722 lines
21 KiB
C
722 lines
21 KiB
C
/*-
|
|
* SPDX-License-Identifier: ISC
|
|
*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
#include "ar5212/ar5212.h"
|
|
#include "ar5212/ar5212reg.h"
|
|
#include "ar5212/ar5212phy.h"
|
|
|
|
#define AH_5212_5111
|
|
#include "ar5212/ar5212.ini"
|
|
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
|
|
struct ar5111State {
|
|
RF_HAL_FUNCS base; /* public state, must be first */
|
|
uint16_t pcdacTable[PWR_TABLE_SIZE];
|
|
|
|
uint32_t Bank0Data[N(ar5212Bank0_5111)];
|
|
uint32_t Bank1Data[N(ar5212Bank1_5111)];
|
|
uint32_t Bank2Data[N(ar5212Bank2_5111)];
|
|
uint32_t Bank3Data[N(ar5212Bank3_5111)];
|
|
uint32_t Bank6Data[N(ar5212Bank6_5111)];
|
|
uint32_t Bank7Data[N(ar5212Bank7_5111)];
|
|
};
|
|
#define AR5111(ah) ((struct ar5111State *) AH5212(ah)->ah_rfHal)
|
|
|
|
static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct);
|
|
static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
|
|
static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
|
|
const PCDACS_EEPROM *pSrcStruct,
|
|
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
|
|
|
|
extern void ar5212GetLowerUpperValues(uint16_t value,
|
|
const uint16_t *pList, uint16_t listSize,
|
|
uint16_t *pLowerValue, uint16_t *pUpperValue);
|
|
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
|
|
uint32_t numBits, uint32_t firstBit, uint32_t column);
|
|
|
|
static void
|
|
ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
|
|
int writes)
|
|
{
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
|
|
}
|
|
|
|
/*
|
|
* Take the MHz channel value and set the Channel value
|
|
*
|
|
* ASSUMES: Writes enabled to analog bus
|
|
*/
|
|
static HAL_BOOL
|
|
ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
#define CI_2GHZ_INDEX_CORRECTION 19
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
uint32_t refClk, reg32, data2111;
|
|
int16_t chan5111, chanIEEE;
|
|
|
|
/*
|
|
* Structure to hold 11b tuning information for 5111/2111
|
|
* 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
|
|
*/
|
|
typedef struct {
|
|
uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
|
|
uint32_t channelSelect; /* P[7:4]S[3:0] bits */
|
|
uint16_t channel5111; /* 11a channel for 5111 */
|
|
} CHAN_INFO_2GHZ;
|
|
|
|
static const CHAN_INFO_2GHZ chan2GHzData[] = {
|
|
{ 1, 0x46, 96 }, /* 2312 -19 */
|
|
{ 1, 0x46, 97 }, /* 2317 -18 */
|
|
{ 1, 0x46, 98 }, /* 2322 -17 */
|
|
{ 1, 0x46, 99 }, /* 2327 -16 */
|
|
{ 1, 0x46, 100 }, /* 2332 -15 */
|
|
{ 1, 0x46, 101 }, /* 2337 -14 */
|
|
{ 1, 0x46, 102 }, /* 2342 -13 */
|
|
{ 1, 0x46, 103 }, /* 2347 -12 */
|
|
{ 1, 0x46, 104 }, /* 2352 -11 */
|
|
{ 1, 0x46, 105 }, /* 2357 -10 */
|
|
{ 1, 0x46, 106 }, /* 2362 -9 */
|
|
{ 1, 0x46, 107 }, /* 2367 -8 */
|
|
{ 1, 0x46, 108 }, /* 2372 -7 */
|
|
/* index -6 to 0 are pad to make this a nolookup table */
|
|
{ 1, 0x46, 116 }, /* -6 */
|
|
{ 1, 0x46, 116 }, /* -5 */
|
|
{ 1, 0x46, 116 }, /* -4 */
|
|
{ 1, 0x46, 116 }, /* -3 */
|
|
{ 1, 0x46, 116 }, /* -2 */
|
|
{ 1, 0x46, 116 }, /* -1 */
|
|
{ 1, 0x46, 116 }, /* 0 */
|
|
{ 1, 0x46, 116 }, /* 2412 1 */
|
|
{ 1, 0x46, 117 }, /* 2417 2 */
|
|
{ 1, 0x46, 118 }, /* 2422 3 */
|
|
{ 1, 0x46, 119 }, /* 2427 4 */
|
|
{ 1, 0x46, 120 }, /* 2432 5 */
|
|
{ 1, 0x46, 121 }, /* 2437 6 */
|
|
{ 1, 0x46, 122 }, /* 2442 7 */
|
|
{ 1, 0x46, 123 }, /* 2447 8 */
|
|
{ 1, 0x46, 124 }, /* 2452 9 */
|
|
{ 1, 0x46, 125 }, /* 2457 10 */
|
|
{ 1, 0x46, 126 }, /* 2462 11 */
|
|
{ 1, 0x46, 127 }, /* 2467 12 */
|
|
{ 1, 0x46, 128 }, /* 2472 13 */
|
|
{ 1, 0x44, 124 }, /* 2484 14 */
|
|
{ 1, 0x46, 136 }, /* 2512 15 */
|
|
{ 1, 0x46, 140 }, /* 2532 16 */
|
|
{ 1, 0x46, 144 }, /* 2552 17 */
|
|
{ 1, 0x46, 148 }, /* 2572 18 */
|
|
{ 1, 0x46, 152 }, /* 2592 19 */
|
|
{ 1, 0x46, 156 }, /* 2612 20 */
|
|
{ 1, 0x46, 160 }, /* 2632 21 */
|
|
{ 1, 0x46, 164 }, /* 2652 22 */
|
|
{ 1, 0x46, 168 }, /* 2672 23 */
|
|
{ 1, 0x46, 172 }, /* 2692 24 */
|
|
{ 1, 0x46, 176 }, /* 2712 25 */
|
|
{ 1, 0x46, 180 } /* 2732 26 */
|
|
};
|
|
|
|
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
|
|
|
|
chanIEEE = chan->ic_ieee;
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
const CHAN_INFO_2GHZ* ci =
|
|
&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
|
|
uint32_t txctl;
|
|
|
|
data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
|
|
<< 5)
|
|
| (ci->refClkSel << 4);
|
|
chan5111 = ci->channel5111;
|
|
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
|
|
if (freq == 2484) {
|
|
/* Enable channel spreading for channel 14 */
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
}
|
|
} else {
|
|
chan5111 = chanIEEE; /* no conversion needed */
|
|
data2111 = 0;
|
|
}
|
|
|
|
/* Rest of the code is common for 5 GHz and 2.4 GHz. */
|
|
if (chan5111 >= 145 || (chan5111 & 0x1)) {
|
|
reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
|
|
refClk = 1;
|
|
} else {
|
|
reg32 = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
|
|
refClk = 0;
|
|
}
|
|
|
|
reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
|
|
OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
|
|
reg32 >>= 8;
|
|
OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
|
|
|
|
AH_PRIVATE(ah)->ah_curchan = chan;
|
|
return AH_TRUE;
|
|
#undef CI_2GHZ_INDEX_CORRECTION
|
|
}
|
|
|
|
/*
|
|
* Return a reference to the requested RF Bank.
|
|
*/
|
|
static uint32_t *
|
|
ar5111GetRfBank(struct ath_hal *ah, int bank)
|
|
{
|
|
struct ar5111State *priv = AR5111(ah);
|
|
|
|
HALASSERT(priv != AH_NULL);
|
|
switch (bank) {
|
|
case 0: return priv->Bank0Data;
|
|
case 1: return priv->Bank1Data;
|
|
case 2: return priv->Bank2Data;
|
|
case 3: return priv->Bank3Data;
|
|
case 6: return priv->Bank6Data;
|
|
case 7: return priv->Bank7Data;
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
|
|
__func__, bank);
|
|
return AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Reads EEPROM header info from device structure and programs
|
|
* all rf registers
|
|
*
|
|
* REQUIRES: Access to the analog rf device
|
|
*/
|
|
static HAL_BOOL
|
|
ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
|
|
uint16_t modesIndex, uint16_t *rfXpdGain)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
|
|
uint16_t tempOB, tempDB;
|
|
uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
|
|
int i, regWrites = 0;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
|
|
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
|
|
|
|
/* Setup rf parameters */
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
if (4000 < freq && freq < 5260) {
|
|
tempOB = ee->ee_ob1;
|
|
tempDB = ee->ee_db1;
|
|
} else if (5260 <= freq && freq < 5500) {
|
|
tempOB = ee->ee_ob2;
|
|
tempDB = ee->ee_db2;
|
|
} else if (5500 <= freq && freq < 5725) {
|
|
tempOB = ee->ee_ob3;
|
|
tempDB = ee->ee_db3;
|
|
} else if (freq >= 5725) {
|
|
tempOB = ee->ee_ob4;
|
|
tempDB = ee->ee_db4;
|
|
} else {
|
|
/* XXX when does this happen??? */
|
|
tempOB = tempDB = 0;
|
|
}
|
|
ob2GHz = db2GHz = 0;
|
|
|
|
rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
|
|
rfPloSel = ee->ee_xpd[headerInfo11A];
|
|
rfPwdXpd = !ee->ee_xpd[headerInfo11A];
|
|
gainI = ee->ee_gainI[headerInfo11A];
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
tempOB = ee->ee_obFor24;
|
|
tempDB = ee->ee_dbFor24;
|
|
ob2GHz = ee->ee_ob2GHz[0];
|
|
db2GHz = ee->ee_db2GHz[0];
|
|
|
|
rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
|
|
rfPloSel = ee->ee_xpd[headerInfo11B];
|
|
rfPwdXpd = !ee->ee_xpd[headerInfo11B];
|
|
gainI = ee->ee_gainI[headerInfo11B];
|
|
break;
|
|
case IEEE80211_CHAN_G:
|
|
case IEEE80211_CHAN_PUREG: /* NB: really 108G */
|
|
tempOB = ee->ee_obFor24g;
|
|
tempDB = ee->ee_dbFor24g;
|
|
ob2GHz = ee->ee_ob2GHz[1];
|
|
db2GHz = ee->ee_db2GHz[1];
|
|
|
|
rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
|
|
rfPloSel = ee->ee_xpd[headerInfo11G];
|
|
rfPwdXpd = !ee->ee_xpd[headerInfo11G];
|
|
gainI = ee->ee_gainI[headerInfo11G];
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
HALASSERT(1 <= tempOB && tempOB <= 5);
|
|
HALASSERT(1 <= tempDB && tempDB <= 5);
|
|
|
|
/* Bank 0 Write */
|
|
for (i = 0; i < N(ar5212Bank0_5111); i++)
|
|
rfReg[i] = ar5212Bank0_5111[i][modesIndex];
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
|
|
ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
|
|
}
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
|
|
|
|
/* Bank 1 Write */
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
|
|
|
|
/* Bank 2 Write */
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
|
|
|
|
/* Bank 3 Write */
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
|
|
|
|
/* Bank 6 Write */
|
|
for (i = 0; i < N(ar5212Bank6_5111); i++)
|
|
rfReg[i] = ar5212Bank6_5111[i][modesIndex];
|
|
if (IEEE80211_IS_CHAN_A(chan)) { /* NB: CHANNEL_A | CHANNEL_T */
|
|
ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
|
|
ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
|
|
}
|
|
ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
|
|
ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
|
|
/* Set 5212 OB & DB */
|
|
ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
|
|
ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
|
|
|
|
/* Bank 7 Write */
|
|
for (i = 0; i < N(ar5212Bank7_5111); i++)
|
|
rfReg[i] = ar5212Bank7_5111[i][modesIndex];
|
|
ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
|
|
ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
|
|
|
|
if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
|
|
uint32_t rfWaitI, rfWaitS, rfMaxTime;
|
|
|
|
rfWaitS = 0x1f;
|
|
rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ? 0x10 : 0x1f;
|
|
rfMaxTime = 3;
|
|
ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
|
|
ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
|
|
ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
|
|
|
|
}
|
|
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
|
|
|
|
/* Now that we have reprogrammed rfgain value, clear the flag. */
|
|
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Returns interpolated or the scaled up interpolated value
|
|
*/
|
|
static uint16_t
|
|
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
|
|
uint16_t targetLeft, uint16_t targetRight)
|
|
{
|
|
uint16_t rv;
|
|
int16_t lRatio;
|
|
|
|
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
|
|
if ((targetLeft * targetRight) == 0)
|
|
return 0;
|
|
|
|
if (srcRight != srcLeft) {
|
|
/*
|
|
* Note the ratio always need to be scaled,
|
|
* since it will be a fraction.
|
|
*/
|
|
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
|
|
if (lRatio < 0) {
|
|
/* Return as Left target if value would be negative */
|
|
rv = targetLeft;
|
|
} else if (lRatio > EEP_SCALE) {
|
|
/* Return as Right target if Ratio is greater than 100% (SCALE) */
|
|
rv = targetRight;
|
|
} else {
|
|
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
|
|
targetLeft) / EEP_SCALE;
|
|
}
|
|
} else {
|
|
rv = targetLeft;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Read the transmit power levels from the structures taken from EEPROM
|
|
* Interpolate read transmit power values for this channel
|
|
* Organize the transmit power values into a table for writing into the hardware
|
|
*/
|
|
static HAL_BOOL
|
|
ar5111SetPowerTable(struct ath_hal *ah,
|
|
int16_t *pMinPower, int16_t *pMaxPower,
|
|
const struct ieee80211_channel *chan,
|
|
uint16_t *rfXpdGain)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
FULL_PCDAC_STRUCT pcdacStruct;
|
|
int i, j;
|
|
|
|
uint16_t *pPcdacValues;
|
|
int16_t *pScaledUpDbm;
|
|
int16_t minScaledPwr;
|
|
int16_t maxScaledPwr;
|
|
int16_t pwr;
|
|
uint16_t pcdacMin = 0;
|
|
uint16_t pcdacMax = PCDAC_STOP;
|
|
uint16_t pcdacTableIndex;
|
|
uint16_t scaledPcdac;
|
|
PCDACS_EEPROM *pSrcStruct;
|
|
PCDACS_EEPROM eepromPcdacs;
|
|
|
|
/* setup the pcdac struct to point to the correct info, based on mode */
|
|
switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
|
|
case IEEE80211_CHAN_A:
|
|
case IEEE80211_CHAN_ST:
|
|
eepromPcdacs.numChannels = ee->ee_numChannels11a;
|
|
eepromPcdacs.pChannelList = ee->ee_channels11a;
|
|
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
|
|
break;
|
|
case IEEE80211_CHAN_B:
|
|
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
|
|
eepromPcdacs.pChannelList = ee->ee_channels11b;
|
|
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
|
|
break;
|
|
case IEEE80211_CHAN_G:
|
|
case IEEE80211_CHAN_108G:
|
|
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
|
|
eepromPcdacs.pChannelList = ee->ee_channels11g;
|
|
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
|
|
__func__, chan->ic_flags);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
pSrcStruct = &eepromPcdacs;
|
|
|
|
OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
|
|
pPcdacValues = pcdacStruct.PcdacValues;
|
|
pScaledUpDbm = pcdacStruct.PwrValues;
|
|
|
|
/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
|
|
for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
|
|
pPcdacValues[j] = i;
|
|
|
|
pcdacStruct.numPcdacValues = j;
|
|
pcdacStruct.pcdacMin = PCDAC_START;
|
|
pcdacStruct.pcdacMax = PCDAC_STOP;
|
|
|
|
/* Fill out the power values for this channel */
|
|
for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
|
|
pScaledUpDbm[j] = ar5212GetScaledPower(freq,
|
|
pPcdacValues[j], pSrcStruct);
|
|
|
|
/* Now scale the pcdac values to fit in the 64 entry power table */
|
|
minScaledPwr = pScaledUpDbm[0];
|
|
maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
|
|
|
|
/* find minimum and make monotonic */
|
|
for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
|
|
if (minScaledPwr >= pScaledUpDbm[j]) {
|
|
minScaledPwr = pScaledUpDbm[j];
|
|
pcdacMin = j;
|
|
}
|
|
/*
|
|
* Make the full_hsh monotonically increasing otherwise
|
|
* interpolation algorithm will get fooled gotta start
|
|
* working from the top, hence i = 63 - j.
|
|
*/
|
|
i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
|
|
if (i == 0)
|
|
break;
|
|
if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
|
|
/*
|
|
* It could be a glitch, so make the power for
|
|
* this pcdac the same as the power from the
|
|
* next highest pcdac.
|
|
*/
|
|
pScaledUpDbm[i - 1] = pScaledUpDbm[i];
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < pcdacStruct.numPcdacValues; j++)
|
|
if (maxScaledPwr < pScaledUpDbm[j]) {
|
|
maxScaledPwr = pScaledUpDbm[j];
|
|
pcdacMax = j;
|
|
}
|
|
|
|
/* Find the first power level with a pcdac */
|
|
pwr = (uint16_t)(PWR_STEP *
|
|
((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
|
|
|
|
/* Write all the first pcdac entries based off the pcdacMin */
|
|
pcdacTableIndex = 0;
|
|
for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
|
|
HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
|
|
ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
|
|
}
|
|
|
|
i = 0;
|
|
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
|
|
pcdacTableIndex < PWR_TABLE_SIZE) {
|
|
pwr += PWR_STEP;
|
|
/* stop if dbM > max_power_possible */
|
|
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
|
|
(pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
|
|
i++;
|
|
/* scale by 2 and add 1 to enable round up or down as needed */
|
|
scaledPcdac = (uint16_t)(interpolate(pwr,
|
|
pScaledUpDbm[i], pScaledUpDbm[i + 1],
|
|
(uint16_t)(pPcdacValues[i] * 2),
|
|
(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
|
|
|
|
HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
|
|
ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
|
|
if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
|
|
ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
|
|
pcdacTableIndex++;
|
|
}
|
|
|
|
/* Write all the last pcdac entries based off the last valid pcdac */
|
|
while (pcdacTableIndex < PWR_TABLE_SIZE) {
|
|
ahp->ah_pcdacTable[pcdacTableIndex] =
|
|
ahp->ah_pcdacTable[pcdacTableIndex - 1];
|
|
pcdacTableIndex++;
|
|
}
|
|
|
|
/* No power table adjustment for 5111 */
|
|
ahp->ah_txPowerIndexOffset = 0;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Get or interpolate the pcdac value from the calibrated data.
|
|
*/
|
|
static uint16_t
|
|
ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct)
|
|
{
|
|
uint16_t powerValue;
|
|
uint16_t lFreq, rFreq; /* left and right frequency values */
|
|
uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
|
|
uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
|
|
uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
|
|
uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
|
|
|
|
if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
|
|
/* value was copied from srcStruct */
|
|
return powerValue;
|
|
}
|
|
|
|
ar5212GetLowerUpperValues(channel,
|
|
pSrcStruct->pChannelList, pSrcStruct->numChannels,
|
|
&lFreq, &rFreq);
|
|
ar5212GetLowerUpperPcdacs(pcdacValue,
|
|
lFreq, pSrcStruct, &llPcdac, &ulPcdac);
|
|
ar5212GetLowerUpperPcdacs(pcdacValue,
|
|
rFreq, pSrcStruct, &lrPcdac, &urPcdac);
|
|
|
|
/* get the power index for the pcdac value */
|
|
ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
|
|
ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
|
|
lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
|
|
|
|
ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
|
|
ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
|
|
rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
|
|
|
|
return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
|
|
}
|
|
|
|
/*
|
|
* Find the value from the calibrated source data struct
|
|
*/
|
|
static HAL_BOOL
|
|
ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
|
|
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
|
|
{
|
|
const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
|
|
int i;
|
|
|
|
for (i = 0; i < pSrcStruct->numChannels; i++ ) {
|
|
if (pChannelData->channelValue == channel) {
|
|
const uint16_t* pPcdac = pChannelData->PcdacValues;
|
|
int j;
|
|
|
|
for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
|
|
if (*pPcdac == pcdacValue) {
|
|
*powerValue = pChannelData->PwrValues[j];
|
|
return AH_TRUE;
|
|
}
|
|
pPcdac++;
|
|
}
|
|
}
|
|
pChannelData++;
|
|
}
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Get the upper and lower pcdac given the channel and the pcdac
|
|
* used in the search
|
|
*/
|
|
static void
|
|
ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
|
|
const PCDACS_EEPROM *pSrcStruct,
|
|
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
|
|
{
|
|
const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
|
|
int i;
|
|
|
|
/* Find the channel information */
|
|
for (i = 0; i < pSrcStruct->numChannels; i++) {
|
|
if (pChannelData->channelValue == channel)
|
|
break;
|
|
pChannelData++;
|
|
}
|
|
ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
|
|
pChannelData->numPcdacValues,
|
|
pLowerPcdac, pUpperPcdac);
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar5111GetChannelMaxMinPower(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *maxPow, int16_t *minPow)
|
|
{
|
|
/* XXX - Get 5111 power limits! */
|
|
/* NB: caller will cope */
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Adjust NF based on statistical values for 5GHz frequencies.
|
|
*/
|
|
static int16_t
|
|
ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
|
|
{
|
|
static const struct {
|
|
uint16_t freqLow;
|
|
int16_t adjust;
|
|
} adjust5111[] = {
|
|
{ 5790, 6 }, /* NB: ordered high -> low */
|
|
{ 5730, 4 },
|
|
{ 5690, 3 },
|
|
{ 5660, 2 },
|
|
{ 5610, 1 },
|
|
{ 5530, 0 },
|
|
{ 5450, 0 },
|
|
{ 5379, 1 },
|
|
{ 5209, 3 },
|
|
{ 3000, 5 },
|
|
{ 0, 0 },
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
|
|
;
|
|
return adjust5111[i].adjust;
|
|
}
|
|
|
|
/*
|
|
* Free memory for analog bank scratch buffers
|
|
*/
|
|
static void
|
|
ar5111RfDetach(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
HALASSERT(ahp->ah_rfHal != AH_NULL);
|
|
ath_hal_free(ahp->ah_rfHal);
|
|
ahp->ah_rfHal = AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for analog bank scratch buffers
|
|
* Scratch Buffer will be reinitialized every reset so no need to zero now
|
|
*/
|
|
static HAL_BOOL
|
|
ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
struct ar5111State *priv;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
HALASSERT(ahp->ah_rfHal == AH_NULL);
|
|
priv = ath_hal_malloc(sizeof(struct ar5111State));
|
|
if (priv == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: cannot allocate private state\n", __func__);
|
|
*status = HAL_ENOMEM; /* XXX */
|
|
return AH_FALSE;
|
|
}
|
|
priv->base.rfDetach = ar5111RfDetach;
|
|
priv->base.writeRegs = ar5111WriteRegs;
|
|
priv->base.getRfBank = ar5111GetRfBank;
|
|
priv->base.setChannel = ar5111SetChannel;
|
|
priv->base.setRfRegs = ar5111SetRfRegs;
|
|
priv->base.setPowerTable = ar5111SetPowerTable;
|
|
priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
|
|
priv->base.getNfAdjust = ar5111GetNfAdjust;
|
|
|
|
ahp->ah_pcdacTable = priv->pcdacTable;
|
|
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
|
|
ahp->ah_rfHal = &priv->base;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar5111Probe(struct ath_hal *ah)
|
|
{
|
|
return IS_RAD5111(ah);
|
|
}
|
|
AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
|