GET_MODE_ALIGNMENT (tmode);
|
||
else
|
||
{
|
||
enum machine_mode xmode;
|
||
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
||
tmode != VOIDmode;
|
||
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
|
||
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
||
break;
|
||
|
||
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
||
}
|
||
|
||
/* We would first store what we can in the largest integer mode, then go to
|
||
successively smaller modes. */
|
||
|
||
for (reverse = 0;
|
||
reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
|
||
reverse++)
|
||
{
|
||
l = len;
|
||
mode = VOIDmode;
|
||
max_size = STORE_MAX_PIECES + 1;
|
||
while (max_size > 1)
|
||
{
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (mode == VOIDmode)
|
||
break;
|
||
|
||
icode = mov_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing
|
||
&& align >= GET_MODE_ALIGNMENT (mode))
|
||
{
|
||
unsigned int size = GET_MODE_SIZE (mode);
|
||
|
||
while (l >= size)
|
||
{
|
||
if (reverse)
|
||
offset -= size;
|
||
|
||
cst = (*constfun) (constfundata, offset, mode);
|
||
if (!LEGITIMATE_CONSTANT_P (cst))
|
||
return 0;
|
||
|
||
if (!reverse)
|
||
offset += size;
|
||
|
||
l -= size;
|
||
}
|
||
}
|
||
|
||
max_size = GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* The code above should have handled everything. */
|
||
gcc_assert (!l);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Generate several move instructions to store LEN bytes generated by
|
||
CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
|
||
pointer which will be passed as argument in every CONSTFUN call.
|
||
ALIGN is maximum alignment we can assume.
|
||
If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
|
||
mempcpy, and if ENDP is 2 return memory the end minus one byte ala
|
||
stpcpy. */
|
||
|
||
rtx
|
||
store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
|
||
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
|
||
void *constfundata, unsigned int align, int endp)
|
||
{
|
||
struct store_by_pieces data;
|
||
|
||
if (len == 0)
|
||
{
|
||
gcc_assert (endp != 2);
|
||
return to;
|
||
}
|
||
|
||
gcc_assert (STORE_BY_PIECES_P (len, align));
|
||
data.constfun = constfun;
|
||
data.constfundata = constfundata;
|
||
data.len = len;
|
||
data.to = to;
|
||
store_by_pieces_1 (&data, align);
|
||
if (endp)
|
||
{
|
||
rtx to1;
|
||
|
||
gcc_assert (!data.reverse);
|
||
if (data.autinc_to)
|
||
{
|
||
if (endp == 2)
|
||
{
|
||
if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
|
||
emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
|
||
else
|
||
data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
|
||
-1));
|
||
}
|
||
to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
|
||
data.offset);
|
||
}
|
||
else
|
||
{
|
||
if (endp == 2)
|
||
--data.offset;
|
||
to1 = adjust_address (data.to, QImode, data.offset);
|
||
}
|
||
return to1;
|
||
}
|
||
else
|
||
return data.to;
|
||
}
|
||
|
||
/* Generate several move instructions to clear LEN bytes of block TO. (A MEM
|
||
rtx with BLKmode). ALIGN is maximum alignment we can assume. */
|
||
|
||
static void
|
||
clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
|
||
{
|
||
struct store_by_pieces data;
|
||
|
||
if (len == 0)
|
||
return;
|
||
|
||
data.constfun = clear_by_pieces_1;
|
||
data.constfundata = NULL;
|
||
data.len = len;
|
||
data.to = to;
|
||
store_by_pieces_1 (&data, align);
|
||
}
|
||
|
||
/* Callback routine for clear_by_pieces.
|
||
Return const0_rtx unconditionally. */
|
||
|
||
static rtx
|
||
clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
|
||
HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
|
||
enum machine_mode mode ATTRIBUTE_UNUSED)
|
||
{
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Subroutine of clear_by_pieces and store_by_pieces.
|
||
Generate several move instructions to store LEN bytes of block TO. (A MEM
|
||
rtx with BLKmode). ALIGN is maximum alignment we can assume. */
|
||
|
||
static void
|
||
store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
|
||
unsigned int align ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx to_addr = XEXP (data->to, 0);
|
||
unsigned int max_size = STORE_MAX_PIECES + 1;
|
||
enum machine_mode mode = VOIDmode, tmode;
|
||
enum insn_code icode;
|
||
|
||
data->offset = 0;
|
||
data->to_addr = to_addr;
|
||
data->autinc_to
|
||
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|
||
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
|
||
|
||
data->explicit_inc_to = 0;
|
||
data->reverse
|
||
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
|
||
if (data->reverse)
|
||
data->offset = data->len;
|
||
|
||
/* If storing requires more than two move insns,
|
||
copy addresses to registers (to make displacements shorter)
|
||
and use post-increment if available. */
|
||
if (!data->autinc_to
|
||
&& move_by_pieces_ninsns (data->len, align, max_size) > 2)
|
||
{
|
||
/* Determine the main mode we'll be using. */
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
|
||
{
|
||
data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
|
||
data->autinc_to = 1;
|
||
data->explicit_inc_to = -1;
|
||
}
|
||
|
||
if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
|
||
&& ! data->autinc_to)
|
||
{
|
||
data->to_addr = copy_addr_to_reg (to_addr);
|
||
data->autinc_to = 1;
|
||
data->explicit_inc_to = 1;
|
||
}
|
||
|
||
if ( !data->autinc_to && CONSTANT_P (to_addr))
|
||
data->to_addr = copy_addr_to_reg (to_addr);
|
||
}
|
||
|
||
tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
||
if (align >= GET_MODE_ALIGNMENT (tmode))
|
||
align = GET_MODE_ALIGNMENT (tmode);
|
||
else
|
||
{
|
||
enum machine_mode xmode;
|
||
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
||
tmode != VOIDmode;
|
||
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
|
||
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
||
break;
|
||
|
||
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
||
}
|
||
|
||
/* First store what we can in the largest integer mode, then go to
|
||
successively smaller modes. */
|
||
|
||
while (max_size > 1)
|
||
{
|
||
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) < max_size)
|
||
mode = tmode;
|
||
|
||
if (mode == VOIDmode)
|
||
break;
|
||
|
||
icode = mov_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
|
||
store_by_pieces_2 (GEN_FCN (icode), mode, data);
|
||
|
||
max_size = GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* The code above should have handled everything. */
|
||
gcc_assert (!data->len);
|
||
}
|
||
|
||
/* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
|
||
with move instructions for mode MODE. GENFUN is the gen_... function
|
||
to make a move insn for that mode. DATA has all the other info. */
|
||
|
||
static void
|
||
store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
|
||
struct store_by_pieces *data)
|
||
{
|
||
unsigned int size = GET_MODE_SIZE (mode);
|
||
rtx to1, cst;
|
||
|
||
while (data->len >= size)
|
||
{
|
||
if (data->reverse)
|
||
data->offset -= size;
|
||
|
||
if (data->autinc_to)
|
||
to1 = adjust_automodify_address (data->to, mode, data->to_addr,
|
||
data->offset);
|
||
else
|
||
to1 = adjust_address (data->to, mode, data->offset);
|
||
|
||
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
|
||
emit_insn (gen_add2_insn (data->to_addr,
|
||
GEN_INT (-(HOST_WIDE_INT) size)));
|
||
|
||
cst = (*data->constfun) (data->constfundata, data->offset, mode);
|
||
emit_insn ((*genfun) (to1, cst));
|
||
|
||
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
|
||
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
|
||
|
||
if (! data->reverse)
|
||
data->offset += size;
|
||
|
||
data->len -= size;
|
||
}
|
||
}
|
||
|
||
/* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
|
||
its length in bytes. */
|
||
|
||
rtx
|
||
clear_storage (rtx object, rtx size, enum block_op_methods method)
|
||
{
|
||
enum machine_mode mode = GET_MODE (object);
|
||
unsigned int align;
|
||
|
||
gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
|
||
|
||
/* If OBJECT is not BLKmode and SIZE is the same size as its mode,
|
||
just move a zero. Otherwise, do this a piece at a time. */
|
||
if (mode != BLKmode
|
||
&& GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
|
||
{
|
||
rtx zero = CONST0_RTX (mode);
|
||
if (zero != NULL)
|
||
{
|
||
emit_move_insn (object, zero);
|
||
return NULL;
|
||
}
|
||
|
||
if (COMPLEX_MODE_P (mode))
|
||
{
|
||
zero = CONST0_RTX (GET_MODE_INNER (mode));
|
||
if (zero != NULL)
|
||
{
|
||
write_complex_part (object, zero, 0);
|
||
write_complex_part (object, zero, 1);
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (size == const0_rtx)
|
||
return NULL;
|
||
|
||
align = MEM_ALIGN (object);
|
||
|
||
if (GET_CODE (size) == CONST_INT
|
||
&& CLEAR_BY_PIECES_P (INTVAL (size), align))
|
||
clear_by_pieces (object, INTVAL (size), align);
|
||
else if (set_storage_via_setmem (object, size, const0_rtx, align))
|
||
;
|
||
else
|
||
return clear_storage_via_libcall (object, size,
|
||
method == BLOCK_OP_TAILCALL);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* A subroutine of clear_storage. Expand a call to memset.
|
||
Return the return value of memset, 0 otherwise. */
|
||
|
||
static rtx
|
||
clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
|
||
{
|
||
tree call_expr, arg_list, fn, object_tree, size_tree;
|
||
enum machine_mode size_mode;
|
||
rtx retval;
|
||
|
||
/* Emit code to copy OBJECT and SIZE into new pseudos. We can then
|
||
place those into new pseudos into a VAR_DECL and use them later. */
|
||
|
||
object = copy_to_mode_reg (Pmode, XEXP (object, 0));
|
||
|
||
size_mode = TYPE_MODE (sizetype);
|
||
size = convert_to_mode (size_mode, size, 1);
|
||
size = copy_to_mode_reg (size_mode, size);
|
||
|
||
/* It is incorrect to use the libcall calling conventions to call
|
||
memset in this context. This could be a user call to memset and
|
||
the user may wish to examine the return value from memset. For
|
||
targets where libcalls and normal calls have different conventions
|
||
for returning pointers, we could end up generating incorrect code. */
|
||
|
||
object_tree = make_tree (ptr_type_node, object);
|
||
size_tree = make_tree (sizetype, size);
|
||
|
||
fn = clear_storage_libcall_fn (true);
|
||
arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
|
||
arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
|
||
arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
|
||
|
||
/* Now we have to build up the CALL_EXPR itself. */
|
||
call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
|
||
call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
|
||
call_expr, arg_list, NULL_TREE);
|
||
CALL_EXPR_TAILCALL (call_expr) = tailcall;
|
||
|
||
retval = expand_normal (call_expr);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* A subroutine of clear_storage_via_libcall. Create the tree node
|
||
for the function we use for block clears. The first time FOR_CALL
|
||
is true, we call assemble_external. */
|
||
|
||
static GTY(()) tree block_clear_fn;
|
||
|
||
void
|
||
init_block_clear_fn (const char *asmspec)
|
||
{
|
||
if (!block_clear_fn)
|
||
{
|
||
tree fn, args;
|
||
|
||
fn = get_identifier ("memset");
|
||
args = build_function_type_list (ptr_type_node, ptr_type_node,
|
||
integer_type_node, sizetype,
|
||
NULL_TREE);
|
||
|
||
fn = build_decl (FUNCTION_DECL, fn, args);
|
||
DECL_EXTERNAL (fn) = 1;
|
||
TREE_PUBLIC (fn) = 1;
|
||
DECL_ARTIFICIAL (fn) = 1;
|
||
TREE_NOTHROW (fn) = 1;
|
||
DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
|
||
DECL_VISIBILITY_SPECIFIED (fn) = 1;
|
||
|
||
block_clear_fn = fn;
|
||
}
|
||
|
||
if (asmspec)
|
||
set_user_assembler_name (block_clear_fn, asmspec);
|
||
}
|
||
|
||
static tree
|
||
clear_storage_libcall_fn (int for_call)
|
||
{
|
||
static bool emitted_extern;
|
||
|
||
if (!block_clear_fn)
|
||
init_block_clear_fn (NULL);
|
||
|
||
if (for_call && !emitted_extern)
|
||
{
|
||
emitted_extern = true;
|
||
make_decl_rtl (block_clear_fn);
|
||
assemble_external (block_clear_fn);
|
||
}
|
||
|
||
return block_clear_fn;
|
||
}
|
||
|
||
/* Expand a setmem pattern; return true if successful. */
|
||
|
||
bool
|
||
set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
|
||
{
|
||
/* Try the most limited insn first, because there's no point
|
||
including more than one in the machine description unless
|
||
the more limited one has some advantage. */
|
||
|
||
rtx opalign = GEN_INT (align / BITS_PER_UNIT);
|
||
enum machine_mode mode;
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
{
|
||
enum insn_code code = setmem_optab[(int) mode];
|
||
insn_operand_predicate_fn pred;
|
||
|
||
if (code != CODE_FOR_nothing
|
||
/* We don't need MODE to be narrower than
|
||
BITS_PER_HOST_WIDE_INT here because if SIZE is less than
|
||
the mode mask, as it is returned by the macro, it will
|
||
definitely be less than the actual mode mask. */
|
||
&& ((GET_CODE (size) == CONST_INT
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
|
||
<= (GET_MODE_MASK (mode) >> 1)))
|
||
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
|
||
&& ((pred = insn_data[(int) code].operand[0].predicate) == 0
|
||
|| (*pred) (object, BLKmode))
|
||
&& ((pred = insn_data[(int) code].operand[3].predicate) == 0
|
||
|| (*pred) (opalign, VOIDmode)))
|
||
{
|
||
rtx opsize, opchar;
|
||
enum machine_mode char_mode;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
opsize = convert_to_mode (mode, size, 1);
|
||
pred = insn_data[(int) code].operand[1].predicate;
|
||
if (pred != 0 && ! (*pred) (opsize, mode))
|
||
opsize = copy_to_mode_reg (mode, opsize);
|
||
|
||
opchar = val;
|
||
char_mode = insn_data[(int) code].operand[2].mode;
|
||
if (char_mode != VOIDmode)
|
||
{
|
||
opchar = convert_to_mode (char_mode, opchar, 1);
|
||
pred = insn_data[(int) code].operand[2].predicate;
|
||
if (pred != 0 && ! (*pred) (opchar, char_mode))
|
||
opchar = copy_to_mode_reg (char_mode, opchar);
|
||
}
|
||
|
||
pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return true;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Write to one of the components of the complex value CPLX. Write VAL to
|
||
the real part if IMAG_P is false, and the imaginary part if its true. */
|
||
|
||
static void
|
||
write_complex_part (rtx cplx, rtx val, bool imag_p)
|
||
{
|
||
enum machine_mode cmode;
|
||
enum machine_mode imode;
|
||
unsigned ibitsize;
|
||
|
||
if (GET_CODE (cplx) == CONCAT)
|
||
{
|
||
emit_move_insn (XEXP (cplx, imag_p), val);
|
||
return;
|
||
}
|
||
|
||
cmode = GET_MODE (cplx);
|
||
imode = GET_MODE_INNER (cmode);
|
||
ibitsize = GET_MODE_BITSIZE (imode);
|
||
|
||
/* For MEMs simplify_gen_subreg may generate an invalid new address
|
||
because, e.g., the original address is considered mode-dependent
|
||
by the target, which restricts simplify_subreg from invoking
|
||
adjust_address_nv. Instead of preparing fallback support for an
|
||
invalid address, we call adjust_address_nv directly. */
|
||
if (MEM_P (cplx))
|
||
{
|
||
emit_move_insn (adjust_address_nv (cplx, imode,
|
||
imag_p ? GET_MODE_SIZE (imode) : 0),
|
||
val);
|
||
return;
|
||
}
|
||
|
||
/* If the sub-object is at least word sized, then we know that subregging
|
||
will work. This special case is important, since store_bit_field
|
||
wants to operate on integer modes, and there's rarely an OImode to
|
||
correspond to TCmode. */
|
||
if (ibitsize >= BITS_PER_WORD
|
||
/* For hard regs we have exact predicates. Assume we can split
|
||
the original object if it spans an even number of hard regs.
|
||
This special case is important for SCmode on 64-bit platforms
|
||
where the natural size of floating-point regs is 32-bit. */
|
||
|| (REG_P (cplx)
|
||
&& REGNO (cplx) < FIRST_PSEUDO_REGISTER
|
||
&& hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
|
||
{
|
||
rtx part = simplify_gen_subreg (imode, cplx, cmode,
|
||
imag_p ? GET_MODE_SIZE (imode) : 0);
|
||
if (part)
|
||
{
|
||
emit_move_insn (part, val);
|
||
return;
|
||
}
|
||
else
|
||
/* simplify_gen_subreg may fail for sub-word MEMs. */
|
||
gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
|
||
}
|
||
|
||
store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
|
||
}
|
||
|
||
/* Extract one of the components of the complex value CPLX. Extract the
|
||
real part if IMAG_P is false, and the imaginary part if it's true. */
|
||
|
||
static rtx
|
||
read_complex_part (rtx cplx, bool imag_p)
|
||
{
|
||
enum machine_mode cmode, imode;
|
||
unsigned ibitsize;
|
||
|
||
if (GET_CODE (cplx) == CONCAT)
|
||
return XEXP (cplx, imag_p);
|
||
|
||
cmode = GET_MODE (cplx);
|
||
imode = GET_MODE_INNER (cmode);
|
||
ibitsize = GET_MODE_BITSIZE (imode);
|
||
|
||
/* Special case reads from complex constants that got spilled to memory. */
|
||
if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
|
||
{
|
||
tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
|
||
if (decl && TREE_CODE (decl) == COMPLEX_CST)
|
||
{
|
||
tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
|
||
if (CONSTANT_CLASS_P (part))
|
||
return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
|
||
}
|
||
}
|
||
|
||
/* For MEMs simplify_gen_subreg may generate an invalid new address
|
||
because, e.g., the original address is considered mode-dependent
|
||
by the target, which restricts simplify_subreg from invoking
|
||
adjust_address_nv. Instead of preparing fallback support for an
|
||
invalid address, we call adjust_address_nv directly. */
|
||
if (MEM_P (cplx))
|
||
return adjust_address_nv (cplx, imode,
|
||
imag_p ? GET_MODE_SIZE (imode) : 0);
|
||
|
||
/* If the sub-object is at least word sized, then we know that subregging
|
||
will work. This special case is important, since extract_bit_field
|
||
wants to operate on integer modes, and there's rarely an OImode to
|
||
correspond to TCmode. */
|
||
if (ibitsize >= BITS_PER_WORD
|
||
/* For hard regs we have exact predicates. Assume we can split
|
||
the original object if it spans an even number of hard regs.
|
||
This special case is important for SCmode on 64-bit platforms
|
||
where the natural size of floating-point regs is 32-bit. */
|
||
|| (REG_P (cplx)
|
||
&& REGNO (cplx) < FIRST_PSEUDO_REGISTER
|
||
&& hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
|
||
{
|
||
rtx ret = simplify_gen_subreg (imode, cplx, cmode,
|
||
imag_p ? GET_MODE_SIZE (imode) : 0);
|
||
if (ret)
|
||
return ret;
|
||
else
|
||
/* simplify_gen_subreg may fail for sub-word MEMs. */
|
||
gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
|
||
}
|
||
|
||
return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
|
||
true, NULL_RTX, imode, imode);
|
||
}
|
||
|
||
/* A subroutine of emit_move_insn_1. Yet another lowpart generator.
|
||
NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
|
||
represented in NEW_MODE. If FORCE is true, this will never happen, as
|
||
we'll force-create a SUBREG if needed. */
|
||
|
||
static rtx
|
||
emit_move_change_mode (enum machine_mode new_mode,
|
||
enum machine_mode old_mode, rtx x, bool force)
|
||
{
|
||
rtx ret;
|
||
|
||
if (MEM_P (x))
|
||
{
|
||
/* We don't have to worry about changing the address since the
|
||
size in bytes is supposed to be the same. */
|
||
if (reload_in_progress)
|
||
{
|
||
/* Copy the MEM to change the mode and move any
|
||
substitutions from the old MEM to the new one. */
|
||
ret = adjust_address_nv (x, new_mode, 0);
|
||
copy_replacements (x, ret);
|
||
}
|
||
else
|
||
ret = adjust_address (x, new_mode, 0);
|
||
}
|
||
else
|
||
{
|
||
/* Note that we do want simplify_subreg's behavior of validating
|
||
that the new mode is ok for a hard register. If we were to use
|
||
simplify_gen_subreg, we would create the subreg, but would
|
||
probably run into the target not being able to implement it. */
|
||
/* Except, of course, when FORCE is true, when this is exactly what
|
||
we want. Which is needed for CCmodes on some targets. */
|
||
if (force)
|
||
ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
|
||
else
|
||
ret = simplify_subreg (new_mode, x, old_mode, 0);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* A subroutine of emit_move_insn_1. Generate a move from Y into X using
|
||
an integer mode of the same size as MODE. Returns the instruction
|
||
emitted, or NULL if such a move could not be generated. */
|
||
|
||
static rtx
|
||
emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
|
||
{
|
||
enum machine_mode imode;
|
||
enum insn_code code;
|
||
|
||
/* There must exist a mode of the exact size we require. */
|
||
imode = int_mode_for_mode (mode);
|
||
if (imode == BLKmode)
|
||
return NULL_RTX;
|
||
|
||
/* The target must support moves in this mode. */
|
||
code = mov_optab->handlers[imode].insn_code;
|
||
if (code == CODE_FOR_nothing)
|
||
return NULL_RTX;
|
||
|
||
x = emit_move_change_mode (imode, mode, x, force);
|
||
if (x == NULL_RTX)
|
||
return NULL_RTX;
|
||
y = emit_move_change_mode (imode, mode, y, force);
|
||
if (y == NULL_RTX)
|
||
return NULL_RTX;
|
||
return emit_insn (GEN_FCN (code) (x, y));
|
||
}
|
||
|
||
/* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
|
||
Return an equivalent MEM that does not use an auto-increment. */
|
||
|
||
static rtx
|
||
emit_move_resolve_push (enum machine_mode mode, rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (XEXP (x, 0));
|
||
HOST_WIDE_INT adjust;
|
||
rtx temp;
|
||
|
||
adjust = GET_MODE_SIZE (mode);
|
||
#ifdef PUSH_ROUNDING
|
||
adjust = PUSH_ROUNDING (adjust);
|
||
#endif
|
||
if (code == PRE_DEC || code == POST_DEC)
|
||
adjust = -adjust;
|
||
else if (code == PRE_MODIFY || code == POST_MODIFY)
|
||
{
|
||
rtx expr = XEXP (XEXP (x, 0), 1);
|
||
HOST_WIDE_INT val;
|
||
|
||
gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
|
||
gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
|
||
val = INTVAL (XEXP (expr, 1));
|
||
if (GET_CODE (expr) == MINUS)
|
||
val = -val;
|
||
gcc_assert (adjust == val || adjust == -val);
|
||
adjust = val;
|
||
}
|
||
|
||
/* Do not use anti_adjust_stack, since we don't want to update
|
||
stack_pointer_delta. */
|
||
temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
|
||
GEN_INT (adjust), stack_pointer_rtx,
|
||
0, OPTAB_LIB_WIDEN);
|
||
if (temp != stack_pointer_rtx)
|
||
emit_move_insn (stack_pointer_rtx, temp);
|
||
|
||
switch (code)
|
||
{
|
||
case PRE_INC:
|
||
case PRE_DEC:
|
||
case PRE_MODIFY:
|
||
temp = stack_pointer_rtx;
|
||
break;
|
||
case POST_INC:
|
||
case POST_DEC:
|
||
case POST_MODIFY:
|
||
temp = plus_constant (stack_pointer_rtx, -adjust);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return replace_equiv_address (x, temp);
|
||
}
|
||
|
||
/* A subroutine of emit_move_complex. Generate a move from Y into X.
|
||
X is known to satisfy push_operand, and MODE is known to be complex.
|
||
Returns the last instruction emitted. */
|
||
|
||
static rtx
|
||
emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
|
||
{
|
||
enum machine_mode submode = GET_MODE_INNER (mode);
|
||
bool imag_first;
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
unsigned int submodesize = GET_MODE_SIZE (submode);
|
||
|
||
/* In case we output to the stack, but the size is smaller than the
|
||
machine can push exactly, we need to use move instructions. */
|
||
if (PUSH_ROUNDING (submodesize) != submodesize)
|
||
{
|
||
x = emit_move_resolve_push (mode, x);
|
||
return emit_move_insn (x, y);
|
||
}
|
||
#endif
|
||
|
||
/* Note that the real part always precedes the imag part in memory
|
||
regardless of machine's endianness. */
|
||
switch (GET_CODE (XEXP (x, 0)))
|
||
{
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
imag_first = true;
|
||
break;
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
imag_first = false;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
|
||
read_complex_part (y, imag_first));
|
||
return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
|
||
read_complex_part (y, !imag_first));
|
||
}
|
||
|
||
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
|
||
MODE is known to be complex. Returns the last instruction emitted. */
|
||
|
||
static rtx
|
||
emit_move_complex (enum machine_mode mode, rtx x, rtx y)
|
||
{
|
||
bool try_int;
|
||
|
||
/* Need to take special care for pushes, to maintain proper ordering
|
||
of the data, and possibly extra padding. */
|
||
if (push_operand (x, mode))
|
||
return emit_move_complex_push (mode, x, y);
|
||
|
||
/* See if we can coerce the target into moving both values at once. */
|
||
|
||
/* Move floating point as parts. */
|
||
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
||
&& mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
|
||
try_int = false;
|
||
/* Not possible if the values are inherently not adjacent. */
|
||
else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
|
||
try_int = false;
|
||
/* Is possible if both are registers (or subregs of registers). */
|
||
else if (register_operand (x, mode) && register_operand (y, mode))
|
||
try_int = true;
|
||
/* If one of the operands is a memory, and alignment constraints
|
||
are friendly enough, we may be able to do combined memory operations.
|
||
We do not attempt this if Y is a constant because that combination is
|
||
usually better with the by-parts thing below. */
|
||
else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
|
||
&& (!STRICT_ALIGNMENT
|
||
|| get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
|
||
try_int = true;
|
||
else
|
||
try_int = false;
|
||
|
||
if (try_int)
|
||
{
|
||
rtx ret;
|
||
|
||
/* For memory to memory moves, optimal behavior can be had with the
|
||
existing block move logic. */
|
||
if (MEM_P (x) && MEM_P (y))
|
||
{
|
||
emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
|
||
BLOCK_OP_NO_LIBCALL);
|
||
return get_last_insn ();
|
||
}
|
||
|
||
ret = emit_move_via_integer (mode, x, y, true);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
/* Show the output dies here. This is necessary for SUBREGs
|
||
of pseudos since we cannot track their lifetimes correctly;
|
||
hard regs shouldn't appear here except as return values. */
|
||
if (!reload_completed && !reload_in_progress
|
||
&& REG_P (x) && !reg_overlap_mentioned_p (x, y))
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
|
||
|
||
write_complex_part (x, read_complex_part (y, false), false);
|
||
write_complex_part (x, read_complex_part (y, true), true);
|
||
return get_last_insn ();
|
||
}
|
||
|
||
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
|
||
MODE is known to be MODE_CC. Returns the last instruction emitted. */
|
||
|
||
static rtx
|
||
emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
|
||
{
|
||
rtx ret;
|
||
|
||
/* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
|
||
if (mode != CCmode)
|
||
{
|
||
enum insn_code code = mov_optab->handlers[CCmode].insn_code;
|
||
if (code != CODE_FOR_nothing)
|
||
{
|
||
x = emit_move_change_mode (CCmode, mode, x, true);
|
||
y = emit_move_change_mode (CCmode, mode, y, true);
|
||
return emit_insn (GEN_FCN (code) (x, y));
|
||
}
|
||
}
|
||
|
||
/* Otherwise, find the MODE_INT mode of the same width. */
|
||
ret = emit_move_via_integer (mode, x, y, false);
|
||
gcc_assert (ret != NULL);
|
||
return ret;
|
||
}
|
||
|
||
/* Return true if word I of OP lies entirely in the
|
||
undefined bits of a paradoxical subreg. */
|
||
|
||
static bool
|
||
undefined_operand_subword_p (rtx op, int i)
|
||
{
|
||
enum machine_mode innermode, innermostmode;
|
||
int offset;
|
||
if (GET_CODE (op) != SUBREG)
|
||
return false;
|
||
innermode = GET_MODE (op);
|
||
innermostmode = GET_MODE (SUBREG_REG (op));
|
||
offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
|
||
/* The SUBREG_BYTE represents offset, as if the value were stored in
|
||
memory, except for a paradoxical subreg where we define
|
||
SUBREG_BYTE to be 0; undo this exception as in
|
||
simplify_subreg. */
|
||
if (SUBREG_BYTE (op) == 0
|
||
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
|
||
{
|
||
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
|
||
if (WORDS_BIG_ENDIAN)
|
||
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset += difference % UNITS_PER_WORD;
|
||
}
|
||
if (offset >= GET_MODE_SIZE (innermostmode)
|
||
|| offset <= -GET_MODE_SIZE (word_mode))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
|
||
MODE is any multi-word or full-word mode that lacks a move_insn
|
||
pattern. Note that you will get better code if you define such
|
||
patterns, even if they must turn into multiple assembler instructions. */
|
||
|
||
static rtx
|
||
emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
|
||
{
|
||
rtx last_insn = 0;
|
||
rtx seq, inner;
|
||
bool need_clobber;
|
||
int i;
|
||
|
||
gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
|
||
|
||
/* If X is a push on the stack, do the push now and replace
|
||
X with a reference to the stack pointer. */
|
||
if (push_operand (x, mode))
|
||
x = emit_move_resolve_push (mode, x);
|
||
|
||
/* If we are in reload, see if either operand is a MEM whose address
|
||
is scheduled for replacement. */
|
||
if (reload_in_progress && MEM_P (x)
|
||
&& (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
|
||
x = replace_equiv_address_nv (x, inner);
|
||
if (reload_in_progress && MEM_P (y)
|
||
&& (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
|
||
y = replace_equiv_address_nv (y, inner);
|
||
|
||
start_sequence ();
|
||
|
||
need_clobber = false;
|
||
for (i = 0;
|
||
i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
|
||
i++)
|
||
{
|
||
rtx xpart = operand_subword (x, i, 1, mode);
|
||
rtx ypart;
|
||
|
||
/* Do not generate code for a move if it would come entirely
|
||
from the undefined bits of a paradoxical subreg. */
|
||
if (undefined_operand_subword_p (y, i))
|
||
continue;
|
||
|
||
ypart = operand_subword (y, i, 1, mode);
|
||
|
||
/* If we can't get a part of Y, put Y into memory if it is a
|
||
constant. Otherwise, force it into a register. Then we must
|
||
be able to get a part of Y. */
|
||
if (ypart == 0 && CONSTANT_P (y))
|
||
{
|
||
y = use_anchored_address (force_const_mem (mode, y));
|
||
ypart = operand_subword (y, i, 1, mode);
|
||
}
|
||
else if (ypart == 0)
|
||
ypart = operand_subword_force (y, i, mode);
|
||
|
||
gcc_assert (xpart && ypart);
|
||
|
||
need_clobber |= (GET_CODE (xpart) == SUBREG);
|
||
|
||
last_insn = emit_move_insn (xpart, ypart);
|
||
}
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Show the output dies here. This is necessary for SUBREGs
|
||
of pseudos since we cannot track their lifetimes correctly;
|
||
hard regs shouldn't appear here except as return values.
|
||
We never want to emit such a clobber after reload. */
|
||
if (x != y
|
||
&& ! (reload_in_progress || reload_completed)
|
||
&& need_clobber != 0)
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
|
||
|
||
emit_insn (seq);
|
||
|
||
return last_insn;
|
||
}
|
||
|
||
/* Low level part of emit_move_insn.
|
||
Called just like emit_move_insn, but assumes X and Y
|
||
are basically valid. */
|
||
|
||
rtx
|
||
emit_move_insn_1 (rtx x, rtx y)
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
enum insn_code code;
|
||
|
||
gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
|
||
|
||
code = mov_optab->handlers[mode].insn_code;
|
||
if (code != CODE_FOR_nothing)
|
||
return emit_insn (GEN_FCN (code) (x, y));
|
||
|
||
/* Expand complex moves by moving real part and imag part. */
|
||
if (COMPLEX_MODE_P (mode))
|
||
return emit_move_complex (mode, x, y);
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
|
||
{
|
||
rtx result = emit_move_via_integer (mode, x, y, true);
|
||
|
||
/* If we can't find an integer mode, use multi words. */
|
||
if (result)
|
||
return result;
|
||
else
|
||
return emit_move_multi_word (mode, x, y);
|
||
}
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_CC)
|
||
return emit_move_ccmode (mode, x, y);
|
||
|
||
/* Try using a move pattern for the corresponding integer mode. This is
|
||
only safe when simplify_subreg can convert MODE constants into integer
|
||
constants. At present, it can only do this reliably if the value
|
||
fits within a HOST_WIDE_INT. */
|
||
if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
rtx ret = emit_move_via_integer (mode, x, y, false);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
return emit_move_multi_word (mode, x, y);
|
||
}
|
||
|
||
/* Generate code to copy Y into X.
|
||
Both Y and X must have the same mode, except that
|
||
Y can be a constant with VOIDmode.
|
||
This mode cannot be BLKmode; use emit_block_move for that.
|
||
|
||
Return the last instruction emitted. */
|
||
|
||
rtx
|
||
emit_move_insn (rtx x, rtx y)
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx y_cst = NULL_RTX;
|
||
rtx last_insn, set;
|
||
|
||
gcc_assert (mode != BLKmode
|
||
&& (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
|
||
|
||
if (CONSTANT_P (y))
|
||
{
|
||
if (optimize
|
||
&& SCALAR_FLOAT_MODE_P (GET_MODE (x))
|
||
&& (last_insn = compress_float_constant (x, y)))
|
||
return last_insn;
|
||
|
||
y_cst = y;
|
||
|
||
if (!LEGITIMATE_CONSTANT_P (y))
|
||
{
|
||
y = force_const_mem (mode, y);
|
||
|
||
/* If the target's cannot_force_const_mem prevented the spill,
|
||
assume that the target's move expanders will also take care
|
||
of the non-legitimate constant. */
|
||
if (!y)
|
||
y = y_cst;
|
||
else
|
||
y = use_anchored_address (y);
|
||
}
|
||
}
|
||
|
||
/* If X or Y are memory references, verify that their addresses are valid
|
||
for the machine. */
|
||
if (MEM_P (x)
|
||
&& ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
|
||
&& ! push_operand (x, GET_MODE (x)))
|
||
|| (flag_force_addr
|
||
&& CONSTANT_ADDRESS_P (XEXP (x, 0)))))
|
||
x = validize_mem (x);
|
||
|
||
if (MEM_P (y)
|
||
&& (! memory_address_p (GET_MODE (y), XEXP (y, 0))
|
||
|| (flag_force_addr
|
||
&& CONSTANT_ADDRESS_P (XEXP (y, 0)))))
|
||
y = validize_mem (y);
|
||
|
||
gcc_assert (mode != BLKmode);
|
||
|
||
last_insn = emit_move_insn_1 (x, y);
|
||
|
||
if (y_cst && REG_P (x)
|
||
&& (set = single_set (last_insn)) != NULL_RTX
|
||
&& SET_DEST (set) == x
|
||
&& ! rtx_equal_p (y_cst, SET_SRC (set)))
|
||
set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
|
||
|
||
return last_insn;
|
||
}
|
||
|
||
/* If Y is representable exactly in a narrower mode, and the target can
|
||
perform the extension directly from constant or memory, then emit the
|
||
move as an extension. */
|
||
|
||
static rtx
|
||
compress_float_constant (rtx x, rtx y)
|
||
{
|
||
enum machine_mode dstmode = GET_MODE (x);
|
||
enum machine_mode orig_srcmode = GET_MODE (y);
|
||
enum machine_mode srcmode;
|
||
REAL_VALUE_TYPE r;
|
||
int oldcost, newcost;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, y);
|
||
|
||
if (LEGITIMATE_CONSTANT_P (y))
|
||
oldcost = rtx_cost (y, SET);
|
||
else
|
||
oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
|
||
|
||
for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
|
||
srcmode != orig_srcmode;
|
||
srcmode = GET_MODE_WIDER_MODE (srcmode))
|
||
{
|
||
enum insn_code ic;
|
||
rtx trunc_y, last_insn;
|
||
|
||
/* Skip if the target can't extend this way. */
|
||
ic = can_extend_p (dstmode, srcmode, 0);
|
||
if (ic == CODE_FOR_nothing)
|
||
continue;
|
||
|
||
/* Skip if the narrowed value isn't exact. */
|
||
if (! exact_real_truncate (srcmode, &r))
|
||
continue;
|
||
|
||
trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
|
||
|
||
if (LEGITIMATE_CONSTANT_P (trunc_y))
|
||
{
|
||
/* Skip if the target needs extra instructions to perform
|
||
the extension. */
|
||
if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
|
||
continue;
|
||
/* This is valid, but may not be cheaper than the original. */
|
||
newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
|
||
if (oldcost < newcost)
|
||
continue;
|
||
}
|
||
else if (float_extend_from_mem[dstmode][srcmode])
|
||
{
|
||
trunc_y = force_const_mem (srcmode, trunc_y);
|
||
/* This is valid, but may not be cheaper than the original. */
|
||
newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
|
||
if (oldcost < newcost)
|
||
continue;
|
||
trunc_y = validize_mem (trunc_y);
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* For CSE's benefit, force the compressed constant pool entry
|
||
into a new pseudo. This constant may be used in different modes,
|
||
and if not, combine will put things back together for us. */
|
||
trunc_y = force_reg (srcmode, trunc_y);
|
||
emit_unop_insn (ic, x, trunc_y, UNKNOWN);
|
||
last_insn = get_last_insn ();
|
||
|
||
if (REG_P (x))
|
||
set_unique_reg_note (last_insn, REG_EQUAL, y);
|
||
|
||
return last_insn;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Pushing data onto the stack. */
|
||
|
||
/* Push a block of length SIZE (perhaps variable)
|
||
and return an rtx to address the beginning of the block.
|
||
The value may be virtual_outgoing_args_rtx.
|
||
|
||
EXTRA is the number of bytes of padding to push in addition to SIZE.
|
||
BELOW nonzero means this padding comes at low addresses;
|
||
otherwise, the padding comes at high addresses. */
|
||
|
||
rtx
|
||
push_block (rtx size, int extra, int below)
|
||
{
|
||
rtx temp;
|
||
|
||
size = convert_modes (Pmode, ptr_mode, size, 1);
|
||
if (CONSTANT_P (size))
|
||
anti_adjust_stack (plus_constant (size, extra));
|
||
else if (REG_P (size) && extra == 0)
|
||
anti_adjust_stack (size);
|
||
else
|
||
{
|
||
temp = copy_to_mode_reg (Pmode, size);
|
||
if (extra != 0)
|
||
temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
|
||
temp, 0, OPTAB_LIB_WIDEN);
|
||
anti_adjust_stack (temp);
|
||
}
|
||
|
||
#ifndef STACK_GROWS_DOWNWARD
|
||
if (0)
|
||
#else
|
||
if (1)
|
||
#endif
|
||
{
|
||
temp = virtual_outgoing_args_rtx;
|
||
if (extra != 0 && below)
|
||
temp = plus_constant (temp, extra);
|
||
}
|
||
else
|
||
{
|
||
if (GET_CODE (size) == CONST_INT)
|
||
temp = plus_constant (virtual_outgoing_args_rtx,
|
||
-INTVAL (size) - (below ? 0 : extra));
|
||
else if (extra != 0 && !below)
|
||
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
|
||
negate_rtx (Pmode, plus_constant (size, extra)));
|
||
else
|
||
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
|
||
negate_rtx (Pmode, size));
|
||
}
|
||
|
||
return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
|
||
}
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
|
||
/* Emit single push insn. */
|
||
|
||
static void
|
||
emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
|
||
{
|
||
rtx dest_addr;
|
||
unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
|
||
rtx dest;
|
||
enum insn_code icode;
|
||
insn_operand_predicate_fn pred;
|
||
|
||
stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
|
||
/* If there is push pattern, use it. Otherwise try old way of throwing
|
||
MEM representing push operation to move expander. */
|
||
icode = push_optab->handlers[(int) mode].insn_code;
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
if (((pred = insn_data[(int) icode].operand[0].predicate)
|
||
&& !((*pred) (x, mode))))
|
||
x = force_reg (mode, x);
|
||
emit_insn (GEN_FCN (icode) (x));
|
||
return;
|
||
}
|
||
if (GET_MODE_SIZE (mode) == rounded_size)
|
||
dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
|
||
/* If we are to pad downward, adjust the stack pointer first and
|
||
then store X into the stack location using an offset. This is
|
||
because emit_move_insn does not know how to pad; it does not have
|
||
access to type. */
|
||
else if (FUNCTION_ARG_PADDING (mode, type) == downward)
|
||
{
|
||
unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
|
||
HOST_WIDE_INT offset;
|
||
|
||
emit_move_insn (stack_pointer_rtx,
|
||
expand_binop (Pmode,
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
sub_optab,
|
||
#else
|
||
add_optab,
|
||
#endif
|
||
stack_pointer_rtx,
|
||
GEN_INT (rounded_size),
|
||
NULL_RTX, 0, OPTAB_LIB_WIDEN));
|
||
|
||
offset = (HOST_WIDE_INT) padding_size;
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
if (STACK_PUSH_CODE == POST_DEC)
|
||
/* We have already decremented the stack pointer, so get the
|
||
previous value. */
|
||
offset += (HOST_WIDE_INT) rounded_size;
|
||
#else
|
||
if (STACK_PUSH_CODE == POST_INC)
|
||
/* We have already incremented the stack pointer, so get the
|
||
previous value. */
|
||
offset -= (HOST_WIDE_INT) rounded_size;
|
||
#endif
|
||
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
|
||
}
|
||
else
|
||
{
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
/* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
|
||
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
GEN_INT (-(HOST_WIDE_INT) rounded_size));
|
||
#else
|
||
/* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
|
||
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
GEN_INT (rounded_size));
|
||
#endif
|
||
dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
|
||
}
|
||
|
||
dest = gen_rtx_MEM (mode, dest_addr);
|
||
|
||
if (type != 0)
|
||
{
|
||
set_mem_attributes (dest, type, 1);
|
||
|
||
if (flag_optimize_sibling_calls)
|
||
/* Function incoming arguments may overlap with sibling call
|
||
outgoing arguments and we cannot allow reordering of reads
|
||
from function arguments with stores to outgoing arguments
|
||
of sibling calls. */
|
||
set_mem_alias_set (dest, 0);
|
||
}
|
||
emit_move_insn (dest, x);
|
||
}
|
||
#endif
|
||
|
||
/* Generate code to push X onto the stack, assuming it has mode MODE and
|
||
type TYPE.
|
||
MODE is redundant except when X is a CONST_INT (since they don't
|
||
carry mode info).
|
||
SIZE is an rtx for the size of data to be copied (in bytes),
|
||
needed only if X is BLKmode.
|
||
|
||
ALIGN (in bits) is maximum alignment we can assume.
|
||
|
||
If PARTIAL and REG are both nonzero, then copy that many of the first
|
||
bytes of X into registers starting with REG, and push the rest of X.
|
||
The amount of space pushed is decreased by PARTIAL bytes.
|
||
REG must be a hard register in this case.
|
||
If REG is zero but PARTIAL is not, take any all others actions for an
|
||
argument partially in registers, but do not actually load any
|
||
registers.
|
||
|
||
EXTRA is the amount in bytes of extra space to leave next to this arg.
|
||
This is ignored if an argument block has already been allocated.
|
||
|
||
On a machine that lacks real push insns, ARGS_ADDR is the address of
|
||
the bottom of the argument block for this call. We use indexing off there
|
||
to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
|
||
argument block has not been preallocated.
|
||
|
||
ARGS_SO_FAR is the size of args previously pushed for this call.
|
||
|
||
REG_PARM_STACK_SPACE is nonzero if functions require stack space
|
||
for arguments passed in registers. If nonzero, it will be the number
|
||
of bytes required. */
|
||
|
||
void
|
||
emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
|
||
unsigned int align, int partial, rtx reg, int extra,
|
||
rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
|
||
rtx alignment_pad)
|
||
{
|
||
rtx xinner;
|
||
enum direction stack_direction
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
= downward;
|
||
#else
|
||
= upward;
|
||
#endif
|
||
|
||
/* Decide where to pad the argument: `downward' for below,
|
||
`upward' for above, or `none' for don't pad it.
|
||
Default is below for small data on big-endian machines; else above. */
|
||
enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
|
||
|
||
/* Invert direction if stack is post-decrement.
|
||
FIXME: why? */
|
||
if (STACK_PUSH_CODE == POST_DEC)
|
||
if (where_pad != none)
|
||
where_pad = (where_pad == downward ? upward : downward);
|
||
|
||
xinner = x;
|
||
|
||
if (mode == BLKmode)
|
||
{
|
||
/* Copy a block into the stack, entirely or partially. */
|
||
|
||
rtx temp;
|
||
int used;
|
||
int offset;
|
||
int skip;
|
||
|
||
offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
|
||
used = partial - offset;
|
||
|
||
gcc_assert (size);
|
||
|
||
/* USED is now the # of bytes we need not copy to the stack
|
||
because registers will take care of them. */
|
||
|
||
if (partial != 0)
|
||
xinner = adjust_address (xinner, BLKmode, used);
|
||
|
||
/* If the partial register-part of the arg counts in its stack size,
|
||
skip the part of stack space corresponding to the registers.
|
||
Otherwise, start copying to the beginning of the stack space,
|
||
by setting SKIP to 0. */
|
||
skip = (reg_parm_stack_space == 0) ? 0 : used;
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
/* Do it with several push insns if that doesn't take lots of insns
|
||
and if there is no difficulty with push insns that skip bytes
|
||
on the stack for alignment purposes. */
|
||
if (args_addr == 0
|
||
&& PUSH_ARGS
|
||
&& GET_CODE (size) == CONST_INT
|
||
&& skip == 0
|
||
&& MEM_ALIGN (xinner) >= align
|
||
&& (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
|
||
/* Here we avoid the case of a structure whose weak alignment
|
||
forces many pushes of a small amount of data,
|
||
and such small pushes do rounding that causes trouble. */
|
||
&& ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
|
||
|| align >= BIGGEST_ALIGNMENT
|
||
|| (PUSH_ROUNDING (align / BITS_PER_UNIT)
|
||
== (align / BITS_PER_UNIT)))
|
||
&& PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
|
||
{
|
||
/* Push padding now if padding above and stack grows down,
|
||
or if padding below and stack grows up.
|
||
But if space already allocated, this has already been done. */
|
||
if (extra && args_addr == 0
|
||
&& where_pad != none && where_pad != stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
|
||
move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
|
||
}
|
||
else
|
||
#endif /* PUSH_ROUNDING */
|
||
{
|
||
rtx target;
|
||
|
||
/* Otherwise make space on the stack and copy the data
|
||
to the address of that space. */
|
||
|
||
/* Deduct words put into registers from the size we must copy. */
|
||
if (partial != 0)
|
||
{
|
||
if (GET_CODE (size) == CONST_INT)
|
||
size = GEN_INT (INTVAL (size) - used);
|
||
else
|
||
size = expand_binop (GET_MODE (size), sub_optab, size,
|
||
GEN_INT (used), NULL_RTX, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
/* Get the address of the stack space.
|
||
In this case, we do not deal with EXTRA separately.
|
||
A single stack adjust will do. */
|
||
if (! args_addr)
|
||
{
|
||
temp = push_block (size, extra, where_pad == downward);
|
||
extra = 0;
|
||
}
|
||
else if (GET_CODE (args_so_far) == CONST_INT)
|
||
temp = memory_address (BLKmode,
|
||
plus_constant (args_addr,
|
||
skip + INTVAL (args_so_far)));
|
||
else
|
||
temp = memory_address (BLKmode,
|
||
plus_constant (gen_rtx_PLUS (Pmode,
|
||
args_addr,
|
||
args_so_far),
|
||
skip));
|
||
|
||
if (!ACCUMULATE_OUTGOING_ARGS)
|
||
{
|
||
/* If the source is referenced relative to the stack pointer,
|
||
copy it to another register to stabilize it. We do not need
|
||
to do this if we know that we won't be changing sp. */
|
||
|
||
if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
|
||
|| reg_mentioned_p (virtual_outgoing_args_rtx, temp))
|
||
temp = copy_to_reg (temp);
|
||
}
|
||
|
||
target = gen_rtx_MEM (BLKmode, temp);
|
||
|
||
/* We do *not* set_mem_attributes here, because incoming arguments
|
||
may overlap with sibling call outgoing arguments and we cannot
|
||
allow reordering of reads from function arguments with stores
|
||
to outgoing arguments of sibling calls. We do, however, want
|
||
to record the alignment of the stack slot. */
|
||
/* ALIGN may well be better aligned than TYPE, e.g. due to
|
||
PARM_BOUNDARY. Assume the caller isn't lying. */
|
||
set_mem_align (target, align);
|
||
|
||
emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
|
||
}
|
||
}
|
||
else if (partial > 0)
|
||
{
|
||
/* Scalar partly in registers. */
|
||
|
||
int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
|
||
int i;
|
||
int not_stack;
|
||
/* # bytes of start of argument
|
||
that we must make space for but need not store. */
|
||
int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
|
||
int args_offset = INTVAL (args_so_far);
|
||
int skip;
|
||
|
||
/* Push padding now if padding above and stack grows down,
|
||
or if padding below and stack grows up.
|
||
But if space already allocated, this has already been done. */
|
||
if (extra && args_addr == 0
|
||
&& where_pad != none && where_pad != stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
|
||
/* If we make space by pushing it, we might as well push
|
||
the real data. Otherwise, we can leave OFFSET nonzero
|
||
and leave the space uninitialized. */
|
||
if (args_addr == 0)
|
||
offset = 0;
|
||
|
||
/* Now NOT_STACK gets the number of words that we don't need to
|
||
allocate on the stack. Convert OFFSET to words too. */
|
||
not_stack = (partial - offset) / UNITS_PER_WORD;
|
||
offset /= UNITS_PER_WORD;
|
||
|
||
/* If the partial register-part of the arg counts in its stack size,
|
||
skip the part of stack space corresponding to the registers.
|
||
Otherwise, start copying to the beginning of the stack space,
|
||
by setting SKIP to 0. */
|
||
skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
|
||
|
||
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
|
||
x = validize_mem (force_const_mem (mode, x));
|
||
|
||
/* If X is a hard register in a non-integer mode, copy it into a pseudo;
|
||
SUBREGs of such registers are not allowed. */
|
||
if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
|
||
x = copy_to_reg (x);
|
||
|
||
/* Loop over all the words allocated on the stack for this arg. */
|
||
/* We can do it by words, because any scalar bigger than a word
|
||
has a size a multiple of a word. */
|
||
#ifndef PUSH_ARGS_REVERSED
|
||
for (i = not_stack; i < size; i++)
|
||
#else
|
||
for (i = size - 1; i >= not_stack; i--)
|
||
#endif
|
||
if (i >= not_stack + offset)
|
||
emit_push_insn (operand_subword_force (x, i, mode),
|
||
word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
|
||
0, args_addr,
|
||
GEN_INT (args_offset + ((i - not_stack + skip)
|
||
* UNITS_PER_WORD)),
|
||
reg_parm_stack_space, alignment_pad);
|
||
}
|
||
else
|
||
{
|
||
rtx addr;
|
||
rtx dest;
|
||
|
||
/* Push padding now if padding above and stack grows down,
|
||
or if padding below and stack grows up.
|
||
But if space already allocated, this has already been done. */
|
||
if (extra && args_addr == 0
|
||
&& where_pad != none && where_pad != stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
if (args_addr == 0 && PUSH_ARGS)
|
||
emit_single_push_insn (mode, x, type);
|
||
else
|
||
#endif
|
||
{
|
||
if (GET_CODE (args_so_far) == CONST_INT)
|
||
addr
|
||
= memory_address (mode,
|
||
plus_constant (args_addr,
|
||
INTVAL (args_so_far)));
|
||
else
|
||
addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
|
||
args_so_far));
|
||
dest = gen_rtx_MEM (mode, addr);
|
||
|
||
/* We do *not* set_mem_attributes here, because incoming arguments
|
||
may overlap with sibling call outgoing arguments and we cannot
|
||
allow reordering of reads from function arguments with stores
|
||
to outgoing arguments of sibling calls. We do, however, want
|
||
to record the alignment of the stack slot. */
|
||
/* ALIGN may well be better aligned than TYPE, e.g. due to
|
||
PARM_BOUNDARY. Assume the caller isn't lying. */
|
||
set_mem_align (dest, align);
|
||
|
||
emit_move_insn (dest, x);
|
||
}
|
||
}
|
||
|
||
/* If part should go in registers, copy that part
|
||
into the appropriate registers. Do this now, at the end,
|
||
since mem-to-mem copies above may do function calls. */
|
||
if (partial > 0 && reg != 0)
|
||
{
|
||
/* Handle calls that pass values in multiple non-contiguous locations.
|
||
The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (reg) == PARALLEL)
|
||
emit_group_load (reg, x, type, -1);
|
||
else
|
||
{
|
||
gcc_assert (partial % UNITS_PER_WORD == 0);
|
||
move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
|
||
}
|
||
}
|
||
|
||
if (extra && args_addr == 0 && where_pad == stack_direction)
|
||
anti_adjust_stack (GEN_INT (extra));
|
||
|
||
if (alignment_pad && args_addr == 0)
|
||
anti_adjust_stack (alignment_pad);
|
||
}
|
||
|
||
/* Return X if X can be used as a subtarget in a sequence of arithmetic
|
||
operations. */
|
||
|
||
static rtx
|
||
get_subtarget (rtx x)
|
||
{
|
||
return (optimize
|
||
|| x == 0
|
||
/* Only registers can be subtargets. */
|
||
|| !REG_P (x)
|
||
/* Don't use hard regs to avoid extending their life. */
|
||
|| REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
? 0 : x);
|
||
}
|
||
|
||
/* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
|
||
FIELD is a bitfield. Returns true if the optimization was successful,
|
||
and there's nothing else to do. */
|
||
|
||
static bool
|
||
optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
|
||
unsigned HOST_WIDE_INT bitpos,
|
||
enum machine_mode mode1, rtx str_rtx,
|
||
tree to, tree src)
|
||
{
|
||
enum machine_mode str_mode = GET_MODE (str_rtx);
|
||
unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
|
||
tree op0, op1;
|
||
rtx value, result;
|
||
optab binop;
|
||
|
||
if (mode1 != VOIDmode
|
||
|| bitsize >= BITS_PER_WORD
|
||
|| str_bitsize > BITS_PER_WORD
|
||
|| TREE_SIDE_EFFECTS (to)
|
||
|| TREE_THIS_VOLATILE (to))
|
||
return false;
|
||
|
||
STRIP_NOPS (src);
|
||
if (!BINARY_CLASS_P (src)
|
||
|| TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
|
||
return false;
|
||
|
||
op0 = TREE_OPERAND (src, 0);
|
||
op1 = TREE_OPERAND (src, 1);
|
||
STRIP_NOPS (op0);
|
||
|
||
if (!operand_equal_p (to, op0, 0))
|
||
return false;
|
||
|
||
if (MEM_P (str_rtx))
|
||
{
|
||
unsigned HOST_WIDE_INT offset1;
|
||
|
||
if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
|
||
str_mode = word_mode;
|
||
str_mode = get_best_mode (bitsize, bitpos,
|
||
MEM_ALIGN (str_rtx), str_mode, 0);
|
||
if (str_mode == VOIDmode)
|
||
return false;
|
||
str_bitsize = GET_MODE_BITSIZE (str_mode);
|
||
|
||
offset1 = bitpos;
|
||
bitpos %= str_bitsize;
|
||
offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
|
||
str_rtx = adjust_address (str_rtx, str_mode, offset1);
|
||
}
|
||
else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
|
||
return false;
|
||
|
||
/* If the bit field covers the whole REG/MEM, store_field
|
||
will likely generate better code. */
|
||
if (bitsize >= str_bitsize)
|
||
return false;
|
||
|
||
/* We can't handle fields split across multiple entities. */
|
||
if (bitpos + bitsize > str_bitsize)
|
||
return false;
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
bitpos = str_bitsize - bitpos - bitsize;
|
||
|
||
switch (TREE_CODE (src))
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
/* For now, just optimize the case of the topmost bitfield
|
||
where we don't need to do any masking and also
|
||
1 bit bitfields where xor can be used.
|
||
We might win by one instruction for the other bitfields
|
||
too if insv/extv instructions aren't used, so that
|
||
can be added later. */
|
||
if (bitpos + bitsize != str_bitsize
|
||
&& (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
|
||
break;
|
||
|
||
value = expand_expr (op1, NULL_RTX, str_mode, 0);
|
||
value = convert_modes (str_mode,
|
||
TYPE_MODE (TREE_TYPE (op1)), value,
|
||
TYPE_UNSIGNED (TREE_TYPE (op1)));
|
||
|
||
/* We may be accessing data outside the field, which means
|
||
we can alias adjacent data. */
|
||
if (MEM_P (str_rtx))
|
||
{
|
||
str_rtx = shallow_copy_rtx (str_rtx);
|
||
set_mem_alias_set (str_rtx, 0);
|
||
set_mem_expr (str_rtx, 0);
|
||
}
|
||
|
||
binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
|
||
if (bitsize == 1 && bitpos + bitsize != str_bitsize)
|
||
{
|
||
value = expand_and (str_mode, value, const1_rtx, NULL);
|
||
binop = xor_optab;
|
||
}
|
||
value = expand_shift (LSHIFT_EXPR, str_mode, value,
|
||
build_int_cst (NULL_TREE, bitpos),
|
||
NULL_RTX, 1);
|
||
result = expand_binop (str_mode, binop, str_rtx,
|
||
value, str_rtx, 1, OPTAB_WIDEN);
|
||
if (result != str_rtx)
|
||
emit_move_insn (str_rtx, result);
|
||
return true;
|
||
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
if (TREE_CODE (op1) != INTEGER_CST)
|
||
break;
|
||
value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
|
||
value = convert_modes (GET_MODE (str_rtx),
|
||
TYPE_MODE (TREE_TYPE (op1)), value,
|
||
TYPE_UNSIGNED (TREE_TYPE (op1)));
|
||
|
||
/* We may be accessing data outside the field, which means
|
||
we can alias adjacent data. */
|
||
if (MEM_P (str_rtx))
|
||
{
|
||
str_rtx = shallow_copy_rtx (str_rtx);
|
||
set_mem_alias_set (str_rtx, 0);
|
||
set_mem_expr (str_rtx, 0);
|
||
}
|
||
|
||
binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
|
||
if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
|
||
{
|
||
rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
|
||
- 1);
|
||
value = expand_and (GET_MODE (str_rtx), value, mask,
|
||
NULL_RTX);
|
||
}
|
||
value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
|
||
build_int_cst (NULL_TREE, bitpos),
|
||
NULL_RTX, 1);
|
||
result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
|
||
value, str_rtx, 1, OPTAB_WIDEN);
|
||
if (result != str_rtx)
|
||
emit_move_insn (str_rtx, result);
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Expand an assignment that stores the value of FROM into TO. */
|
||
|
||
void
|
||
expand_assignment (tree to, tree from)
|
||
{
|
||
rtx to_rtx = 0;
|
||
rtx result;
|
||
|
||
/* Don't crash if the lhs of the assignment was erroneous. */
|
||
if (TREE_CODE (to) == ERROR_MARK)
|
||
{
|
||
result = expand_normal (from);
|
||
return;
|
||
}
|
||
|
||
/* Optimize away no-op moves without side-effects. */
|
||
if (operand_equal_p (to, from, 0))
|
||
return;
|
||
|
||
/* Assignment of a structure component needs special treatment
|
||
if the structure component's rtx is not simply a MEM.
|
||
Assignment of an array element at a constant index, and assignment of
|
||
an array element in an unaligned packed structure field, has the same
|
||
problem. */
|
||
if (handled_component_p (to)
|
||
|| TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
|
||
{
|
||
enum machine_mode mode1;
|
||
HOST_WIDE_INT bitsize, bitpos;
|
||
tree offset;
|
||
int unsignedp;
|
||
int volatilep = 0;
|
||
tree tem;
|
||
|
||
push_temp_slots ();
|
||
tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
|
||
&unsignedp, &volatilep, true);
|
||
|
||
/* If we are going to use store_bit_field and extract_bit_field,
|
||
make sure to_rtx will be safe for multiple use. */
|
||
|
||
to_rtx = expand_normal (tem);
|
||
|
||
if (offset != 0)
|
||
{
|
||
rtx offset_rtx;
|
||
|
||
if (!MEM_P (to_rtx))
|
||
{
|
||
/* We can get constant negative offsets into arrays with broken
|
||
user code. Translate this to a trap instead of ICEing. */
|
||
gcc_assert (TREE_CODE (offset) == INTEGER_CST);
|
||
expand_builtin_trap ();
|
||
to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
|
||
}
|
||
|
||
offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (offset_rtx) != Pmode)
|
||
offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
|
||
#else
|
||
if (GET_MODE (offset_rtx) != ptr_mode)
|
||
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
||
#endif
|
||
|
||
/* A constant address in TO_RTX can have VOIDmode, we must not try
|
||
to call force_reg for that case. Avoid that case. */
|
||
if (MEM_P (to_rtx)
|
||
&& GET_MODE (to_rtx) == BLKmode
|
||
&& GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
|
||
&& bitsize > 0
|
||
&& (bitpos % bitsize) == 0
|
||
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
|
||
&& MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
|
||
{
|
||
to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
|
||
bitpos = 0;
|
||
}
|
||
|
||
to_rtx = offset_address (to_rtx, offset_rtx,
|
||
highest_pow2_factor_for_target (to,
|
||
offset));
|
||
}
|
||
|
||
/* Handle expand_expr of a complex value returning a CONCAT. */
|
||
if (GET_CODE (to_rtx) == CONCAT)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
|
||
{
|
||
gcc_assert (bitpos == 0);
|
||
result = store_expr (from, to_rtx, false);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
|
||
result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (MEM_P (to_rtx))
|
||
{
|
||
/* If the field is at offset zero, we could have been given the
|
||
DECL_RTX of the parent struct. Don't munge it. */
|
||
to_rtx = shallow_copy_rtx (to_rtx);
|
||
|
||
set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
|
||
|
||
/* Deal with volatile and readonly fields. The former is only
|
||
done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
|
||
if (volatilep)
|
||
MEM_VOLATILE_P (to_rtx) = 1;
|
||
if (component_uses_parent_alias_set (to))
|
||
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
|
||
}
|
||
|
||
if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
|
||
to_rtx, to, from))
|
||
result = NULL;
|
||
else
|
||
result = store_field (to_rtx, bitsize, bitpos, mode1, from,
|
||
TREE_TYPE (tem), get_alias_set (to));
|
||
}
|
||
|
||
if (result)
|
||
preserve_temp_slots (result);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return;
|
||
}
|
||
|
||
/* If the rhs is a function call and its value is not an aggregate,
|
||
call the function before we start to compute the lhs.
|
||
This is needed for correct code for cases such as
|
||
val = setjmp (buf) on machines where reference to val
|
||
requires loading up part of an address in a separate insn.
|
||
|
||
Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
|
||
since it might be a promoted variable where the zero- or sign- extension
|
||
needs to be done. Handling this in the normal way is safe because no
|
||
computation is done before the call. */
|
||
if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
|
||
&& ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
|
||
&& REG_P (DECL_RTL (to))))
|
||
{
|
||
rtx value;
|
||
|
||
push_temp_slots ();
|
||
value = expand_normal (from);
|
||
if (to_rtx == 0)
|
||
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
||
|
||
/* Handle calls that return values in multiple non-contiguous locations.
|
||
The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (to_rtx) == PARALLEL)
|
||
emit_group_load (to_rtx, value, TREE_TYPE (from),
|
||
int_size_in_bytes (TREE_TYPE (from)));
|
||
else if (GET_MODE (to_rtx) == BLKmode)
|
||
emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
|
||
else
|
||
{
|
||
if (POINTER_TYPE_P (TREE_TYPE (to)))
|
||
value = convert_memory_address (GET_MODE (to_rtx), value);
|
||
emit_move_insn (to_rtx, value);
|
||
}
|
||
preserve_temp_slots (to_rtx);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return;
|
||
}
|
||
|
||
/* Ordinary treatment. Expand TO to get a REG or MEM rtx.
|
||
Don't re-expand if it was expanded already (in COMPONENT_REF case). */
|
||
|
||
if (to_rtx == 0)
|
||
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
||
|
||
/* Don't move directly into a return register. */
|
||
if (TREE_CODE (to) == RESULT_DECL
|
||
&& (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
|
||
{
|
||
rtx temp;
|
||
|
||
push_temp_slots ();
|
||
temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
|
||
|
||
if (GET_CODE (to_rtx) == PARALLEL)
|
||
emit_group_load (to_rtx, temp, TREE_TYPE (from),
|
||
int_size_in_bytes (TREE_TYPE (from)));
|
||
else
|
||
emit_move_insn (to_rtx, temp);
|
||
|
||
preserve_temp_slots (to_rtx);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return;
|
||
}
|
||
|
||
/* In case we are returning the contents of an object which overlaps
|
||
the place the value is being stored, use a safe function when copying
|
||
a value through a pointer into a structure value return block. */
|
||
if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
|
||
&& current_function_returns_struct
|
||
&& !current_function_returns_pcc_struct)
|
||
{
|
||
rtx from_rtx, size;
|
||
|
||
push_temp_slots ();
|
||
size = expr_size (from);
|
||
from_rtx = expand_normal (from);
|
||
|
||
emit_library_call (memmove_libfunc, LCT_NORMAL,
|
||
VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
|
||
XEXP (from_rtx, 0), Pmode,
|
||
convert_to_mode (TYPE_MODE (sizetype),
|
||
size, TYPE_UNSIGNED (sizetype)),
|
||
TYPE_MODE (sizetype));
|
||
|
||
preserve_temp_slots (to_rtx);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return;
|
||
}
|
||
|
||
/* Compute FROM and store the value in the rtx we got. */
|
||
|
||
push_temp_slots ();
|
||
result = store_expr (from, to_rtx, 0);
|
||
preserve_temp_slots (result);
|
||
free_temp_slots ();
|
||
pop_temp_slots ();
|
||
return;
|
||
}
|
||
|
||
/* Generate code for computing expression EXP,
|
||
and storing the value into TARGET.
|
||
|
||
If the mode is BLKmode then we may return TARGET itself.
|
||
It turns out that in BLKmode it doesn't cause a problem.
|
||
because C has no operators that could combine two different
|
||
assignments into the same BLKmode object with different values
|
||
with no sequence point. Will other languages need this to
|
||
be more thorough?
|
||
|
||
If CALL_PARAM_P is nonzero, this is a store into a call param on the
|
||
stack, and block moves may need to be treated specially. */
|
||
|
||
rtx
|
||
store_expr (tree exp, rtx target, int call_param_p)
|
||
{
|
||
rtx temp;
|
||
rtx alt_rtl = NULL_RTX;
|
||
int dont_return_target = 0;
|
||
|
||
if (VOID_TYPE_P (TREE_TYPE (exp)))
|
||
{
|
||
/* C++ can generate ?: expressions with a throw expression in one
|
||
branch and an rvalue in the other. Here, we resolve attempts to
|
||
store the throw expression's nonexistent result. */
|
||
gcc_assert (!call_param_p);
|
||
expand_expr (exp, const0_rtx, VOIDmode, 0);
|
||
return NULL_RTX;
|
||
}
|
||
if (TREE_CODE (exp) == COMPOUND_EXPR)
|
||
{
|
||
/* Perform first part of compound expression, then assign from second
|
||
part. */
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
|
||
call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
|
||
return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
|
||
}
|
||
else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
|
||
{
|
||
/* For conditional expression, get safe form of the target. Then
|
||
test the condition, doing the appropriate assignment on either
|
||
side. This avoids the creation of unnecessary temporaries.
|
||
For non-BLKmode, it is more efficient not to do this. */
|
||
|
||
rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
|
||
|
||
do_pending_stack_adjust ();
|
||
NO_DEFER_POP;
|
||
jumpifnot (TREE_OPERAND (exp, 0), lab1);
|
||
store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
|
||
emit_jump_insn (gen_jump (lab2));
|
||
emit_barrier ();
|
||
emit_label (lab1);
|
||
store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
|
||
emit_label (lab2);
|
||
OK_DEFER_POP;
|
||
|
||
return NULL_RTX;
|
||
}
|
||
else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
|
||
/* If this is a scalar in a register that is stored in a wider mode
|
||
than the declared mode, compute the result into its declared mode
|
||
and then convert to the wider mode. Our value is the computed
|
||
expression. */
|
||
{
|
||
rtx inner_target = 0;
|
||
|
||
/* We can do the conversion inside EXP, which will often result
|
||
in some optimizations. Do the conversion in two steps: first
|
||
change the signedness, if needed, then the extend. But don't
|
||
do this if the type of EXP is a subtype of something else
|
||
since then the conversion might involve more than just
|
||
converting modes. */
|
||
if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
|
||
&& TREE_TYPE (TREE_TYPE (exp)) == 0
|
||
&& (!lang_hooks.reduce_bit_field_operations
|
||
|| (GET_MODE_PRECISION (GET_MODE (target))
|
||
== TYPE_PRECISION (TREE_TYPE (exp)))))
|
||
{
|
||
if (TYPE_UNSIGNED (TREE_TYPE (exp))
|
||
!= SUBREG_PROMOTED_UNSIGNED_P (target))
|
||
exp = fold_convert
|
||
(lang_hooks.types.signed_or_unsigned_type
|
||
(SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
|
||
|
||
exp = fold_convert (lang_hooks.types.type_for_mode
|
||
(GET_MODE (SUBREG_REG (target)),
|
||
SUBREG_PROMOTED_UNSIGNED_P (target)),
|
||
exp);
|
||
|
||
inner_target = SUBREG_REG (target);
|
||
}
|
||
|
||
temp = expand_expr (exp, inner_target, VOIDmode,
|
||
call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
|
||
|
||
/* If TEMP is a VOIDmode constant, use convert_modes to make
|
||
sure that we properly convert it. */
|
||
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
|
||
{
|
||
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
|
||
temp, SUBREG_PROMOTED_UNSIGNED_P (target));
|
||
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
|
||
GET_MODE (target), temp,
|
||
SUBREG_PROMOTED_UNSIGNED_P (target));
|
||
}
|
||
|
||
convert_move (SUBREG_REG (target), temp,
|
||
SUBREG_PROMOTED_UNSIGNED_P (target));
|
||
|
||
return NULL_RTX;
|
||
}
|
||
else
|
||
{
|
||
temp = expand_expr_real (exp, target, GET_MODE (target),
|
||
(call_param_p
|
||
? EXPAND_STACK_PARM : EXPAND_NORMAL),
|
||
&alt_rtl);
|
||
/* Return TARGET if it's a specified hardware register.
|
||
If TARGET is a volatile mem ref, either return TARGET
|
||
or return a reg copied *from* TARGET; ANSI requires this.
|
||
|
||
Otherwise, if TEMP is not TARGET, return TEMP
|
||
if it is constant (for efficiency),
|
||
or if we really want the correct value. */
|
||
if (!(target && REG_P (target)
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
|
||
&& !(MEM_P (target) && MEM_VOLATILE_P (target))
|
||
&& ! rtx_equal_p (temp, target)
|
||
&& CONSTANT_P (temp))
|
||
dont_return_target = 1;
|
||
}
|
||
|
||
/* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
|
||
the same as that of TARGET, adjust the constant. This is needed, for
|
||
example, in case it is a CONST_DOUBLE and we want only a word-sized
|
||
value. */
|
||
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
|
||
&& TREE_CODE (exp) != ERROR_MARK
|
||
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
|
||
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
|
||
temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
|
||
|
||
/* If value was not generated in the target, store it there.
|
||
Convert the value to TARGET's type first if necessary and emit the
|
||
pending incrementations that have been queued when expanding EXP.
|
||
Note that we cannot emit the whole queue blindly because this will
|
||
effectively disable the POST_INC optimization later.
|
||
|
||
If TEMP and TARGET compare equal according to rtx_equal_p, but
|
||
one or both of them are volatile memory refs, we have to distinguish
|
||
two cases:
|
||
- expand_expr has used TARGET. In this case, we must not generate
|
||
another copy. This can be detected by TARGET being equal according
|
||
to == .
|
||
- expand_expr has not used TARGET - that means that the source just
|
||
happens to have the same RTX form. Since temp will have been created
|
||
by expand_expr, it will compare unequal according to == .
|
||
We must generate a copy in this case, to reach the correct number
|
||
of volatile memory references. */
|
||
|
||
if ((! rtx_equal_p (temp, target)
|
||
|| (temp != target && (side_effects_p (temp)
|
||
|| side_effects_p (target))))
|
||
&& TREE_CODE (exp) != ERROR_MARK
|
||
/* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
|
||
but TARGET is not valid memory reference, TEMP will differ
|
||
from TARGET although it is really the same location. */
|
||
&& !(alt_rtl && rtx_equal_p (alt_rtl, target))
|
||
/* If there's nothing to copy, don't bother. Don't call
|
||
expr_size unless necessary, because some front-ends (C++)
|
||
expr_size-hook must not be given objects that are not
|
||
supposed to be bit-copied or bit-initialized. */
|
||
&& expr_size (exp) != const0_rtx)
|
||
{
|
||
if (GET_MODE (temp) != GET_MODE (target)
|
||
&& GET_MODE (temp) != VOIDmode)
|
||
{
|
||
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
|
||
if (dont_return_target)
|
||
{
|
||
/* In this case, we will return TEMP,
|
||
so make sure it has the proper mode.
|
||
But don't forget to store the value into TARGET. */
|
||
temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
|
||
emit_move_insn (target, temp);
|
||
}
|
||
else
|
||
convert_move (target, temp, unsignedp);
|
||
}
|
||
|
||
else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
|
||
{
|
||
/* Handle copying a string constant into an array. The string
|
||
constant may be shorter than the array. So copy just the string's
|
||
actual length, and clear the rest. First get the size of the data
|
||
type of the string, which is actually the size of the target. */
|
||
rtx size = expr_size (exp);
|
||
|
||
if (GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) < TREE_STRING_LENGTH (exp))
|
||
emit_block_move (target, temp, size,
|
||
(call_param_p
|
||
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
||
else
|
||
{
|
||
/* Compute the size of the data to copy from the string. */
|
||
tree copy_size
|
||
= size_binop (MIN_EXPR,
|
||
make_tree (sizetype, size),
|
||
size_int (TREE_STRING_LENGTH (exp)));
|
||
rtx copy_size_rtx
|
||
= expand_expr (copy_size, NULL_RTX, VOIDmode,
|
||
(call_param_p
|
||
? EXPAND_STACK_PARM : EXPAND_NORMAL));
|
||
rtx label = 0;
|
||
|
||
/* Copy that much. */
|
||
copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
|
||
TYPE_UNSIGNED (sizetype));
|
||
emit_block_move (target, temp, copy_size_rtx,
|
||
(call_param_p
|
||
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
||
|
||
/* Figure out how much is left in TARGET that we have to clear.
|
||
Do all calculations in ptr_mode. */
|
||
if (GET_CODE (copy_size_rtx) == CONST_INT)
|
||
{
|
||
size = plus_constant (size, -INTVAL (copy_size_rtx));
|
||
target = adjust_address (target, BLKmode,
|
||
INTVAL (copy_size_rtx));
|
||
}
|
||
else
|
||
{
|
||
size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
|
||
copy_size_rtx, NULL_RTX, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (copy_size_rtx) != Pmode)
|
||
copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
|
||
TYPE_UNSIGNED (sizetype));
|
||
#endif
|
||
|
||
target = offset_address (target, copy_size_rtx,
|
||
highest_pow2_factor (copy_size));
|
||
label = gen_label_rtx ();
|
||
emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
|
||
GET_MODE (size), 0, label);
|
||
}
|
||
|
||
if (size != const0_rtx)
|
||
clear_storage (target, size, BLOCK_OP_NORMAL);
|
||
|
||
if (label)
|
||
emit_label (label);
|
||
}
|
||
}
|
||
/* Handle calls that return values in multiple non-contiguous locations.
|
||
The Irix 6 ABI has examples of this. */
|
||
else if (GET_CODE (target) == PARALLEL)
|
||
emit_group_load (target, temp, TREE_TYPE (exp),
|
||
int_size_in_bytes (TREE_TYPE (exp)));
|
||
else if (GET_MODE (temp) == BLKmode)
|
||
emit_block_move (target, temp, expr_size (exp),
|
||
(call_param_p
|
||
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
||
else
|
||
{
|
||
temp = force_operand (temp, target);
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
}
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Helper for categorize_ctor_elements. Identical interface. */
|
||
|
||
static bool
|
||
categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
|
||
HOST_WIDE_INT *p_elt_count,
|
||
bool *p_must_clear)
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
HOST_WIDE_INT nz_elts, elt_count;
|
||
tree value, purpose;
|
||
|
||
/* Whether CTOR is a valid constant initializer, in accordance with what
|
||
initializer_constant_valid_p does. If inferred from the constructor
|
||
elements, true until proven otherwise. */
|
||
bool const_from_elts_p = constructor_static_from_elts_p (ctor);
|
||
bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
|
||
|
||
nz_elts = 0;
|
||
elt_count = 0;
|
||
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
|
||
{
|
||
HOST_WIDE_INT mult;
|
||
|
||
mult = 1;
|
||
if (TREE_CODE (purpose) == RANGE_EXPR)
|
||
{
|
||
tree lo_index = TREE_OPERAND (purpose, 0);
|
||
tree hi_index = TREE_OPERAND (purpose, 1);
|
||
|
||
if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
|
||
mult = (tree_low_cst (hi_index, 1)
|
||
- tree_low_cst (lo_index, 1) + 1);
|
||
}
|
||
|
||
switch (TREE_CODE (value))
|
||
{
|
||
case CONSTRUCTOR:
|
||
{
|
||
HOST_WIDE_INT nz = 0, ic = 0;
|
||
|
||
bool const_elt_p
|
||
= categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
|
||
|
||
nz_elts += mult * nz;
|
||
elt_count += mult * ic;
|
||
|
||
if (const_from_elts_p && const_p)
|
||
const_p = const_elt_p;
|
||
}
|
||
break;
|
||
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
if (!initializer_zerop (value))
|
||
nz_elts += mult;
|
||
elt_count += mult;
|
||
break;
|
||
|
||
case STRING_CST:
|
||
nz_elts += mult * TREE_STRING_LENGTH (value);
|
||
elt_count += mult * TREE_STRING_LENGTH (value);
|
||
break;
|
||
|
||
case COMPLEX_CST:
|
||
if (!initializer_zerop (TREE_REALPART (value)))
|
||
nz_elts += mult;
|
||
if (!initializer_zerop (TREE_IMAGPART (value)))
|
||
nz_elts += mult;
|
||
elt_count += mult;
|
||
break;
|
||
|
||
case VECTOR_CST:
|
||
{
|
||
tree v;
|
||
for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
|
||
{
|
||
if (!initializer_zerop (TREE_VALUE (v)))
|
||
nz_elts += mult;
|
||
elt_count += mult;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
nz_elts += mult;
|
||
elt_count += mult;
|
||
|
||
if (const_from_elts_p && const_p)
|
||
const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
|
||
!= NULL_TREE;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!*p_must_clear
|
||
&& (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
|
||
{
|
||
tree init_sub_type;
|
||
bool clear_this = true;
|
||
|
||
if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
|
||
{
|
||
/* We don't expect more than one element of the union to be
|
||
initialized. Not sure what we should do otherwise... */
|
||
gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
|
||
== 1);
|
||
|
||
init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
|
||
CONSTRUCTOR_ELTS (ctor),
|
||
0)->value);
|
||
|
||
/* ??? We could look at each element of the union, and find the
|
||
largest element. Which would avoid comparing the size of the
|
||
initialized element against any tail padding in the union.
|
||
Doesn't seem worth the effort... */
|
||
if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
|
||
TYPE_SIZE (init_sub_type)) == 1)
|
||
{
|
||
/* And now we have to find out if the element itself is fully
|
||
constructed. E.g. for union { struct { int a, b; } s; } u
|
||
= { .s = { .a = 1 } }. */
|
||
if (elt_count == count_type_elements (init_sub_type, false))
|
||
clear_this = false;
|
||
}
|
||
}
|
||
|
||
*p_must_clear = clear_this;
|
||
}
|
||
|
||
*p_nz_elts += nz_elts;
|
||
*p_elt_count += elt_count;
|
||
|
||
return const_p;
|
||
}
|
||
|
||
/* Examine CTOR to discover:
|
||
* how many scalar fields are set to nonzero values,
|
||
and place it in *P_NZ_ELTS;
|
||
* how many scalar fields in total are in CTOR,
|
||
and place it in *P_ELT_COUNT.
|
||
* if a type is a union, and the initializer from the constructor
|
||
is not the largest element in the union, then set *p_must_clear.
|
||
|
||
Return whether or not CTOR is a valid static constant initializer, the same
|
||
as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
|
||
|
||
bool
|
||
categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
|
||
HOST_WIDE_INT *p_elt_count,
|
||
bool *p_must_clear)
|
||
{
|
||
*p_nz_elts = 0;
|
||
*p_elt_count = 0;
|
||
*p_must_clear = false;
|
||
|
||
return
|
||
categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
|
||
}
|
||
|
||
/* Count the number of scalars in TYPE. Return -1 on overflow or
|
||
variable-sized. If ALLOW_FLEXARR is true, don't count flexible
|
||
array member at the end of the structure. */
|
||
|
||
HOST_WIDE_INT
|
||
count_type_elements (tree type, bool allow_flexarr)
|
||
{
|
||
const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree telts = array_type_nelts (type);
|
||
if (telts && host_integerp (telts, 1))
|
||
{
|
||
HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
|
||
HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
|
||
if (n == 0)
|
||
return 0;
|
||
else if (max / n > m)
|
||
return n * m;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
case RECORD_TYPE:
|
||
{
|
||
HOST_WIDE_INT n = 0, t;
|
||
tree f;
|
||
|
||
for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
|
||
if (TREE_CODE (f) == FIELD_DECL)
|
||
{
|
||
t = count_type_elements (TREE_TYPE (f), false);
|
||
if (t < 0)
|
||
{
|
||
/* Check for structures with flexible array member. */
|
||
tree tf = TREE_TYPE (f);
|
||
if (allow_flexarr
|
||
&& TREE_CHAIN (f) == NULL
|
||
&& TREE_CODE (tf) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (tf)
|
||
&& TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
|
||
&& integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
|
||
&& !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
|
||
&& int_size_in_bytes (type) >= 0)
|
||
break;
|
||
|
||
return -1;
|
||
}
|
||
n += t;
|
||
}
|
||
|
||
return n;
|
||
}
|
||
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
/* Ho hum. How in the world do we guess here? Clearly it isn't
|
||
right to count the fields. Guess based on the number of words. */
|
||
HOST_WIDE_INT n = int_size_in_bytes (type);
|
||
if (n < 0)
|
||
return -1;
|
||
return n / UNITS_PER_WORD;
|
||
}
|
||
|
||
case COMPLEX_TYPE:
|
||
return 2;
|
||
|
||
case VECTOR_TYPE:
|
||
return TYPE_VECTOR_SUBPARTS (type);
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case POINTER_TYPE:
|
||
case OFFSET_TYPE:
|
||
case REFERENCE_TYPE:
|
||
return 1;
|
||
|
||
case VOID_TYPE:
|
||
case METHOD_TYPE:
|
||
case FUNCTION_TYPE:
|
||
case LANG_TYPE:
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXP contains mostly (3/4) zeros. */
|
||
|
||
static int
|
||
mostly_zeros_p (tree exp)
|
||
{
|
||
if (TREE_CODE (exp) == CONSTRUCTOR)
|
||
|
||
{
|
||
HOST_WIDE_INT nz_elts, count, elts;
|
||
bool must_clear;
|
||
|
||
categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
|
||
if (must_clear)
|
||
return 1;
|
||
|
||
elts = count_type_elements (TREE_TYPE (exp), false);
|
||
|
||
return nz_elts < elts / 4;
|
||
}
|
||
|
||
return initializer_zerop (exp);
|
||
}
|
||
|
||
/* Return 1 if EXP contains all zeros. */
|
||
|
||
static int
|
||
all_zeros_p (tree exp)
|
||
{
|
||
if (TREE_CODE (exp) == CONSTRUCTOR)
|
||
|
||
{
|
||
HOST_WIDE_INT nz_elts, count;
|
||
bool must_clear;
|
||
|
||
categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
|
||
return nz_elts == 0;
|
||
}
|
||
|
||
return initializer_zerop (exp);
|
||
}
|
||
|
||
/* Helper function for store_constructor.
|
||
TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
|
||
TYPE is the type of the CONSTRUCTOR, not the element type.
|
||
CLEARED is as for store_constructor.
|
||
ALIAS_SET is the alias set to use for any stores.
|
||
|
||
This provides a recursive shortcut back to store_constructor when it isn't
|
||
necessary to go through store_field. This is so that we can pass through
|
||
the cleared field to let store_constructor know that we may not have to
|
||
clear a substructure if the outer structure has already been cleared. */
|
||
|
||
static void
|
||
store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
|
||
HOST_WIDE_INT bitpos, enum machine_mode mode,
|
||
tree exp, tree type, int cleared, int alias_set)
|
||
{
|
||
if (TREE_CODE (exp) == CONSTRUCTOR
|
||
/* We can only call store_constructor recursively if the size and
|
||
bit position are on a byte boundary. */
|
||
&& bitpos % BITS_PER_UNIT == 0
|
||
&& (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
|
||
/* If we have a nonzero bitpos for a register target, then we just
|
||
let store_field do the bitfield handling. This is unlikely to
|
||
generate unnecessary clear instructions anyways. */
|
||
&& (bitpos == 0 || MEM_P (target)))
|
||
{
|
||
if (MEM_P (target))
|
||
target
|
||
= adjust_address (target,
|
||
GET_MODE (target) == BLKmode
|
||
|| 0 != (bitpos
|
||
% GET_MODE_ALIGNMENT (GET_MODE (target)))
|
||
? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
|
||
|
||
|
||
/* Update the alias set, if required. */
|
||
if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
|
||
&& MEM_ALIAS_SET (target) != 0)
|
||
{
|
||
target = copy_rtx (target);
|
||
set_mem_alias_set (target, alias_set);
|
||
}
|
||
|
||
store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
|
||
}
|
||
else
|
||
store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
|
||
}
|
||
|
||
/* Store the value of constructor EXP into the rtx TARGET.
|
||
TARGET is either a REG or a MEM; we know it cannot conflict, since
|
||
safe_from_p has been called.
|
||
CLEARED is true if TARGET is known to have been zero'd.
|
||
SIZE is the number of bytes of TARGET we are allowed to modify: this
|
||
may not be the same as the size of EXP if we are assigning to a field
|
||
which has been packed to exclude padding bits. */
|
||
|
||
static void
|
||
store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
HOST_WIDE_INT exp_size = int_size_in_bytes (type);
|
||
#endif
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree field, value;
|
||
|
||
/* If size is zero or the target is already cleared, do nothing. */
|
||
if (size == 0 || cleared)
|
||
cleared = 1;
|
||
/* We either clear the aggregate or indicate the value is dead. */
|
||
else if ((TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
&& ! CONSTRUCTOR_ELTS (exp))
|
||
/* If the constructor is empty, clear the union. */
|
||
{
|
||
clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
|
||
cleared = 1;
|
||
}
|
||
|
||
/* If we are building a static constructor into a register,
|
||
set the initial value as zero so we can fold the value into
|
||
a constant. But if more than one register is involved,
|
||
this probably loses. */
|
||
else if (REG_P (target) && TREE_STATIC (exp)
|
||
&& GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
|
||
{
|
||
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
||
cleared = 1;
|
||
}
|
||
|
||
/* If the constructor has fewer fields than the structure or
|
||
if we are initializing the structure to mostly zeros, clear
|
||
the whole structure first. Don't do this if TARGET is a
|
||
register whose mode size isn't equal to SIZE since
|
||
clear_storage can't handle this case. */
|
||
else if (size > 0
|
||
&& (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
|
||
!= fields_length (type))
|
||
|| mostly_zeros_p (exp))
|
||
&& (!REG_P (target)
|
||
|| ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
|
||
== size)))
|
||
{
|
||
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
|
||
cleared = 1;
|
||
}
|
||
|
||
if (! cleared)
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
||
|
||
/* Store each element of the constructor into the
|
||
corresponding field of TARGET. */
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
|
||
{
|
||
enum machine_mode mode;
|
||
HOST_WIDE_INT bitsize;
|
||
HOST_WIDE_INT bitpos = 0;
|
||
tree offset;
|
||
rtx to_rtx = target;
|
||
|
||
/* Just ignore missing fields. We cleared the whole
|
||
structure, above, if any fields are missing. */
|
||
if (field == 0)
|
||
continue;
|
||
|
||
if (cleared && initializer_zerop (value))
|
||
continue;
|
||
|
||
if (host_integerp (DECL_SIZE (field), 1))
|
||
bitsize = tree_low_cst (DECL_SIZE (field), 1);
|
||
else
|
||
bitsize = -1;
|
||
|
||
mode = DECL_MODE (field);
|
||
if (DECL_BIT_FIELD (field))
|
||
mode = VOIDmode;
|
||
|
||
offset = DECL_FIELD_OFFSET (field);
|
||
if (host_integerp (offset, 0)
|
||
&& host_integerp (bit_position (field), 0))
|
||
{
|
||
bitpos = int_bit_position (field);
|
||
offset = 0;
|
||
}
|
||
else
|
||
bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
|
||
|
||
if (offset)
|
||
{
|
||
rtx offset_rtx;
|
||
|
||
offset
|
||
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
|
||
make_tree (TREE_TYPE (exp),
|
||
target));
|
||
|
||
offset_rtx = expand_normal (offset);
|
||
gcc_assert (MEM_P (to_rtx));
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (offset_rtx) != Pmode)
|
||
offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
|
||
#else
|
||
if (GET_MODE (offset_rtx) != ptr_mode)
|
||
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
||
#endif
|
||
|
||
to_rtx = offset_address (to_rtx, offset_rtx,
|
||
highest_pow2_factor (offset));
|
||
}
|
||
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
/* If this initializes a field that is smaller than a
|
||
word, at the start of a word, try to widen it to a full
|
||
word. This special case allows us to output C++ member
|
||
function initializations in a form that the optimizers
|
||
can understand. */
|
||
if (REG_P (target)
|
||
&& bitsize < BITS_PER_WORD
|
||
&& bitpos % BITS_PER_WORD == 0
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& TREE_CODE (value) == INTEGER_CST
|
||
&& exp_size >= 0
|
||
&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
|
||
{
|
||
tree type = TREE_TYPE (value);
|
||
|
||
if (TYPE_PRECISION (type) < BITS_PER_WORD)
|
||
{
|
||
type = lang_hooks.types.type_for_size
|
||
(BITS_PER_WORD, TYPE_UNSIGNED (type));
|
||
value = fold_convert (type, value);
|
||
}
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
value
|
||
= fold_build2 (LSHIFT_EXPR, type, value,
|
||
build_int_cst (type,
|
||
BITS_PER_WORD - bitsize));
|
||
bitsize = BITS_PER_WORD;
|
||
mode = word_mode;
|
||
}
|
||
#endif
|
||
|
||
if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
|
||
&& DECL_NONADDRESSABLE_P (field))
|
||
{
|
||
to_rtx = copy_rtx (to_rtx);
|
||
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
|
||
}
|
||
|
||
store_constructor_field (to_rtx, bitsize, bitpos, mode,
|
||
value, type, cleared,
|
||
get_alias_set (TREE_TYPE (field)));
|
||
}
|
||
break;
|
||
}
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree value, index;
|
||
unsigned HOST_WIDE_INT i;
|
||
int need_to_clear;
|
||
tree domain;
|
||
tree elttype = TREE_TYPE (type);
|
||
int const_bounds_p;
|
||
HOST_WIDE_INT minelt = 0;
|
||
HOST_WIDE_INT maxelt = 0;
|
||
|
||
domain = TYPE_DOMAIN (type);
|
||
const_bounds_p = (TYPE_MIN_VALUE (domain)
|
||
&& TYPE_MAX_VALUE (domain)
|
||
&& host_integerp (TYPE_MIN_VALUE (domain), 0)
|
||
&& host_integerp (TYPE_MAX_VALUE (domain), 0));
|
||
|
||
/* If we have constant bounds for the range of the type, get them. */
|
||
if (const_bounds_p)
|
||
{
|
||
minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
|
||
maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
|
||
}
|
||
|
||
/* If the constructor has fewer elements than the array, clear
|
||
the whole array first. Similarly if this is static
|
||
constructor of a non-BLKmode object. */
|
||
if (cleared)
|
||
need_to_clear = 0;
|
||
else if (REG_P (target) && TREE_STATIC (exp))
|
||
need_to_clear = 1;
|
||
else
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree index, value;
|
||
HOST_WIDE_INT count = 0, zero_count = 0;
|
||
need_to_clear = ! const_bounds_p;
|
||
|
||
/* This loop is a more accurate version of the loop in
|
||
mostly_zeros_p (it handles RANGE_EXPR in an index). It
|
||
is also needed to check for missing elements. */
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
|
||
{
|
||
HOST_WIDE_INT this_node_count;
|
||
|
||
if (need_to_clear)
|
||
break;
|
||
|
||
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
|
||
{
|
||
tree lo_index = TREE_OPERAND (index, 0);
|
||
tree hi_index = TREE_OPERAND (index, 1);
|
||
|
||
if (! host_integerp (lo_index, 1)
|
||
|| ! host_integerp (hi_index, 1))
|
||
{
|
||
need_to_clear = 1;
|
||
break;
|
||
}
|
||
|
||
this_node_count = (tree_low_cst (hi_index, 1)
|
||
- tree_low_cst (lo_index, 1) + 1);
|
||
}
|
||
else
|
||
this_node_count = 1;
|
||
|
||
count += this_node_count;
|
||
if (mostly_zeros_p (value))
|
||
zero_count += this_node_count;
|
||
}
|
||
|
||
/* Clear the entire array first if there are any missing
|
||
elements, or if the incidence of zero elements is >=
|
||
75%. */
|
||
if (! need_to_clear
|
||
&& (count < maxelt - minelt + 1
|
||
|| 4 * zero_count >= 3 * count))
|
||
need_to_clear = 1;
|
||
}
|
||
|
||
if (need_to_clear && size > 0)
|
||
{
|
||
if (REG_P (target))
|
||
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
||
else
|
||
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
|
||
cleared = 1;
|
||
}
|
||
|
||
if (!cleared && REG_P (target))
|
||
/* Inform later passes that the old value is dead. */
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
||
|
||
/* Store each element of the constructor into the
|
||
corresponding element of TARGET, determined by counting the
|
||
elements. */
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
|
||
{
|
||
enum machine_mode mode;
|
||
HOST_WIDE_INT bitsize;
|
||
HOST_WIDE_INT bitpos;
|
||
int unsignedp;
|
||
rtx xtarget = target;
|
||
|
||
if (cleared && initializer_zerop (value))
|
||
continue;
|
||
|
||
unsignedp = TYPE_UNSIGNED (elttype);
|
||
mode = TYPE_MODE (elttype);
|
||
if (mode == BLKmode)
|
||
bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
|
||
? tree_low_cst (TYPE_SIZE (elttype), 1)
|
||
: -1);
|
||
else
|
||
bitsize = GET_MODE_BITSIZE (mode);
|
||
|
||
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
|
||
{
|
||
tree lo_index = TREE_OPERAND (index, 0);
|
||
tree hi_index = TREE_OPERAND (index, 1);
|
||
rtx index_r, pos_rtx;
|
||
HOST_WIDE_INT lo, hi, count;
|
||
tree position;
|
||
|
||
/* If the range is constant and "small", unroll the loop. */
|
||
if (const_bounds_p
|
||
&& host_integerp (lo_index, 0)
|
||
&& host_integerp (hi_index, 0)
|
||
&& (lo = tree_low_cst (lo_index, 0),
|
||
hi = tree_low_cst (hi_index, 0),
|
||
count = hi - lo + 1,
|
||
(!MEM_P (target)
|
||
|| count <= 2
|
||
|| (host_integerp (TYPE_SIZE (elttype), 1)
|
||
&& (tree_low_cst (TYPE_SIZE (elttype), 1) * count
|
||
<= 40 * 8)))))
|
||
{
|
||
lo -= minelt; hi -= minelt;
|
||
for (; lo <= hi; lo++)
|
||
{
|
||
bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
|
||
|
||
if (MEM_P (target)
|
||
&& !MEM_KEEP_ALIAS_SET_P (target)
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_NONALIASED_COMPONENT (type))
|
||
{
|
||
target = copy_rtx (target);
|
||
MEM_KEEP_ALIAS_SET_P (target) = 1;
|
||
}
|
||
|
||
store_constructor_field
|
||
(target, bitsize, bitpos, mode, value, type, cleared,
|
||
get_alias_set (elttype));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx loop_start = gen_label_rtx ();
|
||
rtx loop_end = gen_label_rtx ();
|
||
tree exit_cond;
|
||
|
||
expand_normal (hi_index);
|
||
unsignedp = TYPE_UNSIGNED (domain);
|
||
|
||
index = build_decl (VAR_DECL, NULL_TREE, domain);
|
||
|
||
index_r
|
||
= gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
|
||
&unsignedp, 0));
|
||
SET_DECL_RTL (index, index_r);
|
||
store_expr (lo_index, index_r, 0);
|
||
|
||
/* Build the head of the loop. */
|
||
do_pending_stack_adjust ();
|
||
emit_label (loop_start);
|
||
|
||
/* Assign value to element index. */
|
||
position =
|
||
fold_convert (ssizetype,
|
||
fold_build2 (MINUS_EXPR,
|
||
TREE_TYPE (index),
|
||
index,
|
||
TYPE_MIN_VALUE (domain)));
|
||
|
||
position =
|
||
size_binop (MULT_EXPR, position,
|
||
fold_convert (ssizetype,
|
||
TYPE_SIZE_UNIT (elttype)));
|
||
|
||
pos_rtx = expand_normal (position);
|
||
xtarget = offset_address (target, pos_rtx,
|
||
highest_pow2_factor (position));
|
||
xtarget = adjust_address (xtarget, mode, 0);
|
||
if (TREE_CODE (value) == CONSTRUCTOR)
|
||
store_constructor (value, xtarget, cleared,
|
||
bitsize / BITS_PER_UNIT);
|
||
else
|
||
store_expr (value, xtarget, 0);
|
||
|
||
/* Generate a conditional jump to exit the loop. */
|
||
exit_cond = build2 (LT_EXPR, integer_type_node,
|
||
index, hi_index);
|
||
jumpif (exit_cond, loop_end);
|
||
|
||
/* Update the loop counter, and jump to the head of
|
||
the loop. */
|
||
expand_assignment (index,
|
||
build2 (PLUS_EXPR, TREE_TYPE (index),
|
||
index, integer_one_node));
|
||
|
||
emit_jump (loop_start);
|
||
|
||
/* Build the end of the loop. */
|
||
emit_label (loop_end);
|
||
}
|
||
}
|
||
else if ((index != 0 && ! host_integerp (index, 0))
|
||
|| ! host_integerp (TYPE_SIZE (elttype), 1))
|
||
{
|
||
tree position;
|
||
|
||
if (index == 0)
|
||
index = ssize_int (1);
|
||
|
||
if (minelt)
|
||
index = fold_convert (ssizetype,
|
||
fold_build2 (MINUS_EXPR,
|
||
TREE_TYPE (index),
|
||
index,
|
||
TYPE_MIN_VALUE (domain)));
|
||
|
||
position =
|
||
size_binop (MULT_EXPR, index,
|
||
fold_convert (ssizetype,
|
||
TYPE_SIZE_UNIT (elttype)));
|
||
xtarget = offset_address (target,
|
||
expand_normal (position),
|
||
highest_pow2_factor (position));
|
||
xtarget = adjust_address (xtarget, mode, 0);
|
||
store_expr (value, xtarget, 0);
|
||
}
|
||
else
|
||
{
|
||
if (index != 0)
|
||
bitpos = ((tree_low_cst (index, 0) - minelt)
|
||
* tree_low_cst (TYPE_SIZE (elttype), 1));
|
||
else
|
||
bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
|
||
|
||
if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_NONALIASED_COMPONENT (type))
|
||
{
|
||
target = copy_rtx (target);
|
||
MEM_KEEP_ALIAS_SET_P (target) = 1;
|
||
}
|
||
store_constructor_field (target, bitsize, bitpos, mode, value,
|
||
type, cleared, get_alias_set (elttype));
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
constructor_elt *ce;
|
||
int i;
|
||
int need_to_clear;
|
||
int icode = 0;
|
||
tree elttype = TREE_TYPE (type);
|
||
int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
|
||
enum machine_mode eltmode = TYPE_MODE (elttype);
|
||
HOST_WIDE_INT bitsize;
|
||
HOST_WIDE_INT bitpos;
|
||
rtvec vector = NULL;
|
||
unsigned n_elts;
|
||
|
||
gcc_assert (eltmode != BLKmode);
|
||
|
||
n_elts = TYPE_VECTOR_SUBPARTS (type);
|
||
if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
|
||
{
|
||
enum machine_mode mode = GET_MODE (target);
|
||
|
||
icode = (int) vec_init_optab->handlers[mode].insn_code;
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
unsigned int i;
|
||
|
||
vector = rtvec_alloc (n_elts);
|
||
for (i = 0; i < n_elts; i++)
|
||
RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
|
||
}
|
||
}
|
||
|
||
/* If the constructor has fewer elements than the vector,
|
||
clear the whole array first. Similarly if this is static
|
||
constructor of a non-BLKmode object. */
|
||
if (cleared)
|
||
need_to_clear = 0;
|
||
else if (REG_P (target) && TREE_STATIC (exp))
|
||
need_to_clear = 1;
|
||
else
|
||
{
|
||
unsigned HOST_WIDE_INT count = 0, zero_count = 0;
|
||
tree value;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
|
||
{
|
||
int n_elts_here = tree_low_cst
|
||
(int_const_binop (TRUNC_DIV_EXPR,
|
||
TYPE_SIZE (TREE_TYPE (value)),
|
||
TYPE_SIZE (elttype), 0), 1);
|
||
|
||
count += n_elts_here;
|
||
if (mostly_zeros_p (value))
|
||
zero_count += n_elts_here;
|
||
}
|
||
|
||
/* Clear the entire vector first if there are any missing elements,
|
||
or if the incidence of zero elements is >= 75%. */
|
||
need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
|
||
}
|
||
|
||
if (need_to_clear && size > 0 && !vector)
|
||
{
|
||
if (REG_P (target))
|
||
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
||
else
|
||
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
|
||
cleared = 1;
|
||
}
|
||
|
||
/* Inform later passes that the old value is dead. */
|
||
if (!cleared && !vector && REG_P (target))
|
||
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
||
|
||
/* Store each element of the constructor into the corresponding
|
||
element of TARGET, determined by counting the elements. */
|
||
for (idx = 0, i = 0;
|
||
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
|
||
idx++, i += bitsize / elt_size)
|
||
{
|
||
HOST_WIDE_INT eltpos;
|
||
tree value = ce->value;
|
||
|
||
bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
|
||
if (cleared && initializer_zerop (value))
|
||
continue;
|
||
|
||
if (ce->index)
|
||
eltpos = tree_low_cst (ce->index, 1);
|
||
else
|
||
eltpos = i;
|
||
|
||
if (vector)
|
||
{
|
||
/* Vector CONSTRUCTORs should only be built from smaller
|
||
vectors in the case of BLKmode vectors. */
|
||
gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
|
||
RTVEC_ELT (vector, eltpos)
|
||
= expand_normal (value);
|
||
}
|
||
else
|
||
{
|
||
enum machine_mode value_mode =
|
||
TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
|
||
? TYPE_MODE (TREE_TYPE (value))
|
||
: eltmode;
|
||
bitpos = eltpos * elt_size;
|
||
store_constructor_field (target, bitsize, bitpos,
|
||
value_mode, value, type,
|
||
cleared, get_alias_set (elttype));
|
||
}
|
||
}
|
||
|
||
if (vector)
|
||
emit_insn (GEN_FCN (icode)
|
||
(target,
|
||
gen_rtx_PARALLEL (GET_MODE (target), vector)));
|
||
break;
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Store the value of EXP (an expression tree)
|
||
into a subfield of TARGET which has mode MODE and occupies
|
||
BITSIZE bits, starting BITPOS bits from the start of TARGET.
|
||
If MODE is VOIDmode, it means that we are storing into a bit-field.
|
||
|
||
Always return const0_rtx unless we have something particular to
|
||
return.
|
||
|
||
TYPE is the type of the underlying object,
|
||
|
||
ALIAS_SET is the alias set for the destination. This value will
|
||
(in general) be different from that for TARGET, since TARGET is a
|
||
reference to the containing structure. */
|
||
|
||
static rtx
|
||
store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
|
||
enum machine_mode mode, tree exp, tree type, int alias_set)
|
||
{
|
||
HOST_WIDE_INT width_mask = 0;
|
||
|
||
if (TREE_CODE (exp) == ERROR_MARK)
|
||
return const0_rtx;
|
||
|
||
/* If we have nothing to store, do nothing unless the expression has
|
||
side-effects. */
|
||
if (bitsize == 0)
|
||
return expand_expr (exp, const0_rtx, VOIDmode, 0);
|
||
else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
|
||
width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
|
||
|
||
/* If we are storing into an unaligned field of an aligned union that is
|
||
in a register, we may have the mode of TARGET being an integer mode but
|
||
MODE == BLKmode. In that case, get an aligned object whose size and
|
||
alignment are the same as TARGET and store TARGET into it (we can avoid
|
||
the store if the field being stored is the entire width of TARGET). Then
|
||
call ourselves recursively to store the field into a BLKmode version of
|
||
that object. Finally, load from the object into TARGET. This is not
|
||
very efficient in general, but should only be slightly more expensive
|
||
than the otherwise-required unaligned accesses. Perhaps this can be
|
||
cleaned up later. It's tempting to make OBJECT readonly, but it's set
|
||
twice, once with emit_move_insn and once via store_field. */
|
||
|
||
if (mode == BLKmode
|
||
&& (REG_P (target) || GET_CODE (target) == SUBREG))
|
||
{
|
||
rtx object = assign_temp (type, 0, 1, 1);
|
||
rtx blk_object = adjust_address (object, BLKmode, 0);
|
||
|
||
if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
|
||
emit_move_insn (object, target);
|
||
|
||
store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
|
||
|
||
emit_move_insn (target, object);
|
||
|
||
/* We want to return the BLKmode version of the data. */
|
||
return blk_object;
|
||
}
|
||
|
||
if (GET_CODE (target) == CONCAT)
|
||
{
|
||
/* We're storing into a struct containing a single __complex. */
|
||
|
||
gcc_assert (!bitpos);
|
||
return store_expr (exp, target, 0);
|
||
}
|
||
|
||
/* If the structure is in a register or if the component
|
||
is a bit field, we cannot use addressing to access it.
|
||
Use bit-field techniques or SUBREG to store in it. */
|
||
|
||
if (mode == VOIDmode
|
||
|| (mode != BLKmode && ! direct_store[(int) mode]
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
|
||
|| REG_P (target)
|
||
|| GET_CODE (target) == SUBREG
|
||
/* If the field isn't aligned enough to store as an ordinary memref,
|
||
store it as a bit field. */
|
||
|| (mode != BLKmode
|
||
&& ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
|
||
|| bitpos % GET_MODE_ALIGNMENT (mode))
|
||
&& SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
|
||
|| (bitpos % BITS_PER_UNIT != 0)))
|
||
/* If the RHS and field are a constant size and the size of the
|
||
RHS isn't the same size as the bitfield, we must use bitfield
|
||
operations. */
|
||
|| (bitsize >= 0
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
|
||
&& compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
|
||
{
|
||
rtx temp;
|
||
|
||
/* If EXP is a NOP_EXPR of precision less than its mode, then that
|
||
implies a mask operation. If the precision is the same size as
|
||
the field we're storing into, that mask is redundant. This is
|
||
particularly common with bit field assignments generated by the
|
||
C front end. */
|
||
if (TREE_CODE (exp) == NOP_EXPR)
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
|
||
&& bitsize == TYPE_PRECISION (type))
|
||
{
|
||
type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
|
||
exp = TREE_OPERAND (exp, 0);
|
||
}
|
||
}
|
||
|
||
temp = expand_normal (exp);
|
||
|
||
/* If BITSIZE is narrower than the size of the type of EXP
|
||
we will be narrowing TEMP. Normally, what's wanted are the
|
||
low-order bits. However, if EXP's type is a record and this is
|
||
big-endian machine, we want the upper BITSIZE bits. */
|
||
if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
|
||
&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
|
||
&& TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
|
||
temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
|
||
size_int (GET_MODE_BITSIZE (GET_MODE (temp))
|
||
- bitsize),
|
||
NULL_RTX, 1);
|
||
|
||
/* Unless MODE is VOIDmode or BLKmode, convert TEMP to
|
||
MODE. */
|
||
if (mode != VOIDmode && mode != BLKmode
|
||
&& mode != TYPE_MODE (TREE_TYPE (exp)))
|
||
temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
|
||
|
||
/* If the modes of TARGET and TEMP are both BLKmode, both
|
||
must be in memory and BITPOS must be aligned on a byte
|
||
boundary. If so, we simply do a block copy. */
|
||
if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
|
||
{
|
||
gcc_assert (MEM_P (target) && MEM_P (temp)
|
||
&& !(bitpos % BITS_PER_UNIT));
|
||
|
||
target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
|
||
emit_block_move (target, temp,
|
||
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
|
||
/ BITS_PER_UNIT),
|
||
BLOCK_OP_NORMAL);
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Store the value in the bitfield. */
|
||
store_bit_field (target, bitsize, bitpos, mode, temp);
|
||
|
||
return const0_rtx;
|
||
}
|
||
else
|
||
{
|
||
/* Now build a reference to just the desired component. */
|
||
rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
|
||
|
||
if (to_rtx == target)
|
||
to_rtx = copy_rtx (to_rtx);
|
||
|
||
MEM_SET_IN_STRUCT_P (to_rtx, 1);
|
||
if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
|
||
set_mem_alias_set (to_rtx, alias_set);
|
||
|
||
return store_expr (exp, to_rtx, 0);
|
||
}
|
||
}
|
||
|
||
/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
|
||
an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
|
||
codes and find the ultimate containing object, which we return.
|
||
|
||
We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
|
||
bit position, and *PUNSIGNEDP to the signedness of the field.
|
||
If the position of the field is variable, we store a tree
|
||
giving the variable offset (in units) in *POFFSET.
|
||
This offset is in addition to the bit position.
|
||
If the position is not variable, we store 0 in *POFFSET.
|
||
|
||
If any of the extraction expressions is volatile,
|
||
we store 1 in *PVOLATILEP. Otherwise we don't change that.
|
||
|
||
If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
|
||
is a mode that can be used to access the field. In that case, *PBITSIZE
|
||
is redundant.
|
||
|
||
If the field describes a variable-sized object, *PMODE is set to
|
||
VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
|
||
this case, but the address of the object can be found.
|
||
|
||
If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
|
||
look through nodes that serve as markers of a greater alignment than
|
||
the one that can be deduced from the expression. These nodes make it
|
||
possible for front-ends to prevent temporaries from being created by
|
||
the middle-end on alignment considerations. For that purpose, the
|
||
normal operating mode at high-level is to always pass FALSE so that
|
||
the ultimate containing object is really returned; moreover, the
|
||
associated predicate handled_component_p will always return TRUE
|
||
on these nodes, thus indicating that they are essentially handled
|
||
by get_inner_reference. TRUE should only be passed when the caller
|
||
is scanning the expression in order to build another representation
|
||
and specifically knows how to handle these nodes; as such, this is
|
||
the normal operating mode in the RTL expanders. */
|
||
|
||
tree
|
||
get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
|
||
HOST_WIDE_INT *pbitpos, tree *poffset,
|
||
enum machine_mode *pmode, int *punsignedp,
|
||
int *pvolatilep, bool keep_aligning)
|
||
{
|
||
tree size_tree = 0;
|
||
enum machine_mode mode = VOIDmode;
|
||
tree offset = size_zero_node;
|
||
tree bit_offset = bitsize_zero_node;
|
||
tree tem;
|
||
|
||
/* First get the mode, signedness, and size. We do this from just the
|
||
outermost expression. */
|
||
if (TREE_CODE (exp) == COMPONENT_REF)
|
||
{
|
||
size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
|
||
if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
|
||
mode = DECL_MODE (TREE_OPERAND (exp, 1));
|
||
|
||
*punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
|
||
}
|
||
else if (TREE_CODE (exp) == BIT_FIELD_REF)
|
||
{
|
||
size_tree = TREE_OPERAND (exp, 1);
|
||
*punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
|
||
}
|
||
else
|
||
{
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
*punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
|
||
|
||
if (mode == BLKmode)
|
||
size_tree = TYPE_SIZE (TREE_TYPE (exp));
|
||
else
|
||
*pbitsize = GET_MODE_BITSIZE (mode);
|
||
}
|
||
|
||
if (size_tree != 0)
|
||
{
|
||
if (! host_integerp (size_tree, 1))
|
||
mode = BLKmode, *pbitsize = -1;
|
||
else
|
||
*pbitsize = tree_low_cst (size_tree, 1);
|
||
}
|
||
|
||
/* Compute cumulative bit-offset for nested component-refs and array-refs,
|
||
and find the ultimate containing object. */
|
||
while (1)
|
||
{
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case BIT_FIELD_REF:
|
||
bit_offset = size_binop (PLUS_EXPR, bit_offset,
|
||
TREE_OPERAND (exp, 2));
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
{
|
||
tree field = TREE_OPERAND (exp, 1);
|
||
tree this_offset = component_ref_field_offset (exp);
|
||
|
||
/* If this field hasn't been filled in yet, don't go past it.
|
||
This should only happen when folding expressions made during
|
||
type construction. */
|
||
if (this_offset == 0)
|
||
break;
|
||
|
||
offset = size_binop (PLUS_EXPR, offset, this_offset);
|
||
bit_offset = size_binop (PLUS_EXPR, bit_offset,
|
||
DECL_FIELD_BIT_OFFSET (field));
|
||
|
||
/* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
|
||
}
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
{
|
||
tree index = TREE_OPERAND (exp, 1);
|
||
tree low_bound = array_ref_low_bound (exp);
|
||
tree unit_size = array_ref_element_size (exp);
|
||
|
||
/* We assume all arrays have sizes that are a multiple of a byte.
|
||
First subtract the lower bound, if any, in the type of the
|
||
index, then convert to sizetype and multiply by the size of
|
||
the array element. */
|
||
if (! integer_zerop (low_bound))
|
||
index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
|
||
index, low_bound);
|
||
|
||
offset = size_binop (PLUS_EXPR, offset,
|
||
size_binop (MULT_EXPR,
|
||
fold_convert (sizetype, index),
|
||
unit_size));
|
||
}
|
||
break;
|
||
|
||
case REALPART_EXPR:
|
||
break;
|
||
|
||
case IMAGPART_EXPR:
|
||
bit_offset = size_binop (PLUS_EXPR, bit_offset,
|
||
bitsize_int (*pbitsize));
|
||
break;
|
||
|
||
case VIEW_CONVERT_EXPR:
|
||
if (keep_aligning && STRICT_ALIGNMENT
|
||
&& (TYPE_ALIGN (TREE_TYPE (exp))
|
||
> TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
&& (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
|
||
< BIGGEST_ALIGNMENT)
|
||
&& (TYPE_ALIGN_OK (TREE_TYPE (exp))
|
||
|| TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
goto done;
|
||
break;
|
||
|
||
default:
|
||
goto done;
|
||
}
|
||
|
||
/* If any reference in the chain is volatile, the effect is volatile. */
|
||
if (TREE_THIS_VOLATILE (exp))
|
||
*pvolatilep = 1;
|
||
|
||
exp = TREE_OPERAND (exp, 0);
|
||
}
|
||
done:
|
||
|
||
/* If OFFSET is constant, see if we can return the whole thing as a
|
||
constant bit position. Otherwise, split it up. */
|
||
if (host_integerp (offset, 0)
|
||
&& 0 != (tem = size_binop (MULT_EXPR,
|
||
fold_convert (bitsizetype, offset),
|
||
bitsize_unit_node))
|
||
&& 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
|
||
&& host_integerp (tem, 0))
|
||
*pbitpos = tree_low_cst (tem, 0), *poffset = 0;
|
||
else
|
||
*pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
|
||
|
||
*pmode = mode;
|
||
return exp;
|
||
}
|
||
|
||
/* Return a tree of sizetype representing the size, in bytes, of the element
|
||
of EXP, an ARRAY_REF. */
|
||
|
||
tree
|
||
array_ref_element_size (tree exp)
|
||
{
|
||
tree aligned_size = TREE_OPERAND (exp, 3);
|
||
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
|
||
/* If a size was specified in the ARRAY_REF, it's the size measured
|
||
in alignment units of the element type. So multiply by that value. */
|
||
if (aligned_size)
|
||
{
|
||
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
|
||
sizetype from another type of the same width and signedness. */
|
||
if (TREE_TYPE (aligned_size) != sizetype)
|
||
aligned_size = fold_convert (sizetype, aligned_size);
|
||
return size_binop (MULT_EXPR, aligned_size,
|
||
size_int (TYPE_ALIGN_UNIT (elmt_type)));
|
||
}
|
||
|
||
/* Otherwise, take the size from that of the element type. Substitute
|
||
any PLACEHOLDER_EXPR that we have. */
|
||
else
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
|
||
}
|
||
|
||
/* Return a tree representing the lower bound of the array mentioned in
|
||
EXP, an ARRAY_REF. */
|
||
|
||
tree
|
||
array_ref_low_bound (tree exp)
|
||
{
|
||
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
|
||
/* If a lower bound is specified in EXP, use it. */
|
||
if (TREE_OPERAND (exp, 2))
|
||
return TREE_OPERAND (exp, 2);
|
||
|
||
/* Otherwise, if there is a domain type and it has a lower bound, use it,
|
||
substituting for a PLACEHOLDER_EXPR as needed. */
|
||
if (domain_type && TYPE_MIN_VALUE (domain_type))
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
|
||
|
||
/* Otherwise, return a zero of the appropriate type. */
|
||
return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
|
||
}
|
||
|
||
/* Return a tree representing the upper bound of the array mentioned in
|
||
EXP, an ARRAY_REF. */
|
||
|
||
tree
|
||
array_ref_up_bound (tree exp)
|
||
{
|
||
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
|
||
/* If there is a domain type and it has an upper bound, use it, substituting
|
||
for a PLACEHOLDER_EXPR as needed. */
|
||
if (domain_type && TYPE_MAX_VALUE (domain_type))
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
|
||
|
||
/* Otherwise fail. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return a tree representing the offset, in bytes, of the field referenced
|
||
by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
|
||
|
||
tree
|
||
component_ref_field_offset (tree exp)
|
||
{
|
||
tree aligned_offset = TREE_OPERAND (exp, 2);
|
||
tree field = TREE_OPERAND (exp, 1);
|
||
|
||
/* If an offset was specified in the COMPONENT_REF, it's the offset measured
|
||
in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
|
||
value. */
|
||
if (aligned_offset)
|
||
{
|
||
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
|
||
sizetype from another type of the same width and signedness. */
|
||
if (TREE_TYPE (aligned_offset) != sizetype)
|
||
aligned_offset = fold_convert (sizetype, aligned_offset);
|
||
return size_binop (MULT_EXPR, aligned_offset,
|
||
size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
|
||
}
|
||
|
||
/* Otherwise, take the offset from that of the field. Substitute
|
||
any PLACEHOLDER_EXPR that we have. */
|
||
else
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
|
||
}
|
||
|
||
/* Return 1 if T is an expression that get_inner_reference handles. */
|
||
|
||
int
|
||
handled_component_p (tree t)
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case BIT_FIELD_REF:
|
||
case COMPONENT_REF:
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case VIEW_CONVERT_EXPR:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Given an rtx VALUE that may contain additions and multiplications, return
|
||
an equivalent value that just refers to a register, memory, or constant.
|
||
This is done by generating instructions to perform the arithmetic and
|
||
returning a pseudo-register containing the value.
|
||
|
||
The returned value may be a REG, SUBREG, MEM or constant. */
|
||
|
||
rtx
|
||
force_operand (rtx value, rtx target)
|
||
{
|
||
rtx op1, op2;
|
||
/* Use subtarget as the target for operand 0 of a binary operation. */
|
||
rtx subtarget = get_subtarget (target);
|
||
enum rtx_code code = GET_CODE (value);
|
||
|
||
/* Check for subreg applied to an expression produced by loop optimizer. */
|
||
if (code == SUBREG
|
||
&& !REG_P (SUBREG_REG (value))
|
||
&& !MEM_P (SUBREG_REG (value)))
|
||
{
|
||
value = simplify_gen_subreg (GET_MODE (value),
|
||
force_reg (GET_MODE (SUBREG_REG (value)),
|
||
force_operand (SUBREG_REG (value),
|
||
NULL_RTX)),
|
||
GET_MODE (SUBREG_REG (value)),
|
||
SUBREG_BYTE (value));
|
||
code = GET_CODE (value);
|
||
}
|
||
|
||
/* Check for a PIC address load. */
|
||
if ((code == PLUS || code == MINUS)
|
||
&& XEXP (value, 0) == pic_offset_table_rtx
|
||
&& (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (value, 1)) == LABEL_REF
|
||
|| GET_CODE (XEXP (value, 1)) == CONST))
|
||
{
|
||
if (!subtarget)
|
||
subtarget = gen_reg_rtx (GET_MODE (value));
|
||
emit_move_insn (subtarget, value);
|
||
return subtarget;
|
||
}
|
||
|
||
if (ARITHMETIC_P (value))
|
||
{
|
||
op2 = XEXP (value, 1);
|
||
if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
|
||
subtarget = 0;
|
||
if (code == MINUS && GET_CODE (op2) == CONST_INT)
|
||
{
|
||
code = PLUS;
|
||
op2 = negate_rtx (GET_MODE (value), op2);
|
||
}
|
||
|
||
/* Check for an addition with OP2 a constant integer and our first
|
||
operand a PLUS of a virtual register and something else. In that
|
||
case, we want to emit the sum of the virtual register and the
|
||
constant first and then add the other value. This allows virtual
|
||
register instantiation to simply modify the constant rather than
|
||
creating another one around this addition. */
|
||
if (code == PLUS && GET_CODE (op2) == CONST_INT
|
||
&& GET_CODE (XEXP (value, 0)) == PLUS
|
||
&& REG_P (XEXP (XEXP (value, 0), 0))
|
||
&& REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
|
||
&& REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
|
||
{
|
||
rtx temp = expand_simple_binop (GET_MODE (value), code,
|
||
XEXP (XEXP (value, 0), 0), op2,
|
||
subtarget, 0, OPTAB_LIB_WIDEN);
|
||
return expand_simple_binop (GET_MODE (value), code, temp,
|
||
force_operand (XEXP (XEXP (value,
|
||
0), 1), 0),
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
op1 = force_operand (XEXP (value, 0), subtarget);
|
||
op2 = force_operand (op2, NULL_RTX);
|
||
switch (code)
|
||
{
|
||
case MULT:
|
||
return expand_mult (GET_MODE (value), op1, op2, target, 1);
|
||
case DIV:
|
||
if (!INTEGRAL_MODE_P (GET_MODE (value)))
|
||
return expand_simple_binop (GET_MODE (value), code, op1, op2,
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
else
|
||
return expand_divmod (0,
|
||
FLOAT_MODE_P (GET_MODE (value))
|
||
? RDIV_EXPR : TRUNC_DIV_EXPR,
|
||
GET_MODE (value), op1, op2, target, 0);
|
||
break;
|
||
case MOD:
|
||
return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
|
||
target, 0);
|
||
break;
|
||
case UDIV:
|
||
return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
|
||
target, 1);
|
||
break;
|
||
case UMOD:
|
||
return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
|
||
target, 1);
|
||
break;
|
||
case ASHIFTRT:
|
||
return expand_simple_binop (GET_MODE (value), code, op1, op2,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
break;
|
||
default:
|
||
return expand_simple_binop (GET_MODE (value), code, op1, op2,
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
}
|
||
if (UNARY_P (value))
|
||
{
|
||
if (!target)
|
||
target = gen_reg_rtx (GET_MODE (value));
|
||
op1 = force_operand (XEXP (value, 0), NULL_RTX);
|
||
switch (code)
|
||
{
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
case TRUNCATE:
|
||
case FLOAT_EXTEND:
|
||
case FLOAT_TRUNCATE:
|
||
convert_move (target, op1, code == ZERO_EXTEND);
|
||
return target;
|
||
|
||
case FIX:
|
||
case UNSIGNED_FIX:
|
||
expand_fix (target, op1, code == UNSIGNED_FIX);
|
||
return target;
|
||
|
||
case FLOAT:
|
||
case UNSIGNED_FLOAT:
|
||
expand_float (target, op1, code == UNSIGNED_FLOAT);
|
||
return target;
|
||
|
||
default:
|
||
return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
|
||
}
|
||
}
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
/* On machines that have insn scheduling, we want all memory reference to be
|
||
explicit, so we need to deal with such paradoxical SUBREGs. */
|
||
if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
|
||
&& (GET_MODE_SIZE (GET_MODE (value))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
|
||
value
|
||
= simplify_gen_subreg (GET_MODE (value),
|
||
force_reg (GET_MODE (SUBREG_REG (value)),
|
||
force_operand (SUBREG_REG (value),
|
||
NULL_RTX)),
|
||
GET_MODE (SUBREG_REG (value)),
|
||
SUBREG_BYTE (value));
|
||
#endif
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Subroutine of expand_expr: return nonzero iff there is no way that
|
||
EXP can reference X, which is being modified. TOP_P is nonzero if this
|
||
call is going to be used to determine whether we need a temporary
|
||
for EXP, as opposed to a recursive call to this function.
|
||
|
||
It is always safe for this routine to return zero since it merely
|
||
searches for optimization opportunities. */
|
||
|
||
int
|
||
safe_from_p (rtx x, tree exp, int top_p)
|
||
{
|
||
rtx exp_rtl = 0;
|
||
int i, nops;
|
||
|
||
if (x == 0
|
||
/* If EXP has varying size, we MUST use a target since we currently
|
||
have no way of allocating temporaries of variable size
|
||
(except for arrays that have TYPE_ARRAY_MAX_SIZE set).
|
||
So we assume here that something at a higher level has prevented a
|
||
clash. This is somewhat bogus, but the best we can do. Only
|
||
do this when X is BLKmode and when we are at the top level. */
|
||
|| (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
|
||
&& (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
|
||
|| TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
|
||
|| TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
|
||
!= INTEGER_CST)
|
||
&& GET_MODE (x) == BLKmode)
|
||
/* If X is in the outgoing argument area, it is always safe. */
|
||
|| (MEM_P (x)
|
||
&& (XEXP (x, 0) == virtual_outgoing_args_rtx
|
||
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
|
||
return 1;
|
||
|
||
/* If this is a subreg of a hard register, declare it unsafe, otherwise,
|
||
find the underlying pseudo. */
|
||
if (GET_CODE (x) == SUBREG)
|
||
{
|
||
x = SUBREG_REG (x);
|
||
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
}
|
||
|
||
/* Now look at our tree code and possibly recurse. */
|
||
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
|
||
{
|
||
case tcc_declaration:
|
||
exp_rtl = DECL_RTL_IF_SET (exp);
|
||
break;
|
||
|
||
case tcc_constant:
|
||
return 1;
|
||
|
||
case tcc_exceptional:
|
||
if (TREE_CODE (exp) == TREE_LIST)
|
||
{
|
||
while (1)
|
||
{
|
||
if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
|
||
return 0;
|
||
exp = TREE_CHAIN (exp);
|
||
if (!exp)
|
||
return 1;
|
||
if (TREE_CODE (exp) != TREE_LIST)
|
||
return safe_from_p (x, exp, 0);
|
||
}
|
||
}
|
||
else if (TREE_CODE (exp) == CONSTRUCTOR)
|
||
{
|
||
constructor_elt *ce;
|
||
unsigned HOST_WIDE_INT idx;
|
||
|
||
for (idx = 0;
|
||
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
|
||
idx++)
|
||
if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
|
||
|| !safe_from_p (x, ce->value, 0))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
else if (TREE_CODE (exp) == ERROR_MARK)
|
||
return 1; /* An already-visited SAVE_EXPR? */
|
||
else
|
||
return 0;
|
||
|
||
case tcc_statement:
|
||
/* The only case we look at here is the DECL_INITIAL inside a
|
||
DECL_EXPR. */
|
||
return (TREE_CODE (exp) != DECL_EXPR
|
||
|| TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
|
||
|| !DECL_INITIAL (DECL_EXPR_DECL (exp))
|
||
|| safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
|
||
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
|
||
return 0;
|
||
/* Fall through. */
|
||
|
||
case tcc_unary:
|
||
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
|
||
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
/* Now do code-specific tests. EXP_RTL is set to any rtx we find in
|
||
the expression. If it is set, we conflict iff we are that rtx or
|
||
both are in memory. Otherwise, we check all operands of the
|
||
expression recursively. */
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case ADDR_EXPR:
|
||
/* If the operand is static or we are static, we can't conflict.
|
||
Likewise if we don't conflict with the operand at all. */
|
||
if (staticp (TREE_OPERAND (exp, 0))
|
||
|| TREE_STATIC (exp)
|
||
|| safe_from_p (x, TREE_OPERAND (exp, 0), 0))
|
||
return 1;
|
||
|
||
/* Otherwise, the only way this can conflict is if we are taking
|
||
the address of a DECL a that address if part of X, which is
|
||
very rare. */
|
||
exp = TREE_OPERAND (exp, 0);
|
||
if (DECL_P (exp))
|
||
{
|
||
if (!DECL_RTL_SET_P (exp)
|
||
|| !MEM_P (DECL_RTL (exp)))
|
||
return 0;
|
||
else
|
||
exp_rtl = XEXP (DECL_RTL (exp), 0);
|
||
}
|
||
break;
|
||
|
||
case MISALIGNED_INDIRECT_REF:
|
||
case ALIGN_INDIRECT_REF:
|
||
case INDIRECT_REF:
|
||
if (MEM_P (x)
|
||
&& alias_sets_conflict_p (MEM_ALIAS_SET (x),
|
||
get_alias_set (exp)))
|
||
return 0;
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
/* Assume that the call will clobber all hard registers and
|
||
all of memory. */
|
||
if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
|| MEM_P (x))
|
||
return 0;
|
||
break;
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
case CLEANUP_POINT_EXPR:
|
||
/* Lowered by gimplify.c. */
|
||
gcc_unreachable ();
|
||
|
||
case SAVE_EXPR:
|
||
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we have an rtx, we do not need to scan our operands. */
|
||
if (exp_rtl)
|
||
break;
|
||
|
||
nops = TREE_CODE_LENGTH (TREE_CODE (exp));
|
||
for (i = 0; i < nops; i++)
|
||
if (TREE_OPERAND (exp, i) != 0
|
||
&& ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
|
||
return 0;
|
||
|
||
/* If this is a language-specific tree code, it may require
|
||
special handling. */
|
||
if ((unsigned int) TREE_CODE (exp)
|
||
>= (unsigned int) LAST_AND_UNUSED_TREE_CODE
|
||
&& !lang_hooks.safe_from_p (x, exp))
|
||
return 0;
|
||
break;
|
||
|
||
case tcc_type:
|
||
/* Should never get a type here. */
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* If we have an rtl, find any enclosed object. Then see if we conflict
|
||
with it. */
|
||
if (exp_rtl)
|
||
{
|
||
if (GET_CODE (exp_rtl) == SUBREG)
|
||
{
|
||
exp_rtl = SUBREG_REG (exp_rtl);
|
||
if (REG_P (exp_rtl)
|
||
&& REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
}
|
||
|
||
/* If the rtl is X, then it is not safe. Otherwise, it is unless both
|
||
are memory and they conflict. */
|
||
return ! (rtx_equal_p (x, exp_rtl)
|
||
|| (MEM_P (x) && MEM_P (exp_rtl)
|
||
&& true_dependence (exp_rtl, VOIDmode, x,
|
||
rtx_addr_varies_p)));
|
||
}
|
||
|
||
/* If we reach here, it is safe. */
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Return the highest power of two that EXP is known to be a multiple of.
|
||
This is used in updating alignment of MEMs in array references. */
|
||
|
||
unsigned HOST_WIDE_INT
|
||
highest_pow2_factor (tree exp)
|
||
{
|
||
unsigned HOST_WIDE_INT c0, c1;
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case INTEGER_CST:
|
||
/* We can find the lowest bit that's a one. If the low
|
||
HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
|
||
We need to handle this case since we can find it in a COND_EXPR,
|
||
a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
|
||
erroneous program, so return BIGGEST_ALIGNMENT to avoid any
|
||
later ICE. */
|
||
if (TREE_CONSTANT_OVERFLOW (exp))
|
||
return BIGGEST_ALIGNMENT;
|
||
else
|
||
{
|
||
/* Note: tree_low_cst is intentionally not used here,
|
||
we don't care about the upper bits. */
|
||
c0 = TREE_INT_CST_LOW (exp);
|
||
c0 &= -c0;
|
||
return c0 ? c0 : BIGGEST_ALIGNMENT;
|
||
}
|
||
break;
|
||
|
||
case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
|
||
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
|
||
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
|
||
return MIN (c0, c1);
|
||
|
||
case MULT_EXPR:
|
||
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
|
||
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
|
||
return c0 * c1;
|
||
|
||
case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
if (integer_pow2p (TREE_OPERAND (exp, 1))
|
||
&& host_integerp (TREE_OPERAND (exp, 1), 1))
|
||
{
|
||
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
|
||
c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
|
||
return MAX (1, c0 / c1);
|
||
}
|
||
break;
|
||
|
||
case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
|
||
case SAVE_EXPR:
|
||
return highest_pow2_factor (TREE_OPERAND (exp, 0));
|
||
|
||
case COMPOUND_EXPR:
|
||
return highest_pow2_factor (TREE_OPERAND (exp, 1));
|
||
|
||
case COND_EXPR:
|
||
c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
|
||
c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
|
||
return MIN (c0, c1);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Similar, except that the alignment requirements of TARGET are
|
||
taken into account. Assume it is at least as aligned as its
|
||
type, unless it is a COMPONENT_REF in which case the layout of
|
||
the structure gives the alignment. */
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
highest_pow2_factor_for_target (tree target, tree exp)
|
||
{
|
||
unsigned HOST_WIDE_INT target_align, factor;
|
||
|
||
factor = highest_pow2_factor (exp);
|
||
if (TREE_CODE (target) == COMPONENT_REF)
|
||
target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
|
||
else
|
||
target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
|
||
return MAX (factor, target_align);
|
||
}
|
||
|
||
/* Expands variable VAR. */
|
||
|
||
void
|
||
expand_var (tree var)
|
||
{
|
||
if (DECL_EXTERNAL (var))
|
||
return;
|
||
|
||
if (TREE_STATIC (var))
|
||
/* If this is an inlined copy of a static local variable,
|
||
look up the original decl. */
|
||
var = DECL_ORIGIN (var);
|
||
|
||
if (TREE_STATIC (var)
|
||
? !TREE_ASM_WRITTEN (var)
|
||
: !DECL_RTL_SET_P (var))
|
||
{
|
||
if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
|
||
/* Should be ignored. */;
|
||
else if (lang_hooks.expand_decl (var))
|
||
/* OK. */;
|
||
else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
|
||
expand_decl (var);
|
||
else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
|
||
rest_of_decl_compilation (var, 0, 0);
|
||
else
|
||
/* No expansion needed. */
|
||
gcc_assert (TREE_CODE (var) == TYPE_DECL
|
||
|| TREE_CODE (var) == CONST_DECL
|
||
|| TREE_CODE (var) == FUNCTION_DECL
|
||
|| TREE_CODE (var) == LABEL_DECL);
|
||
}
|
||
}
|
||
|
||
/* Subroutine of expand_expr. Expand the two operands of a binary
|
||
expression EXP0 and EXP1 placing the results in OP0 and OP1.
|
||
The value may be stored in TARGET if TARGET is nonzero. The
|
||
MODIFIER argument is as documented by expand_expr. */
|
||
|
||
static void
|
||
expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
|
||
enum expand_modifier modifier)
|
||
{
|
||
if (! safe_from_p (target, exp1, 1))
|
||
target = 0;
|
||
if (operand_equal_p (exp0, exp1, 0))
|
||
{
|
||
*op0 = expand_expr (exp0, target, VOIDmode, modifier);
|
||
*op1 = copy_rtx (*op0);
|
||
}
|
||
else
|
||
{
|
||
/* If we need to preserve evaluation order, copy exp0 into its own
|
||
temporary variable so that it can't be clobbered by exp1. */
|
||
if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
|
||
exp0 = save_expr (exp0);
|
||
*op0 = expand_expr (exp0, target, VOIDmode, modifier);
|
||
*op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return a MEM that contains constant EXP. DEFER is as for
|
||
output_constant_def and MODIFIER is as for expand_expr. */
|
||
|
||
static rtx
|
||
expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
|
||
{
|
||
rtx mem;
|
||
|
||
mem = output_constant_def (exp, defer);
|
||
if (modifier != EXPAND_INITIALIZER)
|
||
mem = use_anchored_address (mem);
|
||
return mem;
|
||
}
|
||
|
||
/* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
|
||
The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
|
||
|
||
static rtx
|
||
expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
|
||
enum expand_modifier modifier)
|
||
{
|
||
rtx result, subtarget;
|
||
tree inner, offset;
|
||
HOST_WIDE_INT bitsize, bitpos;
|
||
int volatilep, unsignedp;
|
||
enum machine_mode mode1;
|
||
|
||
/* If we are taking the address of a constant and are at the top level,
|
||
we have to use output_constant_def since we can't call force_const_mem
|
||
at top level. */
|
||
/* ??? This should be considered a front-end bug. We should not be
|
||
generating ADDR_EXPR of something that isn't an LVALUE. The only
|
||
exception here is STRING_CST. */
|
||
if (TREE_CODE (exp) == CONSTRUCTOR
|
||
|| CONSTANT_CLASS_P (exp))
|
||
return XEXP (expand_expr_constant (exp, 0, modifier), 0);
|
||
|
||
/* Everything must be something allowed by is_gimple_addressable. */
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case INDIRECT_REF:
|
||
/* This case will happen via recursion for &a->b. */
|
||
return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
|
||
|
||
case CONST_DECL:
|
||
/* Recurse and make the output_constant_def clause above handle this. */
|
||
return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
|
||
tmode, modifier);
|
||
|
||
case REALPART_EXPR:
|
||
/* The real part of the complex number is always first, therefore
|
||
the address is the same as the address of the parent object. */
|
||
offset = 0;
|
||
bitpos = 0;
|
||
inner = TREE_OPERAND (exp, 0);
|
||
break;
|
||
|
||
case IMAGPART_EXPR:
|
||
/* The imaginary part of the complex number is always second.
|
||
The expression is therefore always offset by the size of the
|
||
scalar type. */
|
||
offset = 0;
|
||
bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
|
||
inner = TREE_OPERAND (exp, 0);
|
||
break;
|
||
|
||
default:
|
||
/* If the object is a DECL, then expand it for its rtl. Don't bypass
|
||
expand_expr, as that can have various side effects; LABEL_DECLs for
|
||
example, may not have their DECL_RTL set yet. Assume language
|
||
specific tree nodes can be expanded in some interesting way. */
|
||
if (DECL_P (exp)
|
||
|| TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
|
||
{
|
||
result = expand_expr (exp, target, tmode,
|
||
modifier == EXPAND_INITIALIZER
|
||
? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
|
||
|
||
/* If the DECL isn't in memory, then the DECL wasn't properly
|
||
marked TREE_ADDRESSABLE, which will be either a front-end
|
||
or a tree optimizer bug. */
|
||
gcc_assert (MEM_P (result));
|
||
result = XEXP (result, 0);
|
||
|
||
/* ??? Is this needed anymore? */
|
||
if (DECL_P (exp) && !TREE_USED (exp) == 0)
|
||
{
|
||
assemble_external (exp);
|
||
TREE_USED (exp) = 1;
|
||
}
|
||
|
||
if (modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_CONST_ADDRESS)
|
||
result = force_operand (result, target);
|
||
return result;
|
||
}
|
||
|
||
/* Pass FALSE as the last argument to get_inner_reference although
|
||
we are expanding to RTL. The rationale is that we know how to
|
||
handle "aligning nodes" here: we can just bypass them because
|
||
they won't change the final object whose address will be returned
|
||
(they actually exist only for that purpose). */
|
||
inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
|
||
&mode1, &unsignedp, &volatilep, false);
|
||
break;
|
||
}
|
||
|
||
/* We must have made progress. */
|
||
gcc_assert (inner != exp);
|
||
|
||
subtarget = offset || bitpos ? NULL_RTX : target;
|
||
result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
|
||
|
||
if (offset)
|
||
{
|
||
rtx tmp;
|
||
|
||
if (modifier != EXPAND_NORMAL)
|
||
result = force_operand (result, NULL);
|
||
tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
|
||
|
||
result = convert_memory_address (tmode, result);
|
||
tmp = convert_memory_address (tmode, tmp);
|
||
|
||
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
||
result = gen_rtx_PLUS (tmode, result, tmp);
|
||
else
|
||
{
|
||
subtarget = bitpos ? NULL_RTX : target;
|
||
result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
|
||
1, OPTAB_LIB_WIDEN);
|
||
}
|
||
}
|
||
|
||
if (bitpos)
|
||
{
|
||
/* Someone beforehand should have rejected taking the address
|
||
of such an object. */
|
||
gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
|
||
|
||
result = plus_constant (result, bitpos / BITS_PER_UNIT);
|
||
if (modifier < EXPAND_SUM)
|
||
result = force_operand (result, target);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
|
||
The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
|
||
|
||
static rtx
|
||
expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
|
||
enum expand_modifier modifier)
|
||
{
|
||
enum machine_mode rmode;
|
||
rtx result;
|
||
|
||
/* Target mode of VOIDmode says "whatever's natural". */
|
||
if (tmode == VOIDmode)
|
||
tmode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
/* We can get called with some Weird Things if the user does silliness
|
||
like "(short) &a". In that case, convert_memory_address won't do
|
||
the right thing, so ignore the given target mode. */
|
||
if (tmode != Pmode && tmode != ptr_mode)
|
||
tmode = Pmode;
|
||
|
||
result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
|
||
tmode, modifier);
|
||
|
||
/* Despite expand_expr claims concerning ignoring TMODE when not
|
||
strictly convenient, stuff breaks if we don't honor it. Note
|
||
that combined with the above, we only do this for pointer modes. */
|
||
rmode = GET_MODE (result);
|
||
if (rmode == VOIDmode)
|
||
rmode = tmode;
|
||
if (rmode != tmode)
|
||
result = convert_memory_address (tmode, result);
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* expand_expr: generate code for computing expression EXP.
|
||
An rtx for the computed value is returned. The value is never null.
|
||
In the case of a void EXP, const0_rtx is returned.
|
||
|
||
The value may be stored in TARGET if TARGET is nonzero.
|
||
TARGET is just a suggestion; callers must assume that
|
||
the rtx returned may not be the same as TARGET.
|
||
|
||
If TARGET is CONST0_RTX, it means that the value will be ignored.
|
||
|
||
If TMODE is not VOIDmode, it suggests generating the
|
||
result in mode TMODE. But this is done only when convenient.
|
||
Otherwise, TMODE is ignored and the value generated in its natural mode.
|
||
TMODE is just a suggestion; callers must assume that
|
||
the rtx returned may not have mode TMODE.
|
||
|
||
Note that TARGET may have neither TMODE nor MODE. In that case, it
|
||
probably will not be used.
|
||
|
||
If MODIFIER is EXPAND_SUM then when EXP is an addition
|
||
we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
|
||
or a nest of (PLUS ...) and (MINUS ...) where the terms are
|
||
products as above, or REG or MEM, or constant.
|
||
Ordinarily in such cases we would output mul or add instructions
|
||
and then return a pseudo reg containing the sum.
|
||
|
||
EXPAND_INITIALIZER is much like EXPAND_SUM except that
|
||
it also marks a label as absolutely required (it can't be dead).
|
||
It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
|
||
This is used for outputting expressions used in initializers.
|
||
|
||
EXPAND_CONST_ADDRESS says that it is okay to return a MEM
|
||
with a constant address even if that address is not normally legitimate.
|
||
EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
|
||
|
||
EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
|
||
a call parameter. Such targets require special care as we haven't yet
|
||
marked TARGET so that it's safe from being trashed by libcalls. We
|
||
don't want to use TARGET for anything but the final result;
|
||
Intermediate values must go elsewhere. Additionally, calls to
|
||
emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
|
||
|
||
If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
|
||
address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
|
||
DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
|
||
COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
|
||
recursively. */
|
||
|
||
static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
|
||
enum expand_modifier, rtx *);
|
||
|
||
rtx
|
||
expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
|
||
enum expand_modifier modifier, rtx *alt_rtl)
|
||
{
|
||
int rn = -1;
|
||
rtx ret, last = NULL;
|
||
|
||
/* Handle ERROR_MARK before anybody tries to access its type. */
|
||
if (TREE_CODE (exp) == ERROR_MARK
|
||
|| TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
|
||
{
|
||
ret = CONST0_RTX (tmode);
|
||
return ret ? ret : const0_rtx;
|
||
}
|
||
|
||
if (flag_non_call_exceptions)
|
||
{
|
||
rn = lookup_stmt_eh_region (exp);
|
||
/* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
|
||
if (rn >= 0)
|
||
last = get_last_insn ();
|
||
}
|
||
|
||
/* If this is an expression of some kind and it has an associated line
|
||
number, then emit the line number before expanding the expression.
|
||
|
||
We need to save and restore the file and line information so that
|
||
errors discovered during expansion are emitted with the right
|
||
information. It would be better of the diagnostic routines
|
||
used the file/line information embedded in the tree nodes rather
|
||
than globals. */
|
||
if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
|
||
{
|
||
location_t saved_location = input_location;
|
||
input_location = EXPR_LOCATION (exp);
|
||
emit_line_note (input_location);
|
||
|
||
/* Record where the insns produced belong. */
|
||
record_block_change (TREE_BLOCK (exp));
|
||
|
||
ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
|
||
|
||
input_location = saved_location;
|
||
}
|
||
else
|
||
{
|
||
ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
|
||
}
|
||
|
||
/* If using non-call exceptions, mark all insns that may trap.
|
||
expand_call() will mark CALL_INSNs before we get to this code,
|
||
but it doesn't handle libcalls, and these may trap. */
|
||
if (rn >= 0)
|
||
{
|
||
rtx insn;
|
||
for (insn = next_real_insn (last); insn;
|
||
insn = next_real_insn (insn))
|
||
{
|
||
if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
|
||
/* If we want exceptions for non-call insns, any
|
||
may_trap_p instruction may throw. */
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER
|
||
&& GET_CODE (PATTERN (insn)) != USE
|
||
&& (CALL_P (insn) || may_trap_p (PATTERN (insn))))
|
||
{
|
||
REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
|
||
REG_NOTES (insn));
|
||
}
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static rtx
|
||
expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
|
||
enum expand_modifier modifier, rtx *alt_rtl)
|
||
{
|
||
rtx op0, op1, temp, decl_rtl;
|
||
tree type = TREE_TYPE (exp);
|
||
int unsignedp;
|
||
enum machine_mode mode;
|
||
enum tree_code code = TREE_CODE (exp);
|
||
optab this_optab;
|
||
rtx subtarget, original_target;
|
||
int ignore;
|
||
tree context, subexp0, subexp1;
|
||
bool reduce_bit_field = false;
|
||
#define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
|
||
? reduce_to_bit_field_precision ((expr), \
|
||
target, \
|
||
type) \
|
||
: (expr))
|
||
|
||
mode = TYPE_MODE (type);
|
||
unsignedp = TYPE_UNSIGNED (type);
|
||
if (lang_hooks.reduce_bit_field_operations
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
|
||
{
|
||
/* An operation in what may be a bit-field type needs the
|
||
result to be reduced to the precision of the bit-field type,
|
||
which is narrower than that of the type's mode. */
|
||
reduce_bit_field = true;
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
}
|
||
|
||
/* Use subtarget as the target for operand 0 of a binary operation. */
|
||
subtarget = get_subtarget (target);
|
||
original_target = target;
|
||
ignore = (target == const0_rtx
|
||
|| ((code == NON_LVALUE_EXPR || code == NOP_EXPR
|
||
|| code == CONVERT_EXPR || code == COND_EXPR
|
||
|| code == VIEW_CONVERT_EXPR)
|
||
&& TREE_CODE (type) == VOID_TYPE));
|
||
|
||
/* If we are going to ignore this result, we need only do something
|
||
if there is a side-effect somewhere in the expression. If there
|
||
is, short-circuit the most common cases here. Note that we must
|
||
not call expand_expr with anything but const0_rtx in case this
|
||
is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
|
||
|
||
if (ignore)
|
||
{
|
||
if (! TREE_SIDE_EFFECTS (exp))
|
||
return const0_rtx;
|
||
|
||
/* Ensure we reference a volatile object even if value is ignored, but
|
||
don't do this if all we are doing is taking its address. */
|
||
if (TREE_THIS_VOLATILE (exp)
|
||
&& TREE_CODE (exp) != FUNCTION_DECL
|
||
&& mode != VOIDmode && mode != BLKmode
|
||
&& modifier != EXPAND_CONST_ADDRESS)
|
||
{
|
||
temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
|
||
if (MEM_P (temp))
|
||
temp = copy_to_reg (temp);
|
||
return const0_rtx;
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (code) == tcc_unary
|
||
|| code == COMPONENT_REF || code == INDIRECT_REF)
|
||
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
|
||
modifier);
|
||
|
||
else if (TREE_CODE_CLASS (code) == tcc_binary
|
||
|| TREE_CODE_CLASS (code) == tcc_comparison
|
||
|| code == ARRAY_REF || code == ARRAY_RANGE_REF)
|
||
{
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
|
||
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
|
||
return const0_rtx;
|
||
}
|
||
else if (code == BIT_FIELD_REF)
|
||
{
|
||
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
|
||
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
|
||
expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
|
||
return const0_rtx;
|
||
}
|
||
|
||
target = 0;
|
||
}
|
||
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_DECL:
|
||
{
|
||
tree function = decl_function_context (exp);
|
||
|
||
temp = label_rtx (exp);
|
||
temp = gen_rtx_LABEL_REF (Pmode, temp);
|
||
|
||
if (function != current_function_decl
|
||
&& function != 0)
|
||
LABEL_REF_NONLOCAL_P (temp) = 1;
|
||
|
||
temp = gen_rtx_MEM (FUNCTION_MODE, temp);
|
||
return temp;
|
||
}
|
||
|
||
case SSA_NAME:
|
||
return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
|
||
NULL);
|
||
|
||
case PARM_DECL:
|
||
case VAR_DECL:
|
||
/* If a static var's type was incomplete when the decl was written,
|
||
but the type is complete now, lay out the decl now. */
|
||
if (DECL_SIZE (exp) == 0
|
||
&& COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
|
||
&& (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
|
||
layout_decl (exp, 0);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case FUNCTION_DECL:
|
||
case RESULT_DECL:
|
||
decl_rtl = DECL_RTL (exp);
|
||
gcc_assert (decl_rtl);
|
||
|
||
/* Ensure variable marked as used even if it doesn't go through
|
||
a parser. If it hasn't be used yet, write out an external
|
||
definition. */
|
||
if (! TREE_USED (exp))
|
||
{
|
||
assemble_external (exp);
|
||
TREE_USED (exp) = 1;
|
||
}
|
||
|
||
/* Show we haven't gotten RTL for this yet. */
|
||
temp = 0;
|
||
|
||
/* Variables inherited from containing functions should have
|
||
been lowered by this point. */
|
||
context = decl_function_context (exp);
|
||
gcc_assert (!context
|
||
|| context == current_function_decl
|
||
|| TREE_STATIC (exp)
|
||
/* ??? C++ creates functions that are not TREE_STATIC. */
|
||
|| TREE_CODE (exp) == FUNCTION_DECL);
|
||
|
||
/* This is the case of an array whose size is to be determined
|
||
from its initializer, while the initializer is still being parsed.
|
||
See expand_decl. */
|
||
|
||
if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
|
||
temp = validize_mem (decl_rtl);
|
||
|
||
/* If DECL_RTL is memory, we are in the normal case and either
|
||
the address is not valid or it is not a register and -fforce-addr
|
||
is specified, get the address into a register. */
|
||
|
||
else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
|
||
{
|
||
if (alt_rtl)
|
||
*alt_rtl = decl_rtl;
|
||
decl_rtl = use_anchored_address (decl_rtl);
|
||
if (modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_SUM
|
||
&& (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
|
||
|| (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
|
||
temp = replace_equiv_address (decl_rtl,
|
||
copy_rtx (XEXP (decl_rtl, 0)));
|
||
}
|
||
|
||
/* If we got something, return it. But first, set the alignment
|
||
if the address is a register. */
|
||
if (temp != 0)
|
||
{
|
||
if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
|
||
mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
|
||
|
||
return temp;
|
||
}
|
||
|
||
/* If the mode of DECL_RTL does not match that of the decl, it
|
||
must be a promoted value. We return a SUBREG of the wanted mode,
|
||
but mark it so that we know that it was already extended. */
|
||
|
||
if (REG_P (decl_rtl)
|
||
&& GET_MODE (decl_rtl) != DECL_MODE (exp))
|
||
{
|
||
enum machine_mode pmode;
|
||
|
||
/* Get the signedness used for this variable. Ensure we get the
|
||
same mode we got when the variable was declared. */
|
||
pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
|
||
(TREE_CODE (exp) == RESULT_DECL
|
||
|| TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
|
||
gcc_assert (GET_MODE (decl_rtl) == pmode);
|
||
|
||
temp = gen_lowpart_SUBREG (mode, decl_rtl);
|
||
SUBREG_PROMOTED_VAR_P (temp) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
|
||
return temp;
|
||
}
|
||
|
||
return decl_rtl;
|
||
|
||
case INTEGER_CST:
|
||
temp = immed_double_const (TREE_INT_CST_LOW (exp),
|
||
TREE_INT_CST_HIGH (exp), mode);
|
||
|
||
/* ??? If overflow is set, fold will have done an incomplete job,
|
||
which can result in (plus xx (const_int 0)), which can get
|
||
simplified by validate_replace_rtx during virtual register
|
||
instantiation, which can result in unrecognizable insns.
|
||
Avoid this by forcing all overflows into registers. */
|
||
if (TREE_CONSTANT_OVERFLOW (exp)
|
||
&& modifier != EXPAND_INITIALIZER)
|
||
temp = force_reg (mode, temp);
|
||
|
||
return temp;
|
||
|
||
case VECTOR_CST:
|
||
{
|
||
tree tmp = NULL_TREE;
|
||
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|
||
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
||
return const_vector_from_tree (exp);
|
||
if (GET_MODE_CLASS (mode) == MODE_INT)
|
||
{
|
||
tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
|
||
if (type_for_mode)
|
||
tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
|
||
}
|
||
if (!tmp)
|
||
tmp = build_constructor_from_list (type,
|
||
TREE_VECTOR_CST_ELTS (exp));
|
||
return expand_expr (tmp, ignore ? const0_rtx : target,
|
||
tmode, modifier);
|
||
}
|
||
|
||
case CONST_DECL:
|
||
return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
|
||
|
||
case REAL_CST:
|
||
/* If optimized, generate immediate CONST_DOUBLE
|
||
which will be turned into memory by reload if necessary.
|
||
|
||
We used to force a register so that loop.c could see it. But
|
||
this does not allow gen_* patterns to perform optimizations with
|
||
the constants. It also produces two insns in cases like "x = 1.0;".
|
||
On most machines, floating-point constants are not permitted in
|
||
many insns, so we'd end up copying it to a register in any case.
|
||
|
||
Now, we do the copying in expand_binop, if appropriate. */
|
||
return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
|
||
TYPE_MODE (TREE_TYPE (exp)));
|
||
|
||
case COMPLEX_CST:
|
||
/* Handle evaluating a complex constant in a CONCAT target. */
|
||
if (original_target && GET_CODE (original_target) == CONCAT)
|
||
{
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
|
||
rtx rtarg, itarg;
|
||
|
||
rtarg = XEXP (original_target, 0);
|
||
itarg = XEXP (original_target, 1);
|
||
|
||
/* Move the real and imaginary parts separately. */
|
||
op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
|
||
op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
|
||
|
||
if (op0 != rtarg)
|
||
emit_move_insn (rtarg, op0);
|
||
if (op1 != itarg)
|
||
emit_move_insn (itarg, op1);
|
||
|
||
return original_target;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case STRING_CST:
|
||
temp = expand_expr_constant (exp, 1, modifier);
|
||
|
||
/* temp contains a constant address.
|
||
On RISC machines where a constant address isn't valid,
|
||
make some insns to get that address into a register. */
|
||
if (modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_SUM
|
||
&& (! memory_address_p (mode, XEXP (temp, 0))
|
||
|| flag_force_addr))
|
||
return replace_equiv_address (temp,
|
||
copy_rtx (XEXP (temp, 0)));
|
||
return temp;
|
||
|
||
case SAVE_EXPR:
|
||
{
|
||
tree val = TREE_OPERAND (exp, 0);
|
||
rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
|
||
|
||
if (!SAVE_EXPR_RESOLVED_P (exp))
|
||
{
|
||
/* We can indeed still hit this case, typically via builtin
|
||
expanders calling save_expr immediately before expanding
|
||
something. Assume this means that we only have to deal
|
||
with non-BLKmode values. */
|
||
gcc_assert (GET_MODE (ret) != BLKmode);
|
||
|
||
val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
|
||
DECL_ARTIFICIAL (val) = 1;
|
||
DECL_IGNORED_P (val) = 1;
|
||
TREE_OPERAND (exp, 0) = val;
|
||
SAVE_EXPR_RESOLVED_P (exp) = 1;
|
||
|
||
if (!CONSTANT_P (ret))
|
||
ret = copy_to_reg (ret);
|
||
SET_DECL_RTL (val, ret);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
case GOTO_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
|
||
expand_goto (TREE_OPERAND (exp, 0));
|
||
else
|
||
expand_computed_goto (TREE_OPERAND (exp, 0));
|
||
return const0_rtx;
|
||
|
||
case CONSTRUCTOR:
|
||
/* If we don't need the result, just ensure we evaluate any
|
||
subexpressions. */
|
||
if (ignore)
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree value;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
|
||
expand_expr (value, const0_rtx, VOIDmode, 0);
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Try to avoid creating a temporary at all. This is possible
|
||
if all of the initializer is zero.
|
||
FIXME: try to handle all [0..255] initializers we can handle
|
||
with memset. */
|
||
else if (TREE_STATIC (exp)
|
||
&& !TREE_ADDRESSABLE (exp)
|
||
&& target != 0 && mode == BLKmode
|
||
&& all_zeros_p (exp))
|
||
{
|
||
clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
|
||
return target;
|
||
}
|
||
|
||
/* All elts simple constants => refer to a constant in memory. But
|
||
if this is a non-BLKmode mode, let it store a field at a time
|
||
since that should make a CONST_INT or CONST_DOUBLE when we
|
||
fold. Likewise, if we have a target we can use, it is best to
|
||
store directly into the target unless the type is large enough
|
||
that memcpy will be used. If we are making an initializer and
|
||
all operands are constant, put it in memory as well.
|
||
|
||
FIXME: Avoid trying to fill vector constructors piece-meal.
|
||
Output them with output_constant_def below unless we're sure
|
||
they're zeros. This should go away when vector initializers
|
||
are treated like VECTOR_CST instead of arrays.
|
||
*/
|
||
else if ((TREE_STATIC (exp)
|
||
&& ((mode == BLKmode
|
||
&& ! (target != 0 && safe_from_p (target, exp, 1)))
|
||
|| TREE_ADDRESSABLE (exp)
|
||
|| (host_integerp (TYPE_SIZE_UNIT (type), 1)
|
||
&& (! MOVE_BY_PIECES_P
|
||
(tree_low_cst (TYPE_SIZE_UNIT (type), 1),
|
||
TYPE_ALIGN (type)))
|
||
&& ! mostly_zeros_p (exp))))
|
||
|| ((modifier == EXPAND_INITIALIZER
|
||
|| modifier == EXPAND_CONST_ADDRESS)
|
||
&& TREE_CONSTANT (exp)))
|
||
{
|
||
rtx constructor = expand_expr_constant (exp, 1, modifier);
|
||
|
||
if (modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_SUM)
|
||
constructor = validize_mem (constructor);
|
||
|
||
return constructor;
|
||
}
|
||
else
|
||
{
|
||
/* Handle calls that pass values in multiple non-contiguous
|
||
locations. The Irix 6 ABI has examples of this. */
|
||
if (target == 0 || ! safe_from_p (target, exp, 1)
|
||
|| GET_CODE (target) == PARALLEL
|
||
|| modifier == EXPAND_STACK_PARM)
|
||
target
|
||
= assign_temp (build_qualified_type (type,
|
||
(TYPE_QUALS (type)
|
||
| (TREE_READONLY (exp)
|
||
* TYPE_QUAL_CONST))),
|
||
0, TREE_ADDRESSABLE (exp), 1);
|
||
|
||
store_constructor (exp, target, 0, int_expr_size (exp));
|
||
return target;
|
||
}
|
||
|
||
case MISALIGNED_INDIRECT_REF:
|
||
case ALIGN_INDIRECT_REF:
|
||
case INDIRECT_REF:
|
||
{
|
||
tree exp1 = TREE_OPERAND (exp, 0);
|
||
|
||
if (modifier != EXPAND_WRITE)
|
||
{
|
||
tree t;
|
||
|
||
t = fold_read_from_constant_string (exp);
|
||
if (t)
|
||
return expand_expr (t, target, tmode, modifier);
|
||
}
|
||
|
||
op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
|
||
op0 = memory_address (mode, op0);
|
||
|
||
if (code == ALIGN_INDIRECT_REF)
|
||
{
|
||
int align = TYPE_ALIGN_UNIT (type);
|
||
op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
|
||
op0 = memory_address (mode, op0);
|
||
}
|
||
|
||
temp = gen_rtx_MEM (mode, op0);
|
||
|
||
set_mem_attributes (temp, exp, 0);
|
||
|
||
/* Resolve the misalignment now, so that we don't have to remember
|
||
to resolve it later. Of course, this only works for reads. */
|
||
/* ??? When we get around to supporting writes, we'll have to handle
|
||
this in store_expr directly. The vectorizer isn't generating
|
||
those yet, however. */
|
||
if (code == MISALIGNED_INDIRECT_REF)
|
||
{
|
||
int icode;
|
||
rtx reg, insn;
|
||
|
||
gcc_assert (modifier == EXPAND_NORMAL
|
||
|| modifier == EXPAND_STACK_PARM);
|
||
|
||
/* The vectorizer should have already checked the mode. */
|
||
icode = movmisalign_optab->handlers[mode].insn_code;
|
||
gcc_assert (icode != CODE_FOR_nothing);
|
||
|
||
/* We've already validated the memory, and we're creating a
|
||
new pseudo destination. The predicates really can't fail. */
|
||
reg = gen_reg_rtx (mode);
|
||
|
||
/* Nor can the insn generator. */
|
||
insn = GEN_FCN (icode) (reg, temp);
|
||
emit_insn (insn);
|
||
|
||
return reg;
|
||
}
|
||
|
||
return temp;
|
||
}
|
||
|
||
case TARGET_MEM_REF:
|
||
{
|
||
struct mem_address addr;
|
||
|
||
get_address_description (exp, &addr);
|
||
op0 = addr_for_mem_ref (&addr, true);
|
||
op0 = memory_address (mode, op0);
|
||
temp = gen_rtx_MEM (mode, op0);
|
||
set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
|
||
}
|
||
return temp;
|
||
|
||
case ARRAY_REF:
|
||
|
||
{
|
||
tree array = TREE_OPERAND (exp, 0);
|
||
tree index = TREE_OPERAND (exp, 1);
|
||
|
||
/* Fold an expression like: "foo"[2].
|
||
This is not done in fold so it won't happen inside &.
|
||
Don't fold if this is for wide characters since it's too
|
||
difficult to do correctly and this is a very rare case. */
|
||
|
||
if (modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_MEMORY)
|
||
{
|
||
tree t = fold_read_from_constant_string (exp);
|
||
|
||
if (t)
|
||
return expand_expr (t, target, tmode, modifier);
|
||
}
|
||
|
||
/* If this is a constant index into a constant array,
|
||
just get the value from the array. Handle both the cases when
|
||
we have an explicit constructor and when our operand is a variable
|
||
that was declared const. */
|
||
|
||
if (modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_MEMORY
|
||
&& TREE_CODE (array) == CONSTRUCTOR
|
||
&& ! TREE_SIDE_EFFECTS (array)
|
||
&& TREE_CODE (index) == INTEGER_CST)
|
||
{
|
||
unsigned HOST_WIDE_INT ix;
|
||
tree field, value;
|
||
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
|
||
field, value)
|
||
if (tree_int_cst_equal (field, index))
|
||
{
|
||
if (!TREE_SIDE_EFFECTS (value))
|
||
return expand_expr (fold (value), target, tmode, modifier);
|
||
break;
|
||
}
|
||
}
|
||
|
||
else if (optimize >= 1
|
||
&& modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER
|
||
&& modifier != EXPAND_MEMORY
|
||
&& TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
|
||
&& TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
|
||
&& TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
|
||
&& targetm.binds_local_p (array))
|
||
{
|
||
if (TREE_CODE (index) == INTEGER_CST)
|
||
{
|
||
tree init = DECL_INITIAL (array);
|
||
|
||
if (TREE_CODE (init) == CONSTRUCTOR)
|
||
{
|
||
unsigned HOST_WIDE_INT ix;
|
||
tree field, value;
|
||
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
|
||
field, value)
|
||
if (tree_int_cst_equal (field, index))
|
||
{
|
||
if (!TREE_SIDE_EFFECTS (value))
|
||
return expand_expr (fold (value), target, tmode,
|
||
modifier);
|
||
break;
|
||
}
|
||
}
|
||
else if(TREE_CODE (init) == STRING_CST)
|
||
{
|
||
tree index1 = index;
|
||
tree low_bound = array_ref_low_bound (exp);
|
||
index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
|
||
|
||
/* Optimize the special-case of a zero lower bound.
|
||
|
||
We convert the low_bound to sizetype to avoid some problems
|
||
with constant folding. (E.g. suppose the lower bound is 1,
|
||
and its mode is QI. Without the conversion,l (ARRAY
|
||
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
|
||
+INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
|
||
|
||
if (! integer_zerop (low_bound))
|
||
index1 = size_diffop (index1, fold_convert (sizetype,
|
||
low_bound));
|
||
|
||
if (0 > compare_tree_int (index1,
|
||
TREE_STRING_LENGTH (init)))
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (init));
|
||
enum machine_mode mode = TYPE_MODE (type);
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_SIZE (mode) == 1)
|
||
return gen_int_mode (TREE_STRING_POINTER (init)
|
||
[TREE_INT_CST_LOW (index1)],
|
||
mode);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
goto normal_inner_ref;
|
||
|
||
case COMPONENT_REF:
|
||
/* If the operand is a CONSTRUCTOR, we can just extract the
|
||
appropriate field if it is present. */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree field, value;
|
||
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
|
||
idx, field, value)
|
||
if (field == TREE_OPERAND (exp, 1)
|
||
/* We can normally use the value of the field in the
|
||
CONSTRUCTOR. However, if this is a bitfield in
|
||
an integral mode that we can fit in a HOST_WIDE_INT,
|
||
we must mask only the number of bits in the bitfield,
|
||
since this is done implicitly by the constructor. If
|
||
the bitfield does not meet either of those conditions,
|
||
we can't do this optimization. */
|
||
&& (! DECL_BIT_FIELD (field)
|
||
|| ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
|
||
&& (GET_MODE_BITSIZE (DECL_MODE (field))
|
||
<= HOST_BITS_PER_WIDE_INT))))
|
||
{
|
||
if (DECL_BIT_FIELD (field)
|
||
&& modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
op0 = expand_expr (value, target, tmode, modifier);
|
||
if (DECL_BIT_FIELD (field))
|
||
{
|
||
HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
|
||
enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
|
||
|
||
if (TYPE_UNSIGNED (TREE_TYPE (field)))
|
||
{
|
||
op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
|
||
op0 = expand_and (imode, op0, op1, target);
|
||
}
|
||
else
|
||
{
|
||
tree count
|
||
= build_int_cst (NULL_TREE,
|
||
GET_MODE_BITSIZE (imode) - bitsize);
|
||
|
||
op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
|
||
target, 0);
|
||
op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
|
||
target, 0);
|
||
}
|
||
}
|
||
|
||
return op0;
|
||
}
|
||
}
|
||
goto normal_inner_ref;
|
||
|
||
case BIT_FIELD_REF:
|
||
case ARRAY_RANGE_REF:
|
||
normal_inner_ref:
|
||
{
|
||
enum machine_mode mode1;
|
||
HOST_WIDE_INT bitsize, bitpos;
|
||
tree offset;
|
||
int volatilep = 0;
|
||
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
|
||
&mode1, &unsignedp, &volatilep, true);
|
||
rtx orig_op0;
|
||
|
||
/* If we got back the original object, something is wrong. Perhaps
|
||
we are evaluating an expression too early. In any event, don't
|
||
infinitely recurse. */
|
||
gcc_assert (tem != exp);
|
||
|
||
/* If TEM's type is a union of variable size, pass TARGET to the inner
|
||
computation, since it will need a temporary and TARGET is known
|
||
to have to do. This occurs in unchecked conversion in Ada. */
|
||
|
||
orig_op0 = op0
|
||
= expand_expr (tem,
|
||
(TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
|
||
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
|
||
!= INTEGER_CST)
|
||
&& modifier != EXPAND_STACK_PARM
|
||
? target : NULL_RTX),
|
||
VOIDmode,
|
||
(modifier == EXPAND_INITIALIZER
|
||
|| modifier == EXPAND_CONST_ADDRESS
|
||
|| modifier == EXPAND_STACK_PARM)
|
||
? modifier : EXPAND_NORMAL);
|
||
|
||
/* If this is a constant, put it into a register if it is a legitimate
|
||
constant, OFFSET is 0, and we won't try to extract outside the
|
||
register (in case we were passed a partially uninitialized object
|
||
or a view_conversion to a larger size). Force the constant to
|
||
memory otherwise. */
|
||
if (CONSTANT_P (op0))
|
||
{
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
|
||
if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
|
||
&& offset == 0
|
||
&& bitpos + bitsize <= GET_MODE_BITSIZE (mode))
|
||
op0 = force_reg (mode, op0);
|
||
else
|
||
op0 = validize_mem (force_const_mem (mode, op0));
|
||
}
|
||
|
||
/* Otherwise, if this object not in memory and we either have an
|
||
offset, a BLKmode result, or a reference outside the object, put it
|
||
there. Such cases can occur in Ada if we have unchecked conversion
|
||
of an expression from a scalar type to an array or record type or
|
||
for an ARRAY_RANGE_REF whose type is BLKmode. */
|
||
else if (!MEM_P (op0)
|
||
&& (offset != 0
|
||
|| (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
|
||
|| (code == ARRAY_RANGE_REF && mode == BLKmode)))
|
||
{
|
||
tree nt = build_qualified_type (TREE_TYPE (tem),
|
||
(TYPE_QUALS (TREE_TYPE (tem))
|
||
| TYPE_QUAL_CONST));
|
||
rtx memloc = assign_temp (nt, 1, 1, 1);
|
||
|
||
emit_move_insn (memloc, op0);
|
||
op0 = memloc;
|
||
}
|
||
|
||
if (offset != 0)
|
||
{
|
||
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
|
||
EXPAND_SUM);
|
||
|
||
gcc_assert (MEM_P (op0));
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (offset_rtx) != Pmode)
|
||
offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
|
||
#else
|
||
if (GET_MODE (offset_rtx) != ptr_mode)
|
||
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
||
#endif
|
||
|
||
if (GET_MODE (op0) == BLKmode
|
||
/* A constant address in OP0 can have VOIDmode, we must
|
||
not try to call force_reg in that case. */
|
||
&& GET_MODE (XEXP (op0, 0)) != VOIDmode
|
||
&& bitsize != 0
|
||
&& (bitpos % bitsize) == 0
|
||
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
|
||
&& MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
|
||
{
|
||
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
|
||
bitpos = 0;
|
||
}
|
||
|
||
op0 = offset_address (op0, offset_rtx,
|
||
highest_pow2_factor (offset));
|
||
}
|
||
|
||
/* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
|
||
record its alignment as BIGGEST_ALIGNMENT. */
|
||
if (MEM_P (op0) && bitpos == 0 && offset != 0
|
||
&& is_aligning_offset (offset, tem))
|
||
set_mem_align (op0, BIGGEST_ALIGNMENT);
|
||
|
||
/* Don't forget about volatility even if this is a bitfield. */
|
||
if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
|
||
{
|
||
if (op0 == orig_op0)
|
||
op0 = copy_rtx (op0);
|
||
|
||
MEM_VOLATILE_P (op0) = 1;
|
||
}
|
||
|
||
/* The following code doesn't handle CONCAT.
|
||
Assume only bitpos == 0 can be used for CONCAT, due to
|
||
one element arrays having the same mode as its element. */
|
||
if (GET_CODE (op0) == CONCAT)
|
||
{
|
||
gcc_assert (bitpos == 0
|
||
&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
|
||
return op0;
|
||
}
|
||
|
||
/* In cases where an aligned union has an unaligned object
|
||
as a field, we might be extracting a BLKmode value from
|
||
an integer-mode (e.g., SImode) object. Handle this case
|
||
by doing the extract into an object as wide as the field
|
||
(which we know to be the width of a basic mode), then
|
||
storing into memory, and changing the mode to BLKmode. */
|
||
if (mode1 == VOIDmode
|
||
|| REG_P (op0) || GET_CODE (op0) == SUBREG
|
||
|| (mode1 != BLKmode && ! direct_load[(int) mode1]
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
|
||
&& modifier != EXPAND_CONST_ADDRESS
|
||
&& modifier != EXPAND_INITIALIZER)
|
||
/* If the field isn't aligned enough to fetch as a memref,
|
||
fetch it as a bit field. */
|
||
|| (mode1 != BLKmode
|
||
&& (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
|
||
|| (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
|
||
|| (MEM_P (op0)
|
||
&& (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
|
||
|| (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
|
||
&& ((modifier == EXPAND_CONST_ADDRESS
|
||
|| modifier == EXPAND_INITIALIZER)
|
||
? STRICT_ALIGNMENT
|
||
: SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
|
||
|| (bitpos % BITS_PER_UNIT != 0)))
|
||
/* If the type and the field are a constant size and the
|
||
size of the type isn't the same size as the bitfield,
|
||
we must use bitfield operations. */
|
||
|| (bitsize >= 0
|
||
&& TYPE_SIZE (TREE_TYPE (exp))
|
||
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
|
||
&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
|
||
bitsize)))
|
||
{
|
||
enum machine_mode ext_mode = mode;
|
||
|
||
if (ext_mode == BLKmode
|
||
&& ! (target != 0 && MEM_P (op0)
|
||
&& MEM_P (target)
|
||
&& bitpos % BITS_PER_UNIT == 0))
|
||
ext_mode = mode_for_size (bitsize, MODE_INT, 1);
|
||
|
||
if (ext_mode == BLKmode)
|
||
{
|
||
if (target == 0)
|
||
target = assign_temp (type, 0, 1, 1);
|
||
|
||
if (bitsize == 0)
|
||
return target;
|
||
|
||
/* In this case, BITPOS must start at a byte boundary and
|
||
TARGET, if specified, must be a MEM. */
|
||
gcc_assert (MEM_P (op0)
|
||
&& (!target || MEM_P (target))
|
||
&& !(bitpos % BITS_PER_UNIT));
|
||
|
||
emit_block_move (target,
|
||
adjust_address (op0, VOIDmode,
|
||
bitpos / BITS_PER_UNIT),
|
||
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
|
||
/ BITS_PER_UNIT),
|
||
(modifier == EXPAND_STACK_PARM
|
||
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
||
|
||
return target;
|
||
}
|
||
|
||
op0 = validize_mem (op0);
|
||
|
||
if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
|
||
mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
|
||
|
||
op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
|
||
(modifier == EXPAND_STACK_PARM
|
||
? NULL_RTX : target),
|
||
ext_mode, ext_mode);
|
||
|
||
/* If the result is a record type and BITSIZE is narrower than
|
||
the mode of OP0, an integral mode, and this is a big endian
|
||
machine, we must put the field into the high-order bits. */
|
||
if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
||
&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
|
||
op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
|
||
size_int (GET_MODE_BITSIZE (GET_MODE (op0))
|
||
- bitsize),
|
||
op0, 1);
|
||
|
||
/* If the result type is BLKmode, store the data into a temporary
|
||
of the appropriate type, but with the mode corresponding to the
|
||
mode for the data we have (op0's mode). It's tempting to make
|
||
this a constant type, since we know it's only being stored once,
|
||
but that can cause problems if we are taking the address of this
|
||
COMPONENT_REF because the MEM of any reference via that address
|
||
will have flags corresponding to the type, which will not
|
||
necessarily be constant. */
|
||
if (mode == BLKmode)
|
||
{
|
||
rtx new
|
||
= assign_stack_temp_for_type
|
||
(ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
|
||
|
||
emit_move_insn (new, op0);
|
||
op0 = copy_rtx (new);
|
||
PUT_MODE (op0, BLKmode);
|
||
set_mem_attributes (op0, exp, 1);
|
||
}
|
||
|
||
return op0;
|
||
}
|
||
|
||
/* If the result is BLKmode, use that to access the object
|
||
now as well. */
|
||
if (mode == BLKmode)
|
||
mode1 = BLKmode;
|
||
|
||
/* Get a reference to just this component. */
|
||
if (modifier == EXPAND_CONST_ADDRESS
|
||
|| modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
||
op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
|
||
else
|
||
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
|
||
|
||
if (op0 == orig_op0)
|
||
op0 = copy_rtx (op0);
|
||
|
||
set_mem_attributes (op0, exp, 0);
|
||
if (REG_P (XEXP (op0, 0)))
|
||
mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
|
||
|
||
MEM_VOLATILE_P (op0) |= volatilep;
|
||
if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
|
||
|| modifier == EXPAND_CONST_ADDRESS
|
||
|| modifier == EXPAND_INITIALIZER)
|
||
return op0;
|
||
else if (target == 0)
|
||
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
||
|
||
convert_move (target, op0, unsignedp);
|
||
return target;
|
||
}
|
||
|
||
case OBJ_TYPE_REF:
|
||
return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
|
||
|
||
case CALL_EXPR:
|
||
/* Check for a built-in function. */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL)
|
||
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
{
|
||
if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== BUILT_IN_FRONTEND)
|
||
return lang_hooks.expand_expr (exp, original_target,
|
||
tmode, modifier,
|
||
alt_rtl);
|
||
else
|
||
return expand_builtin (exp, target, subtarget, tmode, ignore);
|
||
}
|
||
|
||
return expand_call (exp, target, ignore);
|
||
|
||
case NON_LVALUE_EXPR:
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
if (TREE_OPERAND (exp, 0) == error_mark_node)
|
||
return const0_rtx;
|
||
|
||
if (TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
/* If both input and output are BLKmode, this conversion isn't doing
|
||
anything except possibly changing memory attribute. */
|
||
if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
|
||
{
|
||
rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
|
||
modifier);
|
||
|
||
result = copy_rtx (result);
|
||
set_mem_attributes (result, exp, 0);
|
||
return result;
|
||
}
|
||
|
||
if (target == 0)
|
||
{
|
||
if (TYPE_MODE (type) != BLKmode)
|
||
target = gen_reg_rtx (TYPE_MODE (type));
|
||
else
|
||
target = assign_temp (type, 0, 1, 1);
|
||
}
|
||
|
||
if (MEM_P (target))
|
||
/* Store data into beginning of memory target. */
|
||
store_expr (TREE_OPERAND (exp, 0),
|
||
adjust_address (target, TYPE_MODE (valtype), 0),
|
||
modifier == EXPAND_STACK_PARM);
|
||
|
||
else
|
||
{
|
||
gcc_assert (REG_P (target));
|
||
|
||
/* Store this field into a union of the proper type. */
|
||
store_field (target,
|
||
MIN ((int_size_in_bytes (TREE_TYPE
|
||
(TREE_OPERAND (exp, 0)))
|
||
* BITS_PER_UNIT),
|
||
(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
|
||
0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
|
||
type, 0);
|
||
}
|
||
|
||
/* Return the entire union. */
|
||
return target;
|
||
}
|
||
|
||
if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
{
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
|
||
modifier);
|
||
|
||
/* If the signedness of the conversion differs and OP0 is
|
||
a promoted SUBREG, clear that indication since we now
|
||
have to do the proper extension. */
|
||
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
|
||
&& GET_CODE (op0) == SUBREG)
|
||
SUBREG_PROMOTED_VAR_P (op0) = 0;
|
||
|
||
return REDUCE_BIT_FIELD (op0);
|
||
}
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
|
||
modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
|
||
if (GET_MODE (op0) == mode)
|
||
;
|
||
|
||
/* If OP0 is a constant, just convert it into the proper mode. */
|
||
else if (CONSTANT_P (op0))
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
enum machine_mode inner_mode = TYPE_MODE (inner_type);
|
||
|
||
if (modifier == EXPAND_INITIALIZER)
|
||
op0 = simplify_gen_subreg (mode, op0, inner_mode,
|
||
subreg_lowpart_offset (mode,
|
||
inner_mode));
|
||
else
|
||
op0= convert_modes (mode, inner_mode, op0,
|
||
TYPE_UNSIGNED (inner_type));
|
||
}
|
||
|
||
else if (modifier == EXPAND_INITIALIZER)
|
||
op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
|
||
|
||
else if (target == 0)
|
||
op0 = convert_to_mode (mode, op0,
|
||
TYPE_UNSIGNED (TREE_TYPE
|
||
(TREE_OPERAND (exp, 0))));
|
||
else
|
||
{
|
||
convert_move (target, op0,
|
||
TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
op0 = target;
|
||
}
|
||
|
||
return REDUCE_BIT_FIELD (op0);
|
||
|
||
case VIEW_CONVERT_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
|
||
|
||
/* If the input and output modes are both the same, we are done. */
|
||
if (TYPE_MODE (type) == GET_MODE (op0))
|
||
;
|
||
/* If neither mode is BLKmode, and both modes are the same size
|
||
then we can use gen_lowpart. */
|
||
else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
|
||
&& GET_MODE_SIZE (TYPE_MODE (type))
|
||
== GET_MODE_SIZE (GET_MODE (op0)))
|
||
{
|
||
if (GET_CODE (op0) == SUBREG)
|
||
op0 = force_reg (GET_MODE (op0), op0);
|
||
op0 = gen_lowpart (TYPE_MODE (type), op0);
|
||
}
|
||
/* If both modes are integral, then we can convert from one to the
|
||
other. */
|
||
else if (SCALAR_INT_MODE_P (GET_MODE (op0))
|
||
&& SCALAR_INT_MODE_P (TYPE_MODE (type)))
|
||
op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
|
||
TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
/* As a last resort, spill op0 to memory, and reload it in a
|
||
different mode. */
|
||
else if (!MEM_P (op0))
|
||
{
|
||
/* If the operand is not a MEM, force it into memory. Since we
|
||
are going to be changing the mode of the MEM, don't call
|
||
force_const_mem for constants because we don't allow pool
|
||
constants to change mode. */
|
||
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
gcc_assert (!TREE_ADDRESSABLE (exp));
|
||
|
||
if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
|
||
target
|
||
= assign_stack_temp_for_type
|
||
(TYPE_MODE (inner_type),
|
||
GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
|
||
|
||
emit_move_insn (target, op0);
|
||
op0 = target;
|
||
}
|
||
|
||
/* At this point, OP0 is in the correct mode. If the output type is such
|
||
that the operand is known to be aligned, indicate that it is.
|
||
Otherwise, we need only be concerned about alignment for non-BLKmode
|
||
results. */
|
||
if (MEM_P (op0))
|
||
{
|
||
op0 = copy_rtx (op0);
|
||
|
||
if (TYPE_ALIGN_OK (type))
|
||
set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
|
||
else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
|
||
&& MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
HOST_WIDE_INT temp_size
|
||
= MAX (int_size_in_bytes (inner_type),
|
||
(HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
|
||
rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
|
||
temp_size, 0, type);
|
||
rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
|
||
|
||
gcc_assert (!TREE_ADDRESSABLE (exp));
|
||
|
||
if (GET_MODE (op0) == BLKmode)
|
||
emit_block_move (new_with_op0_mode, op0,
|
||
GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
|
||
(modifier == EXPAND_STACK_PARM
|
||
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
||
else
|
||
emit_move_insn (new_with_op0_mode, op0);
|
||
|
||
op0 = new;
|
||
}
|
||
|
||
op0 = adjust_address (op0, TYPE_MODE (type), 0);
|
||
}
|
||
|
||
return op0;
|
||
|
||
case PLUS_EXPR:
|
||
/* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
|
||
something else, make sure we add the register to the constant and
|
||
then to the other thing. This case can occur during strength
|
||
reduction and doing it this way will produce better code if the
|
||
frame pointer or argument pointer is eliminated.
|
||
|
||
fold-const.c will ensure that the constant is always in the inner
|
||
PLUS_EXPR, so the only case we need to do anything about is if
|
||
sp, ap, or fp is our second argument, in which case we must swap
|
||
the innermost first argument and our second argument. */
|
||
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
|
||
&& TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
|
||
&& (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
|
||
|| DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
|
||
|| DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
|
||
{
|
||
tree t = TREE_OPERAND (exp, 1);
|
||
|
||
TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
||
TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
|
||
}
|
||
|
||
/* If the result is to be ptr_mode and we are adding an integer to
|
||
something, we might be forming a constant. So try to use
|
||
plus_constant. If it produces a sum and we can't accept it,
|
||
use force_operand. This allows P = &ARR[const] to generate
|
||
efficient code on machines where a SYMBOL_REF is not a valid
|
||
address.
|
||
|
||
If this is an EXPAND_SUM call, always return the sum. */
|
||
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
|
||
|| (mode == ptr_mode && (unsignedp || ! flag_trapv)))
|
||
{
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& TREE_CONSTANT (TREE_OPERAND (exp, 1)))
|
||
{
|
||
rtx constant_part;
|
||
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
|
||
EXPAND_SUM);
|
||
/* Use immed_double_const to ensure that the constant is
|
||
truncated according to the mode of OP1, then sign extended
|
||
to a HOST_WIDE_INT. Using the constant directly can result
|
||
in non-canonical RTL in a 64x32 cross compile. */
|
||
constant_part
|
||
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
|
||
(HOST_WIDE_INT) 0,
|
||
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
|
||
op1 = plus_constant (op1, INTVAL (constant_part));
|
||
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
op1 = force_operand (op1, target);
|
||
return REDUCE_BIT_FIELD (op1);
|
||
}
|
||
|
||
else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& TREE_CONSTANT (TREE_OPERAND (exp, 0)))
|
||
{
|
||
rtx constant_part;
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
|
||
(modifier == EXPAND_INITIALIZER
|
||
? EXPAND_INITIALIZER : EXPAND_SUM));
|
||
if (! CONSTANT_P (op0))
|
||
{
|
||
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
|
||
VOIDmode, modifier);
|
||
/* Return a PLUS if modifier says it's OK. */
|
||
if (modifier == EXPAND_SUM
|
||
|| modifier == EXPAND_INITIALIZER)
|
||
return simplify_gen_binary (PLUS, mode, op0, op1);
|
||
goto binop2;
|
||
}
|
||
/* Use immed_double_const to ensure that the constant is
|
||
truncated according to the mode of OP1, then sign extended
|
||
to a HOST_WIDE_INT. Using the constant directly can result
|
||
in non-canonical RTL in a 64x32 cross compile. */
|
||
constant_part
|
||
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
|
||
(HOST_WIDE_INT) 0,
|
||
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
op0 = plus_constant (op0, INTVAL (constant_part));
|
||
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
op0 = force_operand (op0, target);
|
||
return REDUCE_BIT_FIELD (op0);
|
||
}
|
||
}
|
||
|
||
/* No sense saving up arithmetic to be done
|
||
if it's all in the wrong mode to form part of an address.
|
||
And force_operand won't know whether to sign-extend or
|
||
zero-extend. */
|
||
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
|| mode != ptr_mode)
|
||
{
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
subtarget, &op0, &op1, 0);
|
||
if (op0 == const0_rtx)
|
||
return op1;
|
||
if (op1 == const0_rtx)
|
||
return op0;
|
||
goto binop2;
|
||
}
|
||
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
subtarget, &op0, &op1, modifier);
|
||
return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
|
||
|
||
case MINUS_EXPR:
|
||
/* For initializers, we are allowed to return a MINUS of two
|
||
symbolic constants. Here we handle all cases when both operands
|
||
are constant. */
|
||
/* Handle difference of two symbolic constants,
|
||
for the sake of an initializer. */
|
||
if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
||
&& really_constant_p (TREE_OPERAND (exp, 0))
|
||
&& really_constant_p (TREE_OPERAND (exp, 1)))
|
||
{
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
NULL_RTX, &op0, &op1, modifier);
|
||
|
||
/* If the last operand is a CONST_INT, use plus_constant of
|
||
the negated constant. Else make the MINUS. */
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
|
||
else
|
||
return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
|
||
}
|
||
|
||
/* No sense saving up arithmetic to be done
|
||
if it's all in the wrong mode to form part of an address.
|
||
And force_operand won't know whether to sign-extend or
|
||
zero-extend. */
|
||
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
||
|| mode != ptr_mode)
|
||
goto binop;
|
||
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
subtarget, &op0, &op1, modifier);
|
||
|
||
/* Convert A - const to A + (-const). */
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
{
|
||
op1 = negate_rtx (mode, op1);
|
||
return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
|
||
}
|
||
|
||
goto binop2;
|
||
|
||
case MULT_EXPR:
|
||
/* If first operand is constant, swap them.
|
||
Thus the following special case checks need only
|
||
check the second operand. */
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
|
||
{
|
||
tree t1 = TREE_OPERAND (exp, 0);
|
||
TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
|
||
TREE_OPERAND (exp, 1) = t1;
|
||
}
|
||
|
||
/* Attempt to return something suitable for generating an
|
||
indexed address, for machines that support that. */
|
||
|
||
if (modifier == EXPAND_SUM && mode == ptr_mode
|
||
&& host_integerp (TREE_OPERAND (exp, 1), 0))
|
||
{
|
||
tree exp1 = TREE_OPERAND (exp, 1);
|
||
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
|
||
EXPAND_SUM);
|
||
|
||
if (!REG_P (op0))
|
||
op0 = force_operand (op0, NULL_RTX);
|
||
if (!REG_P (op0))
|
||
op0 = copy_to_mode_reg (mode, op0);
|
||
|
||
return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
|
||
gen_int_mode (tree_low_cst (exp1, 0),
|
||
TYPE_MODE (TREE_TYPE (exp1)))));
|
||
}
|
||
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
|
||
/* Check for multiplying things that have been extended
|
||
from a narrower type. If this machine supports multiplying
|
||
in that narrower type with a result in the desired type,
|
||
do it that way, and avoid the explicit type-conversion. */
|
||
|
||
subexp0 = TREE_OPERAND (exp, 0);
|
||
subexp1 = TREE_OPERAND (exp, 1);
|
||
/* First, check if we have a multiplication of one signed and one
|
||
unsigned operand. */
|
||
if (TREE_CODE (subexp0) == NOP_EXPR
|
||
&& TREE_CODE (subexp1) == NOP_EXPR
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
|
||
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
|
||
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
|
||
&& (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
|
||
!= TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
|
||
{
|
||
enum machine_mode innermode
|
||
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
|
||
this_optab = usmul_widen_optab;
|
||
if (mode == GET_MODE_WIDER_MODE (innermode))
|
||
{
|
||
if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
|
||
expand_operands (TREE_OPERAND (subexp0, 0),
|
||
TREE_OPERAND (subexp1, 0),
|
||
NULL_RTX, &op0, &op1, 0);
|
||
else
|
||
expand_operands (TREE_OPERAND (subexp0, 0),
|
||
TREE_OPERAND (subexp1, 0),
|
||
NULL_RTX, &op1, &op0, 0);
|
||
|
||
goto binop3;
|
||
}
|
||
}
|
||
}
|
||
/* Check for a multiplication with matching signedness. */
|
||
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
&& ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
||
&& int_fits_type_p (TREE_OPERAND (exp, 1),
|
||
TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
||
/* Don't use a widening multiply if a shift will do. */
|
||
&& ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
||
> HOST_BITS_PER_WIDE_INT)
|
||
|| exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
|
||
||
|
||
(TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
|
||
&& (TYPE_PRECISION (TREE_TYPE
|
||
(TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
|
||
== TYPE_PRECISION (TREE_TYPE
|
||
(TREE_OPERAND
|
||
(TREE_OPERAND (exp, 0), 0))))
|
||
/* If both operands are extended, they must either both
|
||
be zero-extended or both be sign-extended. */
|
||
&& (TYPE_UNSIGNED (TREE_TYPE
|
||
(TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
|
||
== TYPE_UNSIGNED (TREE_TYPE
|
||
(TREE_OPERAND
|
||
(TREE_OPERAND (exp, 0), 0)))))))
|
||
{
|
||
tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
|
||
enum machine_mode innermode = TYPE_MODE (op0type);
|
||
bool zextend_p = TYPE_UNSIGNED (op0type);
|
||
optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
|
||
this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
|
||
|
||
if (mode == GET_MODE_2XWIDER_MODE (innermode))
|
||
{
|
||
if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
||
expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
TREE_OPERAND (exp, 1),
|
||
NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
||
else
|
||
expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
||
TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
|
||
NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
||
goto binop3;
|
||
}
|
||
else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
||
&& innermode == word_mode)
|
||
{
|
||
rtx htem, hipart;
|
||
op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
|
||
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
||
op1 = convert_modes (innermode, mode,
|
||
expand_normal (TREE_OPERAND (exp, 1)),
|
||
unsignedp);
|
||
else
|
||
op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
|
||
temp = expand_binop (mode, other_optab, op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
hipart = gen_highpart (innermode, temp);
|
||
htem = expand_mult_highpart_adjust (innermode, hipart,
|
||
op0, op1, hipart,
|
||
zextend_p);
|
||
if (htem != hipart)
|
||
emit_move_insn (hipart, htem);
|
||
return REDUCE_BIT_FIELD (temp);
|
||
}
|
||
}
|
||
}
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
subtarget, &op0, &op1, 0);
|
||
return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
|
||
|
||
case TRUNC_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
/* Possible optimization: compute the dividend with EXPAND_SUM
|
||
then if the divisor is constant can optimize the case
|
||
where some terms of the dividend have coeffs divisible by it. */
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
subtarget, &op0, &op1, 0);
|
||
return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
|
||
|
||
case RDIV_EXPR:
|
||
goto binop;
|
||
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
subtarget, &op0, &op1, 0);
|
||
return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
|
||
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
gcc_unreachable (); /* Not used for C. */
|
||
|
||
case FIX_TRUNC_EXPR:
|
||
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
||
if (target == 0 || modifier == EXPAND_STACK_PARM)
|
||
target = gen_reg_rtx (mode);
|
||
expand_fix (target, op0, unsignedp);
|
||
return target;
|
||
|
||
case FLOAT_EXPR:
|
||
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
||
if (target == 0 || modifier == EXPAND_STACK_PARM)
|
||
target = gen_reg_rtx (mode);
|
||
/* expand_float can't figure out what to do if FROM has VOIDmode.
|
||
So give it the correct mode. With -O, cse will optimize this. */
|
||
if (GET_MODE (op0) == VOIDmode)
|
||
op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
|
||
op0);
|
||
expand_float (target, op0,
|
||
TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
||
return target;
|
||
|
||
case NEGATE_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
temp = expand_unop (mode,
|
||
optab_for_tree_code (NEGATE_EXPR, type),
|
||
op0, target, 0);
|
||
gcc_assert (temp);
|
||
return REDUCE_BIT_FIELD (temp);
|
||
|
||
case ABS_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
|
||
/* ABS_EXPR is not valid for complex arguments. */
|
||
gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
|
||
|
||
/* Unsigned abs is simply the operand. Testing here means we don't
|
||
risk generating incorrect code below. */
|
||
if (TYPE_UNSIGNED (type))
|
||
return op0;
|
||
|
||
return expand_abs (mode, op0, target, unsignedp,
|
||
safe_from_p (target, TREE_OPERAND (exp, 0), 1));
|
||
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
target = original_target;
|
||
if (target == 0
|
||
|| modifier == EXPAND_STACK_PARM
|
||
|| (MEM_P (target) && MEM_VOLATILE_P (target))
|
||
|| GET_MODE (target) != mode
|
||
|| (REG_P (target)
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
|
||
target = gen_reg_rtx (mode);
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
target, &op0, &op1, 0);
|
||
|
||
/* First try to do it with a special MIN or MAX instruction.
|
||
If that does not win, use a conditional jump to select the proper
|
||
value. */
|
||
this_optab = optab_for_tree_code (code, type);
|
||
temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
|
||
OPTAB_WIDEN);
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
/* At this point, a MEM target is no longer useful; we will get better
|
||
code without it. */
|
||
|
||
if (! REG_P (target))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* If op1 was placed in target, swap op0 and op1. */
|
||
if (target != op0 && target == op1)
|
||
{
|
||
temp = op0;
|
||
op0 = op1;
|
||
op1 = temp;
|
||
}
|
||
|
||
/* We generate better code and avoid problems with op1 mentioning
|
||
target by forcing op1 into a pseudo if it isn't a constant. */
|
||
if (! CONSTANT_P (op1))
|
||
op1 = force_reg (mode, op1);
|
||
|
||
{
|
||
enum rtx_code comparison_code;
|
||
rtx cmpop1 = op1;
|
||
|
||
if (code == MAX_EXPR)
|
||
comparison_code = unsignedp ? GEU : GE;
|
||
else
|
||
comparison_code = unsignedp ? LEU : LE;
|
||
|
||
/* Canonicalize to comparisons against 0. */
|
||
if (op1 == const1_rtx)
|
||
{
|
||
/* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
|
||
or (a != 0 ? a : 1) for unsigned.
|
||
For MIN we are safe converting (a <= 1 ? a : 1)
|
||
into (a <= 0 ? a : 1) */
|
||
cmpop1 = const0_rtx;
|
||
if (code == MAX_EXPR)
|
||
comparison_code = unsignedp ? NE : GT;
|
||
}
|
||
if (op1 == constm1_rtx && !unsignedp)
|
||
{
|
||
/* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
|
||
and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
|
||
cmpop1 = const0_rtx;
|
||
if (code == MIN_EXPR)
|
||
comparison_code = LT;
|
||
}
|
||
#ifdef HAVE_conditional_move
|
||
/* Use a conditional move if possible. */
|
||
if (can_conditionally_move_p (mode))
|
||
{
|
||
rtx insn;
|
||
|
||
/* ??? Same problem as in expmed.c: emit_conditional_move
|
||
forces a stack adjustment via compare_from_rtx, and we
|
||
lose the stack adjustment if the sequence we are about
|
||
to create is discarded. */
|
||
do_pending_stack_adjust ();
|
||
|
||
start_sequence ();
|
||
|
||
/* Try to emit the conditional move. */
|
||
insn = emit_conditional_move (target, comparison_code,
|
||
op0, cmpop1, mode,
|
||
op0, op1, mode,
|
||
unsignedp);
|
||
|
||
/* If we could do the conditional move, emit the sequence,
|
||
and return. */
|
||
if (insn)
|
||
{
|
||
rtx seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (seq);
|
||
return target;
|
||
}
|
||
|
||
/* Otherwise discard the sequence and fall back to code with
|
||
branches. */
|
||
end_sequence ();
|
||
}
|
||
#endif
|
||
if (target != op0)
|
||
emit_move_insn (target, op0);
|
||
|
||
temp = gen_label_rtx ();
|
||
do_compare_rtx_and_jump (target, cmpop1, comparison_code,
|
||
unsignedp, mode, NULL_RTX, NULL_RTX, temp);
|
||
}
|
||
emit_move_insn (target, op1);
|
||
emit_label (temp);
|
||
return target;
|
||
|
||
case BIT_NOT_EXPR:
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
|
||
gcc_assert (temp);
|
||
return temp;
|
||
|
||
/* ??? Can optimize bitwise operations with one arg constant.
|
||
Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
|
||
and (a bitwise1 b) bitwise2 b (etc)
|
||
but that is probably not worth while. */
|
||
|
||
/* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
|
||
boolean values when we want in all cases to compute both of them. In
|
||
general it is fastest to do TRUTH_AND_EXPR by computing both operands
|
||
as actual zero-or-1 values and then bitwise anding. In cases where
|
||
there cannot be any side effects, better code would be made by
|
||
treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
|
||
how to recognize those cases. */
|
||
|
||
case TRUTH_AND_EXPR:
|
||
code = BIT_AND_EXPR;
|
||
case BIT_AND_EXPR:
|
||
goto binop;
|
||
|
||
case TRUTH_OR_EXPR:
|
||
code = BIT_IOR_EXPR;
|
||
case BIT_IOR_EXPR:
|
||
goto binop;
|
||
|
||
case TRUTH_XOR_EXPR:
|
||
code = BIT_XOR_EXPR;
|
||
case BIT_XOR_EXPR:
|
||
goto binop;
|
||
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
||
subtarget = 0;
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
||
return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
|
||
unsignedp);
|
||
|
||
/* Could determine the answer when only additive constants differ. Also,
|
||
the addition of one can be handled by changing the condition. */
|
||
case LT_EXPR:
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
case GE_EXPR:
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case UNORDERED_EXPR:
|
||
case ORDERED_EXPR:
|
||
case UNLT_EXPR:
|
||
case UNLE_EXPR:
|
||
case UNGT_EXPR:
|
||
case UNGE_EXPR:
|
||
case UNEQ_EXPR:
|
||
case LTGT_EXPR:
|
||
temp = do_store_flag (exp,
|
||
modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
|
||
tmode != VOIDmode ? tmode : mode, 0);
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
/* For foo != 0, load foo, and if it is nonzero load 1 instead. */
|
||
if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
|
||
&& original_target
|
||
&& REG_P (original_target)
|
||
&& (GET_MODE (original_target)
|
||
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
{
|
||
temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
|
||
VOIDmode, 0);
|
||
|
||
/* If temp is constant, we can just compute the result. */
|
||
if (GET_CODE (temp) == CONST_INT)
|
||
{
|
||
if (INTVAL (temp) != 0)
|
||
emit_move_insn (target, const1_rtx);
|
||
else
|
||
emit_move_insn (target, const0_rtx);
|
||
|
||
return target;
|
||
}
|
||
|
||
if (temp != original_target)
|
||
{
|
||
enum machine_mode mode1 = GET_MODE (temp);
|
||
if (mode1 == VOIDmode)
|
||
mode1 = tmode != VOIDmode ? tmode : mode;
|
||
|
||
temp = copy_to_mode_reg (mode1, temp);
|
||
}
|
||
|
||
op1 = gen_label_rtx ();
|
||
emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
|
||
GET_MODE (temp), unsignedp, op1);
|
||
emit_move_insn (temp, const1_rtx);
|
||
emit_label (op1);
|
||
return temp;
|
||
}
|
||
|
||
/* If no set-flag instruction, must generate a conditional store
|
||
into a temporary variable. Drop through and handle this
|
||
like && and ||. */
|
||
|
||
if (! ignore
|
||
&& (target == 0
|
||
|| modifier == EXPAND_STACK_PARM
|
||
|| ! safe_from_p (target, exp, 1)
|
||
/* Make sure we don't have a hard reg (such as function's return
|
||
value) live across basic blocks, if not optimizing. */
|
||
|| (!optimize && REG_P (target)
|
||
&& REGNO (target) < FIRST_PSEUDO_REGISTER)))
|
||
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
||
|
||
if (target)
|
||
emit_move_insn (target, const0_rtx);
|
||
|
||
op1 = gen_label_rtx ();
|
||
jumpifnot (exp, op1);
|
||
|
||
if (target)
|
||
emit_move_insn (target, const1_rtx);
|
||
|
||
emit_label (op1);
|
||
return ignore ? const0_rtx : target;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
|
||
/* The parser is careful to generate TRUTH_NOT_EXPR
|
||
only with operands that are always zero or one. */
|
||
temp = expand_binop (mode, xor_optab, op0, const1_rtx,
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
gcc_assert (temp);
|
||
return temp;
|
||
|
||
case STATEMENT_LIST:
|
||
{
|
||
tree_stmt_iterator iter;
|
||
|
||
gcc_assert (ignore);
|
||
|
||
for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
|
||
expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
|
||
}
|
||
return const0_rtx;
|
||
|
||
case COND_EXPR:
|
||
/* A COND_EXPR with its type being VOID_TYPE represents a
|
||
conditional jump and is handled in
|
||
expand_gimple_cond_expr. */
|
||
gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
|
||
|
||
/* Note that COND_EXPRs whose type is a structure or union
|
||
are required to be constructed to contain assignments of
|
||
a temporary variable, so that we can evaluate them here
|
||
for side effect only. If type is void, we must do likewise. */
|
||
|
||
gcc_assert (!TREE_ADDRESSABLE (type)
|
||
&& !ignore
|
||
&& TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
|
||
&& TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
|
||
|
||
/* If we are not to produce a result, we have no target. Otherwise,
|
||
if a target was specified use it; it will not be used as an
|
||
intermediate target unless it is safe. If no target, use a
|
||
temporary. */
|
||
|
||
if (modifier != EXPAND_STACK_PARM
|
||
&& original_target
|
||
&& safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
|
||
&& GET_MODE (original_target) == mode
|
||
#ifdef HAVE_conditional_move
|
||
&& (! can_conditionally_move_p (mode)
|
||
|| REG_P (original_target))
|
||
#endif
|
||
&& !MEM_P (original_target))
|
||
temp = original_target;
|
||
else
|
||
temp = assign_temp (type, 0, 0, 1);
|
||
|
||
do_pending_stack_adjust ();
|
||
NO_DEFER_POP;
|
||
op0 = gen_label_rtx ();
|
||
op1 = gen_label_rtx ();
|
||
jumpifnot (TREE_OPERAND (exp, 0), op0);
|
||
store_expr (TREE_OPERAND (exp, 1), temp,
|
||
modifier == EXPAND_STACK_PARM);
|
||
|
||
emit_jump_insn (gen_jump (op1));
|
||
emit_barrier ();
|
||
emit_label (op0);
|
||
store_expr (TREE_OPERAND (exp, 2), temp,
|
||
modifier == EXPAND_STACK_PARM);
|
||
|
||
emit_label (op1);
|
||
OK_DEFER_POP;
|
||
return temp;
|
||
|
||
case VEC_COND_EXPR:
|
||
target = expand_vec_cond_expr (exp, target);
|
||
return target;
|
||
|
||
case MODIFY_EXPR:
|
||
{
|
||
tree lhs = TREE_OPERAND (exp, 0);
|
||
tree rhs = TREE_OPERAND (exp, 1);
|
||
|
||
gcc_assert (ignore);
|
||
|
||
/* Check for |= or &= of a bitfield of size one into another bitfield
|
||
of size 1. In this case, (unless we need the result of the
|
||
assignment) we can do this more efficiently with a
|
||
test followed by an assignment, if necessary.
|
||
|
||
??? At this point, we can't get a BIT_FIELD_REF here. But if
|
||
things change so we do, this code should be enhanced to
|
||
support it. */
|
||
if (TREE_CODE (lhs) == COMPONENT_REF
|
||
&& (TREE_CODE (rhs) == BIT_IOR_EXPR
|
||
|| TREE_CODE (rhs) == BIT_AND_EXPR)
|
||
&& TREE_OPERAND (rhs, 0) == lhs
|
||
&& TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
|
||
&& integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
|
||
&& integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
|
||
do_jump (TREE_OPERAND (rhs, 1),
|
||
value ? label : 0,
|
||
value ? 0 : label);
|
||
expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value));
|
||
do_pending_stack_adjust ();
|
||
emit_label (label);
|
||
return const0_rtx;
|
||
}
|
||
|
||
expand_assignment (lhs, rhs);
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
case RETURN_EXPR:
|
||
if (!TREE_OPERAND (exp, 0))
|
||
expand_null_return ();
|
||
else
|
||
expand_return (TREE_OPERAND (exp, 0));
|
||
return const0_rtx;
|
||
|
||
case ADDR_EXPR:
|
||
return expand_expr_addr_expr (exp, target, tmode, modifier);
|
||
|
||
case COMPLEX_EXPR:
|
||
/* Get the rtx code of the operands. */
|
||
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
||
op1 = expand_normal (TREE_OPERAND (exp, 1));
|
||
|
||
if (!target)
|
||
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
|
||
|
||
/* Move the real (op0) and imaginary (op1) parts to their location. */
|
||
write_complex_part (target, op0, false);
|
||
write_complex_part (target, op1, true);
|
||
|
||
return target;
|
||
|
||
case REALPART_EXPR:
|
||
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
||
return read_complex_part (op0, false);
|
||
|
||
case IMAGPART_EXPR:
|
||
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
||
return read_complex_part (op0, true);
|
||
|
||
case RESX_EXPR:
|
||
expand_resx_expr (exp);
|
||
return const0_rtx;
|
||
|
||
case TRY_CATCH_EXPR:
|
||
case CATCH_EXPR:
|
||
case EH_FILTER_EXPR:
|
||
case TRY_FINALLY_EXPR:
|
||
/* Lowered by tree-eh.c. */
|
||
gcc_unreachable ();
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
case CLEANUP_POINT_EXPR:
|
||
case TARGET_EXPR:
|
||
case CASE_LABEL_EXPR:
|
||
case VA_ARG_EXPR:
|
||
case BIND_EXPR:
|
||
case INIT_EXPR:
|
||
case CONJ_EXPR:
|
||
case COMPOUND_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case LOOP_EXPR:
|
||
case EXIT_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
/* Lowered by gimplify.c. */
|
||
gcc_unreachable ();
|
||
|
||
case EXC_PTR_EXPR:
|
||
return get_exception_pointer (cfun);
|
||
|
||
case FILTER_EXPR:
|
||
return get_exception_filter (cfun);
|
||
|
||
case FDESC_EXPR:
|
||
/* Function descriptors are not valid except for as
|
||
initialization constants, and should not be expanded. */
|
||
gcc_unreachable ();
|
||
|
||
case SWITCH_EXPR:
|
||
expand_case (exp);
|
||
return const0_rtx;
|
||
|
||
case LABEL_EXPR:
|
||
expand_label (TREE_OPERAND (exp, 0));
|
||
return const0_rtx;
|
||
|
||
case ASM_EXPR:
|
||
expand_asm_expr (exp);
|
||
return const0_rtx;
|
||
|
||
case WITH_SIZE_EXPR:
|
||
/* WITH_SIZE_EXPR expands to its first argument. The caller should
|
||
have pulled out the size to use in whatever context it needed. */
|
||
return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
|
||
modifier, alt_rtl);
|
||
|
||
case REALIGN_LOAD_EXPR:
|
||
{
|
||
tree oprnd0 = TREE_OPERAND (exp, 0);
|
||
tree oprnd1 = TREE_OPERAND (exp, 1);
|
||
tree oprnd2 = TREE_OPERAND (exp, 2);
|
||
rtx op2;
|
||
|
||
this_optab = optab_for_tree_code (code, type);
|
||
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
||
op2 = expand_normal (oprnd2);
|
||
temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
|
||
target, unsignedp);
|
||
gcc_assert (temp);
|
||
return temp;
|
||
}
|
||
|
||
case DOT_PROD_EXPR:
|
||
{
|
||
tree oprnd0 = TREE_OPERAND (exp, 0);
|
||
tree oprnd1 = TREE_OPERAND (exp, 1);
|
||
tree oprnd2 = TREE_OPERAND (exp, 2);
|
||
rtx op2;
|
||
|
||
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
||
op2 = expand_normal (oprnd2);
|
||
target = expand_widen_pattern_expr (exp, op0, op1, op2,
|
||
target, unsignedp);
|
||
return target;
|
||
}
|
||
|
||
case WIDEN_SUM_EXPR:
|
||
{
|
||
tree oprnd0 = TREE_OPERAND (exp, 0);
|
||
tree oprnd1 = TREE_OPERAND (exp, 1);
|
||
|
||
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
|
||
target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
|
||
target, unsignedp);
|
||
return target;
|
||
}
|
||
|
||
case REDUC_MAX_EXPR:
|
||
case REDUC_MIN_EXPR:
|
||
case REDUC_PLUS_EXPR:
|
||
{
|
||
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
||
this_optab = optab_for_tree_code (code, type);
|
||
temp = expand_unop (mode, this_optab, op0, target, unsignedp);
|
||
gcc_assert (temp);
|
||
return temp;
|
||
}
|
||
|
||
case VEC_LSHIFT_EXPR:
|
||
case VEC_RSHIFT_EXPR:
|
||
{
|
||
target = expand_vec_shift_expr (exp, target);
|
||
return target;
|
||
}
|
||
|
||
default:
|
||
return lang_hooks.expand_expr (exp, original_target, tmode,
|
||
modifier, alt_rtl);
|
||
}
|
||
|
||
/* Here to do an ordinary binary operator. */
|
||
binop:
|
||
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
subtarget, &op0, &op1, 0);
|
||
binop2:
|
||
this_optab = optab_for_tree_code (code, type);
|
||
binop3:
|
||
if (modifier == EXPAND_STACK_PARM)
|
||
target = 0;
|
||
temp = expand_binop (mode, this_optab, op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
gcc_assert (temp);
|
||
return REDUCE_BIT_FIELD (temp);
|
||
}
|
||
#undef REDUCE_BIT_FIELD
|
||
|
||
/* Subroutine of above: reduce EXP to the precision of TYPE (in the
|
||
signedness of TYPE), possibly returning the result in TARGET. */
|
||
static rtx
|
||
reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
|
||
{
|
||
HOST_WIDE_INT prec = TYPE_PRECISION (type);
|
||
if (target && GET_MODE (target) != GET_MODE (exp))
|
||
target = 0;
|
||
/* For constant values, reduce using build_int_cst_type. */
|
||
if (GET_CODE (exp) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT value = INTVAL (exp);
|
||
tree t = build_int_cst_type (type, value);
|
||
return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
else if (TYPE_UNSIGNED (type))
|
||
{
|
||
rtx mask;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
|
||
GET_MODE (exp));
|
||
else
|
||
mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
|
||
((unsigned HOST_WIDE_INT) 1
|
||
<< (prec - HOST_BITS_PER_WIDE_INT)) - 1,
|
||
GET_MODE (exp));
|
||
return expand_and (GET_MODE (exp), exp, mask, target);
|
||
}
|
||
else
|
||
{
|
||
tree count = build_int_cst (NULL_TREE,
|
||
GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
|
||
exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
|
||
return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
|
||
}
|
||
}
|
||
|
||
/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
|
||
when applied to the address of EXP produces an address known to be
|
||
aligned more than BIGGEST_ALIGNMENT. */
|
||
|
||
static int
|
||
is_aligning_offset (tree offset, tree exp)
|
||
{
|
||
/* Strip off any conversions. */
|
||
while (TREE_CODE (offset) == NON_LVALUE_EXPR
|
||
|| TREE_CODE (offset) == NOP_EXPR
|
||
|| TREE_CODE (offset) == CONVERT_EXPR)
|
||
offset = TREE_OPERAND (offset, 0);
|
||
|
||
/* We must now have a BIT_AND_EXPR with a constant that is one less than
|
||
power of 2 and which is larger than BIGGEST_ALIGNMENT. */
|
||
if (TREE_CODE (offset) != BIT_AND_EXPR
|
||
|| !host_integerp (TREE_OPERAND (offset, 1), 1)
|
||
|| compare_tree_int (TREE_OPERAND (offset, 1),
|
||
BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
|
||
|| !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
|
||
return 0;
|
||
|
||
/* Look at the first operand of BIT_AND_EXPR and strip any conversion.
|
||
It must be NEGATE_EXPR. Then strip any more conversions. */
|
||
offset = TREE_OPERAND (offset, 0);
|
||
while (TREE_CODE (offset) == NON_LVALUE_EXPR
|
||
|| TREE_CODE (offset) == NOP_EXPR
|
||
|| TREE_CODE (offset) == CONVERT_EXPR)
|
||
offset = TREE_OPERAND (offset, 0);
|
||
|
||
if (TREE_CODE (offset) != NEGATE_EXPR)
|
||
return 0;
|
||
|
||
offset = TREE_OPERAND (offset, 0);
|
||
while (TREE_CODE (offset) == NON_LVALUE_EXPR
|
||
|| TREE_CODE (offset) == NOP_EXPR
|
||
|| TREE_CODE (offset) == CONVERT_EXPR)
|
||
offset = TREE_OPERAND (offset, 0);
|
||
|
||
/* This must now be the address of EXP. */
|
||
return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
|
||
}
|
||
|
||
/* Return the tree node if an ARG corresponds to a string constant or zero
|
||
if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
|
||
in bytes within the string that ARG is accessing. The type of the
|
||
offset will be `sizetype'. */
|
||
|
||
tree
|
||
string_constant (tree arg, tree *ptr_offset)
|
||
{
|
||
tree array, offset;
|
||
STRIP_NOPS (arg);
|
||
|
||
if (TREE_CODE (arg) == ADDR_EXPR)
|
||
{
|
||
if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
|
||
{
|
||
*ptr_offset = size_zero_node;
|
||
return TREE_OPERAND (arg, 0);
|
||
}
|
||
else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
|
||
{
|
||
array = TREE_OPERAND (arg, 0);
|
||
offset = size_zero_node;
|
||
}
|
||
else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
|
||
{
|
||
array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
|
||
offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
|
||
if (TREE_CODE (array) != STRING_CST
|
||
&& TREE_CODE (array) != VAR_DECL)
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
else if (TREE_CODE (arg) == PLUS_EXPR)
|
||
{
|
||
tree arg0 = TREE_OPERAND (arg, 0);
|
||
tree arg1 = TREE_OPERAND (arg, 1);
|
||
|
||
STRIP_NOPS (arg0);
|
||
STRIP_NOPS (arg1);
|
||
|
||
if (TREE_CODE (arg0) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
|
||
|| TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
|
||
{
|
||
array = TREE_OPERAND (arg0, 0);
|
||
offset = arg1;
|
||
}
|
||
else if (TREE_CODE (arg1) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
|
||
|| TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
|
||
{
|
||
array = TREE_OPERAND (arg1, 0);
|
||
offset = arg0;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
if (TREE_CODE (array) == STRING_CST)
|
||
{
|
||
*ptr_offset = fold_convert (sizetype, offset);
|
||
return array;
|
||
}
|
||
else if (TREE_CODE (array) == VAR_DECL)
|
||
{
|
||
int length;
|
||
|
||
/* Variables initialized to string literals can be handled too. */
|
||
if (DECL_INITIAL (array) == NULL_TREE
|
||
|| TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
|
||
return 0;
|
||
|
||
/* If they are read-only, non-volatile and bind locally. */
|
||
if (! TREE_READONLY (array)
|
||
|| TREE_SIDE_EFFECTS (array)
|
||
|| ! targetm.binds_local_p (array))
|
||
return 0;
|
||
|
||
/* Avoid const char foo[4] = "abcde"; */
|
||
if (DECL_SIZE_UNIT (array) == NULL_TREE
|
||
|| TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
|
||
|| (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
|
||
|| compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
|
||
return 0;
|
||
|
||
/* If variable is bigger than the string literal, OFFSET must be constant
|
||
and inside of the bounds of the string literal. */
|
||
offset = fold_convert (sizetype, offset);
|
||
if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
|
||
&& (! host_integerp (offset, 1)
|
||
|| compare_tree_int (offset, length) >= 0))
|
||
return 0;
|
||
|
||
*ptr_offset = offset;
|
||
return DECL_INITIAL (array);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Generate code to calculate EXP using a store-flag instruction
|
||
and return an rtx for the result. EXP is either a comparison
|
||
or a TRUTH_NOT_EXPR whose operand is a comparison.
|
||
|
||
If TARGET is nonzero, store the result there if convenient.
|
||
|
||
If ONLY_CHEAP is nonzero, only do this if it is likely to be very
|
||
cheap.
|
||
|
||
Return zero if there is no suitable set-flag instruction
|
||
available on this machine.
|
||
|
||
Once expand_expr has been called on the arguments of the comparison,
|
||
we are committed to doing the store flag, since it is not safe to
|
||
re-evaluate the expression. We emit the store-flag insn by calling
|
||
emit_store_flag, but only expand the arguments if we have a reason
|
||
to believe that emit_store_flag will be successful. If we think that
|
||
it will, but it isn't, we have to simulate the store-flag with a
|
||
set/jump/set sequence. */
|
||
|
||
static rtx
|
||
do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
|
||
{
|
||
enum rtx_code code;
|
||
tree arg0, arg1, type;
|
||
tree tem;
|
||
enum machine_mode operand_mode;
|
||
int invert = 0;
|
||
int unsignedp;
|
||
rtx op0, op1;
|
||
enum insn_code icode;
|
||
rtx subtarget = target;
|
||
rtx result, label;
|
||
|
||
/* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
|
||
result at the end. We can't simply invert the test since it would
|
||
have already been inverted if it were valid. This case occurs for
|
||
some floating-point comparisons. */
|
||
|
||
if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
|
||
invert = 1, exp = TREE_OPERAND (exp, 0);
|
||
|
||
arg0 = TREE_OPERAND (exp, 0);
|
||
arg1 = TREE_OPERAND (exp, 1);
|
||
|
||
/* Don't crash if the comparison was erroneous. */
|
||
if (arg0 == error_mark_node || arg1 == error_mark_node)
|
||
return const0_rtx;
|
||
|
||
type = TREE_TYPE (arg0);
|
||
operand_mode = TYPE_MODE (type);
|
||
unsignedp = TYPE_UNSIGNED (type);
|
||
|
||
/* We won't bother with BLKmode store-flag operations because it would mean
|
||
passing a lot of information to emit_store_flag. */
|
||
if (operand_mode == BLKmode)
|
||
return 0;
|
||
|
||
/* We won't bother with store-flag operations involving function pointers
|
||
when function pointers must be canonicalized before comparisons. */
|
||
#ifdef HAVE_canonicalize_funcptr_for_compare
|
||
if (HAVE_canonicalize_funcptr_for_compare
|
||
&& ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
== FUNCTION_TYPE))
|
||
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
|
||
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
||
== FUNCTION_TYPE))))
|
||
return 0;
|
||
#endif
|
||
|
||
STRIP_NOPS (arg0);
|
||
STRIP_NOPS (arg1);
|
||
|
||
/* Get the rtx comparison code to use. We know that EXP is a comparison
|
||
operation of some type. Some comparisons against 1 and -1 can be
|
||
converted to comparisons with zero. Do so here so that the tests
|
||
below will be aware that we have a comparison with zero. These
|
||
tests will not catch constants in the first operand, but constants
|
||
are rarely passed as the first operand. */
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case EQ_EXPR:
|
||
code = EQ;
|
||
break;
|
||
case NE_EXPR:
|
||
code = NE;
|
||
break;
|
||
case LT_EXPR:
|
||
if (integer_onep (arg1))
|
||
arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
|
||
else
|
||
code = unsignedp ? LTU : LT;
|
||
break;
|
||
case LE_EXPR:
|
||
if (! unsignedp && integer_all_onesp (arg1))
|
||
arg1 = integer_zero_node, code = LT;
|
||
else
|
||
code = unsignedp ? LEU : LE;
|
||
break;
|
||
case GT_EXPR:
|
||
if (! unsignedp && integer_all_onesp (arg1))
|
||
arg1 = integer_zero_node, code = GE;
|
||
else
|
||
code = unsignedp ? GTU : GT;
|
||
break;
|
||
case GE_EXPR:
|
||
if (integer_onep (arg1))
|
||
arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
|
||
else
|
||
code = unsignedp ? GEU : GE;
|
||
break;
|
||
|
||
case UNORDERED_EXPR:
|
||
code = UNORDERED;
|
||
break;
|
||
case ORDERED_EXPR:
|
||
code = ORDERED;
|
||
break;
|
||
case UNLT_EXPR:
|
||
code = UNLT;
|
||
break;
|
||
case UNLE_EXPR:
|
||
code = UNLE;
|
||
break;
|
||
case UNGT_EXPR:
|
||
code = UNGT;
|
||
break;
|
||
case UNGE_EXPR:
|
||
code = UNGE;
|
||
break;
|
||
case UNEQ_EXPR:
|
||
code = UNEQ;
|
||
break;
|
||
case LTGT_EXPR:
|
||
code = LTGT;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Put a constant second. */
|
||
if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
|
||
{
|
||
tem = arg0; arg0 = arg1; arg1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* If this is an equality or inequality test of a single bit, we can
|
||
do this by shifting the bit being tested to the low-order bit and
|
||
masking the result with the constant 1. If the condition was EQ,
|
||
we xor it with 1. This does not require an scc insn and is faster
|
||
than an scc insn even if we have it.
|
||
|
||
The code to make this transformation was moved into fold_single_bit_test,
|
||
so we just call into the folder and expand its result. */
|
||
|
||
if ((code == NE || code == EQ)
|
||
&& TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
|
||
&& integer_pow2p (TREE_OPERAND (arg0, 1)))
|
||
{
|
||
tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
|
||
return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
|
||
arg0, arg1, type),
|
||
target, VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
|
||
/* Now see if we are likely to be able to do this. Return if not. */
|
||
if (! can_compare_p (code, operand_mode, ccp_store_flag))
|
||
return 0;
|
||
|
||
icode = setcc_gen_code[(int) code];
|
||
if (icode == CODE_FOR_nothing
|
||
|| (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
|
||
{
|
||
/* We can only do this if it is one of the special cases that
|
||
can be handled without an scc insn. */
|
||
if ((code == LT && integer_zerop (arg1))
|
||
|| (! only_cheap && code == GE && integer_zerop (arg1)))
|
||
;
|
||
else if (! only_cheap && (code == NE || code == EQ)
|
||
&& TREE_CODE (type) != REAL_TYPE
|
||
&& ((abs_optab->handlers[(int) operand_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (ffs_optab->handlers[(int) operand_mode].insn_code
|
||
!= CODE_FOR_nothing)))
|
||
;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
if (! get_subtarget (target)
|
||
|| GET_MODE (subtarget) != operand_mode)
|
||
subtarget = 0;
|
||
|
||
expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
|
||
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
result = emit_store_flag (target, code, op0, op1,
|
||
operand_mode, unsignedp, 1);
|
||
|
||
if (result)
|
||
{
|
||
if (invert)
|
||
result = expand_binop (mode, xor_optab, result, const1_rtx,
|
||
result, 0, OPTAB_LIB_WIDEN);
|
||
return result;
|
||
}
|
||
|
||
/* If this failed, we have to do this with set/compare/jump/set code. */
|
||
if (!REG_P (target)
|
||
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
|
||
target = gen_reg_rtx (GET_MODE (target));
|
||
|
||
emit_move_insn (target, invert ? const0_rtx : const1_rtx);
|
||
result = compare_from_rtx (op0, op1, code, unsignedp,
|
||
operand_mode, NULL_RTX);
|
||
if (GET_CODE (result) == CONST_INT)
|
||
return (((result == const0_rtx && ! invert)
|
||
|| (result != const0_rtx && invert))
|
||
? const0_rtx : const1_rtx);
|
||
|
||
/* The code of RESULT may not match CODE if compare_from_rtx
|
||
decided to swap its operands and reverse the original code.
|
||
|
||
We know that compare_from_rtx returns either a CONST_INT or
|
||
a new comparison code, so it is safe to just extract the
|
||
code from RESULT. */
|
||
code = GET_CODE (result);
|
||
|
||
label = gen_label_rtx ();
|
||
gcc_assert (bcc_gen_fctn[(int) code]);
|
||
|
||
emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
|
||
emit_move_insn (target, invert ? const1_rtx : const0_rtx);
|
||
emit_label (label);
|
||
|
||
return target;
|
||
}
|
||
|
||
|
||
/* Stubs in case we haven't got a casesi insn. */
|
||
#ifndef HAVE_casesi
|
||
# define HAVE_casesi 0
|
||
# define gen_casesi(a, b, c, d, e) (0)
|
||
# define CODE_FOR_casesi CODE_FOR_nothing
|
||
#endif
|
||
|
||
/* If the machine does not have a case insn that compares the bounds,
|
||
this means extra overhead for dispatch tables, which raises the
|
||
threshold for using them. */
|
||
#ifndef CASE_VALUES_THRESHOLD
|
||
#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
|
||
#endif /* CASE_VALUES_THRESHOLD */
|
||
|
||
unsigned int
|
||
case_values_threshold (void)
|
||
{
|
||
return CASE_VALUES_THRESHOLD;
|
||
}
|
||
|
||
/* Attempt to generate a casesi instruction. Returns 1 if successful,
|
||
0 otherwise (i.e. if there is no casesi instruction). */
|
||
int
|
||
try_casesi (tree index_type, tree index_expr, tree minval, tree range,
|
||
rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
|
||
{
|
||
enum machine_mode index_mode = SImode;
|
||
int index_bits = GET_MODE_BITSIZE (index_mode);
|
||
rtx op1, op2, index;
|
||
enum machine_mode op_mode;
|
||
|
||
if (! HAVE_casesi)
|
||
return 0;
|
||
|
||
/* Convert the index to SImode. */
|
||
if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
|
||
{
|
||
enum machine_mode omode = TYPE_MODE (index_type);
|
||
rtx rangertx = expand_normal (range);
|
||
|
||
/* We must handle the endpoints in the original mode. */
|
||
index_expr = build2 (MINUS_EXPR, index_type,
|
||
index_expr, minval);
|
||
minval = integer_zero_node;
|
||
index = expand_normal (index_expr);
|
||
emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
|
||
omode, 1, default_label);
|
||
/* Now we can safely truncate. */
|
||
index = convert_to_mode (index_mode, index, 0);
|
||
}
|
||
else
|
||
{
|
||
if (TYPE_MODE (index_type) != index_mode)
|
||
{
|
||
index_type = lang_hooks.types.type_for_size (index_bits, 0);
|
||
index_expr = fold_convert (index_type, index_expr);
|
||
}
|
||
|
||
index = expand_normal (index_expr);
|
||
}
|
||
|
||
do_pending_stack_adjust ();
|
||
|
||
op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
|
||
if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
|
||
(index, op_mode))
|
||
index = copy_to_mode_reg (op_mode, index);
|
||
|
||
op1 = expand_normal (minval);
|
||
|
||
op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
|
||
op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
|
||
op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
|
||
if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
|
||
(op1, op_mode))
|
||
op1 = copy_to_mode_reg (op_mode, op1);
|
||
|
||
op2 = expand_normal (range);
|
||
|
||
op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
|
||
op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
|
||
op2, TYPE_UNSIGNED (TREE_TYPE (range)));
|
||
if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
|
||
(op2, op_mode))
|
||
op2 = copy_to_mode_reg (op_mode, op2);
|
||
|
||
emit_jump_insn (gen_casesi (index, op1, op2,
|
||
table_label, default_label));
|
||
return 1;
|
||
}
|
||
|
||
/* Attempt to generate a tablejump instruction; same concept. */
|
||
#ifndef HAVE_tablejump
|
||
#define HAVE_tablejump 0
|
||
#define gen_tablejump(x, y) (0)
|
||
#endif
|
||
|
||
/* Subroutine of the next function.
|
||
|
||
INDEX is the value being switched on, with the lowest value
|
||
in the table already subtracted.
|
||
MODE is its expected mode (needed if INDEX is constant).
|
||
RANGE is the length of the jump table.
|
||
TABLE_LABEL is a CODE_LABEL rtx for the table itself.
|
||
|
||
DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
|
||
index value is out of range. */
|
||
|
||
static void
|
||
do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
|
||
rtx default_label)
|
||
{
|
||
rtx temp, vector;
|
||
|
||
if (INTVAL (range) > cfun->max_jumptable_ents)
|
||
cfun->max_jumptable_ents = INTVAL (range);
|
||
|
||
/* Do an unsigned comparison (in the proper mode) between the index
|
||
expression and the value which represents the length of the range.
|
||
Since we just finished subtracting the lower bound of the range
|
||
from the index expression, this comparison allows us to simultaneously
|
||
check that the original index expression value is both greater than
|
||
or equal to the minimum value of the range and less than or equal to
|
||
the maximum value of the range. */
|
||
|
||
emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
|
||
default_label);
|
||
|
||
/* If index is in range, it must fit in Pmode.
|
||
Convert to Pmode so we can index with it. */
|
||
if (mode != Pmode)
|
||
index = convert_to_mode (Pmode, index, 1);
|
||
|
||
/* Don't let a MEM slip through, because then INDEX that comes
|
||
out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
|
||
and break_out_memory_refs will go to work on it and mess it up. */
|
||
#ifdef PIC_CASE_VECTOR_ADDRESS
|
||
if (flag_pic && !REG_P (index))
|
||
index = copy_to_mode_reg (Pmode, index);
|
||
#endif
|
||
|
||
/* If flag_force_addr were to affect this address
|
||
it could interfere with the tricky assumptions made
|
||
about addresses that contain label-refs,
|
||
which may be valid only very near the tablejump itself. */
|
||
/* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
|
||
GET_MODE_SIZE, because this indicates how large insns are. The other
|
||
uses should all be Pmode, because they are addresses. This code
|
||
could fail if addresses and insns are not the same size. */
|
||
index = gen_rtx_PLUS (Pmode,
|
||
gen_rtx_MULT (Pmode, index,
|
||
GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
|
||
gen_rtx_LABEL_REF (Pmode, table_label));
|
||
#ifdef PIC_CASE_VECTOR_ADDRESS
|
||
if (flag_pic)
|
||
index = PIC_CASE_VECTOR_ADDRESS (index);
|
||
else
|
||
#endif
|
||
index = memory_address_noforce (CASE_VECTOR_MODE, index);
|
||
temp = gen_reg_rtx (CASE_VECTOR_MODE);
|
||
vector = gen_const_mem (CASE_VECTOR_MODE, index);
|
||
convert_move (temp, vector, 0);
|
||
|
||
emit_jump_insn (gen_tablejump (temp, table_label));
|
||
|
||
/* If we are generating PIC code or if the table is PC-relative, the
|
||
table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
|
||
if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
|
||
emit_barrier ();
|
||
}
|
||
|
||
int
|
||
try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
|
||
rtx table_label, rtx default_label)
|
||
{
|
||
rtx index;
|
||
|
||
if (! HAVE_tablejump)
|
||
return 0;
|
||
|
||
index_expr = fold_build2 (MINUS_EXPR, index_type,
|
||
fold_convert (index_type, index_expr),
|
||
fold_convert (index_type, minval));
|
||
index = expand_normal (index_expr);
|
||
do_pending_stack_adjust ();
|
||
|
||
do_tablejump (index, TYPE_MODE (index_type),
|
||
convert_modes (TYPE_MODE (index_type),
|
||
TYPE_MODE (TREE_TYPE (range)),
|
||
expand_normal (range),
|
||
TYPE_UNSIGNED (TREE_TYPE (range))),
|
||
table_label, default_label);
|
||
return 1;
|
||
}
|
||
|
||
/* Nonzero if the mode is a valid vector mode for this architecture.
|
||
This returns nonzero even if there is no hardware support for the
|
||
vector mode, but we can emulate with narrower modes. */
|
||
|
||
int
|
||
vector_mode_valid_p (enum machine_mode mode)
|
||
{
|
||
enum mode_class class = GET_MODE_CLASS (mode);
|
||
enum machine_mode innermode;
|
||
|
||
/* Doh! What's going on? */
|
||
if (class != MODE_VECTOR_INT
|
||
&& class != MODE_VECTOR_FLOAT)
|
||
return 0;
|
||
|
||
/* Hardware support. Woo hoo! */
|
||
if (targetm.vector_mode_supported_p (mode))
|
||
return 1;
|
||
|
||
innermode = GET_MODE_INNER (mode);
|
||
|
||
/* We should probably return 1 if requesting V4DI and we have no DI,
|
||
but we have V2DI, but this is probably very unlikely. */
|
||
|
||
/* If we have support for the inner mode, we can safely emulate it.
|
||
We may not have V2DI, but me can emulate with a pair of DIs. */
|
||
return targetm.scalar_mode_supported_p (innermode);
|
||
}
|
||
|
||
/* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
|
||
static rtx
|
||
const_vector_from_tree (tree exp)
|
||
{
|
||
rtvec v;
|
||
int units, i;
|
||
tree link, elt;
|
||
enum machine_mode inner, mode;
|
||
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
if (initializer_zerop (exp))
|
||
return CONST0_RTX (mode);
|
||
|
||
units = GET_MODE_NUNITS (mode);
|
||
inner = GET_MODE_INNER (mode);
|
||
|
||
v = rtvec_alloc (units);
|
||
|
||
link = TREE_VECTOR_CST_ELTS (exp);
|
||
for (i = 0; link; link = TREE_CHAIN (link), ++i)
|
||
{
|
||
elt = TREE_VALUE (link);
|
||
|
||
if (TREE_CODE (elt) == REAL_CST)
|
||
RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
|
||
inner);
|
||
else
|
||
RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
|
||
TREE_INT_CST_HIGH (elt),
|
||
inner);
|
||
}
|
||
|
||
/* Initialize remaining elements to 0. */
|
||
for (; i < units; ++i)
|
||
RTVEC_ELT (v, i) = CONST0_RTX (inner);
|
||
|
||
return gen_rtx_CONST_VECTOR (mode, v);
|
||
}
|
||
#include "gt-expr.h"
|