freebsd-dev/sys/cam/cam_xpt.c
2008-08-01 15:13:56 +00:00

7332 lines
192 KiB
C

/*-
* Implementation of the Common Access Method Transport (XPT) layer.
*
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/md5.h>
#include <sys/interrupt.h>
#include <sys/sbuf.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/kthread.h>
#ifdef PC98
#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
#endif
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pass.h>
#include <machine/stdarg.h> /* for xpt_print below */
#include "opt_cam.h"
/* Datastructures internal to the xpt layer */
MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
/* Object for defering XPT actions to a taskqueue */
struct xpt_task {
struct task task;
void *data1;
uintptr_t data2;
};
/*
* Definition of an async handler callback block. These are used to add
* SIMs and peripherals to the async callback lists.
*/
struct async_node {
SLIST_ENTRY(async_node) links;
u_int32_t event_enable; /* Async Event enables */
void (*callback)(void *arg, u_int32_t code,
struct cam_path *path, void *args);
void *callback_arg;
};
SLIST_HEAD(async_list, async_node);
SLIST_HEAD(periph_list, cam_periph);
/*
* This is the maximum number of high powered commands (e.g. start unit)
* that can be outstanding at a particular time.
*/
#ifndef CAM_MAX_HIGHPOWER
#define CAM_MAX_HIGHPOWER 4
#endif
/*
* Structure for queueing a device in a run queue.
* There is one run queue for allocating new ccbs,
* and another for sending ccbs to the controller.
*/
struct cam_ed_qinfo {
cam_pinfo pinfo;
struct cam_ed *device;
};
/*
* The CAM EDT (Existing Device Table) contains the device information for
* all devices for all busses in the system. The table contains a
* cam_ed structure for each device on the bus.
*/
struct cam_ed {
TAILQ_ENTRY(cam_ed) links;
struct cam_ed_qinfo alloc_ccb_entry;
struct cam_ed_qinfo send_ccb_entry;
struct cam_et *target;
struct cam_sim *sim;
lun_id_t lun_id;
struct camq drvq; /*
* Queue of type drivers wanting to do
* work on this device.
*/
struct cam_ccbq ccbq; /* Queue of pending ccbs */
struct async_list asyncs; /* Async callback info for this B/T/L */
struct periph_list periphs; /* All attached devices */
u_int generation; /* Generation number */
struct cam_periph *owner; /* Peripheral driver's ownership tag */
struct xpt_quirk_entry *quirk; /* Oddities about this device */
/* Storage for the inquiry data */
cam_proto protocol;
u_int protocol_version;
cam_xport transport;
u_int transport_version;
struct scsi_inquiry_data inq_data;
u_int8_t inq_flags; /*
* Current settings for inquiry flags.
* This allows us to override settings
* like disconnection and tagged
* queuing for a device.
*/
u_int8_t queue_flags; /* Queue flags from the control page */
u_int8_t serial_num_len;
u_int8_t *serial_num;
u_int32_t qfrozen_cnt;
u_int32_t flags;
#define CAM_DEV_UNCONFIGURED 0x01
#define CAM_DEV_REL_TIMEOUT_PENDING 0x02
#define CAM_DEV_REL_ON_COMPLETE 0x04
#define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
#define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
#define CAM_DEV_TAG_AFTER_COUNT 0x20
#define CAM_DEV_INQUIRY_DATA_VALID 0x40
#define CAM_DEV_IN_DV 0x80
#define CAM_DEV_DV_HIT_BOTTOM 0x100
u_int32_t tag_delay_count;
#define CAM_TAG_DELAY_COUNT 5
u_int32_t tag_saved_openings;
u_int32_t refcount;
struct callout callout;
};
/*
* Each target is represented by an ET (Existing Target). These
* entries are created when a target is successfully probed with an
* identify, and removed when a device fails to respond after a number
* of retries, or a bus rescan finds the device missing.
*/
struct cam_et {
TAILQ_HEAD(, cam_ed) ed_entries;
TAILQ_ENTRY(cam_et) links;
struct cam_eb *bus;
target_id_t target_id;
u_int32_t refcount;
u_int generation;
struct timeval last_reset;
};
/*
* Each bus is represented by an EB (Existing Bus). These entries
* are created by calls to xpt_bus_register and deleted by calls to
* xpt_bus_deregister.
*/
struct cam_eb {
TAILQ_HEAD(, cam_et) et_entries;
TAILQ_ENTRY(cam_eb) links;
path_id_t path_id;
struct cam_sim *sim;
struct timeval last_reset;
u_int32_t flags;
#define CAM_EB_RUNQ_SCHEDULED 0x01
u_int32_t refcount;
u_int generation;
device_t parent_dev;
};
struct cam_path {
struct cam_periph *periph;
struct cam_eb *bus;
struct cam_et *target;
struct cam_ed *device;
};
struct xpt_quirk_entry {
struct scsi_inquiry_pattern inq_pat;
u_int8_t quirks;
#define CAM_QUIRK_NOLUNS 0x01
#define CAM_QUIRK_NOSERIAL 0x02
#define CAM_QUIRK_HILUNS 0x04
#define CAM_QUIRK_NOHILUNS 0x08
u_int mintags;
u_int maxtags;
};
static int cam_srch_hi = 0;
TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
sysctl_cam_search_luns, "I",
"allow search above LUN 7 for SCSI3 and greater devices");
#define CAM_SCSI2_MAXLUN 8
/*
* If we're not quirked to search <= the first 8 luns
* and we are either quirked to search above lun 8,
* or we're > SCSI-2 and we've enabled hilun searching,
* or we're > SCSI-2 and the last lun was a success,
* we can look for luns above lun 8.
*/
#define CAN_SRCH_HI_SPARSE(dv) \
(((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
&& ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
|| (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
#define CAN_SRCH_HI_DENSE(dv) \
(((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
&& ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
|| (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
typedef enum {
XPT_FLAG_OPEN = 0x01
} xpt_flags;
struct xpt_softc {
xpt_flags flags;
u_int32_t xpt_generation;
/* number of high powered commands that can go through right now */
STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
int num_highpower;
/* queue for handling async rescan requests. */
TAILQ_HEAD(, ccb_hdr) ccb_scanq;
/* Registered busses */
TAILQ_HEAD(,cam_eb) xpt_busses;
u_int bus_generation;
struct intr_config_hook *xpt_config_hook;
struct mtx xpt_topo_lock;
struct mtx xpt_lock;
};
static const char quantum[] = "QUANTUM";
static const char sony[] = "SONY";
static const char west_digital[] = "WDIGTL";
static const char samsung[] = "SAMSUNG";
static const char seagate[] = "SEAGATE";
static const char microp[] = "MICROP";
static struct xpt_quirk_entry xpt_quirk_table[] =
{
{
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Unfortunately, the Quantum Atlas III has the same
* problem as the Atlas II drives above.
* Reported by: "Johan Granlund" <johan@granlund.nu>
*
* For future reference, the drive with the problem was:
* QUANTUM QM39100TD-SW N1B0
*
* It's possible that Quantum will fix the problem in later
* firmware revisions. If that happens, the quirk entry
* will need to be made specific to the firmware revisions
* with the problem.
*
*/
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/*
* 18 Gig Atlas III, same problem as the 9G version.
* Reported by: Andre Albsmeier
* <andre.albsmeier@mchp.siemens.de>
*
* For future reference, the drive with the problem was:
* QUANTUM QM318000TD-S N491
*/
/* Reports QUEUE FULL for temporary resource shortages */
{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
/*quirks*/0, /*mintags*/24, /*maxtags*/32
},
{
/*
* Broken tagged queuing drive
* Reported by: Bret Ford <bford@uop.cs.uop.edu>
* and: Martin Renters <martin@tdc.on.ca>
*/
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
/*
* The Seagate Medalist Pro drives have very poor write
* performance with anything more than 2 tags.
*
* Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
* Drive: <SEAGATE ST36530N 1444>
*
* Reported by: Jeremy Lea <reg@shale.csir.co.za>
* Drive: <SEAGATE ST34520W 1281>
*
* No one has actually reported that the 9G version
* (ST39140*) of the Medalist Pro has the same problem, but
* we're assuming that it does because the 4G and 6.5G
* versions of the drive are broken.
*/
{
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
/*quirks*/0, /*mintags*/2, /*maxtags*/2
},
{
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
/*quirks*/0, /*mintags*/2, /*maxtags*/2
},
{
{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
/*quirks*/0, /*mintags*/2, /*maxtags*/2
},
{
/*
* Slow when tagged queueing is enabled. Write performance
* steadily drops off with more and more concurrent
* transactions. Best sequential write performance with
* tagged queueing turned off and write caching turned on.
*
* PR: kern/10398
* Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
* Drive: DCAS-34330 w/ "S65A" firmware.
*
* The drive with the problem had the "S65A" firmware
* revision, and has also been reported (by Stephen J.
* Roznowski <sjr@home.net>) for a drive with the "S61A"
* firmware revision.
*
* Although no one has reported problems with the 2 gig
* version of the DCAS drive, the assumption is that it
* has the same problems as the 4 gig version. Therefore
* this quirk entries disables tagged queueing for all
* DCAS drives.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* Broken tagged queuing drive */
{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/* This does not support other than LUN 0 */
{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
},
{
/*
* Broken tagged queuing drive.
* Submitted by:
* NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
* in PR kern/9535
*/
{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Slow when tagged queueing is enabled. (1.5MB/sec versus
* 8MB/sec.)
* Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
* Best performance with these drives is achieved with
* tagged queueing turned off, and write caching turned on.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Slow when tagged queueing is enabled. (1.5MB/sec versus
* 8MB/sec.)
* Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
* Best performance with these drives is achieved with
* tagged queueing turned off, and write caching turned on.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
/*quirks*/0, /*mintags*/0, /*maxtags*/0
},
{
/*
* Doesn't handle queue full condition correctly,
* so we need to limit maxtags to what the device
* can handle instead of determining this automatically.
*/
{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
/*quirks*/0, /*mintags*/2, /*maxtags*/32
},
{
/* Really only one LUN */
{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* I can't believe we need a quirk for DPT volumes. */
{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
CAM_QUIRK_NOLUNS,
/*mintags*/0, /*maxtags*/255
},
{
/*
* Many Sony CDROM drives don't like multi-LUN probing.
*/
{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* This drive doesn't like multiple LUN probing.
* Submitted by: Parag Patel <parag@cgt.com>
*/
{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* The 8200 doesn't like multi-lun probing, and probably
* don't like serial number requests either.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
"EXB-8200*", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* Let's try the same as above, but for a drive that says
* it's an IPL-6860 but is actually an EXB 8200.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
"IPL-6860*", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* These Hitachi drives don't like multi-lun probing.
* The PR submitter has a DK319H, but says that the Linux
* kernel has a similar work-around for the DK312 and DK314,
* so all DK31* drives are quirked here.
* PR: misc/18793
* Submitted by: Paul Haddad <paul@pth.com>
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
},
{
/*
* The Hitachi CJ series with J8A8 firmware apparantly has
* problems with tagged commands.
* PR: 23536
* Reported by: amagai@nue.org
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* These are the large storage arrays.
* Submitted by: William Carrel <william.carrel@infospace.com>
*/
{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
CAM_QUIRK_HILUNS, 2, 1024
},
{
/*
* This old revision of the TDC3600 is also SCSI-1, and
* hangs upon serial number probing.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
" TDC 3600", "U07:"
},
CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
},
{
/*
* Would repond to all LUNs if asked for.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
"CP150", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/*
* Would repond to all LUNs if asked for.
*/
{
T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
"96X2*", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* Submitted by: Matthew Dodd <winter@jurai.net> */
{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* Submitted by: Matthew Dodd <winter@jurai.net> */
{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* TeraSolutions special settings for TRC-22 RAID */
{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
/*quirks*/0, /*mintags*/55, /*maxtags*/255
},
{
/* Veritas Storage Appliance */
{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
},
{
/*
* Would respond to all LUNs. Device type and removable
* flag are jumper-selectable.
*/
{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
"Tahiti 1", "*"
},
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* EasyRAID E5A aka. areca ARC-6010 */
{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
},
{
{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
},
{
/* Default tagged queuing parameters for all devices */
{
T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
/*vendor*/"*", /*product*/"*", /*revision*/"*"
},
/*quirks*/0, /*mintags*/2, /*maxtags*/255
},
};
static const int xpt_quirk_table_size =
sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
typedef enum {
DM_RET_COPY = 0x01,
DM_RET_FLAG_MASK = 0x0f,
DM_RET_NONE = 0x00,
DM_RET_STOP = 0x10,
DM_RET_DESCEND = 0x20,
DM_RET_ERROR = 0x30,
DM_RET_ACTION_MASK = 0xf0
} dev_match_ret;
typedef enum {
XPT_DEPTH_BUS,
XPT_DEPTH_TARGET,
XPT_DEPTH_DEVICE,
XPT_DEPTH_PERIPH
} xpt_traverse_depth;
struct xpt_traverse_config {
xpt_traverse_depth depth;
void *tr_func;
void *tr_arg;
};
typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
/* Transport layer configuration information */
static struct xpt_softc xsoftc;
/* Queues for our software interrupt handler */
typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
static cam_simq_t cam_simq;
static struct mtx cam_simq_lock;
/* Pointers to software interrupt handlers */
static void *cambio_ih;
struct cam_periph *xpt_periph;
static periph_init_t xpt_periph_init;
static periph_init_t probe_periph_init;
static struct periph_driver xpt_driver =
{
xpt_periph_init, "xpt",
TAILQ_HEAD_INITIALIZER(xpt_driver.units)
};
static struct periph_driver probe_driver =
{
probe_periph_init, "probe",
TAILQ_HEAD_INITIALIZER(probe_driver.units)
};
PERIPHDRIVER_DECLARE(xpt, xpt_driver);
PERIPHDRIVER_DECLARE(probe, probe_driver);
static d_open_t xptopen;
static d_close_t xptclose;
static d_ioctl_t xptioctl;
static struct cdevsw xpt_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = xptopen,
.d_close = xptclose,
.d_ioctl = xptioctl,
.d_name = "xpt",
};
static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
static void dead_sim_poll(struct cam_sim *sim);
/* Dummy SIM that is used when the real one has gone. */
static struct cam_sim cam_dead_sim = {
.sim_action = dead_sim_action,
.sim_poll = dead_sim_poll,
.sim_name = "dead_sim",
};
#define SIM_DEAD(sim) ((sim) == &cam_dead_sim)
/* Storage for debugging datastructures */
#ifdef CAMDEBUG
struct cam_path *cam_dpath;
u_int32_t cam_dflags;
u_int32_t cam_debug_delay;
#endif
#if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
#error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
#endif
/*
* In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
* enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
* CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
*/
#if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
|| defined(CAM_DEBUG_LUN)
#ifdef CAMDEBUG
#if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
|| !defined(CAM_DEBUG_LUN)
#error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
and CAM_DEBUG_LUN"
#endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
#else /* !CAMDEBUG */
#error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
#endif /* CAMDEBUG */
#endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
/* Our boot-time initialization hook */
static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
static moduledata_t cam_moduledata = {
"cam",
cam_module_event_handler,
NULL
};
static int xpt_init(void *);
DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
MODULE_VERSION(cam, 1);
static cam_status xpt_compile_path(struct cam_path *new_path,
struct cam_periph *perph,
path_id_t path_id,
target_id_t target_id,
lun_id_t lun_id);
static void xpt_release_path(struct cam_path *path);
static void xpt_async_bcast(struct async_list *async_head,
u_int32_t async_code,
struct cam_path *path,
void *async_arg);
static void xpt_dev_async(u_int32_t async_code,
struct cam_eb *bus,
struct cam_et *target,
struct cam_ed *device,
void *async_arg);
static path_id_t xptnextfreepathid(void);
static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
static union ccb *xpt_get_ccb(struct cam_ed *device);
static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
u_int32_t new_priority);
static void xpt_run_dev_allocq(struct cam_eb *bus);
static void xpt_run_dev_sendq(struct cam_eb *bus);
static timeout_t xpt_release_devq_timeout;
static void xpt_release_simq_timeout(void *arg) __unused;
static void xpt_release_bus(struct cam_eb *bus);
static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
int run_queue);
static struct cam_et*
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
static struct cam_ed*
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
lun_id_t lun_id);
static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
struct cam_ed *device);
static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
static struct cam_eb*
xpt_find_bus(path_id_t path_id);
static struct cam_et*
xpt_find_target(struct cam_eb *bus, target_id_t target_id);
static struct cam_ed*
xpt_find_device(struct cam_et *target, lun_id_t lun_id);
static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
static void xpt_scan_lun(struct cam_periph *periph,
struct cam_path *path, cam_flags flags,
union ccb *ccb);
static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
static xpt_busfunc_t xptconfigbuscountfunc;
static xpt_busfunc_t xptconfigfunc;
static void xpt_config(void *arg);
static xpt_devicefunc_t xptpassannouncefunc;
static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
static void xptpoll(struct cam_sim *sim);
static void camisr(void *);
static void camisr_runqueue(void *);
static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
u_int num_patterns, struct cam_eb *bus);
static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
u_int num_patterns,
struct cam_ed *device);
static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
u_int num_patterns,
struct cam_periph *periph);
static xpt_busfunc_t xptedtbusfunc;
static xpt_targetfunc_t xptedttargetfunc;
static xpt_devicefunc_t xptedtdevicefunc;
static xpt_periphfunc_t xptedtperiphfunc;
static xpt_pdrvfunc_t xptplistpdrvfunc;
static xpt_periphfunc_t xptplistperiphfunc;
static int xptedtmatch(struct ccb_dev_match *cdm);
static int xptperiphlistmatch(struct ccb_dev_match *cdm);
static int xptbustraverse(struct cam_eb *start_bus,
xpt_busfunc_t *tr_func, void *arg);
static int xpttargettraverse(struct cam_eb *bus,
struct cam_et *start_target,
xpt_targetfunc_t *tr_func, void *arg);
static int xptdevicetraverse(struct cam_et *target,
struct cam_ed *start_device,
xpt_devicefunc_t *tr_func, void *arg);
static int xptperiphtraverse(struct cam_ed *device,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg);
static int xptpdrvtraverse(struct periph_driver **start_pdrv,
xpt_pdrvfunc_t *tr_func, void *arg);
static int xptpdperiphtraverse(struct periph_driver **pdrv,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func,
void *arg);
static xpt_busfunc_t xptdefbusfunc;
static xpt_targetfunc_t xptdeftargetfunc;
static xpt_devicefunc_t xptdefdevicefunc;
static xpt_periphfunc_t xptdefperiphfunc;
static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
void *arg);
static xpt_devicefunc_t xptsetasyncfunc;
static xpt_busfunc_t xptsetasyncbusfunc;
static cam_status xptregister(struct cam_periph *periph,
void *arg);
static cam_status proberegister(struct cam_periph *periph,
void *arg);
static void probeschedule(struct cam_periph *probe_periph);
static void probestart(struct cam_periph *periph, union ccb *start_ccb);
static void proberequestdefaultnegotiation(struct cam_periph *periph);
static int proberequestbackoff(struct cam_periph *periph,
struct cam_ed *device);
static void probedone(struct cam_periph *periph, union ccb *done_ccb);
static void probecleanup(struct cam_periph *periph);
static void xpt_find_quirk(struct cam_ed *device);
static void xpt_devise_transport(struct cam_path *path);
static void xpt_set_transfer_settings(struct ccb_trans_settings *cts,
struct cam_ed *device,
int async_update);
static void xpt_toggle_tags(struct cam_path *path);
static void xpt_start_tags(struct cam_path *path);
static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
struct cam_ed *dev);
static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
struct cam_ed *dev);
static __inline int periph_is_queued(struct cam_periph *periph);
static __inline int device_is_alloc_queued(struct cam_ed *device);
static __inline int device_is_send_queued(struct cam_ed *device);
static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
static __inline int
xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
{
int retval;
if (dev->ccbq.devq_openings > 0) {
if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
cam_ccbq_resize(&dev->ccbq,
dev->ccbq.dev_openings
+ dev->ccbq.dev_active);
dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
}
/*
* The priority of a device waiting for CCB resources
* is that of the the highest priority peripheral driver
* enqueued.
*/
retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
&dev->alloc_ccb_entry.pinfo,
CAMQ_GET_HEAD(&dev->drvq)->priority);
} else {
retval = 0;
}
return (retval);
}
static __inline int
xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
{
int retval;
if (dev->ccbq.dev_openings > 0) {
/*
* The priority of a device waiting for controller
* resources is that of the the highest priority CCB
* enqueued.
*/
retval =
xpt_schedule_dev(&bus->sim->devq->send_queue,
&dev->send_ccb_entry.pinfo,
CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
} else {
retval = 0;
}
return (retval);
}
static __inline int
periph_is_queued(struct cam_periph *periph)
{
return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
}
static __inline int
device_is_alloc_queued(struct cam_ed *device)
{
return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
}
static __inline int
device_is_send_queued(struct cam_ed *device)
{
return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
}
static __inline int
dev_allocq_is_runnable(struct cam_devq *devq)
{
/*
* Have work to do.
* Have space to do more work.
* Allowed to do work.
*/
return ((devq->alloc_queue.qfrozen_cnt == 0)
&& (devq->alloc_queue.entries > 0)
&& (devq->alloc_openings > 0));
}
static void
xpt_periph_init()
{
make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
}
static void
probe_periph_init()
{
}
static void
xptdone(struct cam_periph *periph, union ccb *done_ccb)
{
/* Caller will release the CCB */
wakeup(&done_ccb->ccb_h.cbfcnp);
}
static int
xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
{
/*
* Only allow read-write access.
*/
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
return(EPERM);
/*
* We don't allow nonblocking access.
*/
if ((flags & O_NONBLOCK) != 0) {
printf("%s: can't do nonblocking access\n", devtoname(dev));
return(ENODEV);
}
/* Mark ourselves open */
mtx_lock(&xsoftc.xpt_lock);
xsoftc.flags |= XPT_FLAG_OPEN;
mtx_unlock(&xsoftc.xpt_lock);
return(0);
}
static int
xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
{
/* Mark ourselves closed */
mtx_lock(&xsoftc.xpt_lock);
xsoftc.flags &= ~XPT_FLAG_OPEN;
mtx_unlock(&xsoftc.xpt_lock);
return(0);
}
/*
* Don't automatically grab the xpt softc lock here even though this is going
* through the xpt device. The xpt device is really just a back door for
* accessing other devices and SIMs, so the right thing to do is to grab
* the appropriate SIM lock once the bus/SIM is located.
*/
static int
xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
int error;
error = 0;
switch(cmd) {
/*
* For the transport layer CAMIOCOMMAND ioctl, we really only want
* to accept CCB types that don't quite make sense to send through a
* passthrough driver. XPT_PATH_INQ is an exception to this, as stated
* in the CAM spec.
*/
case CAMIOCOMMAND: {
union ccb *ccb;
union ccb *inccb;
struct cam_eb *bus;
inccb = (union ccb *)addr;
bus = xpt_find_bus(inccb->ccb_h.path_id);
if (bus == NULL) {
error = EINVAL;
break;
}
switch(inccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
case XPT_RESET_BUS:
if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
|| (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
error = EINVAL;
break;
}
/* FALLTHROUGH */
case XPT_PATH_INQ:
case XPT_ENG_INQ:
case XPT_SCAN_LUN:
ccb = xpt_alloc_ccb();
CAM_SIM_LOCK(bus->sim);
/*
* Create a path using the bus, target, and lun the
* user passed in.
*/
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
inccb->ccb_h.path_id,
inccb->ccb_h.target_id,
inccb->ccb_h.target_lun) !=
CAM_REQ_CMP){
error = EINVAL;
CAM_SIM_UNLOCK(bus->sim);
xpt_free_ccb(ccb);
break;
}
/* Ensure all of our fields are correct */
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
inccb->ccb_h.pinfo.priority);
xpt_merge_ccb(ccb, inccb);
ccb->ccb_h.cbfcnp = xptdone;
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
bcopy(ccb, inccb, sizeof(union ccb));
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
CAM_SIM_UNLOCK(bus->sim);
break;
case XPT_DEBUG: {
union ccb ccb;
/*
* This is an immediate CCB, so it's okay to
* allocate it on the stack.
*/
CAM_SIM_LOCK(bus->sim);
/*
* Create a path using the bus, target, and lun the
* user passed in.
*/
if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
inccb->ccb_h.path_id,
inccb->ccb_h.target_id,
inccb->ccb_h.target_lun) !=
CAM_REQ_CMP){
error = EINVAL;
CAM_SIM_UNLOCK(bus->sim);
break;
}
/* Ensure all of our fields are correct */
xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
inccb->ccb_h.pinfo.priority);
xpt_merge_ccb(&ccb, inccb);
ccb.ccb_h.cbfcnp = xptdone;
xpt_action(&ccb);
CAM_SIM_UNLOCK(bus->sim);
bcopy(&ccb, inccb, sizeof(union ccb));
xpt_free_path(ccb.ccb_h.path);
break;
}
case XPT_DEV_MATCH: {
struct cam_periph_map_info mapinfo;
struct cam_path *old_path;
/*
* We can't deal with physical addresses for this
* type of transaction.
*/
if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
error = EINVAL;
break;
}
/*
* Save this in case the caller had it set to
* something in particular.
*/
old_path = inccb->ccb_h.path;
/*
* We really don't need a path for the matching
* code. The path is needed because of the
* debugging statements in xpt_action(). They
* assume that the CCB has a valid path.
*/
inccb->ccb_h.path = xpt_periph->path;
bzero(&mapinfo, sizeof(mapinfo));
/*
* Map the pattern and match buffers into kernel
* virtual address space.
*/
error = cam_periph_mapmem(inccb, &mapinfo);
if (error) {
inccb->ccb_h.path = old_path;
break;
}
/*
* This is an immediate CCB, we can send it on directly.
*/
xpt_action(inccb);
/*
* Map the buffers back into user space.
*/
cam_periph_unmapmem(inccb, &mapinfo);
inccb->ccb_h.path = old_path;
error = 0;
break;
}
default:
error = ENOTSUP;
break;
}
xpt_release_bus(bus);
break;
}
/*
* This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
* with the periphal driver name and unit name filled in. The other
* fields don't really matter as input. The passthrough driver name
* ("pass"), and unit number are passed back in the ccb. The current
* device generation number, and the index into the device peripheral
* driver list, and the status are also passed back. Note that
* since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
* we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
* (or rather should be) impossible for the device peripheral driver
* list to change since we look at the whole thing in one pass, and
* we do it with lock protection.
*
*/
case CAMGETPASSTHRU: {
union ccb *ccb;
struct cam_periph *periph;
struct periph_driver **p_drv;
char *name;
u_int unit;
u_int cur_generation;
int base_periph_found;
int splbreaknum;
ccb = (union ccb *)addr;
unit = ccb->cgdl.unit_number;
name = ccb->cgdl.periph_name;
/*
* Every 100 devices, we want to drop our lock protection to
* give the software interrupt handler a chance to run.
* Most systems won't run into this check, but this should
* avoid starvation in the software interrupt handler in
* large systems.
*/
splbreaknum = 100;
ccb = (union ccb *)addr;
base_periph_found = 0;
/*
* Sanity check -- make sure we don't get a null peripheral
* driver name.
*/
if (*ccb->cgdl.periph_name == '\0') {
error = EINVAL;
break;
}
/* Keep the list from changing while we traverse it */
mtx_lock(&xsoftc.xpt_topo_lock);
ptstartover:
cur_generation = xsoftc.xpt_generation;
/* first find our driver in the list of drivers */
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
if (strcmp((*p_drv)->driver_name, name) == 0)
break;
if (*p_drv == NULL) {
mtx_unlock(&xsoftc.xpt_topo_lock);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
*ccb->cgdl.periph_name = '\0';
ccb->cgdl.unit_number = 0;
error = ENOENT;
break;
}
/*
* Run through every peripheral instance of this driver
* and check to see whether it matches the unit passed
* in by the user. If it does, get out of the loops and
* find the passthrough driver associated with that
* peripheral driver.
*/
for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
periph = TAILQ_NEXT(periph, unit_links)) {
if (periph->unit_number == unit) {
break;
} else if (--splbreaknum == 0) {
mtx_unlock(&xsoftc.xpt_topo_lock);
mtx_lock(&xsoftc.xpt_topo_lock);
splbreaknum = 100;
if (cur_generation != xsoftc.xpt_generation)
goto ptstartover;
}
}
/*
* If we found the peripheral driver that the user passed
* in, go through all of the peripheral drivers for that
* particular device and look for a passthrough driver.
*/
if (periph != NULL) {
struct cam_ed *device;
int i;
base_periph_found = 1;
device = periph->path->device;
for (i = 0, periph = SLIST_FIRST(&device->periphs);
periph != NULL;
periph = SLIST_NEXT(periph, periph_links), i++) {
/*
* Check to see whether we have a
* passthrough device or not.
*/
if (strcmp(periph->periph_name, "pass") == 0) {
/*
* Fill in the getdevlist fields.
*/
strcpy(ccb->cgdl.periph_name,
periph->periph_name);
ccb->cgdl.unit_number =
periph->unit_number;
if (SLIST_NEXT(periph, periph_links))
ccb->cgdl.status =
CAM_GDEVLIST_MORE_DEVS;
else
ccb->cgdl.status =
CAM_GDEVLIST_LAST_DEVICE;
ccb->cgdl.generation =
device->generation;
ccb->cgdl.index = i;
/*
* Fill in some CCB header fields
* that the user may want.
*/
ccb->ccb_h.path_id =
periph->path->bus->path_id;
ccb->ccb_h.target_id =
periph->path->target->target_id;
ccb->ccb_h.target_lun =
periph->path->device->lun_id;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
}
}
/*
* If the periph is null here, one of two things has
* happened. The first possibility is that we couldn't
* find the unit number of the particular peripheral driver
* that the user is asking about. e.g. the user asks for
* the passthrough driver for "da11". We find the list of
* "da" peripherals all right, but there is no unit 11.
* The other possibility is that we went through the list
* of peripheral drivers attached to the device structure,
* but didn't find one with the name "pass". Either way,
* we return ENOENT, since we couldn't find something.
*/
if (periph == NULL) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
*ccb->cgdl.periph_name = '\0';
ccb->cgdl.unit_number = 0;
error = ENOENT;
/*
* It is unfortunate that this is even necessary,
* but there are many, many clueless users out there.
* If this is true, the user is looking for the
* passthrough driver, but doesn't have one in his
* kernel.
*/
if (base_periph_found == 1) {
printf("xptioctl: pass driver is not in the "
"kernel\n");
printf("xptioctl: put \"device pass\" in "
"your kernel config file\n");
}
}
mtx_unlock(&xsoftc.xpt_topo_lock);
break;
}
default:
error = ENOTTY;
break;
}
return(error);
}
static int
cam_module_event_handler(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
if ((error = xpt_init(NULL)) != 0)
return (error);
break;
case MOD_UNLOAD:
return EBUSY;
default:
return EOPNOTSUPP;
}
return 0;
}
/* thread to handle bus rescans */
static void
xpt_scanner_thread(void *dummy)
{
cam_isrq_t queue;
union ccb *ccb;
struct cam_sim *sim;
for (;;) {
/*
* Wait for a rescan request to come in. When it does, splice
* it onto a queue from local storage so that the xpt lock
* doesn't need to be held while the requests are being
* processed.
*/
xpt_lock_buses();
msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
"ccb_scanq", 0);
TAILQ_INIT(&queue);
TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
xpt_unlock_buses();
while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
sim = ccb->ccb_h.path->bus->sim;
CAM_SIM_LOCK(sim);
ccb->ccb_h.func_code = XPT_SCAN_BUS;
ccb->ccb_h.cbfcnp = xptdone;
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
CAM_SIM_UNLOCK(sim);
}
}
}
void
xpt_rescan(union ccb *ccb)
{
struct ccb_hdr *hdr;
/*
* Don't make duplicate entries for the same paths.
*/
xpt_lock_buses();
TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
xpt_unlock_buses();
xpt_print(ccb->ccb_h.path, "rescan already queued\n");
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
return;
}
}
TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
wakeup(&xsoftc.ccb_scanq);
xpt_unlock_buses();
}
/* Functions accessed by the peripheral drivers */
static int
xpt_init(void *dummy)
{
struct cam_sim *xpt_sim;
struct cam_path *path;
struct cam_devq *devq;
cam_status status;
TAILQ_INIT(&xsoftc.xpt_busses);
TAILQ_INIT(&cam_simq);
TAILQ_INIT(&xsoftc.ccb_scanq);
STAILQ_INIT(&xsoftc.highpowerq);
xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
/*
* The xpt layer is, itself, the equivelent of a SIM.
* Allow 16 ccbs in the ccb pool for it. This should
* give decent parallelism when we probe busses and
* perform other XPT functions.
*/
devq = cam_simq_alloc(16);
xpt_sim = cam_sim_alloc(xptaction,
xptpoll,
"xpt",
/*softc*/NULL,
/*unit*/0,
/*mtx*/&xsoftc.xpt_lock,
/*max_dev_transactions*/0,
/*max_tagged_dev_transactions*/0,
devq);
if (xpt_sim == NULL)
return (ENOMEM);
xpt_sim->max_ccbs = 16;
mtx_lock(&xsoftc.xpt_lock);
if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
printf("xpt_init: xpt_bus_register failed with status %#x,"
" failing attach\n", status);
return (EINVAL);
}
/*
* Looking at the XPT from the SIM layer, the XPT is
* the equivelent of a peripheral driver. Allocate
* a peripheral driver entry for us.
*/
if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
printf("xpt_init: xpt_create_path failed with status %#x,"
" failing attach\n", status);
return (EINVAL);
}
cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
path, NULL, 0, xpt_sim);
xpt_free_path(path);
mtx_unlock(&xsoftc.xpt_lock);
/*
* Register a callback for when interrupts are enabled.
*/
xsoftc.xpt_config_hook =
(struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
M_CAMXPT, M_NOWAIT | M_ZERO);
if (xsoftc.xpt_config_hook == NULL) {
printf("xpt_init: Cannot malloc config hook "
"- failing attach\n");
return (ENOMEM);
}
xsoftc.xpt_config_hook->ich_func = xpt_config;
if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
free (xsoftc.xpt_config_hook, M_CAMXPT);
printf("xpt_init: config_intrhook_establish failed "
"- failing attach\n");
}
/* fire up rescan thread */
if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
printf("xpt_init: failed to create rescan thread\n");
}
/* Install our software interrupt handlers */
swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
return (0);
}
static cam_status
xptregister(struct cam_periph *periph, void *arg)
{
struct cam_sim *xpt_sim;
if (periph == NULL) {
printf("xptregister: periph was NULL!!\n");
return(CAM_REQ_CMP_ERR);
}
xpt_sim = (struct cam_sim *)arg;
xpt_sim->softc = periph;
xpt_periph = periph;
periph->softc = NULL;
return(CAM_REQ_CMP);
}
int32_t
xpt_add_periph(struct cam_periph *periph)
{
struct cam_ed *device;
int32_t status;
struct periph_list *periph_head;
mtx_assert(periph->sim->mtx, MA_OWNED);
device = periph->path->device;
periph_head = &device->periphs;
status = CAM_REQ_CMP;
if (device != NULL) {
/*
* Make room for this peripheral
* so it will fit in the queue
* when it's scheduled to run
*/
status = camq_resize(&device->drvq,
device->drvq.array_size + 1);
device->generation++;
SLIST_INSERT_HEAD(periph_head, periph, periph_links);
}
mtx_lock(&xsoftc.xpt_topo_lock);
xsoftc.xpt_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
return (status);
}
void
xpt_remove_periph(struct cam_periph *periph)
{
struct cam_ed *device;
mtx_assert(periph->sim->mtx, MA_OWNED);
device = periph->path->device;
if (device != NULL) {
struct periph_list *periph_head;
periph_head = &device->periphs;
/* Release the slot for this peripheral */
camq_resize(&device->drvq, device->drvq.array_size - 1);
device->generation++;
SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
}
mtx_lock(&xsoftc.xpt_topo_lock);
xsoftc.xpt_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
}
void
xpt_announce_periph(struct cam_periph *periph, char *announce_string)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cts;
struct cam_path *path;
u_int speed;
u_int freq;
u_int mb;
mtx_assert(periph->sim->mtx, MA_OWNED);
path = periph->path;
/*
* To ensure that this is printed in one piece,
* mask out CAM interrupts.
*/
printf("%s%d at %s%d bus %d target %d lun %d\n",
periph->periph_name, periph->unit_number,
path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id,
path->target->target_id,
path->device->lun_id);
printf("%s%d: ", periph->periph_name, periph->unit_number);
scsi_print_inquiry(&path->device->inq_data);
if (bootverbose && path->device->serial_num_len > 0) {
/* Don't wrap the screen - print only the first 60 chars */
printf("%s%d: Serial Number %.60s\n", periph->periph_name,
periph->unit_number, path->device->serial_num);
}
xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb*)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
return;
}
/* Ask the SIM for its base transfer speed */
xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
speed = cpi.base_transfer_speed;
freq = 0;
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
struct ccb_trans_settings_spi *spi;
spi = &cts.xport_specific.spi;
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
&& spi->sync_offset != 0) {
freq = scsi_calc_syncsrate(spi->sync_period);
speed = freq;
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
speed *= (0x01 << spi->bus_width);
}
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
if (fc->valid & CTS_FC_VALID_SPEED) {
speed = fc->bitrate;
}
}
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
if (sas->valid & CTS_SAS_VALID_SPEED) {
speed = sas->bitrate;
}
}
mb = speed / 1000;
if (mb > 0)
printf("%s%d: %d.%03dMB/s transfers",
periph->periph_name, periph->unit_number,
mb, speed % 1000);
else
printf("%s%d: %dKB/s transfers", periph->periph_name,
periph->unit_number, speed);
/* Report additional information about SPI connections */
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
struct ccb_trans_settings_spi *spi;
spi = &cts.xport_specific.spi;
if (freq != 0) {
printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
freq % 1000,
(spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
? " DT" : "",
spi->sync_offset);
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
&& spi->bus_width > 0) {
if (freq != 0) {
printf(", ");
} else {
printf(" (");
}
printf("%dbit)", 8 * (0x01 << spi->bus_width));
} else if (freq != 0) {
printf(")");
}
}
if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
struct ccb_trans_settings_fc *fc;
fc = &cts.xport_specific.fc;
if (fc->valid & CTS_FC_VALID_WWNN)
printf(" WWNN 0x%llx", (long long) fc->wwnn);
if (fc->valid & CTS_FC_VALID_WWPN)
printf(" WWPN 0x%llx", (long long) fc->wwpn);
if (fc->valid & CTS_FC_VALID_PORT)
printf(" PortID 0x%x", fc->port);
}
if (path->device->inq_flags & SID_CmdQue
|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
printf("\n%s%d: Command Queueing Enabled",
periph->periph_name, periph->unit_number);
}
printf("\n");
/*
* We only want to print the caller's announce string if they've
* passed one in..
*/
if (announce_string != NULL)
printf("%s%d: %s\n", periph->periph_name,
periph->unit_number, announce_string);
}
static dev_match_ret
xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_eb *bus)
{
dev_match_ret retval;
int i;
retval = DM_RET_NONE;
/*
* If we aren't given something to match against, that's an error.
*/
if (bus == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this bus matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_DESCEND | DM_RET_COPY);
for (i = 0; i < num_patterns; i++) {
struct bus_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a bus node, we
* aren't interested. However, we do indicate to the
* calling routine that we should continue descending the
* tree, since the user wants to match against lower-level
* EDT elements.
*/
if (patterns[i].type != DEV_MATCH_BUS) {
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_DESCEND;
continue;
}
cur_pattern = &patterns[i].pattern.bus_pattern;
/*
* If they want to match any bus node, we give them any
* device node.
*/
if (cur_pattern->flags == BUS_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* If we've already decided on an action, go ahead
* and return.
*/
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == BUS_MATCH_NONE)
continue;
if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
&& (cur_pattern->path_id != bus->path_id))
continue;
if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
&& (cur_pattern->bus_id != bus->sim->bus_id))
continue;
if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
&& (cur_pattern->unit_number != bus->sim->unit_number))
continue;
if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
&& (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
DEV_IDLEN) != 0))
continue;
/*
* If we get to this point, the user definitely wants
* information on this bus. So tell the caller to copy the
* data out.
*/
retval |= DM_RET_COPY;
/*
* If the return action has been set to descend, then we
* know that we've already seen a non-bus matching
* expression, therefore we need to further descend the tree.
* This won't change by continuing around the loop, so we
* go ahead and return. If we haven't seen a non-bus
* matching expression, we keep going around the loop until
* we exhaust the matching expressions. We'll set the stop
* flag once we fall out of the loop.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
return(retval);
}
/*
* If the return action hasn't been set to descend yet, that means
* we haven't seen anything other than bus matching patterns. So
* tell the caller to stop descending the tree -- the user doesn't
* want to match against lower level tree elements.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_STOP;
return(retval);
}
static dev_match_ret
xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_ed *device)
{
dev_match_ret retval;
int i;
retval = DM_RET_NONE;
/*
* If we aren't given something to match against, that's an error.
*/
if (device == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this device matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_DESCEND | DM_RET_COPY);
for (i = 0; i < num_patterns; i++) {
struct device_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a device node, we
* aren't interested.
*/
if (patterns[i].type != DEV_MATCH_DEVICE) {
if ((patterns[i].type == DEV_MATCH_PERIPH)
&& ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
retval |= DM_RET_DESCEND;
continue;
}
cur_pattern = &patterns[i].pattern.device_pattern;
/*
* If they want to match any device node, we give them any
* device node.
*/
if (cur_pattern->flags == DEV_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* If we've already decided on an action, go ahead
* and return.
*/
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == DEV_MATCH_NONE)
continue;
if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
&& (cur_pattern->path_id != device->target->bus->path_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
&& (cur_pattern->target_id != device->target->target_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
&& (cur_pattern->target_lun != device->lun_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
&& (cam_quirkmatch((caddr_t)&device->inq_data,
(caddr_t)&cur_pattern->inq_pat,
1, sizeof(cur_pattern->inq_pat),
scsi_static_inquiry_match) == NULL))
continue;
/*
* If we get to this point, the user definitely wants
* information on this device. So tell the caller to copy
* the data out.
*/
retval |= DM_RET_COPY;
/*
* If the return action has been set to descend, then we
* know that we've already seen a peripheral matching
* expression, therefore we need to further descend the tree.
* This won't change by continuing around the loop, so we
* go ahead and return. If we haven't seen a peripheral
* matching expression, we keep going around the loop until
* we exhaust the matching expressions. We'll set the stop
* flag once we fall out of the loop.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
return(retval);
}
/*
* If the return action hasn't been set to descend yet, that means
* we haven't seen any peripheral matching patterns. So tell the
* caller to stop descending the tree -- the user doesn't want to
* match against lower level tree elements.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_STOP;
return(retval);
}
/*
* Match a single peripheral against any number of match patterns.
*/
static dev_match_ret
xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_periph *periph)
{
dev_match_ret retval;
int i;
/*
* If we aren't given something to match against, that's an error.
*/
if (periph == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this peripheral matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_STOP | DM_RET_COPY);
/*
* There aren't any nodes below a peripheral node, so there's no
* reason to descend the tree any further.
*/
retval = DM_RET_STOP;
for (i = 0; i < num_patterns; i++) {
struct periph_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a peripheral, we
* aren't interested.
*/
if (patterns[i].type != DEV_MATCH_PERIPH)
continue;
cur_pattern = &patterns[i].pattern.periph_pattern;
/*
* If they want to match on anything, then we will do so.
*/
if (cur_pattern->flags == PERIPH_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* We've already set the return action to stop,
* since there are no nodes below peripherals in
* the tree.
*/
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == PERIPH_MATCH_NONE)
continue;
if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
&& (cur_pattern->path_id != periph->path->bus->path_id))
continue;
/*
* For the target and lun id's, we have to make sure the
* target and lun pointers aren't NULL. The xpt peripheral
* has a wildcard target and device.
*/
if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
&& ((periph->path->target == NULL)
||(cur_pattern->target_id != periph->path->target->target_id)))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
&& ((periph->path->device == NULL)
|| (cur_pattern->target_lun != periph->path->device->lun_id)))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
&& (cur_pattern->unit_number != periph->unit_number))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
&& (strncmp(cur_pattern->periph_name, periph->periph_name,
DEV_IDLEN) != 0))
continue;
/*
* If we get to this point, the user definitely wants
* information on this peripheral. So tell the caller to
* copy the data out.
*/
retval |= DM_RET_COPY;
/*
* The return action has already been set to stop, since
* peripherals don't have any nodes below them in the EDT.
*/
return(retval);
}
/*
* If we get to this point, the peripheral that was passed in
* doesn't match any of the patterns.
*/
return(retval);
}
static int
xptedtbusfunc(struct cam_eb *bus, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
/*
* If our position is for something deeper in the tree, that means
* that we've already seen this node. So, we keep going down.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target != NULL))
retval = DM_RET_DESCEND;
else
retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
/*
* If we got an error, bail out of the search.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this bus out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
cdm->pos.cookie.bus = bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_BUS;
cdm->matches[j].result.bus_result.path_id = bus->path_id;
cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
cdm->matches[j].result.bus_result.unit_number =
bus->sim->unit_number;
strncpy(cdm->matches[j].result.bus_result.dev_name,
bus->sim->sim_name, DEV_IDLEN);
}
/*
* If the user is only interested in busses, there's no
* reason to descend to the next level in the tree.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
return(1);
/*
* If there is a target generation recorded, check it to
* make sure the target list hasn't changed.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (bus == cdm->pos.cookie.bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
&& (cdm->pos.generations[CAM_TARGET_GENERATION] !=
bus->generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target != NULL))
return(xpttargettraverse(bus,
(struct cam_et *)cdm->pos.cookie.target,
xptedttargetfunc, arg));
else
return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
}
static int
xptedttargetfunc(struct cam_et *target, void *arg)
{
struct ccb_dev_match *cdm;
cdm = (struct ccb_dev_match *)arg;
/*
* If there is a device list generation recorded, check it to
* make sure the device list hasn't changed.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == target->bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
&& (cdm->pos.generations[CAM_DEV_GENERATION] !=
target->generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == target->bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device != NULL))
return(xptdevicetraverse(target,
(struct cam_ed *)cdm->pos.cookie.device,
xptedtdevicefunc, arg));
else
return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
}
static int
xptedtdevicefunc(struct cam_ed *device, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
/*
* If our position is for something deeper in the tree, that means
* that we've already seen this node. So, we keep going down.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device == device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL))
retval = DM_RET_DESCEND;
else
retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
device);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this device out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
cdm->pos.cookie.bus = device->target->bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->pos.cookie.target = device->target;
cdm->pos.generations[CAM_TARGET_GENERATION] =
device->target->bus->generation;
cdm->pos.cookie.device = device;
cdm->pos.generations[CAM_DEV_GENERATION] =
device->target->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_DEVICE;
cdm->matches[j].result.device_result.path_id =
device->target->bus->path_id;
cdm->matches[j].result.device_result.target_id =
device->target->target_id;
cdm->matches[j].result.device_result.target_lun =
device->lun_id;
bcopy(&device->inq_data,
&cdm->matches[j].result.device_result.inq_data,
sizeof(struct scsi_inquiry_data));
/* Let the user know whether this device is unconfigured */
if (device->flags & CAM_DEV_UNCONFIGURED)
cdm->matches[j].result.device_result.flags =
DEV_RESULT_UNCONFIGURED;
else
cdm->matches[j].result.device_result.flags =
DEV_RESULT_NOFLAG;
}
/*
* If the user isn't interested in peripherals, don't descend
* the tree any further.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
return(1);
/*
* If there is a peripheral list generation recorded, make sure
* it hasn't changed.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (device->target->bus == cdm->pos.cookie.bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (device->target == cdm->pos.cookie.target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (device == cdm->pos.cookie.device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
device->generation)){
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == device->target->bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == device->target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device == device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL))
return(xptperiphtraverse(device,
(struct cam_periph *)cdm->pos.cookie.periph,
xptedtperiphfunc, arg));
else
return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
}
static int
xptedtperiphfunc(struct cam_periph *periph, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this peripheral out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
CAM_DEV_POS_PERIPH;
cdm->pos.cookie.bus = periph->path->bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->pos.cookie.target = periph->path->target;
cdm->pos.generations[CAM_TARGET_GENERATION] =
periph->path->bus->generation;
cdm->pos.cookie.device = periph->path->device;
cdm->pos.generations[CAM_DEV_GENERATION] =
periph->path->target->generation;
cdm->pos.cookie.periph = periph;
cdm->pos.generations[CAM_PERIPH_GENERATION] =
periph->path->device->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_PERIPH;
cdm->matches[j].result.periph_result.path_id =
periph->path->bus->path_id;
cdm->matches[j].result.periph_result.target_id =
periph->path->target->target_id;
cdm->matches[j].result.periph_result.target_lun =
periph->path->device->lun_id;
cdm->matches[j].result.periph_result.unit_number =
periph->unit_number;
strncpy(cdm->matches[j].result.periph_result.periph_name,
periph->periph_name, DEV_IDLEN);
}
return(1);
}
static int
xptedtmatch(struct ccb_dev_match *cdm)
{
int ret;
cdm->num_matches = 0;
/*
* Check the bus list generation. If it has changed, the user
* needs to reset everything and start over.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
&& (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus != NULL))
ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
xptedtbusfunc, cdm);
else
ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
/*
* If we get back 0, that means that we had to stop before fully
* traversing the EDT. It also means that one of the subroutines
* has set the status field to the proper value. If we get back 1,
* we've fully traversed the EDT and copied out any matching entries.
*/
if (ret == 1)
cdm->status = CAM_DEV_MATCH_LAST;
return(ret);
}
static int
xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
{
struct ccb_dev_match *cdm;
cdm = (struct ccb_dev_match *)arg;
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv == pdrv)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
&& (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
(*pdrv)->generation)) {
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv == pdrv)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL))
return(xptpdperiphtraverse(pdrv,
(struct cam_periph *)cdm->pos.cookie.periph,
xptplistperiphfunc, arg));
else
return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
}
static int
xptplistperiphfunc(struct cam_periph *periph, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this peripheral out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
struct periph_driver **pdrv;
pdrv = NULL;
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
CAM_DEV_POS_PERIPH;
/*
* This may look a bit non-sensical, but it is
* actually quite logical. There are very few
* peripheral drivers, and bloating every peripheral
* structure with a pointer back to its parent
* peripheral driver linker set entry would cost
* more in the long run than doing this quick lookup.
*/
for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
if (strcmp((*pdrv)->driver_name,
periph->periph_name) == 0)
break;
}
if (*pdrv == NULL) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
cdm->pos.cookie.pdrv = pdrv;
/*
* The periph generation slot does double duty, as
* does the periph pointer slot. They are used for
* both edt and pdrv lookups and positioning.
*/
cdm->pos.cookie.periph = periph;
cdm->pos.generations[CAM_PERIPH_GENERATION] =
(*pdrv)->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_PERIPH;
cdm->matches[j].result.periph_result.path_id =
periph->path->bus->path_id;
/*
* The transport layer peripheral doesn't have a target or
* lun.
*/
if (periph->path->target)
cdm->matches[j].result.periph_result.target_id =
periph->path->target->target_id;
else
cdm->matches[j].result.periph_result.target_id = -1;
if (periph->path->device)
cdm->matches[j].result.periph_result.target_lun =
periph->path->device->lun_id;
else
cdm->matches[j].result.periph_result.target_lun = -1;
cdm->matches[j].result.periph_result.unit_number =
periph->unit_number;
strncpy(cdm->matches[j].result.periph_result.periph_name,
periph->periph_name, DEV_IDLEN);
}
return(1);
}
static int
xptperiphlistmatch(struct ccb_dev_match *cdm)
{
int ret;
cdm->num_matches = 0;
/*
* At this point in the edt traversal function, we check the bus
* list generation to make sure that no busses have been added or
* removed since the user last sent a XPT_DEV_MATCH ccb through.
* For the peripheral driver list traversal function, however, we
* don't have to worry about new peripheral driver types coming or
* going; they're in a linker set, and therefore can't change
* without a recompile.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv != NULL))
ret = xptpdrvtraverse(
(struct periph_driver **)cdm->pos.cookie.pdrv,
xptplistpdrvfunc, cdm);
else
ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
/*
* If we get back 0, that means that we had to stop before fully
* traversing the peripheral driver tree. It also means that one of
* the subroutines has set the status field to the proper value. If
* we get back 1, we've fully traversed the EDT and copied out any
* matching entries.
*/
if (ret == 1)
cdm->status = CAM_DEV_MATCH_LAST;
return(ret);
}
static int
xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
{
struct cam_eb *bus, *next_bus;
int retval;
retval = 1;
mtx_lock(&xsoftc.xpt_topo_lock);
for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
bus != NULL;
bus = next_bus) {
next_bus = TAILQ_NEXT(bus, links);
mtx_unlock(&xsoftc.xpt_topo_lock);
CAM_SIM_LOCK(bus->sim);
retval = tr_func(bus, arg);
CAM_SIM_UNLOCK(bus->sim);
if (retval == 0)
return(retval);
mtx_lock(&xsoftc.xpt_topo_lock);
}
mtx_unlock(&xsoftc.xpt_topo_lock);
return(retval);
}
static int
xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
xpt_targetfunc_t *tr_func, void *arg)
{
struct cam_et *target, *next_target;
int retval;
retval = 1;
for (target = (start_target ? start_target :
TAILQ_FIRST(&bus->et_entries));
target != NULL; target = next_target) {
next_target = TAILQ_NEXT(target, links);
retval = tr_func(target, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
xpt_devicefunc_t *tr_func, void *arg)
{
struct cam_ed *device, *next_device;
int retval;
retval = 1;
for (device = (start_device ? start_device :
TAILQ_FIRST(&target->ed_entries));
device != NULL;
device = next_device) {
next_device = TAILQ_NEXT(device, links);
retval = tr_func(device, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg)
{
struct cam_periph *periph, *next_periph;
int retval;
retval = 1;
for (periph = (start_periph ? start_periph :
SLIST_FIRST(&device->periphs));
periph != NULL;
periph = next_periph) {
next_periph = SLIST_NEXT(periph, periph_links);
retval = tr_func(periph, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptpdrvtraverse(struct periph_driver **start_pdrv,
xpt_pdrvfunc_t *tr_func, void *arg)
{
struct periph_driver **pdrv;
int retval;
retval = 1;
/*
* We don't traverse the peripheral driver list like we do the
* other lists, because it is a linker set, and therefore cannot be
* changed during runtime. If the peripheral driver list is ever
* re-done to be something other than a linker set (i.e. it can
* change while the system is running), the list traversal should
* be modified to work like the other traversal functions.
*/
for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
*pdrv != NULL; pdrv++) {
retval = tr_func(pdrv, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptpdperiphtraverse(struct periph_driver **pdrv,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg)
{
struct cam_periph *periph, *next_periph;
int retval;
retval = 1;
for (periph = (start_periph ? start_periph :
TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
periph = next_periph) {
next_periph = TAILQ_NEXT(periph, unit_links);
retval = tr_func(periph, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptdefbusfunc(struct cam_eb *bus, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_BUS) {
xpt_busfunc_t *tr_func;
tr_func = (xpt_busfunc_t *)tr_config->tr_func;
return(tr_func(bus, tr_config->tr_arg));
} else
return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
}
static int
xptdeftargetfunc(struct cam_et *target, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_TARGET) {
xpt_targetfunc_t *tr_func;
tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
return(tr_func(target, tr_config->tr_arg));
} else
return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
}
static int
xptdefdevicefunc(struct cam_ed *device, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_DEVICE) {
xpt_devicefunc_t *tr_func;
tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
return(tr_func(device, tr_config->tr_arg));
} else
return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
}
static int
xptdefperiphfunc(struct cam_periph *periph, void *arg)
{
struct xpt_traverse_config *tr_config;
xpt_periphfunc_t *tr_func;
tr_config = (struct xpt_traverse_config *)arg;
tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
/*
* Unlike the other default functions, we don't check for depth
* here. The peripheral driver level is the last level in the EDT,
* so if we're here, we should execute the function in question.
*/
return(tr_func(periph, tr_config->tr_arg));
}
/*
* Execute the given function for every bus in the EDT.
*/
static int
xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
{
struct xpt_traverse_config tr_config;
tr_config.depth = XPT_DEPTH_BUS;
tr_config.tr_func = tr_func;
tr_config.tr_arg = arg;
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
}
/*
* Execute the given function for every device in the EDT.
*/
static int
xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
{
struct xpt_traverse_config tr_config;
tr_config.depth = XPT_DEPTH_DEVICE;
tr_config.tr_func = tr_func;
tr_config.tr_arg = arg;
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
}
static int
xptsetasyncfunc(struct cam_ed *device, void *arg)
{
struct cam_path path;
struct ccb_getdev cgd;
struct async_node *cur_entry;
cur_entry = (struct async_node *)arg;
/*
* Don't report unconfigured devices (Wildcard devs,
* devices only for target mode, device instances
* that have been invalidated but are waiting for
* their last reference count to be released).
*/
if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
return (1);
xpt_compile_path(&path,
NULL,
device->target->bus->path_id,
device->target->target_id,
device->lun_id);
xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
cur_entry->callback(cur_entry->callback_arg,
AC_FOUND_DEVICE,
&path, &cgd);
xpt_release_path(&path);
return(1);
}
static int
xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
{
struct cam_path path;
struct ccb_pathinq cpi;
struct async_node *cur_entry;
cur_entry = (struct async_node *)arg;
xpt_compile_path(&path, /*periph*/NULL,
bus->sim->path_id,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD);
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
cur_entry->callback(cur_entry->callback_arg,
AC_PATH_REGISTERED,
&path, &cpi);
xpt_release_path(&path);
return(1);
}
static void
xpt_action_sasync_cb(void *context, int pending)
{
struct async_node *cur_entry;
struct xpt_task *task;
uint32_t added;
task = (struct xpt_task *)context;
cur_entry = (struct async_node *)task->data1;
added = task->data2;
if ((added & AC_FOUND_DEVICE) != 0) {
/*
* Get this peripheral up to date with all
* the currently existing devices.
*/
xpt_for_all_devices(xptsetasyncfunc, cur_entry);
}
if ((added & AC_PATH_REGISTERED) != 0) {
/*
* Get this peripheral up to date with all
* the currently existing busses.
*/
xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
}
free(task, M_CAMXPT);
}
void
xpt_action(union ccb *start_ccb)
{
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
start_ccb->ccb_h.status = CAM_REQ_INPROG;
switch (start_ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
{
struct cam_ed *device;
#ifdef CAMDEBUG
char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
struct cam_path *path;
path = start_ccb->ccb_h.path;
#endif
/*
* For the sake of compatibility with SCSI-1
* devices that may not understand the identify
* message, we include lun information in the
* second byte of all commands. SCSI-1 specifies
* that luns are a 3 bit value and reserves only 3
* bits for lun information in the CDB. Later
* revisions of the SCSI spec allow for more than 8
* luns, but have deprecated lun information in the
* CDB. So, if the lun won't fit, we must omit.
*
* Also be aware that during initial probing for devices,
* the inquiry information is unknown but initialized to 0.
* This means that this code will be exercised while probing
* devices with an ANSI revision greater than 2.
*/
device = start_ccb->ccb_h.path->device;
if (device->protocol_version <= SCSI_REV_2
&& start_ccb->ccb_h.target_lun < 8
&& (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
start_ccb->csio.cdb_io.cdb_bytes[1] |=
start_ccb->ccb_h.target_lun << 5;
}
start_ccb->csio.scsi_status = SCSI_STATUS_OK;
CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
&path->device->inq_data),
scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
cdb_str, sizeof(cdb_str))));
}
/* FALLTHROUGH */
case XPT_TARGET_IO:
case XPT_CONT_TARGET_IO:
start_ccb->csio.sense_resid = 0;
start_ccb->csio.resid = 0;
/* FALLTHROUGH */
case XPT_RESET_DEV:
case XPT_ENG_EXEC:
{
struct cam_path *path;
struct cam_sim *sim;
int runq;
path = start_ccb->ccb_h.path;
sim = path->bus->sim;
if (SIM_DEAD(sim)) {
/* The SIM has gone; just execute the CCB directly. */
cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
(*(sim->sim_action))(sim, start_ccb);
break;
}
cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
if (path->device->qfrozen_cnt == 0)
runq = xpt_schedule_dev_sendq(path->bus, path->device);
else
runq = 0;
if (runq != 0)
xpt_run_dev_sendq(path->bus);
break;
}
case XPT_SET_TRAN_SETTINGS:
{
xpt_set_transfer_settings(&start_ccb->cts,
start_ccb->ccb_h.path->device,
/*async_update*/FALSE);
break;
}
case XPT_CALC_GEOMETRY:
{
struct cam_sim *sim;
/* Filter out garbage */
if (start_ccb->ccg.block_size == 0
|| start_ccb->ccg.volume_size == 0) {
start_ccb->ccg.cylinders = 0;
start_ccb->ccg.heads = 0;
start_ccb->ccg.secs_per_track = 0;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
#ifdef PC98
/*
* In a PC-98 system, geometry translation depens on
* the "real" device geometry obtained from mode page 4.
* SCSI geometry translation is performed in the
* initialization routine of the SCSI BIOS and the result
* stored in host memory. If the translation is available
* in host memory, use it. If not, rely on the default
* translation the device driver performs.
*/
if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
#endif
sim = start_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, start_ccb);
break;
}
case XPT_ABORT:
{
union ccb* abort_ccb;
abort_ccb = start_ccb->cab.abort_ccb;
if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
if (abort_ccb->ccb_h.pinfo.index >= 0) {
struct cam_ccbq *ccbq;
ccbq = &abort_ccb->ccb_h.path->device->ccbq;
cam_ccbq_remove_ccb(ccbq, abort_ccb);
abort_ccb->ccb_h.status =
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
xpt_done(abort_ccb);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
&& (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
/*
* We've caught this ccb en route to
* the SIM. Flag it for abort and the
* SIM will do so just before starting
* real work on the CCB.
*/
abort_ccb->ccb_h.status =
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
}
if (XPT_FC_IS_QUEUED(abort_ccb)
&& (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
/*
* It's already completed but waiting
* for our SWI to get to it.
*/
start_ccb->ccb_h.status = CAM_UA_ABORT;
break;
}
/*
* If we weren't able to take care of the abort request
* in the XPT, pass the request down to the SIM for processing.
*/
}
/* FALLTHROUGH */
case XPT_ACCEPT_TARGET_IO:
case XPT_EN_LUN:
case XPT_IMMED_NOTIFY:
case XPT_NOTIFY_ACK:
case XPT_GET_TRAN_SETTINGS:
case XPT_RESET_BUS:
{
struct cam_sim *sim;
sim = start_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, start_ccb);
break;
}
case XPT_PATH_INQ:
{
struct cam_sim *sim;
sim = start_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, start_ccb);
break;
}
case XPT_PATH_STATS:
start_ccb->cpis.last_reset =
start_ccb->ccb_h.path->bus->last_reset;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_GDEV_TYPE:
{
struct cam_ed *dev;
dev = start_ccb->ccb_h.path->device;
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
} else {
struct ccb_getdev *cgd;
struct cam_eb *bus;
struct cam_et *tar;
cgd = &start_ccb->cgd;
bus = cgd->ccb_h.path->bus;
tar = cgd->ccb_h.path->target;
cgd->inq_data = dev->inq_data;
cgd->ccb_h.status = CAM_REQ_CMP;
cgd->serial_num_len = dev->serial_num_len;
if ((dev->serial_num_len > 0)
&& (dev->serial_num != NULL))
bcopy(dev->serial_num, cgd->serial_num,
dev->serial_num_len);
}
break;
}
case XPT_GDEV_STATS:
{
struct cam_ed *dev;
dev = start_ccb->ccb_h.path->device;
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
} else {
struct ccb_getdevstats *cgds;
struct cam_eb *bus;
struct cam_et *tar;
cgds = &start_ccb->cgds;
bus = cgds->ccb_h.path->bus;
tar = cgds->ccb_h.path->target;
cgds->dev_openings = dev->ccbq.dev_openings;
cgds->dev_active = dev->ccbq.dev_active;
cgds->devq_openings = dev->ccbq.devq_openings;
cgds->devq_queued = dev->ccbq.queue.entries;
cgds->held = dev->ccbq.held;
cgds->last_reset = tar->last_reset;
cgds->maxtags = dev->quirk->maxtags;
cgds->mintags = dev->quirk->mintags;
if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
cgds->last_reset = bus->last_reset;
cgds->ccb_h.status = CAM_REQ_CMP;
}
break;
}
case XPT_GDEVLIST:
{
struct cam_periph *nperiph;
struct periph_list *periph_head;
struct ccb_getdevlist *cgdl;
u_int i;
struct cam_ed *device;
int found;
found = 0;
/*
* Don't want anyone mucking with our data.
*/
device = start_ccb->ccb_h.path->device;
periph_head = &device->periphs;
cgdl = &start_ccb->cgdl;
/*
* Check and see if the list has changed since the user
* last requested a list member. If so, tell them that the
* list has changed, and therefore they need to start over
* from the beginning.
*/
if ((cgdl->index != 0) &&
(cgdl->generation != device->generation)) {
cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
break;
}
/*
* Traverse the list of peripherals and attempt to find
* the requested peripheral.
*/
for (nperiph = SLIST_FIRST(periph_head), i = 0;
(nperiph != NULL) && (i <= cgdl->index);
nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
if (i == cgdl->index) {
strncpy(cgdl->periph_name,
nperiph->periph_name,
DEV_IDLEN);
cgdl->unit_number = nperiph->unit_number;
found = 1;
}
}
if (found == 0) {
cgdl->status = CAM_GDEVLIST_ERROR;
break;
}
if (nperiph == NULL)
cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
else
cgdl->status = CAM_GDEVLIST_MORE_DEVS;
cgdl->index++;
cgdl->generation = device->generation;
cgdl->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_DEV_MATCH:
{
dev_pos_type position_type;
struct ccb_dev_match *cdm;
cdm = &start_ccb->cdm;
/*
* There are two ways of getting at information in the EDT.
* The first way is via the primary EDT tree. It starts
* with a list of busses, then a list of targets on a bus,
* then devices/luns on a target, and then peripherals on a
* device/lun. The "other" way is by the peripheral driver
* lists. The peripheral driver lists are organized by
* peripheral driver. (obviously) So it makes sense to
* use the peripheral driver list if the user is looking
* for something like "da1", or all "da" devices. If the
* user is looking for something on a particular bus/target
* or lun, it's generally better to go through the EDT tree.
*/
if (cdm->pos.position_type != CAM_DEV_POS_NONE)
position_type = cdm->pos.position_type;
else {
u_int i;
position_type = CAM_DEV_POS_NONE;
for (i = 0; i < cdm->num_patterns; i++) {
if ((cdm->patterns[i].type == DEV_MATCH_BUS)
||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
position_type = CAM_DEV_POS_EDT;
break;
}
}
if (cdm->num_patterns == 0)
position_type = CAM_DEV_POS_EDT;
else if (position_type == CAM_DEV_POS_NONE)
position_type = CAM_DEV_POS_PDRV;
}
switch(position_type & CAM_DEV_POS_TYPEMASK) {
case CAM_DEV_POS_EDT:
xptedtmatch(cdm);
break;
case CAM_DEV_POS_PDRV:
xptperiphlistmatch(cdm);
break;
default:
cdm->status = CAM_DEV_MATCH_ERROR;
break;
}
if (cdm->status == CAM_DEV_MATCH_ERROR)
start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
else
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SASYNC_CB:
{
struct ccb_setasync *csa;
struct async_node *cur_entry;
struct async_list *async_head;
u_int32_t added;
csa = &start_ccb->csa;
added = csa->event_enable;
async_head = &csa->ccb_h.path->device->asyncs;
/*
* If there is already an entry for us, simply
* update it.
*/
cur_entry = SLIST_FIRST(async_head);
while (cur_entry != NULL) {
if ((cur_entry->callback_arg == csa->callback_arg)
&& (cur_entry->callback == csa->callback))
break;
cur_entry = SLIST_NEXT(cur_entry, links);
}
if (cur_entry != NULL) {
/*
* If the request has no flags set,
* remove the entry.
*/
added &= ~cur_entry->event_enable;
if (csa->event_enable == 0) {
SLIST_REMOVE(async_head, cur_entry,
async_node, links);
csa->ccb_h.path->device->refcount--;
free(cur_entry, M_CAMXPT);
} else {
cur_entry->event_enable = csa->event_enable;
}
} else {
cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
M_NOWAIT);
if (cur_entry == NULL) {
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
break;
}
cur_entry->event_enable = csa->event_enable;
cur_entry->callback_arg = csa->callback_arg;
cur_entry->callback = csa->callback;
SLIST_INSERT_HEAD(async_head, cur_entry, links);
csa->ccb_h.path->device->refcount++;
}
/*
* Need to decouple this operation via a taqskqueue so that
* the locking doesn't become a mess.
*/
if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
struct xpt_task *task;
task = malloc(sizeof(struct xpt_task), M_CAMXPT,
M_NOWAIT);
if (task == NULL) {
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
break;
}
TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
task->data1 = cur_entry;
task->data2 = added;
taskqueue_enqueue(taskqueue_thread, &task->task);
}
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_REL_SIMQ:
{
struct ccb_relsim *crs;
struct cam_ed *dev;
crs = &start_ccb->crs;
dev = crs->ccb_h.path->device;
if (dev == NULL) {
crs->ccb_h.status = CAM_DEV_NOT_THERE;
break;
}
if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
/* Don't ever go below one opening */
if (crs->openings > 0) {
xpt_dev_ccbq_resize(crs->ccb_h.path,
crs->openings);
if (bootverbose) {
xpt_print(crs->ccb_h.path,
"tagged openings now %d\n",
crs->openings);
}
}
}
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
/*
* Just extend the old timeout and decrement
* the freeze count so that a single timeout
* is sufficient for releasing the queue.
*/
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
callout_stop(&dev->callout);
} else {
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
callout_reset(&dev->callout,
(crs->release_timeout * hz) / 1000,
xpt_release_devq_timeout, dev);
dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
/*
* Decrement the freeze count so that a single
* completion is still sufficient to unfreeze
* the queue.
*/
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
} else {
dev->flags |= CAM_DEV_REL_ON_COMPLETE;
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|| (dev->ccbq.dev_active == 0)) {
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
} else {
dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
}
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
xpt_release_devq(crs->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SCAN_BUS:
xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
break;
case XPT_SCAN_LUN:
xpt_scan_lun(start_ccb->ccb_h.path->periph,
start_ccb->ccb_h.path, start_ccb->crcn.flags,
start_ccb);
break;
case XPT_DEBUG: {
#ifdef CAMDEBUG
#ifdef CAM_DEBUG_DELAY
cam_debug_delay = CAM_DEBUG_DELAY;
#endif
cam_dflags = start_ccb->cdbg.flags;
if (cam_dpath != NULL) {
xpt_free_path(cam_dpath);
cam_dpath = NULL;
}
if (cam_dflags != CAM_DEBUG_NONE) {
if (xpt_create_path(&cam_dpath, xpt_periph,
start_ccb->ccb_h.path_id,
start_ccb->ccb_h.target_id,
start_ccb->ccb_h.target_lun) !=
CAM_REQ_CMP) {
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
cam_dflags = CAM_DEBUG_NONE;
} else {
start_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print(cam_dpath, "debugging flags now %x\n",
cam_dflags);
}
} else {
cam_dpath = NULL;
start_ccb->ccb_h.status = CAM_REQ_CMP;
}
#else /* !CAMDEBUG */
start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
#endif /* CAMDEBUG */
break;
}
case XPT_NOOP:
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
xpt_freeze_devq(start_ccb->ccb_h.path, 1);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
default:
case XPT_SDEV_TYPE:
case XPT_TERM_IO:
case XPT_ENG_INQ:
/* XXX Implement */
start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
break;
}
}
void
xpt_polled_action(union ccb *start_ccb)
{
u_int32_t timeout;
struct cam_sim *sim;
struct cam_devq *devq;
struct cam_ed *dev;
timeout = start_ccb->ccb_h.timeout;
sim = start_ccb->ccb_h.path->bus->sim;
devq = sim->devq;
dev = start_ccb->ccb_h.path->device;
mtx_assert(sim->mtx, MA_OWNED);
/*
* Steal an opening so that no other queued requests
* can get it before us while we simulate interrupts.
*/
dev->ccbq.devq_openings--;
dev->ccbq.dev_openings--;
while(((devq != NULL && devq->send_openings <= 0) ||
dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
DELAY(1000);
(*(sim->sim_poll))(sim);
camisr_runqueue(&sim->sim_doneq);
}
dev->ccbq.devq_openings++;
dev->ccbq.dev_openings++;
if (timeout != 0) {
xpt_action(start_ccb);
while(--timeout > 0) {
(*(sim->sim_poll))(sim);
camisr_runqueue(&sim->sim_doneq);
if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
!= CAM_REQ_INPROG)
break;
DELAY(1000);
}
if (timeout == 0) {
/*
* XXX Is it worth adding a sim_timeout entry
* point so we can attempt recovery? If
* this is only used for dumps, I don't think
* it is.
*/
start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
}
} else {
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
}
}
/*
* Schedule a peripheral driver to receive a ccb when it's
* target device has space for more transactions.
*/
void
xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
{
struct cam_ed *device;
union ccb *work_ccb;
int runq;
mtx_assert(perph->sim->mtx, MA_OWNED);
CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
device = perph->path->device;
if (periph_is_queued(perph)) {
/* Simply reorder based on new priority */
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
(" change priority to %d\n", new_priority));
if (new_priority < perph->pinfo.priority) {
camq_change_priority(&device->drvq,
perph->pinfo.index,
new_priority);
}
runq = 0;
} else if (SIM_DEAD(perph->path->bus->sim)) {
/* The SIM is gone so just call periph_start directly. */
work_ccb = xpt_get_ccb(perph->path->device);
if (work_ccb == NULL)
return; /* XXX */
xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
perph->pinfo.priority = new_priority;
perph->periph_start(perph, work_ccb);
return;
} else {
/* New entry on the queue */
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
(" added periph to queue\n"));
perph->pinfo.priority = new_priority;
perph->pinfo.generation = ++device->drvq.generation;
camq_insert(&device->drvq, &perph->pinfo);
runq = xpt_schedule_dev_allocq(perph->path->bus, device);
}
if (runq != 0) {
CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
(" calling xpt_run_devq\n"));
xpt_run_dev_allocq(perph->path->bus);
}
}
/*
* Schedule a device to run on a given queue.
* If the device was inserted as a new entry on the queue,
* return 1 meaning the device queue should be run. If we
* were already queued, implying someone else has already
* started the queue, return 0 so the caller doesn't attempt
* to run the queue.
*/
static int
xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
u_int32_t new_priority)
{
int retval;
u_int32_t old_priority;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
old_priority = pinfo->priority;
/*
* Are we already queued?
*/
if (pinfo->index != CAM_UNQUEUED_INDEX) {
/* Simply reorder based on new priority */
if (new_priority < old_priority) {
camq_change_priority(queue, pinfo->index,
new_priority);
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("changed priority to %d\n",
new_priority));
}
retval = 0;
} else {
/* New entry on the queue */
if (new_priority < old_priority)
pinfo->priority = new_priority;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("Inserting onto queue\n"));
pinfo->generation = ++queue->generation;
camq_insert(queue, pinfo);
retval = 1;
}
return (retval);
}
static void
xpt_run_dev_allocq(struct cam_eb *bus)
{
struct cam_devq *devq;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
devq = bus->sim->devq;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
(" qfrozen_cnt == 0x%x, entries == %d, "
"openings == %d, active == %d\n",
devq->alloc_queue.qfrozen_cnt,
devq->alloc_queue.entries,
devq->alloc_openings,
devq->alloc_active));
devq->alloc_queue.qfrozen_cnt++;
while ((devq->alloc_queue.entries > 0)
&& (devq->alloc_openings > 0)
&& (devq->alloc_queue.qfrozen_cnt <= 1)) {
struct cam_ed_qinfo *qinfo;
struct cam_ed *device;
union ccb *work_ccb;
struct cam_periph *drv;
struct camq *drvq;
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
CAMQ_HEAD);
device = qinfo->device;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("running device %p\n", device));
drvq = &device->drvq;
#ifdef CAMDEBUG
if (drvq->entries <= 0) {
panic("xpt_run_dev_allocq: "
"Device on queue without any work to do");
}
#endif
if ((work_ccb = xpt_get_ccb(device)) != NULL) {
devq->alloc_openings--;
devq->alloc_active++;
drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
drv->pinfo.priority);
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("calling periph start\n"));
drv->periph_start(drv, work_ccb);
} else {
/*
* Malloc failure in alloc_ccb
*/
/*
* XXX add us to a list to be run from free_ccb
* if we don't have any ccbs active on this
* device queue otherwise we may never get run
* again.
*/
break;
}
if (drvq->entries > 0) {
/* We have more work. Attempt to reschedule */
xpt_schedule_dev_allocq(bus, device);
}
}
devq->alloc_queue.qfrozen_cnt--;
}
static void
xpt_run_dev_sendq(struct cam_eb *bus)
{
struct cam_devq *devq;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
devq = bus->sim->devq;
devq->send_queue.qfrozen_cnt++;
while ((devq->send_queue.entries > 0)
&& (devq->send_openings > 0)) {
struct cam_ed_qinfo *qinfo;
struct cam_ed *device;
union ccb *work_ccb;
struct cam_sim *sim;
if (devq->send_queue.qfrozen_cnt > 1) {
break;
}
qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
CAMQ_HEAD);
device = qinfo->device;
/*
* If the device has been "frozen", don't attempt
* to run it.
*/
if (device->qfrozen_cnt > 0) {
continue;
}
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("running device %p\n", device));
work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
if (work_ccb == NULL) {
printf("device on run queue with no ccbs???\n");
continue;
}
if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
mtx_lock(&xsoftc.xpt_lock);
if (xsoftc.num_highpower <= 0) {
/*
* We got a high power command, but we
* don't have any available slots. Freeze
* the device queue until we have a slot
* available.
*/
device->qfrozen_cnt++;
STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
&work_ccb->ccb_h,
xpt_links.stqe);
mtx_unlock(&xsoftc.xpt_lock);
continue;
} else {
/*
* Consume a high power slot while
* this ccb runs.
*/
xsoftc.num_highpower--;
}
mtx_unlock(&xsoftc.xpt_lock);
}
devq->active_dev = device;
cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
cam_ccbq_send_ccb(&device->ccbq, work_ccb);
devq->send_openings--;
devq->send_active++;
if (device->ccbq.queue.entries > 0)
xpt_schedule_dev_sendq(bus, device);
if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
/*
* The client wants to freeze the queue
* after this CCB is sent.
*/
device->qfrozen_cnt++;
}
/* In Target mode, the peripheral driver knows best... */
if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
if ((device->inq_flags & SID_CmdQue) != 0
&& work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
else
/*
* Clear this in case of a retried CCB that
* failed due to a rejected tag.
*/
work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
}
/*
* Device queues can be shared among multiple sim instances
* that reside on different busses. Use the SIM in the queue
* CCB's path, rather than the one in the bus that was passed
* into this function.
*/
sim = work_ccb->ccb_h.path->bus->sim;
(*(sim->sim_action))(sim, work_ccb);
devq->active_dev = NULL;
}
devq->send_queue.qfrozen_cnt--;
}
/*
* This function merges stuff from the slave ccb into the master ccb, while
* keeping important fields in the master ccb constant.
*/
void
xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
{
/*
* Pull fields that are valid for peripheral drivers to set
* into the master CCB along with the CCB "payload".
*/
master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
sizeof(union ccb) - sizeof(struct ccb_hdr));
}
void
xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
ccb_h->pinfo.priority = priority;
ccb_h->path = path;
ccb_h->path_id = path->bus->path_id;
if (path->target)
ccb_h->target_id = path->target->target_id;
else
ccb_h->target_id = CAM_TARGET_WILDCARD;
if (path->device) {
ccb_h->target_lun = path->device->lun_id;
ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
} else {
ccb_h->target_lun = CAM_TARGET_WILDCARD;
}
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
ccb_h->flags = 0;
}
/* Path manipulation functions */
cam_status
xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
{
struct cam_path *path;
cam_status status;
path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
if (path == NULL) {
status = CAM_RESRC_UNAVAIL;
return(status);
}
status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
if (status != CAM_REQ_CMP) {
free(path, M_CAMXPT);
path = NULL;
}
*new_path_ptr = path;
return (status);
}
cam_status
xpt_create_path_unlocked(struct cam_path **new_path_ptr,
struct cam_periph *periph, path_id_t path_id,
target_id_t target_id, lun_id_t lun_id)
{
struct cam_path *path;
struct cam_eb *bus = NULL;
cam_status status;
int need_unlock = 0;
path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
if (path_id != CAM_BUS_WILDCARD) {
bus = xpt_find_bus(path_id);
if (bus != NULL) {
need_unlock = 1;
CAM_SIM_LOCK(bus->sim);
}
}
status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
if (need_unlock)
CAM_SIM_UNLOCK(bus->sim);
if (status != CAM_REQ_CMP) {
free(path, M_CAMXPT);
path = NULL;
}
*new_path_ptr = path;
return (status);
}
static cam_status
xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
{
struct cam_eb *bus;
struct cam_et *target;
struct cam_ed *device;
cam_status status;
status = CAM_REQ_CMP; /* Completed without error */
target = NULL; /* Wildcarded */
device = NULL; /* Wildcarded */
/*
* We will potentially modify the EDT, so block interrupts
* that may attempt to create cam paths.
*/
bus = xpt_find_bus(path_id);
if (bus == NULL) {
status = CAM_PATH_INVALID;
} else {
target = xpt_find_target(bus, target_id);
if (target == NULL) {
/* Create one */
struct cam_et *new_target;
new_target = xpt_alloc_target(bus, target_id);
if (new_target == NULL) {
status = CAM_RESRC_UNAVAIL;
} else {
target = new_target;
}
}
if (target != NULL) {
device = xpt_find_device(target, lun_id);
if (device == NULL) {
/* Create one */
struct cam_ed *new_device;
new_device = xpt_alloc_device(bus,
target,
lun_id);
if (new_device == NULL) {
status = CAM_RESRC_UNAVAIL;
} else {
device = new_device;
}
}
}
}
/*
* Only touch the user's data if we are successful.
*/
if (status == CAM_REQ_CMP) {
new_path->periph = perph;
new_path->bus = bus;
new_path->target = target;
new_path->device = device;
CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
} else {
if (device != NULL)
xpt_release_device(bus, target, device);
if (target != NULL)
xpt_release_target(bus, target);
if (bus != NULL)
xpt_release_bus(bus);
}
return (status);
}
static void
xpt_release_path(struct cam_path *path)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
if (path->device != NULL) {
xpt_release_device(path->bus, path->target, path->device);
path->device = NULL;
}
if (path->target != NULL) {
xpt_release_target(path->bus, path->target);
path->target = NULL;
}
if (path->bus != NULL) {
xpt_release_bus(path->bus);
path->bus = NULL;
}
}
void
xpt_free_path(struct cam_path *path)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
xpt_release_path(path);
free(path, M_CAMXPT);
}
/*
* Return -1 for failure, 0 for exact match, 1 for match with wildcards
* in path1, 2 for match with wildcards in path2.
*/
int
xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
{
int retval = 0;
if (path1->bus != path2->bus) {
if (path1->bus->path_id == CAM_BUS_WILDCARD)
retval = 1;
else if (path2->bus->path_id == CAM_BUS_WILDCARD)
retval = 2;
else
return (-1);
}
if (path1->target != path2->target) {
if (path1->target->target_id == CAM_TARGET_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
retval = 2;
else
return (-1);
}
if (path1->device != path2->device) {
if (path1->device->lun_id == CAM_LUN_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
retval = 2;
else
return (-1);
}
return (retval);
}
void
xpt_print_path(struct cam_path *path)
{
if (path == NULL)
printf("(nopath): ");
else {
if (path->periph != NULL)
printf("(%s%d:", path->periph->periph_name,
path->periph->unit_number);
else
printf("(noperiph:");
if (path->bus != NULL)
printf("%s%d:%d:", path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id);
else
printf("nobus:");
if (path->target != NULL)
printf("%d:", path->target->target_id);
else
printf("X:");
if (path->device != NULL)
printf("%d): ", path->device->lun_id);
else
printf("X): ");
}
}
void
xpt_print(struct cam_path *path, const char *fmt, ...)
{
va_list ap;
xpt_print_path(path);
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
int
xpt_path_string(struct cam_path *path, char *str, size_t str_len)
{
struct sbuf sb;
mtx_assert(path->bus->sim->mtx, MA_OWNED);
sbuf_new(&sb, str, str_len, 0);
if (path == NULL)
sbuf_printf(&sb, "(nopath): ");
else {
if (path->periph != NULL)
sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
path->periph->unit_number);
else
sbuf_printf(&sb, "(noperiph:");
if (path->bus != NULL)
sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id);
else
sbuf_printf(&sb, "nobus:");
if (path->target != NULL)
sbuf_printf(&sb, "%d:", path->target->target_id);
else
sbuf_printf(&sb, "X:");
if (path->device != NULL)
sbuf_printf(&sb, "%d): ", path->device->lun_id);
else
sbuf_printf(&sb, "X): ");
}
sbuf_finish(&sb);
return(sbuf_len(&sb));
}
path_id_t
xpt_path_path_id(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
return(path->bus->path_id);
}
target_id_t
xpt_path_target_id(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
if (path->target != NULL)
return (path->target->target_id);
else
return (CAM_TARGET_WILDCARD);
}
lun_id_t
xpt_path_lun_id(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
if (path->device != NULL)
return (path->device->lun_id);
else
return (CAM_LUN_WILDCARD);
}
struct cam_sim *
xpt_path_sim(struct cam_path *path)
{
return (path->bus->sim);
}
struct cam_periph*
xpt_path_periph(struct cam_path *path)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
return (path->periph);
}
/*
* Release a CAM control block for the caller. Remit the cost of the structure
* to the device referenced by the path. If the this device had no 'credits'
* and peripheral drivers have registered async callbacks for this notification
* call them now.
*/
void
xpt_release_ccb(union ccb *free_ccb)
{
struct cam_path *path;
struct cam_ed *device;
struct cam_eb *bus;
struct cam_sim *sim;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
path = free_ccb->ccb_h.path;
device = path->device;
bus = path->bus;
sim = bus->sim;
mtx_assert(sim->mtx, MA_OWNED);
cam_ccbq_release_opening(&device->ccbq);
if (sim->ccb_count > sim->max_ccbs) {
xpt_free_ccb(free_ccb);
sim->ccb_count--;
} else {
SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
xpt_links.sle);
}
if (sim->devq == NULL) {
return;
}
sim->devq->alloc_openings++;
sim->devq->alloc_active--;
/* XXX Turn this into an inline function - xpt_run_device?? */
if ((device_is_alloc_queued(device) == 0)
&& (device->drvq.entries > 0)) {
xpt_schedule_dev_allocq(bus, device);
}
if (dev_allocq_is_runnable(sim->devq))
xpt_run_dev_allocq(bus);
}
/* Functions accessed by SIM drivers */
/*
* A sim structure, listing the SIM entry points and instance
* identification info is passed to xpt_bus_register to hook the SIM
* into the CAM framework. xpt_bus_register creates a cam_eb entry
* for this new bus and places it in the array of busses and assigns
* it a path_id. The path_id may be influenced by "hard wiring"
* information specified by the user. Once interrupt services are
* availible, the bus will be probed.
*/
int32_t
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
{
struct cam_eb *new_bus;
struct cam_eb *old_bus;
struct ccb_pathinq cpi;
mtx_assert(sim->mtx, MA_OWNED);
sim->bus_id = bus;
new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
M_CAMXPT, M_NOWAIT);
if (new_bus == NULL) {
/* Couldn't satisfy request */
return (CAM_RESRC_UNAVAIL);
}
if (strcmp(sim->sim_name, "xpt") != 0) {
sim->path_id =
xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
}
TAILQ_INIT(&new_bus->et_entries);
new_bus->path_id = sim->path_id;
new_bus->sim = sim;
timevalclear(&new_bus->last_reset);
new_bus->flags = 0;
new_bus->refcount = 1; /* Held until a bus_deregister event */
new_bus->generation = 0;
mtx_lock(&xsoftc.xpt_topo_lock);
old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
while (old_bus != NULL
&& old_bus->path_id < new_bus->path_id)
old_bus = TAILQ_NEXT(old_bus, links);
if (old_bus != NULL)
TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
else
TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
xsoftc.bus_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
/* Notify interested parties */
if (sim->path_id != CAM_XPT_PATH_ID) {
struct cam_path path;
xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
xpt_async(AC_PATH_REGISTERED, &path, &cpi);
xpt_release_path(&path);
}
return (CAM_SUCCESS);
}
int32_t
xpt_bus_deregister(path_id_t pathid)
{
struct cam_path bus_path;
struct cam_ed *device;
struct cam_ed_qinfo *qinfo;
struct cam_devq *devq;
struct cam_periph *periph;
struct cam_sim *ccbsim;
union ccb *work_ccb;
cam_status status;
status = xpt_compile_path(&bus_path, NULL, pathid,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP)
return (status);
xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
/* The SIM may be gone, so use a dummy SIM for any stray operations. */
devq = bus_path.bus->sim->devq;
ccbsim = bus_path.bus->sim;
bus_path.bus->sim = &cam_dead_sim;
/* Execute any pending operations now. */
while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
CAMQ_HEAD)) != NULL ||
(qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
CAMQ_HEAD)) != NULL) {
do {
device = qinfo->device;
work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
if (work_ccb != NULL) {
devq->active_dev = device;
cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
cam_ccbq_send_ccb(&device->ccbq, work_ccb);
(*(ccbsim->sim_action))(ccbsim, work_ccb);
}
periph = (struct cam_periph *)camq_remove(&device->drvq,
CAMQ_HEAD);
if (periph != NULL)
xpt_schedule(periph, periph->pinfo.priority);
} while (work_ccb != NULL || periph != NULL);
}
/* Make sure all completed CCBs are processed. */
while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
camisr_runqueue(&ccbsim->sim_doneq);
/* Repeat the async's for the benefit of any new devices. */
xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
}
/* Release the reference count held while registered. */
xpt_release_bus(bus_path.bus);
xpt_release_path(&bus_path);
return (CAM_REQ_CMP);
}
static path_id_t
xptnextfreepathid(void)
{
struct cam_eb *bus;
path_id_t pathid;
const char *strval;
pathid = 0;
mtx_lock(&xsoftc.xpt_topo_lock);
bus = TAILQ_FIRST(&xsoftc.xpt_busses);
retry:
/* Find an unoccupied pathid */
while (bus != NULL && bus->path_id <= pathid) {
if (bus->path_id == pathid)
pathid++;
bus = TAILQ_NEXT(bus, links);
}
mtx_unlock(&xsoftc.xpt_topo_lock);
/*
* Ensure that this pathid is not reserved for
* a bus that may be registered in the future.
*/
if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
++pathid;
/* Start the search over */
mtx_lock(&xsoftc.xpt_topo_lock);
goto retry;
}
return (pathid);
}
static path_id_t
xptpathid(const char *sim_name, int sim_unit, int sim_bus)
{
path_id_t pathid;
int i, dunit, val;
char buf[32];
const char *dname;
pathid = CAM_XPT_PATH_ID;
snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
i = 0;
while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
if (strcmp(dname, "scbus")) {
/* Avoid a bit of foot shooting. */
continue;
}
if (dunit < 0) /* unwired?! */
continue;
if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
if (sim_bus == val) {
pathid = dunit;
break;
}
} else if (sim_bus == 0) {
/* Unspecified matches bus 0 */
pathid = dunit;
break;
} else {
printf("Ambiguous scbus configuration for %s%d "
"bus %d, cannot wire down. The kernel "
"config entry for scbus%d should "
"specify a controller bus.\n"
"Scbus will be assigned dynamically.\n",
sim_name, sim_unit, sim_bus, dunit);
break;
}
}
if (pathid == CAM_XPT_PATH_ID)
pathid = xptnextfreepathid();
return (pathid);
}
void
xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
{
struct cam_eb *bus;
struct cam_et *target, *next_target;
struct cam_ed *device, *next_device;
mtx_assert(path->bus->sim->mtx, MA_OWNED);
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
/*
* Most async events come from a CAM interrupt context. In
* a few cases, the error recovery code at the peripheral layer,
* which may run from our SWI or a process context, may signal
* deferred events with a call to xpt_async.
*/
bus = path->bus;
if (async_code == AC_BUS_RESET) {
/* Update our notion of when the last reset occurred */
microtime(&bus->last_reset);
}
for (target = TAILQ_FIRST(&bus->et_entries);
target != NULL;
target = next_target) {
next_target = TAILQ_NEXT(target, links);
if (path->target != target
&& path->target->target_id != CAM_TARGET_WILDCARD
&& target->target_id != CAM_TARGET_WILDCARD)
continue;
if (async_code == AC_SENT_BDR) {
/* Update our notion of when the last reset occurred */
microtime(&path->target->last_reset);
}
for (device = TAILQ_FIRST(&target->ed_entries);
device != NULL;
device = next_device) {
next_device = TAILQ_NEXT(device, links);
if (path->device != device
&& path->device->lun_id != CAM_LUN_WILDCARD
&& device->lun_id != CAM_LUN_WILDCARD)
continue;
xpt_dev_async(async_code, bus, target,
device, async_arg);
xpt_async_bcast(&device->asyncs, async_code,
path, async_arg);
}
}
/*
* If this wasn't a fully wildcarded async, tell all
* clients that want all async events.
*/
if (bus != xpt_periph->path->bus)
xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
path, async_arg);
}
static void
xpt_async_bcast(struct async_list *async_head,
u_int32_t async_code,
struct cam_path *path, void *async_arg)
{
struct async_node *cur_entry;
cur_entry = SLIST_FIRST(async_head);
while (cur_entry != NULL) {
struct async_node *next_entry;
/*
* Grab the next list entry before we call the current
* entry's callback. This is because the callback function
* can delete its async callback entry.
*/
next_entry = SLIST_NEXT(cur_entry, links);
if ((cur_entry->event_enable & async_code) != 0)
cur_entry->callback(cur_entry->callback_arg,
async_code, path,
async_arg);
cur_entry = next_entry;
}
}
/*
* Handle any per-device event notifications that require action by the XPT.
*/
static void
xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
struct cam_ed *device, void *async_arg)
{
cam_status status;
struct cam_path newpath;
/*
* We only need to handle events for real devices.
*/
if (target->target_id == CAM_TARGET_WILDCARD
|| device->lun_id == CAM_LUN_WILDCARD)
return;
/*
* We need our own path with wildcards expanded to
* handle certain types of events.
*/
if ((async_code == AC_SENT_BDR)
|| (async_code == AC_BUS_RESET)
|| (async_code == AC_INQ_CHANGED))
status = xpt_compile_path(&newpath, NULL,
bus->path_id,
target->target_id,
device->lun_id);
else
status = CAM_REQ_CMP_ERR;
if (status == CAM_REQ_CMP) {
/*
* Allow transfer negotiation to occur in a
* tag free environment.
*/
if (async_code == AC_SENT_BDR
|| async_code == AC_BUS_RESET)
xpt_toggle_tags(&newpath);
if (async_code == AC_INQ_CHANGED) {
/*
* We've sent a start unit command, or
* something similar to a device that
* may have caused its inquiry data to
* change. So we re-scan the device to
* refresh the inquiry data for it.
*/
xpt_scan_lun(newpath.periph, &newpath,
CAM_EXPECT_INQ_CHANGE, NULL);
}
xpt_release_path(&newpath);
} else if (async_code == AC_LOST_DEVICE) {
device->flags |= CAM_DEV_UNCONFIGURED;
} else if (async_code == AC_TRANSFER_NEG) {
struct ccb_trans_settings *settings;
settings = (struct ccb_trans_settings *)async_arg;
xpt_set_transfer_settings(settings, device,
/*async_update*/TRUE);
}
}
u_int32_t
xpt_freeze_devq(struct cam_path *path, u_int count)
{
struct ccb_hdr *ccbh;
mtx_assert(path->bus->sim->mtx, MA_OWNED);
path->device->qfrozen_cnt += count;
/*
* Mark the last CCB in the queue as needing
* to be requeued if the driver hasn't
* changed it's state yet. This fixes a race
* where a ccb is just about to be queued to
* a controller driver when it's interrupt routine
* freezes the queue. To completly close the
* hole, controller drives must check to see
* if a ccb's status is still CAM_REQ_INPROG
* just before they queue
* the CCB. See ahc_action/ahc_freeze_devq for
* an example.
*/
ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
if (ccbh && ccbh->status == CAM_REQ_INPROG)
ccbh->status = CAM_REQUEUE_REQ;
return (path->device->qfrozen_cnt);
}
u_int32_t
xpt_freeze_simq(struct cam_sim *sim, u_int count)
{
mtx_assert(sim->mtx, MA_OWNED);
sim->devq->send_queue.qfrozen_cnt += count;
if (sim->devq->active_dev != NULL) {
struct ccb_hdr *ccbh;
ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
ccb_hdr_tailq);
if (ccbh && ccbh->status == CAM_REQ_INPROG)
ccbh->status = CAM_REQUEUE_REQ;
}
return (sim->devq->send_queue.qfrozen_cnt);
}
static void
xpt_release_devq_timeout(void *arg)
{
struct cam_ed *device;
device = (struct cam_ed *)arg;
xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
}
void
xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
{
mtx_assert(path->bus->sim->mtx, MA_OWNED);
xpt_release_devq_device(path->device, count, run_queue);
}
static void
xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
{
int rundevq;
rundevq = 0;
if (dev->qfrozen_cnt > 0) {
count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
dev->qfrozen_cnt -= count;
if (dev->qfrozen_cnt == 0) {
/*
* No longer need to wait for a successful
* command completion.
*/
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
/*
* Remove any timeouts that might be scheduled
* to release this queue.
*/
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
callout_stop(&dev->callout);
dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
}
/*
* Now that we are unfrozen schedule the
* device so any pending transactions are
* run.
*/
if ((dev->ccbq.queue.entries > 0)
&& (xpt_schedule_dev_sendq(dev->target->bus, dev))
&& (run_queue != 0)) {
rundevq = 1;
}
}
}
if (rundevq != 0)
xpt_run_dev_sendq(dev->target->bus);
}
void
xpt_release_simq(struct cam_sim *sim, int run_queue)
{
struct camq *sendq;
mtx_assert(sim->mtx, MA_OWNED);
sendq = &(sim->devq->send_queue);
if (sendq->qfrozen_cnt > 0) {
sendq->qfrozen_cnt--;
if (sendq->qfrozen_cnt == 0) {
struct cam_eb *bus;
/*
* If there is a timeout scheduled to release this
* sim queue, remove it. The queue frozen count is
* already at 0.
*/
if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
callout_stop(&sim->callout);
sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
}
bus = xpt_find_bus(sim->path_id);
if (run_queue) {
/*
* Now that we are unfrozen run the send queue.
*/
xpt_run_dev_sendq(bus);
}
xpt_release_bus(bus);
}
}
}
/*
* XXX Appears to be unused.
*/
static void
xpt_release_simq_timeout(void *arg)
{
struct cam_sim *sim;
sim = (struct cam_sim *)arg;
xpt_release_simq(sim, /* run_queue */ TRUE);
}
void
xpt_done(union ccb *done_ccb)
{
struct cam_sim *sim;
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
/*
* Queue up the request for handling by our SWI handler
* any of the "non-immediate" type of ccbs.
*/
sim = done_ccb->ccb_h.path->bus->sim;
switch (done_ccb->ccb_h.path->periph->type) {
case CAM_PERIPH_BIO:
TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
sim_links.tqe);
done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
mtx_lock(&cam_simq_lock);
TAILQ_INSERT_TAIL(&cam_simq, sim,
links);
sim->flags |= CAM_SIM_ON_DONEQ;
mtx_unlock(&cam_simq_lock);
}
if ((done_ccb->ccb_h.path->periph->flags &
CAM_PERIPH_POLLED) == 0)
swi_sched(cambio_ih, 0);
break;
default:
panic("unknown periph type %d",
done_ccb->ccb_h.path->periph->type);
}
}
}
union ccb *
xpt_alloc_ccb()
{
union ccb *new_ccb;
new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
return (new_ccb);
}
union ccb *
xpt_alloc_ccb_nowait()
{
union ccb *new_ccb;
new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
return (new_ccb);
}
void
xpt_free_ccb(union ccb *free_ccb)
{
free(free_ccb, M_CAMXPT);
}
/* Private XPT functions */
/*
* Get a CAM control block for the caller. Charge the structure to the device
* referenced by the path. If the this device has no 'credits' then the
* device already has the maximum number of outstanding operations under way
* and we return NULL. If we don't have sufficient resources to allocate more
* ccbs, we also return NULL.
*/
static union ccb *
xpt_get_ccb(struct cam_ed *device)
{
union ccb *new_ccb;
struct cam_sim *sim;
sim = device->sim;
if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
new_ccb = xpt_alloc_ccb_nowait();
if (new_ccb == NULL) {
return (NULL);
}
if ((sim->flags & CAM_SIM_MPSAFE) == 0)
callout_handle_init(&new_ccb->ccb_h.timeout_ch);
SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
xpt_links.sle);
sim->ccb_count++;
}
cam_ccbq_take_opening(&device->ccbq);
SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
return (new_ccb);
}
static void
xpt_release_bus(struct cam_eb *bus)
{
if ((--bus->refcount == 0)
&& (TAILQ_FIRST(&bus->et_entries) == NULL)) {
mtx_lock(&xsoftc.xpt_topo_lock);
TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
xsoftc.bus_generation++;
mtx_unlock(&xsoftc.xpt_topo_lock);
free(bus, M_CAMXPT);
}
}
static struct cam_et *
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
{
struct cam_et *target;
target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
if (target != NULL) {
struct cam_et *cur_target;
TAILQ_INIT(&target->ed_entries);
target->bus = bus;
target->target_id = target_id;
target->refcount = 1;
target->generation = 0;
timevalclear(&target->last_reset);
/*
* Hold a reference to our parent bus so it
* will not go away before we do.
*/
bus->refcount++;
/* Insertion sort into our bus's target list */
cur_target = TAILQ_FIRST(&bus->et_entries);
while (cur_target != NULL && cur_target->target_id < target_id)
cur_target = TAILQ_NEXT(cur_target, links);
if (cur_target != NULL) {
TAILQ_INSERT_BEFORE(cur_target, target, links);
} else {
TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
}
bus->generation++;
}
return (target);
}
static void
xpt_release_target(struct cam_eb *bus, struct cam_et *target)
{
if ((--target->refcount == 0)
&& (TAILQ_FIRST(&target->ed_entries) == NULL)) {
TAILQ_REMOVE(&bus->et_entries, target, links);
bus->generation++;
free(target, M_CAMXPT);
xpt_release_bus(bus);
}
}
static struct cam_ed *
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
{
struct cam_path path;
struct cam_ed *device;
struct cam_devq *devq;
cam_status status;
if (SIM_DEAD(bus->sim))
return (NULL);
/* Make space for us in the device queue on our bus */
devq = bus->sim->devq;
status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
if (status != CAM_REQ_CMP) {
device = NULL;
} else {
device = (struct cam_ed *)malloc(sizeof(*device),
M_CAMXPT, M_NOWAIT);
}
if (device != NULL) {
struct cam_ed *cur_device;
cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
device->alloc_ccb_entry.device = device;
cam_init_pinfo(&device->send_ccb_entry.pinfo);
device->send_ccb_entry.device = device;
device->target = target;
device->lun_id = lun_id;
device->sim = bus->sim;
/* Initialize our queues */
if (camq_init(&device->drvq, 0) != 0) {
free(device, M_CAMXPT);
return (NULL);
}
if (cam_ccbq_init(&device->ccbq,
bus->sim->max_dev_openings) != 0) {
camq_fini(&device->drvq);
free(device, M_CAMXPT);
return (NULL);
}
SLIST_INIT(&device->asyncs);
SLIST_INIT(&device->periphs);
device->generation = 0;
device->owner = NULL;
/*
* Take the default quirk entry until we have inquiry
* data and can determine a better quirk to use.
*/
device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
bzero(&device->inq_data, sizeof(device->inq_data));
device->inq_flags = 0;
device->queue_flags = 0;
device->serial_num = NULL;
device->serial_num_len = 0;
device->qfrozen_cnt = 0;
device->flags = CAM_DEV_UNCONFIGURED;
device->tag_delay_count = 0;
device->tag_saved_openings = 0;
device->refcount = 1;
if (bus->sim->flags & CAM_SIM_MPSAFE)
callout_init_mtx(&device->callout, bus->sim->mtx, 0);
else
callout_init_mtx(&device->callout, &Giant, 0);
/*
* Hold a reference to our parent target so it
* will not go away before we do.
*/
target->refcount++;
/*
* XXX should be limited by number of CCBs this bus can
* do.
*/
bus->sim->max_ccbs += device->ccbq.devq_openings;
/* Insertion sort into our target's device list */
cur_device = TAILQ_FIRST(&target->ed_entries);
while (cur_device != NULL && cur_device->lun_id < lun_id)
cur_device = TAILQ_NEXT(cur_device, links);
if (cur_device != NULL) {
TAILQ_INSERT_BEFORE(cur_device, device, links);
} else {
TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
}
target->generation++;
if (lun_id != CAM_LUN_WILDCARD) {
xpt_compile_path(&path,
NULL,
bus->path_id,
target->target_id,
lun_id);
xpt_devise_transport(&path);
xpt_release_path(&path);
}
}
return (device);
}
static void
xpt_release_device(struct cam_eb *bus, struct cam_et *target,
struct cam_ed *device)
{
if ((--device->refcount == 0)
&& ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
struct cam_devq *devq;
if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
|| device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
panic("Removing device while still queued for ccbs");
if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
callout_stop(&device->callout);
TAILQ_REMOVE(&target->ed_entries, device,links);
target->generation++;
bus->sim->max_ccbs -= device->ccbq.devq_openings;
if (!SIM_DEAD(bus->sim)) {
/* Release our slot in the devq */
devq = bus->sim->devq;
cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
}
camq_fini(&device->drvq);
camq_fini(&device->ccbq.queue);
free(device, M_CAMXPT);
xpt_release_target(bus, target);
}
}
static u_int32_t
xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
{
int diff;
int result;
struct cam_ed *dev;
dev = path->device;
diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
result = cam_ccbq_resize(&dev->ccbq, newopenings);
if (result == CAM_REQ_CMP && (diff < 0)) {
dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
}
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|| (dev->inq_flags & SID_CmdQue) != 0)
dev->tag_saved_openings = newopenings;
/* Adjust the global limit */
dev->sim->max_ccbs += diff;
return (result);
}
static struct cam_eb *
xpt_find_bus(path_id_t path_id)
{
struct cam_eb *bus;
mtx_lock(&xsoftc.xpt_topo_lock);
for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
bus != NULL;
bus = TAILQ_NEXT(bus, links)) {
if (bus->path_id == path_id) {
bus->refcount++;
break;
}
}
mtx_unlock(&xsoftc.xpt_topo_lock);
return (bus);
}
static struct cam_et *
xpt_find_target(struct cam_eb *bus, target_id_t target_id)
{
struct cam_et *target;
for (target = TAILQ_FIRST(&bus->et_entries);
target != NULL;
target = TAILQ_NEXT(target, links)) {
if (target->target_id == target_id) {
target->refcount++;
break;
}
}
return (target);
}
static struct cam_ed *
xpt_find_device(struct cam_et *target, lun_id_t lun_id)
{
struct cam_ed *device;
for (device = TAILQ_FIRST(&target->ed_entries);
device != NULL;
device = TAILQ_NEXT(device, links)) {
if (device->lun_id == lun_id) {
device->refcount++;
break;
}
}
return (device);
}
typedef struct {
union ccb *request_ccb;
struct ccb_pathinq *cpi;
int counter;
} xpt_scan_bus_info;
/*
* To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
* As the scan progresses, xpt_scan_bus is used as the
* callback on completion function.
*/
static void
xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
{
CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_scan_bus\n"));
switch (request_ccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
{
xpt_scan_bus_info *scan_info;
union ccb *work_ccb;
struct cam_path *path;
u_int i;
u_int max_target;
u_int initiator_id;
/* Find out the characteristics of the bus */
work_ccb = xpt_alloc_ccb_nowait();
if (work_ccb == NULL) {
request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(request_ccb);
return;
}
xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
request_ccb->ccb_h.pinfo.priority);
work_ccb->ccb_h.func_code = XPT_PATH_INQ;
xpt_action(work_ccb);
if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
request_ccb->ccb_h.status = work_ccb->ccb_h.status;
xpt_free_ccb(work_ccb);
xpt_done(request_ccb);
return;
}
if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
/*
* Can't scan the bus on an adapter that
* cannot perform the initiator role.
*/
request_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_free_ccb(work_ccb);
xpt_done(request_ccb);
return;
}
/* Save some state for use while we probe for devices */
scan_info = (xpt_scan_bus_info *)
malloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_NOWAIT);
scan_info->request_ccb = request_ccb;
scan_info->cpi = &work_ccb->cpi;
/* Cache on our stack so we can work asynchronously */
max_target = scan_info->cpi->max_target;
initiator_id = scan_info->cpi->initiator_id;
/*
* We can scan all targets in parallel, or do it sequentially.
*/
if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
max_target = 0;
scan_info->counter = 0;
} else {
scan_info->counter = scan_info->cpi->max_target + 1;
if (scan_info->cpi->initiator_id < scan_info->counter) {
scan_info->counter--;
}
}
for (i = 0; i <= max_target; i++) {
cam_status status;
if (i == initiator_id)
continue;
status = xpt_create_path(&path, xpt_periph,
request_ccb->ccb_h.path_id,
i, 0);
if (status != CAM_REQ_CMP) {
printf("xpt_scan_bus: xpt_create_path failed"
" with status %#x, bus scan halted\n",
status);
free(scan_info, M_CAMXPT);
request_ccb->ccb_h.status = status;
xpt_free_ccb(work_ccb);
xpt_done(request_ccb);
break;
}
work_ccb = xpt_alloc_ccb_nowait();
if (work_ccb == NULL) {
free(scan_info, M_CAMXPT);
xpt_free_path(path);
request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(request_ccb);
break;
}
xpt_setup_ccb(&work_ccb->ccb_h, path,
request_ccb->ccb_h.pinfo.priority);
work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
work_ccb->ccb_h.ppriv_ptr0 = scan_info;
work_ccb->crcn.flags = request_ccb->crcn.flags;
xpt_action(work_ccb);
}
break;
}
case XPT_SCAN_LUN:
{
cam_status status;
struct cam_path *path;
xpt_scan_bus_info *scan_info;
path_id_t path_id;
target_id_t target_id;
lun_id_t lun_id;
/* Reuse the same CCB to query if a device was really found */
scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
request_ccb->ccb_h.pinfo.priority);
request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
path_id = request_ccb->ccb_h.path_id;
target_id = request_ccb->ccb_h.target_id;
lun_id = request_ccb->ccb_h.target_lun;
xpt_action(request_ccb);
if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
struct cam_ed *device;
struct cam_et *target;
int phl;
/*
* If we already probed lun 0 successfully, or
* we have additional configured luns on this
* target that might have "gone away", go onto
* the next lun.
*/
target = request_ccb->ccb_h.path->target;
/*
* We may touch devices that we don't
* hold references too, so ensure they
* don't disappear out from under us.
* The target above is referenced by the
* path in the request ccb.
*/
phl = 0;
device = TAILQ_FIRST(&target->ed_entries);
if (device != NULL) {
phl = CAN_SRCH_HI_SPARSE(device);
if (device->lun_id == 0)
device = TAILQ_NEXT(device, links);
}
if ((lun_id != 0) || (device != NULL)) {
if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
lun_id++;
}
} else {
struct cam_ed *device;
device = request_ccb->ccb_h.path->device;
if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
/* Try the next lun */
if (lun_id < (CAM_SCSI2_MAXLUN-1)
|| CAN_SRCH_HI_DENSE(device))
lun_id++;
}
}
/*
* Free the current request path- we're done with it.
*/
xpt_free_path(request_ccb->ccb_h.path);
/*
* Check to see if we scan any further luns.
*/
if (lun_id == request_ccb->ccb_h.target_lun
|| lun_id > scan_info->cpi->max_lun) {
int done;
hop_again:
done = 0;
if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
scan_info->counter++;
if (scan_info->counter ==
scan_info->cpi->initiator_id) {
scan_info->counter++;
}
if (scan_info->counter >=
scan_info->cpi->max_target+1) {
done = 1;
}
} else {
scan_info->counter--;
if (scan_info->counter == 0) {
done = 1;
}
}
if (done) {
xpt_free_ccb(request_ccb);
xpt_free_ccb((union ccb *)scan_info->cpi);
request_ccb = scan_info->request_ccb;
free(scan_info, M_CAMXPT);
request_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(request_ccb);
break;
}
if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
break;
}
status = xpt_create_path(&path, xpt_periph,
scan_info->request_ccb->ccb_h.path_id,
scan_info->counter, 0);
if (status != CAM_REQ_CMP) {
printf("xpt_scan_bus: xpt_create_path failed"
" with status %#x, bus scan halted\n",
status);
xpt_free_ccb(request_ccb);
xpt_free_ccb((union ccb *)scan_info->cpi);
request_ccb = scan_info->request_ccb;
free(scan_info, M_CAMXPT);
request_ccb->ccb_h.status = status;
xpt_done(request_ccb);
break;
}
xpt_setup_ccb(&request_ccb->ccb_h, path,
request_ccb->ccb_h.pinfo.priority);
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
request_ccb->ccb_h.ppriv_ptr0 = scan_info;
request_ccb->crcn.flags =
scan_info->request_ccb->crcn.flags;
} else {
status = xpt_create_path(&path, xpt_periph,
path_id, target_id, lun_id);
if (status != CAM_REQ_CMP) {
printf("xpt_scan_bus: xpt_create_path failed "
"with status %#x, halting LUN scan\n",
status);
goto hop_again;
}
xpt_setup_ccb(&request_ccb->ccb_h, path,
request_ccb->ccb_h.pinfo.priority);
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
request_ccb->ccb_h.ppriv_ptr0 = scan_info;
request_ccb->crcn.flags =
scan_info->request_ccb->crcn.flags;
}
xpt_action(request_ccb);
break;
}
default:
break;
}
}
typedef enum {
PROBE_TUR,
PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */
PROBE_FULL_INQUIRY,
PROBE_MODE_SENSE,
PROBE_SERIAL_NUM_0,
PROBE_SERIAL_NUM_1,
PROBE_TUR_FOR_NEGOTIATION,
PROBE_INQUIRY_BASIC_DV1,
PROBE_INQUIRY_BASIC_DV2,
PROBE_DV_EXIT
} probe_action;
typedef enum {
PROBE_INQUIRY_CKSUM = 0x01,
PROBE_SERIAL_CKSUM = 0x02,
PROBE_NO_ANNOUNCE = 0x04
} probe_flags;
typedef struct {
TAILQ_HEAD(, ccb_hdr) request_ccbs;
probe_action action;
union ccb saved_ccb;
probe_flags flags;
MD5_CTX context;
u_int8_t digest[16];
} probe_softc;
static void
xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
cam_flags flags, union ccb *request_ccb)
{
struct ccb_pathinq cpi;
cam_status status;
struct cam_path *new_path;
struct cam_periph *old_periph;
CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_scan_lun\n"));
xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
if (cpi.ccb_h.status != CAM_REQ_CMP) {
if (request_ccb != NULL) {
request_ccb->ccb_h.status = cpi.ccb_h.status;
xpt_done(request_ccb);
}
return;
}
if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
/*
* Can't scan the bus on an adapter that
* cannot perform the initiator role.
*/
if (request_ccb != NULL) {
request_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(request_ccb);
}
return;
}
if (request_ccb == NULL) {
request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT);
if (request_ccb == NULL) {
xpt_print(path, "xpt_scan_lun: can't allocate CCB, "
"can't continue\n");
return;
}
new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT);
if (new_path == NULL) {
xpt_print(path, "xpt_scan_lun: can't allocate path, "
"can't continue\n");
free(request_ccb, M_CAMXPT);
return;
}
status = xpt_compile_path(new_path, xpt_periph,
path->bus->path_id,
path->target->target_id,
path->device->lun_id);
if (status != CAM_REQ_CMP) {
xpt_print(path, "xpt_scan_lun: can't compile path, "
"can't continue\n");
free(request_ccb, M_CAMXPT);
free(new_path, M_CAMXPT);
return;
}
xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
request_ccb->ccb_h.cbfcnp = xptscandone;
request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
request_ccb->crcn.flags = flags;
}
if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
probe_softc *softc;
softc = (probe_softc *)old_periph->softc;
TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
periph_links.tqe);
} else {
status = cam_periph_alloc(proberegister, NULL, probecleanup,
probestart, "probe",
CAM_PERIPH_BIO,
request_ccb->ccb_h.path, NULL, 0,
request_ccb);
if (status != CAM_REQ_CMP) {
xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
"returned an error, can't continue probe\n");
request_ccb->ccb_h.status = status;
xpt_done(request_ccb);
}
}
}
static void
xptscandone(struct cam_periph *periph, union ccb *done_ccb)
{
xpt_release_path(done_ccb->ccb_h.path);
free(done_ccb->ccb_h.path, M_CAMXPT);
free(done_ccb, M_CAMXPT);
}
static cam_status
proberegister(struct cam_periph *periph, void *arg)
{
union ccb *request_ccb; /* CCB representing the probe request */
cam_status status;
probe_softc *softc;
request_ccb = (union ccb *)arg;
if (periph == NULL) {
printf("proberegister: periph was NULL!!\n");
return(CAM_REQ_CMP_ERR);
}
if (request_ccb == NULL) {
printf("proberegister: no probe CCB, "
"can't register device\n");
return(CAM_REQ_CMP_ERR);
}
softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT);
if (softc == NULL) {
printf("proberegister: Unable to probe new device. "
"Unable to allocate softc\n");
return(CAM_REQ_CMP_ERR);
}
TAILQ_INIT(&softc->request_ccbs);
TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
periph_links.tqe);
softc->flags = 0;
periph->softc = softc;
status = cam_periph_acquire(periph);
if (status != CAM_REQ_CMP) {
return (status);
}
/*
* Ensure we've waited at least a bus settle
* delay before attempting to probe the device.
* For HBAs that don't do bus resets, this won't make a difference.
*/
cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
scsi_delay);
probeschedule(periph);
return(CAM_REQ_CMP);
}
static void
probeschedule(struct cam_periph *periph)
{
struct ccb_pathinq cpi;
union ccb *ccb;
probe_softc *softc;
softc = (probe_softc *)periph->softc;
ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
/*
* If a device has gone away and another device, or the same one,
* is back in the same place, it should have a unit attention
* condition pending. It will not report the unit attention in
* response to an inquiry, which may leave invalid transfer
* negotiations in effect. The TUR will reveal the unit attention
* condition. Only send the TUR for lun 0, since some devices
* will get confused by commands other than inquiry to non-existent
* luns. If you think a device has gone away start your scan from
* lun 0. This will insure that any bogus transfer settings are
* invalidated.
*
* If we haven't seen the device before and the controller supports
* some kind of transfer negotiation, negotiate with the first
* sent command if no bus reset was performed at startup. This
* ensures that the device is not confused by transfer negotiation
* settings left over by loader or BIOS action.
*/
if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
&& (ccb->ccb_h.target_lun == 0)) {
softc->action = PROBE_TUR;
} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
&& (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
proberequestdefaultnegotiation(periph);
softc->action = PROBE_INQUIRY;
} else {
softc->action = PROBE_INQUIRY;
}
if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
softc->flags |= PROBE_NO_ANNOUNCE;
else
softc->flags &= ~PROBE_NO_ANNOUNCE;
xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
}
static void
probestart(struct cam_periph *periph, union ccb *start_ccb)
{
/* Probe the device that our peripheral driver points to */
struct ccb_scsiio *csio;
probe_softc *softc;
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
softc = (probe_softc *)periph->softc;
csio = &start_ccb->csio;
switch (softc->action) {
case PROBE_TUR:
case PROBE_TUR_FOR_NEGOTIATION:
case PROBE_DV_EXIT:
{
scsi_test_unit_ready(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
SSD_FULL_SIZE,
/*timeout*/60000);
break;
}
case PROBE_INQUIRY:
case PROBE_FULL_INQUIRY:
case PROBE_INQUIRY_BASIC_DV1:
case PROBE_INQUIRY_BASIC_DV2:
{
u_int inquiry_len;
struct scsi_inquiry_data *inq_buf;
inq_buf = &periph->path->device->inq_data;
/*
* If the device is currently configured, we calculate an
* MD5 checksum of the inquiry data, and if the serial number
* length is greater than 0, add the serial number data
* into the checksum as well. Once the inquiry and the
* serial number check finish, we attempt to figure out
* whether we still have the same device.
*/
if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
MD5Init(&softc->context);
MD5Update(&softc->context, (unsigned char *)inq_buf,
sizeof(struct scsi_inquiry_data));
softc->flags |= PROBE_INQUIRY_CKSUM;
if (periph->path->device->serial_num_len > 0) {
MD5Update(&softc->context,
periph->path->device->serial_num,
periph->path->device->serial_num_len);
softc->flags |= PROBE_SERIAL_CKSUM;
}
MD5Final(softc->digest, &softc->context);
}
if (softc->action == PROBE_INQUIRY)
inquiry_len = SHORT_INQUIRY_LENGTH;
else
inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
/*
* Some parallel SCSI devices fail to send an
* ignore wide residue message when dealing with
* odd length inquiry requests. Round up to be
* safe.
*/
inquiry_len = roundup2(inquiry_len, 2);
if (softc->action == PROBE_INQUIRY_BASIC_DV1
|| softc->action == PROBE_INQUIRY_BASIC_DV2) {
inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT);
}
if (inq_buf == NULL) {
xpt_print(periph->path, "malloc failure- skipping Basic"
"Domain Validation\n");
softc->action = PROBE_DV_EXIT;
scsi_test_unit_ready(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
SSD_FULL_SIZE,
/*timeout*/60000);
break;
}
scsi_inquiry(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
(u_int8_t *)inq_buf,
inquiry_len,
/*evpd*/FALSE,
/*page_code*/0,
SSD_MIN_SIZE,
/*timeout*/60 * 1000);
break;
}
case PROBE_MODE_SENSE:
{
void *mode_buf;
int mode_buf_len;
mode_buf_len = sizeof(struct scsi_mode_header_6)
+ sizeof(struct scsi_mode_blk_desc)
+ sizeof(struct scsi_control_page);
mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT);
if (mode_buf != NULL) {
scsi_mode_sense(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
/*dbd*/FALSE,
SMS_PAGE_CTRL_CURRENT,
SMS_CONTROL_MODE_PAGE,
mode_buf,
mode_buf_len,
SSD_FULL_SIZE,
/*timeout*/60000);
break;
}
xpt_print(periph->path, "Unable to mode sense control page - "
"malloc failure\n");
softc->action = PROBE_SERIAL_NUM_0;
}
/* FALLTHROUGH */
case PROBE_SERIAL_NUM_0:
{
struct scsi_vpd_supported_page_list *vpd_list = NULL;
struct cam_ed *device;
device = periph->path->device;
if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
vpd_list = malloc(sizeof(*vpd_list), M_CAMXPT,
M_NOWAIT | M_ZERO);
}
if (vpd_list != NULL) {
scsi_inquiry(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
(u_int8_t *)vpd_list,
sizeof(*vpd_list),
/*evpd*/TRUE,
SVPD_SUPPORTED_PAGE_LIST,
SSD_MIN_SIZE,
/*timeout*/60 * 1000);
break;
}
/*
* We'll have to do without, let our probedone
* routine finish up for us.
*/
start_ccb->csio.data_ptr = NULL;
probedone(periph, start_ccb);
return;
}
case PROBE_SERIAL_NUM_1:
{
struct scsi_vpd_unit_serial_number *serial_buf;
struct cam_ed* device;
serial_buf = NULL;
device = periph->path->device;
device->serial_num = NULL;
device->serial_num_len = 0;
serial_buf = (struct scsi_vpd_unit_serial_number *)
malloc(sizeof(*serial_buf), M_CAMXPT, M_NOWAIT|M_ZERO);
if (serial_buf != NULL) {
scsi_inquiry(csio,
/*retries*/4,
probedone,
MSG_SIMPLE_Q_TAG,
(u_int8_t *)serial_buf,
sizeof(*serial_buf),
/*evpd*/TRUE,
SVPD_UNIT_SERIAL_NUMBER,
SSD_MIN_SIZE,
/*timeout*/60 * 1000);
break;
}
/*
* We'll have to do without, let our probedone
* routine finish up for us.
*/
start_ccb->csio.data_ptr = NULL;
probedone(periph, start_ccb);
return;
}
}
xpt_action(start_ccb);
}
static void
proberequestdefaultnegotiation(struct cam_periph *periph)
{
struct ccb_trans_settings cts;
xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cts.type = CTS_TYPE_USER_SETTINGS;
xpt_action((union ccb *)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
return;
}
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb *)&cts);
}
/*
* Backoff Negotiation Code- only pertinent for SPI devices.
*/
static int
proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
{
struct ccb_trans_settings cts;
struct ccb_trans_settings_spi *spi;
memset(&cts, 0, sizeof (cts));
xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb *)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (bootverbose) {
xpt_print(periph->path,
"failed to get current device settings\n");
}
return (0);
}
if (cts.transport != XPORT_SPI) {
if (bootverbose) {
xpt_print(periph->path, "not SPI transport\n");
}
return (0);
}
spi = &cts.xport_specific.spi;
/*
* We cannot renegotiate sync rate if we don't have one.
*/
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
if (bootverbose) {
xpt_print(periph->path, "no sync rate known\n");
}
return (0);
}
/*
* We'll assert that we don't have to touch PPR options- the
* SIM will see what we do with period and offset and adjust
* the PPR options as appropriate.
*/
/*
* A sync rate with unknown or zero offset is nonsensical.
* A sync period of zero means Async.
*/
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
|| spi->sync_offset == 0 || spi->sync_period == 0) {
if (bootverbose) {
xpt_print(periph->path, "no sync rate available\n");
}
return (0);
}
if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
("hit async: giving up on DV\n"));
return (0);
}
/*
* Jump sync_period up by one, but stop at 5MHz and fall back to Async.
* We don't try to remember 'last' settings to see if the SIM actually
* gets into the speed we want to set. We check on the SIM telling
* us that a requested speed is bad, but otherwise don't try and
* check the speed due to the asynchronous and handshake nature
* of speed setting.
*/
spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
for (;;) {
spi->sync_period++;
if (spi->sync_period >= 0xf) {
spi->sync_period = 0;
spi->sync_offset = 0;
CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
("setting to async for DV\n"));
/*
* Once we hit async, we don't want to try
* any more settings.
*/
device->flags |= CAM_DEV_DV_HIT_BOTTOM;
} else if (bootverbose) {
CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
("DV: period 0x%x\n", spi->sync_period));
printf("setting period to 0x%x\n", spi->sync_period);
}
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
xpt_action((union ccb *)&cts);
if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
break;
}
CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
("DV: failed to set period 0x%x\n", spi->sync_period));
if (spi->sync_period == 0) {
return (0);
}
}
return (1);
}
static void
probedone(struct cam_periph *periph, union ccb *done_ccb)
{
probe_softc *softc;
struct cam_path *path;
u_int32_t priority;
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
softc = (probe_softc *)periph->softc;
path = done_ccb->ccb_h.path;
priority = done_ccb->ccb_h.pinfo.priority;
switch (softc->action) {
case PROBE_TUR:
{
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (cam_periph_error(done_ccb, 0,
SF_NO_PRINT, NULL) == ERESTART)
return;
else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path,
/*count*/1,
/*run_queue*/TRUE);
}
softc->action = PROBE_INQUIRY;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
case PROBE_INQUIRY:
case PROBE_FULL_INQUIRY:
{
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
struct scsi_inquiry_data *inq_buf;
u_int8_t periph_qual;
path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
inq_buf = &path->device->inq_data;
periph_qual = SID_QUAL(inq_buf);
switch(periph_qual) {
case SID_QUAL_LU_CONNECTED:
{
u_int8_t len;
/*
* We conservatively request only
* SHORT_INQUIRY_LEN bytes of inquiry
* information during our first try
* at sending an INQUIRY. If the device
* has more information to give,
* perform a second request specifying
* the amount of information the device
* is willing to give.
*/
len = inq_buf->additional_length
+ offsetof(struct scsi_inquiry_data,
additional_length) + 1;
if (softc->action == PROBE_INQUIRY
&& len > SHORT_INQUIRY_LENGTH) {
softc->action = PROBE_FULL_INQUIRY;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
xpt_find_quirk(path->device);
xpt_devise_transport(path);
if (INQ_DATA_TQ_ENABLED(inq_buf))
softc->action = PROBE_MODE_SENSE;
else
softc->action = PROBE_SERIAL_NUM_0;
path->device->flags &= ~CAM_DEV_UNCONFIGURED;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
default:
break;
}
} else if (cam_periph_error(done_ccb, 0,
done_ccb->ccb_h.target_lun > 0
? SF_RETRY_UA|SF_QUIET_IR
: SF_RETRY_UA,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
/*
* If we get to this point, we got an error status back
* from the inquiry and the error status doesn't require
* automatically retrying the command. Therefore, the
* inquiry failed. If we had inquiry information before
* for this device, but this latest inquiry command failed,
* the device has probably gone away. If this device isn't
* already marked unconfigured, notify the peripheral
* drivers that this device is no more.
*/
if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
/* Send the async notification. */
xpt_async(AC_LOST_DEVICE, path, NULL);
xpt_release_ccb(done_ccb);
break;
}
case PROBE_MODE_SENSE:
{
struct ccb_scsiio *csio;
struct scsi_mode_header_6 *mode_hdr;
csio = &done_ccb->csio;
mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
struct scsi_control_page *page;
u_int8_t *offset;
offset = ((u_int8_t *)&mode_hdr[1])
+ mode_hdr->blk_desc_len;
page = (struct scsi_control_page *)offset;
path->device->queue_flags = page->queue_flags;
} else if (cam_periph_error(done_ccb, 0,
SF_RETRY_UA|SF_NO_PRINT,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path,
/*count*/1, /*run_queue*/TRUE);
}
xpt_release_ccb(done_ccb);
free(mode_hdr, M_CAMXPT);
softc->action = PROBE_SERIAL_NUM_0;
xpt_schedule(periph, priority);
return;
}
case PROBE_SERIAL_NUM_0:
{
struct ccb_scsiio *csio;
struct scsi_vpd_supported_page_list *page_list;
int length, serialnum_supported, i;
serialnum_supported = 0;
csio = &done_ccb->csio;
page_list =
(struct scsi_vpd_supported_page_list *)csio->data_ptr;
if (page_list == NULL) {
/*
* Don't process the command as it was never sent
*/
} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
&& (page_list->length > 0)) {
length = min(page_list->length,
SVPD_SUPPORTED_PAGES_SIZE);
for (i = 0; i < length; i++) {
if (page_list->list[i] ==
SVPD_UNIT_SERIAL_NUMBER) {
serialnum_supported = 1;
break;
}
}
} else if (cam_periph_error(done_ccb, 0,
SF_RETRY_UA|SF_NO_PRINT,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
if (page_list != NULL)
free(page_list, M_DEVBUF);
if (serialnum_supported) {
xpt_release_ccb(done_ccb);
softc->action = PROBE_SERIAL_NUM_1;
xpt_schedule(periph, priority);
return;
}
xpt_release_ccb(done_ccb);
softc->action = PROBE_TUR_FOR_NEGOTIATION;
xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
return;
}
case PROBE_SERIAL_NUM_1:
{
struct ccb_scsiio *csio;
struct scsi_vpd_unit_serial_number *serial_buf;
u_int32_t priority;
int changed;
int have_serialnum;
changed = 1;
have_serialnum = 0;
csio = &done_ccb->csio;
priority = done_ccb->ccb_h.pinfo.priority;
serial_buf =
(struct scsi_vpd_unit_serial_number *)csio->data_ptr;
/* Clean up from previous instance of this device */
if (path->device->serial_num != NULL) {
free(path->device->serial_num, M_CAMXPT);
path->device->serial_num = NULL;
path->device->serial_num_len = 0;
}
if (serial_buf == NULL) {
/*
* Don't process the command as it was never sent
*/
} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
&& (serial_buf->length > 0)) {
have_serialnum = 1;
path->device->serial_num =
(u_int8_t *)malloc((serial_buf->length + 1),
M_CAMXPT, M_NOWAIT);
if (path->device->serial_num != NULL) {
bcopy(serial_buf->serial_num,
path->device->serial_num,
serial_buf->length);
path->device->serial_num_len =
serial_buf->length;
path->device->serial_num[serial_buf->length]
= '\0';
}
} else if (cam_periph_error(done_ccb, 0,
SF_RETRY_UA|SF_NO_PRINT,
&softc->saved_ccb) == ERESTART) {
return;
} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
/*
* Let's see if we have seen this device before.
*/
if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
MD5_CTX context;
u_int8_t digest[16];
MD5Init(&context);
MD5Update(&context,
(unsigned char *)&path->device->inq_data,
sizeof(struct scsi_inquiry_data));
if (have_serialnum)
MD5Update(&context, serial_buf->serial_num,
serial_buf->length);
MD5Final(digest, &context);
if (bcmp(softc->digest, digest, 16) == 0)
changed = 0;
/*
* XXX Do we need to do a TUR in order to ensure
* that the device really hasn't changed???
*/
if ((changed != 0)
&& ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
xpt_async(AC_LOST_DEVICE, path, NULL);
}
if (serial_buf != NULL)
free(serial_buf, M_CAMXPT);
if (changed != 0) {
/*
* Now that we have all the necessary
* information to safely perform transfer
* negotiations... Controllers don't perform
* any negotiation or tagged queuing until
* after the first XPT_SET_TRAN_SETTINGS ccb is
* received. So, on a new device, just retrieve
* the user settings, and set them as the current
* settings to set the device up.
*/
proberequestdefaultnegotiation(periph);
xpt_release_ccb(done_ccb);
/*
* Perform a TUR to allow the controller to
* perform any necessary transfer negotiation.
*/
softc->action = PROBE_TUR_FOR_NEGOTIATION;
xpt_schedule(periph, priority);
return;
}
xpt_release_ccb(done_ccb);
break;
}
case PROBE_TUR_FOR_NEGOTIATION:
case PROBE_DV_EXIT:
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
/*
* Do Domain Validation for lun 0 on devices that claim
* to support Synchronous Transfer modes.
*/
if (softc->action == PROBE_TUR_FOR_NEGOTIATION
&& done_ccb->ccb_h.target_lun == 0
&& (path->device->inq_data.flags & SID_Sync) != 0
&& (path->device->flags & CAM_DEV_IN_DV) == 0) {
CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
("Begin Domain Validation\n"));
path->device->flags |= CAM_DEV_IN_DV;
xpt_release_ccb(done_ccb);
softc->action = PROBE_INQUIRY_BASIC_DV1;
xpt_schedule(periph, priority);
return;
}
if (softc->action == PROBE_DV_EXIT) {
CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
("Leave Domain Validation\n"));
}
path->device->flags &=
~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
/* Inform the XPT that a new device has been found */
done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action(done_ccb);
xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
done_ccb);
}
xpt_release_ccb(done_ccb);
break;
case PROBE_INQUIRY_BASIC_DV1:
case PROBE_INQUIRY_BASIC_DV2:
{
struct scsi_inquiry_data *nbuf;
struct ccb_scsiio *csio;
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
/* Don't wedge the queue */
xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
/*run_queue*/TRUE);
}
csio = &done_ccb->csio;
nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
xpt_print(path,
"inquiry data fails comparison at DV%d step\n",
softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
if (proberequestbackoff(periph, path->device)) {
path->device->flags &= ~CAM_DEV_IN_DV;
softc->action = PROBE_TUR_FOR_NEGOTIATION;
} else {
/* give up */
softc->action = PROBE_DV_EXIT;
}
free(nbuf, M_CAMXPT);
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
free(nbuf, M_CAMXPT);
if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
softc->action = PROBE_INQUIRY_BASIC_DV2;
xpt_release_ccb(done_ccb);
xpt_schedule(periph, priority);
return;
}
if (softc->action == PROBE_DV_EXIT) {
CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
("Leave Domain Validation Successfully\n"));
}
path->device->flags &=
~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
/* Inform the XPT that a new device has been found */
done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action(done_ccb);
xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
done_ccb);
}
xpt_release_ccb(done_ccb);
break;
}
}
done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
done_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(done_ccb);
if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
cam_periph_invalidate(periph);
cam_periph_release(periph);
} else {
probeschedule(periph);
}
}
static void
probecleanup(struct cam_periph *periph)
{
free(periph->softc, M_CAMXPT);
}
static void
xpt_find_quirk(struct cam_ed *device)
{
caddr_t match;
match = cam_quirkmatch((caddr_t)&device->inq_data,
(caddr_t)xpt_quirk_table,
sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
sizeof(*xpt_quirk_table), scsi_inquiry_match);
if (match == NULL)
panic("xpt_find_quirk: device didn't match wildcard entry!!");
device->quirk = (struct xpt_quirk_entry *)match;
}
static int
sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
{
int error, bool;
bool = cam_srch_hi;
error = sysctl_handle_int(oidp, &bool, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (bool == 0 || bool == 1) {
cam_srch_hi = bool;
return (0);
} else {
return (EINVAL);
}
}
static void
xpt_devise_transport(struct cam_path *path)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cts;
struct scsi_inquiry_data *inq_buf;
/* Get transport information from the SIM */
xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
inq_buf = NULL;
if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
inq_buf = &path->device->inq_data;
path->device->protocol = PROTO_SCSI;
path->device->protocol_version =
inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
path->device->transport = cpi.transport;
path->device->transport_version = cpi.transport_version;
/*
* Any device not using SPI3 features should
* be considered SPI2 or lower.
*/
if (inq_buf != NULL) {
if (path->device->transport == XPORT_SPI
&& (inq_buf->spi3data & SID_SPI_MASK) == 0
&& path->device->transport_version > 2)
path->device->transport_version = 2;
} else {
struct cam_ed* otherdev;
for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
otherdev != NULL;
otherdev = TAILQ_NEXT(otherdev, links)) {
if (otherdev != path->device)
break;
}
if (otherdev != NULL) {
/*
* Initially assume the same versioning as
* prior luns for this target.
*/
path->device->protocol_version =
otherdev->protocol_version;
path->device->transport_version =
otherdev->transport_version;
} else {
/* Until we know better, opt for safty */
path->device->protocol_version = 2;
if (path->device->transport == XPORT_SPI)
path->device->transport_version = 2;
else
path->device->transport_version = 0;
}
}
/*
* XXX
* For a device compliant with SPC-2 we should be able
* to determine the transport version supported by
* scrutinizing the version descriptors in the
* inquiry buffer.
*/
/* Tell the controller what we think */
xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
cts.transport = path->device->transport;
cts.transport_version = path->device->transport_version;
cts.protocol = path->device->protocol;
cts.protocol_version = path->device->protocol_version;
cts.proto_specific.valid = 0;
cts.xport_specific.valid = 0;
xpt_action((union ccb *)&cts);
}
static void
xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
int async_update)
{
struct ccb_pathinq cpi;
struct ccb_trans_settings cur_cts;
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_scsi *cur_scsi;
struct cam_sim *sim;
struct scsi_inquiry_data *inq_data;
if (device == NULL) {
cts->ccb_h.status = CAM_PATH_INVALID;
xpt_done((union ccb *)cts);
return;
}
if (cts->protocol == PROTO_UNKNOWN
|| cts->protocol == PROTO_UNSPECIFIED) {
cts->protocol = device->protocol;
cts->protocol_version = device->protocol_version;
}
if (cts->protocol_version == PROTO_VERSION_UNKNOWN
|| cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
cts->protocol_version = device->protocol_version;
if (cts->protocol != device->protocol) {
xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
cts->protocol, device->protocol);
cts->protocol = device->protocol;
}
if (cts->protocol_version > device->protocol_version) {
if (bootverbose) {
xpt_print(cts->ccb_h.path, "Down reving Protocol "
"Version from %d to %d?\n", cts->protocol_version,
device->protocol_version);
}
cts->protocol_version = device->protocol_version;
}
if (cts->transport == XPORT_UNKNOWN
|| cts->transport == XPORT_UNSPECIFIED) {
cts->transport = device->transport;
cts->transport_version = device->transport_version;
}
if (cts->transport_version == XPORT_VERSION_UNKNOWN
|| cts->transport_version == XPORT_VERSION_UNSPECIFIED)
cts->transport_version = device->transport_version;
if (cts->transport != device->transport) {
xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
cts->transport, device->transport);
cts->transport = device->transport;
}
if (cts->transport_version > device->transport_version) {
if (bootverbose) {
xpt_print(cts->ccb_h.path, "Down reving Transport "
"Version from %d to %d?\n", cts->transport_version,
device->transport_version);
}
cts->transport_version = device->transport_version;
}
sim = cts->ccb_h.path->bus->sim;
/*
* Nothing more of interest to do unless
* this is a device connected via the
* SCSI protocol.
*/
if (cts->protocol != PROTO_SCSI) {
if (async_update == FALSE)
(*(sim->sim_action))(sim, (union ccb *)cts);
return;
}
inq_data = &device->inq_data;
scsi = &cts->proto_specific.scsi;
xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
/* SCSI specific sanity checking */
if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
|| (INQ_DATA_TQ_ENABLED(inq_data)) == 0
|| (device->queue_flags & SCP_QUEUE_DQUE) != 0
|| (device->quirk->mintags == 0)) {
/*
* Can't tag on hardware that doesn't support tags,
* doesn't have it enabled, or has broken tag support.
*/
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
}
if (async_update == FALSE) {
/*
* Perform sanity checking against what the
* controller and device can do.
*/
xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
cur_cts.type = cts->type;
xpt_action((union ccb *)&cur_cts);
if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
return;
}
cur_scsi = &cur_cts.proto_specific.scsi;
if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
}
if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
}
/* SPI specific sanity checking */
if (cts->transport == XPORT_SPI && async_update == FALSE) {
u_int spi3caps;
struct ccb_trans_settings_spi *spi;
struct ccb_trans_settings_spi *cur_spi;
spi = &cts->xport_specific.spi;
cur_spi = &cur_cts.xport_specific.spi;
/* Fill in any gaps in what the user gave us */
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
spi->sync_period = cur_spi->sync_period;
if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
spi->sync_period = 0;
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
spi->sync_offset = cur_spi->sync_offset;
if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
spi->sync_offset = 0;
if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
spi->ppr_options = cur_spi->ppr_options;
if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
spi->ppr_options = 0;
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
spi->bus_width = cur_spi->bus_width;
if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
spi->bus_width = 0;
if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
}
if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
&& (inq_data->flags & SID_Sync) == 0
&& cts->type == CTS_TYPE_CURRENT_SETTINGS)
|| ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
|| (spi->sync_offset == 0)
|| (spi->sync_period == 0)) {
/* Force async */
spi->sync_period = 0;
spi->sync_offset = 0;
}
switch (spi->bus_width) {
case MSG_EXT_WDTR_BUS_32_BIT:
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
|| (inq_data->flags & SID_WBus32) != 0
|| cts->type == CTS_TYPE_USER_SETTINGS)
&& (cpi.hba_inquiry & PI_WIDE_32) != 0)
break;
/* Fall Through to 16-bit */
case MSG_EXT_WDTR_BUS_16_BIT:
if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
|| (inq_data->flags & SID_WBus16) != 0
|| cts->type == CTS_TYPE_USER_SETTINGS)
&& (cpi.hba_inquiry & PI_WIDE_16) != 0) {
spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
break;
}
/* Fall Through to 8-bit */
default: /* New bus width?? */
case MSG_EXT_WDTR_BUS_8_BIT:
/* All targets can do this */
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
spi3caps = cpi.xport_specific.spi.ppr_options;
if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
&& cts->type == CTS_TYPE_CURRENT_SETTINGS)
spi3caps &= inq_data->spi3data;
if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
if ((spi3caps & SID_SPI_IUS) == 0)
spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
if ((spi3caps & SID_SPI_QAS) == 0)
spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
/* No SPI Transfer settings are allowed unless we are wide */
if (spi->bus_width == 0)
spi->ppr_options = 0;
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
/*
* Can't tag queue without disconnection.
*/
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
scsi->valid |= CTS_SCSI_VALID_TQ;
}
/*
* If we are currently performing tagged transactions to
* this device and want to change its negotiation parameters,
* go non-tagged for a bit to give the controller a chance to
* negotiate unhampered by tag messages.
*/
if (cts->type == CTS_TYPE_CURRENT_SETTINGS
&& (device->inq_flags & SID_CmdQue) != 0
&& (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
&& (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
CTS_SPI_VALID_SYNC_OFFSET|
CTS_SPI_VALID_BUS_WIDTH)) != 0)
xpt_toggle_tags(cts->ccb_h.path);
}
if (cts->type == CTS_TYPE_CURRENT_SETTINGS
&& (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
int device_tagenb;
/*
* If we are transitioning from tags to no-tags or
* vice-versa, we need to carefully freeze and restart
* the queue so that we don't overlap tagged and non-tagged
* commands. We also temporarily stop tags if there is
* a change in transfer negotiation settings to allow
* "tag-less" negotiation.
*/
if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|| (device->inq_flags & SID_CmdQue) != 0)
device_tagenb = TRUE;
else
device_tagenb = FALSE;
if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
&& device_tagenb == FALSE)
|| ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
&& device_tagenb == TRUE)) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
/*
* Delay change to use tags until after a
* few commands have gone to this device so
* the controller has time to perform transfer
* negotiations without tagged messages getting
* in the way.
*/
device->tag_delay_count = CAM_TAG_DELAY_COUNT;
device->flags |= CAM_DEV_TAG_AFTER_COUNT;
} else {
struct ccb_relsim crs;
xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
device->inq_flags &= ~SID_CmdQue;
xpt_dev_ccbq_resize(cts->ccb_h.path,
sim->max_dev_openings);
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
device->tag_delay_count = 0;
xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
/*priority*/1);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
crs.openings
= crs.release_timeout
= crs.qfrozen_cnt
= 0;
xpt_action((union ccb *)&crs);
}
}
}
if (async_update == FALSE)
(*(sim->sim_action))(sim, (union ccb *)cts);
}
static void
xpt_toggle_tags(struct cam_path *path)
{
struct cam_ed *dev;
/*
* Give controllers a chance to renegotiate
* before starting tag operations. We
* "toggle" tagged queuing off then on
* which causes the tag enable command delay
* counter to come into effect.
*/
dev = path->device;
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|| ((dev->inq_flags & SID_CmdQue) != 0
&& (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
struct ccb_trans_settings cts;
xpt_setup_ccb(&cts.ccb_h, path, 1);
cts.protocol = PROTO_SCSI;
cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
cts.transport = XPORT_UNSPECIFIED;
cts.transport_version = XPORT_VERSION_UNSPECIFIED;
cts.proto_specific.scsi.flags = 0;
cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
xpt_set_transfer_settings(&cts, path->device,
/*async_update*/TRUE);
cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
xpt_set_transfer_settings(&cts, path->device,
/*async_update*/TRUE);
}
}
static void
xpt_start_tags(struct cam_path *path)
{
struct ccb_relsim crs;
struct cam_ed *device;
struct cam_sim *sim;
int newopenings;
device = path->device;
sim = path->bus->sim;
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
xpt_freeze_devq(path, /*count*/1);
device->inq_flags |= SID_CmdQue;
if (device->tag_saved_openings != 0)
newopenings = device->tag_saved_openings;
else
newopenings = min(device->quirk->maxtags,
sim->max_tagged_dev_openings);
xpt_dev_ccbq_resize(path, newopenings);
xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
crs.openings
= crs.release_timeout
= crs.qfrozen_cnt
= 0;
xpt_action((union ccb *)&crs);
}
static int busses_to_config;
static int busses_to_reset;
static int
xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
{
mtx_assert(bus->sim->mtx, MA_OWNED);
if (bus->path_id != CAM_XPT_PATH_ID) {
struct cam_path path;
struct ccb_pathinq cpi;
int can_negotiate;
busses_to_config++;
xpt_compile_path(&path, NULL, bus->path_id,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
can_negotiate = cpi.hba_inquiry;
can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
&& can_negotiate)
busses_to_reset++;
xpt_release_path(&path);
}
return(1);
}
static int
xptconfigfunc(struct cam_eb *bus, void *arg)
{
struct cam_path *path;
union ccb *work_ccb;
mtx_assert(bus->sim->mtx, MA_OWNED);
if (bus->path_id != CAM_XPT_PATH_ID) {
cam_status status;
int can_negotiate;
work_ccb = xpt_alloc_ccb_nowait();
if (work_ccb == NULL) {
busses_to_config--;
xpt_finishconfig(xpt_periph, NULL);
return(0);
}
if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
printf("xptconfigfunc: xpt_create_path failed with "
"status %#x for bus %d\n", status, bus->path_id);
printf("xptconfigfunc: halting bus configuration\n");
xpt_free_ccb(work_ccb);
busses_to_config--;
xpt_finishconfig(xpt_periph, NULL);
return(0);
}
xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
work_ccb->ccb_h.func_code = XPT_PATH_INQ;
xpt_action(work_ccb);
if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
printf("xptconfigfunc: CPI failed on bus %d "
"with status %d\n", bus->path_id,
work_ccb->ccb_h.status);
xpt_finishconfig(xpt_periph, work_ccb);
return(1);
}
can_negotiate = work_ccb->cpi.hba_inquiry;
can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
&& (can_negotiate != 0)) {
xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
work_ccb->ccb_h.func_code = XPT_RESET_BUS;
work_ccb->ccb_h.cbfcnp = NULL;
CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
("Resetting Bus\n"));
xpt_action(work_ccb);
xpt_finishconfig(xpt_periph, work_ccb);
} else {
/* Act as though we performed a successful BUS RESET */
work_ccb->ccb_h.func_code = XPT_RESET_BUS;
xpt_finishconfig(xpt_periph, work_ccb);
}
}
return(1);
}
static void
xpt_config(void *arg)
{
/*
* Now that interrupts are enabled, go find our devices
*/
#ifdef CAMDEBUG
/* Setup debugging flags and path */
#ifdef CAM_DEBUG_FLAGS
cam_dflags = CAM_DEBUG_FLAGS;
#else /* !CAM_DEBUG_FLAGS */
cam_dflags = CAM_DEBUG_NONE;
#endif /* CAM_DEBUG_FLAGS */
#ifdef CAM_DEBUG_BUS
if (cam_dflags != CAM_DEBUG_NONE) {
/*
* Locking is specifically omitted here. No SIMs have
* registered yet, so xpt_create_path will only be searching
* empty lists of targets and devices.
*/
if (xpt_create_path(&cam_dpath, xpt_periph,
CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
CAM_DEBUG_LUN) != CAM_REQ_CMP) {
printf("xpt_config: xpt_create_path() failed for debug"
" target %d:%d:%d, debugging disabled\n",
CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
cam_dflags = CAM_DEBUG_NONE;
}
} else
cam_dpath = NULL;
#else /* !CAM_DEBUG_BUS */
cam_dpath = NULL;
#endif /* CAM_DEBUG_BUS */
#endif /* CAMDEBUG */
/*
* Scan all installed busses.
*/
xpt_for_all_busses(xptconfigbuscountfunc, NULL);
if (busses_to_config == 0) {
/* Call manually because we don't have any busses */
xpt_finishconfig(xpt_periph, NULL);
} else {
if (busses_to_reset > 0 && scsi_delay >= 2000) {
printf("Waiting %d seconds for SCSI "
"devices to settle\n", scsi_delay/1000);
}
xpt_for_all_busses(xptconfigfunc, NULL);
}
}
/*
* If the given device only has one peripheral attached to it, and if that
* peripheral is the passthrough driver, announce it. This insures that the
* user sees some sort of announcement for every peripheral in their system.
*/
static int
xptpassannouncefunc(struct cam_ed *device, void *arg)
{
struct cam_periph *periph;
int i;
for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
periph = SLIST_NEXT(periph, periph_links), i++);
periph = SLIST_FIRST(&device->periphs);
if ((i == 1)
&& (strncmp(periph->periph_name, "pass", 4) == 0))
xpt_announce_periph(periph, NULL);
return(1);
}
static void
xpt_finishconfig_task(void *context, int pending)
{
struct periph_driver **p_drv;
int i;
if (busses_to_config == 0) {
/* Register all the peripheral drivers */
/* XXX This will have to change when we have loadable modules */
p_drv = periph_drivers;
for (i = 0; p_drv[i] != NULL; i++) {
(*p_drv[i]->init)();
}
/*
* Check for devices with no "standard" peripheral driver
* attached. For any devices like that, announce the
* passthrough driver so the user will see something.
*/
xpt_for_all_devices(xptpassannouncefunc, NULL);
/* Release our hook so that the boot can continue. */
config_intrhook_disestablish(xsoftc.xpt_config_hook);
free(xsoftc.xpt_config_hook, M_CAMXPT);
xsoftc.xpt_config_hook = NULL;
}
free(context, M_CAMXPT);
}
static void
xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
{
struct xpt_task *task;
if (done_ccb != NULL) {
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_finishconfig\n"));
switch(done_ccb->ccb_h.func_code) {
case XPT_RESET_BUS:
if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
done_ccb->crcn.flags = 0;
xpt_action(done_ccb);
return;
}
/* FALLTHROUGH */
case XPT_SCAN_BUS:
default:
xpt_free_path(done_ccb->ccb_h.path);
busses_to_config--;
break;
}
}
if (busses_to_config == 0) {
task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
if (task != NULL) {
TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
taskqueue_enqueue(taskqueue_thread, &task->task);
}
}
if (done_ccb != NULL)
xpt_free_ccb(done_ccb);
}
cam_status
xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
struct cam_path *path)
{
struct ccb_setasync csa;
cam_status status;
int xptpath = 0;
if (path == NULL) {
mtx_lock(&xsoftc.xpt_lock);
status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP) {
mtx_unlock(&xsoftc.xpt_lock);
return (status);
}
xptpath = 1;
}
xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = event;
csa.callback = cbfunc;
csa.callback_arg = cbarg;
xpt_action((union ccb *)&csa);
status = csa.ccb_h.status;
if (xptpath) {
xpt_free_path(path);
mtx_unlock(&xsoftc.xpt_lock);
}
return (status);
}
static void
xptaction(struct cam_sim *sim, union ccb *work_ccb)
{
CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
switch (work_ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi;
cpi = &work_ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = 0;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = 0;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "", HBA_IDLEN);
strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
cpi->unit_number = sim->unit_number;
cpi->bus_id = sim->bus_id;
cpi->base_transfer_speed = 0;
cpi->protocol = PROTO_UNSPECIFIED;
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
cpi->transport = XPORT_UNSPECIFIED;
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(work_ccb);
break;
}
default:
work_ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(work_ccb);
break;
}
}
/*
* The xpt as a "controller" has no interrupt sources, so polling
* is a no-op.
*/
static void
xptpoll(struct cam_sim *sim)
{
}
void
xpt_lock_buses(void)
{
mtx_lock(&xsoftc.xpt_topo_lock);
}
void
xpt_unlock_buses(void)
{
mtx_unlock(&xsoftc.xpt_topo_lock);
}
static void
camisr(void *dummy)
{
cam_simq_t queue;
struct cam_sim *sim;
mtx_lock(&cam_simq_lock);
TAILQ_INIT(&queue);
TAILQ_CONCAT(&queue, &cam_simq, links);
mtx_unlock(&cam_simq_lock);
while ((sim = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, sim, links);
CAM_SIM_LOCK(sim);
sim->flags &= ~CAM_SIM_ON_DONEQ;
camisr_runqueue(&sim->sim_doneq);
CAM_SIM_UNLOCK(sim);
}
}
static void
camisr_runqueue(void *V_queue)
{
cam_isrq_t *queue = V_queue;
struct ccb_hdr *ccb_h;
while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
int runq;
TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
("camisr\n"));
runq = FALSE;
if (ccb_h->flags & CAM_HIGH_POWER) {
struct highpowerlist *hphead;
union ccb *send_ccb;
mtx_lock(&xsoftc.xpt_lock);
hphead = &xsoftc.highpowerq;
send_ccb = (union ccb *)STAILQ_FIRST(hphead);
/*
* Increment the count since this command is done.
*/
xsoftc.num_highpower++;
/*
* Any high powered commands queued up?
*/
if (send_ccb != NULL) {
STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
mtx_unlock(&xsoftc.xpt_lock);
xpt_release_devq(send_ccb->ccb_h.path,
/*count*/1, /*runqueue*/TRUE);
} else
mtx_unlock(&xsoftc.xpt_lock);
}
if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
struct cam_ed *dev;
dev = ccb_h->path->device;
cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
if (!SIM_DEAD(ccb_h->path->bus->sim)) {
ccb_h->path->bus->sim->devq->send_active--;
ccb_h->path->bus->sim->devq->send_openings++;
}
if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
&& (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
|| ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
&& (dev->ccbq.dev_active == 0))) {
xpt_release_devq(ccb_h->path, /*count*/1,
/*run_queue*/TRUE);
}
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
&& (--dev->tag_delay_count == 0))
xpt_start_tags(ccb_h->path);
if ((dev->ccbq.queue.entries > 0)
&& (dev->qfrozen_cnt == 0)
&& (device_is_send_queued(dev) == 0)) {
runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
dev);
}
}
if (ccb_h->status & CAM_RELEASE_SIMQ) {
xpt_release_simq(ccb_h->path->bus->sim,
/*run_queue*/TRUE);
ccb_h->status &= ~CAM_RELEASE_SIMQ;
runq = FALSE;
}
if ((ccb_h->flags & CAM_DEV_QFRZDIS)
&& (ccb_h->status & CAM_DEV_QFRZN)) {
xpt_release_devq(ccb_h->path, /*count*/1,
/*run_queue*/TRUE);
ccb_h->status &= ~CAM_DEV_QFRZN;
} else if (runq) {
xpt_run_dev_sendq(ccb_h->path->bus);
}
/* Call the peripheral driver's callback */
(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
}
}
static void
dead_sim_action(struct cam_sim *sim, union ccb *ccb)
{
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
xpt_done(ccb);
}
static void
dead_sim_poll(struct cam_sim *sim)
{
}