freebsd-dev/sys/net80211/ieee80211_crypto.h
Sam Leffler e6e547d57b Crypto api changes:
o don't use the key index to identify when the driver has been
  asked to allocate a key slot, use an explicit flag; allows
  drivers to force s/w fallback for entries in the global table
o change callback api to allocate driver resources for a crypto key:
  - de-const the key parameter so drivers can muck with the flags
  - on callback failure don't automatically try to setup s/w crypto;
    instead the driver must now mark the key entry for s/w crypto and
    the caller will re-attach the cipher module

NB: api change permits drivers more control over fallback to s/w
    crypto (e.g. based on a limited number of h/w key slots)
2008-09-21 23:16:19 +00:00

237 lines
9.1 KiB
C

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _NET80211_IEEE80211_CRYPTO_H_
#define _NET80211_IEEE80211_CRYPTO_H_
/*
* 802.11 protocol crypto-related definitions.
*/
#define IEEE80211_KEYBUF_SIZE 16
#define IEEE80211_MICBUF_SIZE (8+8) /* space for both tx+rx keys */
/*
* Old WEP-style key. Deprecated.
*/
struct ieee80211_wepkey {
u_int wk_len; /* key length in bytes */
uint8_t wk_key[IEEE80211_KEYBUF_SIZE];
};
struct ieee80211_rsnparms {
uint8_t rsn_mcastcipher; /* mcast/group cipher */
uint8_t rsn_mcastkeylen; /* mcast key length */
uint8_t rsn_ucastcipher; /* selected unicast cipher */
uint8_t rsn_ucastkeylen; /* unicast key length */
uint8_t rsn_keymgmt; /* selected key mgmt algo */
uint16_t rsn_caps; /* capabilities */
};
struct ieee80211_cipher;
/*
* Crypto key state. There is sufficient room for all supported
* ciphers (see below). The underlying ciphers are handled
* separately through loadable cipher modules that register with
* the generic crypto support. A key has a reference to an instance
* of the cipher; any per-key state is hung off wk_private by the
* cipher when it is attached. Ciphers are automatically called
* to detach and cleanup any such state when the key is deleted.
*
* The generic crypto support handles encap/decap of cipher-related
* frame contents for both hardware- and software-based implementations.
* A key requiring software crypto support is automatically flagged and
* the cipher is expected to honor this and do the necessary work.
* Ciphers such as TKIP may also support mixed hardware/software
* encrypt/decrypt and MIC processing.
*/
typedef uint16_t ieee80211_keyix; /* h/w key index */
struct ieee80211_key {
uint8_t wk_keylen; /* key length in bytes */
uint8_t wk_pad;
uint16_t wk_flags;
#define IEEE80211_KEY_XMIT 0x0001 /* key used for xmit */
#define IEEE80211_KEY_RECV 0x0002 /* key used for recv */
#define IEEE80211_KEY_GROUP 0x0004 /* key used for WPA group operation */
#define IEEE80211_KEY_SWENCRYPT 0x0010 /* host-based encrypt */
#define IEEE80211_KEY_SWDECRYPT 0x0020 /* host-based decrypt */
#define IEEE80211_KEY_SWENMIC 0x0040 /* host-based enmic */
#define IEEE80211_KEY_SWDEMIC 0x0080 /* host-based demic */
#define IEEE80211_KEY_DEVKEY 0x0100 /* device key request completed */
#define IEEE80211_KEY_CIPHER0 0x1000 /* cipher-specific action 0 */
#define IEEE80211_KEY_CIPHER1 0x2000 /* cipher-specific action 1 */
ieee80211_keyix wk_keyix; /* h/w key index */
ieee80211_keyix wk_rxkeyix; /* optional h/w rx key index */
uint8_t wk_key[IEEE80211_KEYBUF_SIZE+IEEE80211_MICBUF_SIZE];
#define wk_txmic wk_key+IEEE80211_KEYBUF_SIZE+0 /* XXX can't () right */
#define wk_rxmic wk_key+IEEE80211_KEYBUF_SIZE+8 /* XXX can't () right */
/* key receive sequence counter */
uint64_t wk_keyrsc[IEEE80211_TID_SIZE];
uint64_t wk_keytsc; /* key transmit sequence counter */
const struct ieee80211_cipher *wk_cipher;
void *wk_private; /* private cipher state */
uint8_t wk_macaddr[IEEE80211_ADDR_LEN];
};
#define IEEE80211_KEY_COMMON /* common flags passed in by apps */\
(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV | IEEE80211_KEY_GROUP)
#define IEEE80211_KEY_SWCRYPT \
(IEEE80211_KEY_SWENCRYPT | IEEE80211_KEY_SWDECRYPT)
#define IEEE80211_KEY_SWMIC (IEEE80211_KEY_SWENMIC | IEEE80211_KEY_SWDEMIC)
#define IEEE80211_KEYIX_NONE ((ieee80211_keyix) -1)
/*
* NB: these values are ordered carefully; there are lots of
* of implications in any reordering. Beware that 4 is used
* only to indicate h/w TKIP MIC support in driver capabilities;
* there is no separate cipher support (it's rolled into the
* TKIP cipher support).
*/
#define IEEE80211_CIPHER_WEP 0
#define IEEE80211_CIPHER_TKIP 1
#define IEEE80211_CIPHER_AES_OCB 2
#define IEEE80211_CIPHER_AES_CCM 3
#define IEEE80211_CIPHER_TKIPMIC 4 /* TKIP MIC capability */
#define IEEE80211_CIPHER_CKIP 5
#define IEEE80211_CIPHER_NONE 6 /* pseudo value */
#define IEEE80211_CIPHER_MAX (IEEE80211_CIPHER_NONE+1)
/* capability bits in ic_cryptocaps/iv_cryptocaps */
#define IEEE80211_CRYPTO_WEP (1<<IEEE80211_CIPHER_WEP)
#define IEEE80211_CRYPTO_TKIP (1<<IEEE80211_CIPHER_TKIP)
#define IEEE80211_CRYPTO_AES_OCB (1<<IEEE80211_CIPHER_AES_OCB)
#define IEEE80211_CRYPTO_AES_CCM (1<<IEEE80211_CIPHER_AES_CCM)
#define IEEE80211_CRYPTO_TKIPMIC (1<<IEEE80211_CIPHER_TKIPMIC)
#define IEEE80211_CRYPTO_CKIP (1<<IEEE80211_CIPHER_CKIP)
#if defined(__KERNEL__) || defined(_KERNEL)
struct ieee80211com;
struct ieee80211vap;
struct ieee80211_node;
struct mbuf;
MALLOC_DECLARE(M_80211_CRYPTO);
void ieee80211_crypto_attach(struct ieee80211com *);
void ieee80211_crypto_detach(struct ieee80211com *);
void ieee80211_crypto_vattach(struct ieee80211vap *);
void ieee80211_crypto_vdetach(struct ieee80211vap *);
int ieee80211_crypto_newkey(struct ieee80211vap *,
int cipher, int flags, struct ieee80211_key *);
int ieee80211_crypto_delkey(struct ieee80211vap *,
struct ieee80211_key *);
int ieee80211_crypto_setkey(struct ieee80211vap *, struct ieee80211_key *);
void ieee80211_crypto_delglobalkeys(struct ieee80211vap *);
void ieee80211_crypto_reload_keys(struct ieee80211com *);
/*
* Template for a supported cipher. Ciphers register with the
* crypto code and are typically loaded as separate modules
* (the null cipher is always present).
* XXX may need refcnts
*/
struct ieee80211_cipher {
const char *ic_name; /* printable name */
u_int ic_cipher; /* IEEE80211_CIPHER_* */
u_int ic_header; /* size of privacy header (bytes) */
u_int ic_trailer; /* size of privacy trailer (bytes) */
u_int ic_miclen; /* size of mic trailer (bytes) */
void* (*ic_attach)(struct ieee80211vap *, struct ieee80211_key *);
void (*ic_detach)(struct ieee80211_key *);
int (*ic_setkey)(struct ieee80211_key *);
int (*ic_encap)(struct ieee80211_key *, struct mbuf *,
uint8_t keyid);
int (*ic_decap)(struct ieee80211_key *, struct mbuf *, int);
int (*ic_enmic)(struct ieee80211_key *, struct mbuf *, int);
int (*ic_demic)(struct ieee80211_key *, struct mbuf *, int);
};
extern const struct ieee80211_cipher ieee80211_cipher_none;
#define IEEE80211_KEY_UNDEFINED(k) \
((k)->wk_cipher == &ieee80211_cipher_none)
void ieee80211_crypto_register(const struct ieee80211_cipher *);
void ieee80211_crypto_unregister(const struct ieee80211_cipher *);
int ieee80211_crypto_available(u_int cipher);
struct ieee80211_key *ieee80211_crypto_encap(struct ieee80211_node *,
struct mbuf *);
struct ieee80211_key *ieee80211_crypto_decap(struct ieee80211_node *,
struct mbuf *, int);
/*
* Check and remove any MIC.
*/
static __inline int
ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k,
struct mbuf *m, int force)
{
const struct ieee80211_cipher *cip = k->wk_cipher;
return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1);
}
/*
* Add any MIC.
*/
static __inline int
ieee80211_crypto_enmic(struct ieee80211vap *vap,
struct ieee80211_key *k, struct mbuf *m, int force)
{
const struct ieee80211_cipher *cip = k->wk_cipher;
return (cip->ic_miclen > 0 ? cip->ic_enmic(k, m, force) : 1);
}
/*
* Reset key state to an unused state. The crypto
* key allocation mechanism insures other state (e.g.
* key data) is properly setup before a key is used.
*/
static __inline void
ieee80211_crypto_resetkey(struct ieee80211vap *vap,
struct ieee80211_key *k, ieee80211_keyix ix)
{
k->wk_cipher = &ieee80211_cipher_none;;
k->wk_private = k->wk_cipher->ic_attach(vap, k);
k->wk_keyix = k->wk_rxkeyix = ix;
k->wk_flags = IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV;
}
/*
* Crypt-related notification methods.
*/
void ieee80211_notify_replay_failure(struct ieee80211vap *,
const struct ieee80211_frame *, const struct ieee80211_key *,
uint64_t rsc);
void ieee80211_notify_michael_failure(struct ieee80211vap *,
const struct ieee80211_frame *, u_int keyix);
#endif /* defined(__KERNEL__) || defined(_KERNEL) */
#endif /* _NET80211_IEEE80211_CRYPTO_H_ */