44834ea4f7
o add ah_configPCIE and ah_disablePCIE for drivers to configure PCIE power save operation (modeled after ath9k, may need changes) o add private state flag to indicate if device is PCIE (replaces private hack in 5212 code) o add serdes programming ini bits for 5416 and later parts and setup for each part (5416 and 9160 logic hand-crafted from existing routines); 5212 remains open-coded but is now hooked in via ah_configPCIE o add PCIE workaround gunk o add ar5416AttachPCIE for iodomatic code used by 5416 and later parts
720 lines
22 KiB
C
720 lines
22 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ar5212/ar5212.h"
|
|
#include "ar5212/ar5212reg.h"
|
|
#include "ar5212/ar5212phy.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
#define AH_5212_2425
|
|
#define AH_5212_2417
|
|
#include "ar5212/ar5212.ini"
|
|
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
|
|
struct ar2425State {
|
|
RF_HAL_FUNCS base; /* public state, must be first */
|
|
uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
|
|
|
|
uint32_t Bank1Data[N(ar5212Bank1_2425)];
|
|
uint32_t Bank2Data[N(ar5212Bank2_2425)];
|
|
uint32_t Bank3Data[N(ar5212Bank3_2425)];
|
|
uint32_t Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
|
|
uint32_t Bank7Data[N(ar5212Bank7_2425)];
|
|
};
|
|
#define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal)
|
|
|
|
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
|
|
uint32_t numBits, uint32_t firstBit, uint32_t column);
|
|
|
|
static void
|
|
ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
|
|
int writes)
|
|
{
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
|
|
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
|
|
#if 0
|
|
/*
|
|
* for SWAN similar to Condor
|
|
* Bit 0 enables link to go to L1 when MAC goes to sleep.
|
|
* Bit 3 enables the loop back the link down to reset.
|
|
*/
|
|
if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
|
|
OS_REG_WRITE(ah, AR_PCIE_PMC,
|
|
AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
|
|
}
|
|
/*
|
|
* for Standby issue in Swan/Condor.
|
|
* Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
|
|
* before last Training Sequence 2 (TS2)
|
|
* Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
|
|
* Power Reset along with PCI Reset
|
|
*/
|
|
OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Take the MHz channel value and set the Channel value
|
|
*
|
|
* ASSUMES: Writes enabled to analog bus
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
uint32_t channelSel = 0;
|
|
uint32_t bModeSynth = 0;
|
|
uint32_t aModeRefSel = 0;
|
|
uint32_t reg32 = 0;
|
|
|
|
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
|
|
|
|
if (freq < 4800) {
|
|
uint32_t txctl;
|
|
|
|
channelSel = freq - 2272;
|
|
channelSel = ath_hal_reverseBits(channelSel, 8);
|
|
|
|
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
|
|
if (freq == 2484) {
|
|
// Enable channel spreading for channel 14
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
|
|
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
|
|
}
|
|
|
|
} else if (((freq % 5) == 2) && (freq <= 5435)) {
|
|
freq = freq - 2; /* Align to even 5MHz raster */
|
|
channelSel = ath_hal_reverseBits(
|
|
(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
|
|
aModeRefSel = ath_hal_reverseBits(0, 2);
|
|
} else if ((freq % 20) == 0 && freq >= 5120) {
|
|
channelSel = ath_hal_reverseBits(
|
|
((freq - 4800) / 20 << 2), 8);
|
|
aModeRefSel = ath_hal_reverseBits(1, 2);
|
|
} else if ((freq % 10) == 0) {
|
|
channelSel = ath_hal_reverseBits(
|
|
((freq - 4800) / 10 << 1), 8);
|
|
aModeRefSel = ath_hal_reverseBits(1, 2);
|
|
} else if ((freq % 5) == 0) {
|
|
channelSel = ath_hal_reverseBits(
|
|
(freq - 4800) / 5, 8);
|
|
aModeRefSel = ath_hal_reverseBits(1, 2);
|
|
} else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
|
|
__func__, freq);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
|
|
(1 << 12) | 0x1;
|
|
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
|
|
|
|
reg32 >>= 8;
|
|
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
|
|
|
|
AH_PRIVATE(ah)->ah_curchan = chan;
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Reads EEPROM header info from device structure and programs
|
|
* all rf registers
|
|
*
|
|
* REQUIRES: Access to the analog rf device
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425SetRfRegs(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
uint16_t modesIndex, uint16_t *rfXpdGain)
|
|
{
|
|
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
|
|
int i; \
|
|
for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \
|
|
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
|
|
} while (0)
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ar2425State *priv = AR2425(ah);
|
|
uint16_t ob2GHz = 0, db2GHz = 0;
|
|
int regWrites = 0;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
|
|
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
|
|
|
|
HALASSERT(priv);
|
|
|
|
/* Setup rf parameters */
|
|
if (IEEE80211_IS_CHAN_B(chan)) {
|
|
ob2GHz = ee->ee_obFor24;
|
|
db2GHz = ee->ee_dbFor24;
|
|
} else {
|
|
ob2GHz = ee->ee_obFor24g;
|
|
db2GHz = ee->ee_dbFor24g;
|
|
}
|
|
|
|
/* Bank 1 Write */
|
|
RF_BANK_SETUP(priv, 1, 1);
|
|
|
|
/* Bank 2 Write */
|
|
RF_BANK_SETUP(priv, 2, modesIndex);
|
|
|
|
/* Bank 3 Write */
|
|
RF_BANK_SETUP(priv, 3, modesIndex);
|
|
|
|
/* Bank 6 Write */
|
|
RF_BANK_SETUP(priv, 6, modesIndex);
|
|
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
|
|
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
|
|
|
|
/* Bank 7 Setup */
|
|
RF_BANK_SETUP(priv, 7, modesIndex);
|
|
|
|
/* Write Analog registers */
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
|
|
if (IS_2417(ah)) {
|
|
HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
|
|
regWrites);
|
|
} else
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
|
|
regWrites);
|
|
HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
|
|
|
|
/* Now that we have reprogrammed rfgain value, clear the flag. */
|
|
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
|
|
return AH_TRUE;
|
|
#undef RF_BANK_SETUP
|
|
}
|
|
|
|
/*
|
|
* Return a reference to the requested RF Bank.
|
|
*/
|
|
static uint32_t *
|
|
ar2425GetRfBank(struct ath_hal *ah, int bank)
|
|
{
|
|
struct ar2425State *priv = AR2425(ah);
|
|
|
|
HALASSERT(priv != AH_NULL);
|
|
switch (bank) {
|
|
case 1: return priv->Bank1Data;
|
|
case 2: return priv->Bank2Data;
|
|
case 3: return priv->Bank3Data;
|
|
case 6: return priv->Bank6Data;
|
|
case 7: return priv->Bank7Data;
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
|
|
__func__, bank);
|
|
return AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Return indices surrounding the value in sorted integer lists.
|
|
*
|
|
* NB: the input list is assumed to be sorted in ascending order
|
|
*/
|
|
static void
|
|
GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
|
|
uint32_t *vlo, uint32_t *vhi)
|
|
{
|
|
int16_t target = v;
|
|
const uint16_t *ep = lp+listSize;
|
|
const uint16_t *tp;
|
|
|
|
/*
|
|
* Check first and last elements for out-of-bounds conditions.
|
|
*/
|
|
if (target < lp[0]) {
|
|
*vlo = *vhi = 0;
|
|
return;
|
|
}
|
|
if (target >= ep[-1]) {
|
|
*vlo = *vhi = listSize - 1;
|
|
return;
|
|
}
|
|
|
|
/* look for value being near or between 2 values in list */
|
|
for (tp = lp; tp < ep; tp++) {
|
|
/*
|
|
* If value is close to the current value of the list
|
|
* then target is not between values, it is one of the values
|
|
*/
|
|
if (*tp == target) {
|
|
*vlo = *vhi = tp - (const uint16_t *) lp;
|
|
return;
|
|
}
|
|
/*
|
|
* Look for value being between current value and next value
|
|
* if so return these 2 values
|
|
*/
|
|
if (target < tp[1]) {
|
|
*vlo = tp - (const uint16_t *) lp;
|
|
*vhi = *vlo + 1;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill the Vpdlist for indices Pmax-Pmin
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
|
|
const int16_t *pwrList, const uint16_t *VpdList,
|
|
uint16_t numIntercepts,
|
|
uint16_t retVpdList[][64])
|
|
{
|
|
uint16_t ii, jj, kk;
|
|
int16_t currPwr = (int16_t)(2*Pmin);
|
|
/* since Pmin is pwr*2 and pwrList is 4*pwr */
|
|
uint32_t idxL, idxR;
|
|
|
|
ii = 0;
|
|
jj = 0;
|
|
|
|
if (numIntercepts < 2)
|
|
return AH_FALSE;
|
|
|
|
while (ii <= (uint16_t)(Pmax - Pmin)) {
|
|
GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
|
|
numIntercepts, &(idxL), &(idxR));
|
|
if (idxR < 1)
|
|
idxR = 1; /* extrapolate below */
|
|
if (idxL == (uint32_t)(numIntercepts - 1))
|
|
idxL = numIntercepts - 2; /* extrapolate above */
|
|
if (pwrList[idxL] == pwrList[idxR])
|
|
kk = VpdList[idxL];
|
|
else
|
|
kk = (uint16_t)
|
|
(((currPwr - pwrList[idxL])*VpdList[idxR]+
|
|
(pwrList[idxR] - currPwr)*VpdList[idxL])/
|
|
(pwrList[idxR] - pwrList[idxL]));
|
|
retVpdList[pdGainIdx][ii] = kk;
|
|
ii++;
|
|
currPwr += 2; /* half dB steps */
|
|
}
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Returns interpolated or the scaled up interpolated value
|
|
*/
|
|
static int16_t
|
|
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
|
|
int16_t targetLeft, int16_t targetRight)
|
|
{
|
|
int16_t rv;
|
|
|
|
if (srcRight != srcLeft) {
|
|
rv = ((target - srcLeft)*targetRight +
|
|
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
|
|
} else {
|
|
rv = targetLeft;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Uses the data points read from EEPROM to reconstruct the pdadc power table
|
|
* Called by ar2425SetPowerTable()
|
|
*/
|
|
static void
|
|
ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
|
|
const RAW_DATA_STRUCT_2413 *pRawDataset,
|
|
uint16_t pdGainOverlap_t2,
|
|
int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
|
|
uint16_t pPdGainValues[], uint16_t pPDADCValues[])
|
|
{
|
|
/* Note the items statically allocated below are to reduce stack usage */
|
|
uint32_t ii, jj, kk;
|
|
int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
|
|
uint32_t idxL, idxR;
|
|
uint32_t numPdGainsUsed = 0;
|
|
static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
|
|
/* filled out Vpd table for all pdGains (chanL) */
|
|
static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
|
|
/* filled out Vpd table for all pdGains (chanR) */
|
|
static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
|
|
/* filled out Vpd table for all pdGains (interpolated) */
|
|
/*
|
|
* If desired to support -ve power levels in future, just
|
|
* change pwr_I_0 to signed 5-bits.
|
|
*/
|
|
static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
|
|
/* to accomodate -ve power levels later on. */
|
|
static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
|
|
/* to accomodate -ve power levels later on */
|
|
uint16_t numVpd = 0;
|
|
uint16_t Vpd_step;
|
|
int16_t tmpVal ;
|
|
uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
|
|
|
|
/* Get upper lower index */
|
|
GetLowerUpperIndex(channel, pRawDataset->pChannels,
|
|
pRawDataset->numChannels, &(idxL), &(idxR));
|
|
|
|
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
|
|
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
|
|
/* work backwards 'cause highest pdGain for lowest power */
|
|
numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
|
|
if (numVpd > 0) {
|
|
pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
|
|
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
|
|
if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
|
|
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
|
|
}
|
|
Pmin_t2[numPdGainsUsed] = (int16_t)
|
|
(Pmin_t2[numPdGainsUsed] / 2);
|
|
Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
|
|
if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
|
|
Pmax_t2[numPdGainsUsed] =
|
|
pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
|
|
Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
|
|
ar2425FillVpdTable(
|
|
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
|
|
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
|
|
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
|
|
);
|
|
ar2425FillVpdTable(
|
|
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
|
|
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
|
|
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
|
|
);
|
|
for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
|
|
VpdTable_I[numPdGainsUsed][kk] =
|
|
interpolate_signed(
|
|
channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
|
|
(int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
|
|
}
|
|
/* fill VpdTable_I for this pdGain */
|
|
numPdGainsUsed++;
|
|
}
|
|
/* if this pdGain is used */
|
|
}
|
|
|
|
*pMinCalPower = Pmin_t2[0];
|
|
kk = 0; /* index for the final table */
|
|
for (ii = 0; ii < numPdGainsUsed; ii++) {
|
|
if (ii == (numPdGainsUsed - 1))
|
|
pPdGainBoundaries[ii] = Pmax_t2[ii] +
|
|
PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
|
|
else
|
|
pPdGainBoundaries[ii] = (uint16_t)
|
|
((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
|
|
|
|
/* Find starting index for this pdGain */
|
|
if (ii == 0)
|
|
ss = 0; /* for the first pdGain, start from index 0 */
|
|
else
|
|
ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
|
|
pdGainOverlap_t2;
|
|
Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
|
|
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
|
|
/*
|
|
*-ve ss indicates need to extrapolate data below for this pdGain
|
|
*/
|
|
while (ss < 0) {
|
|
tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
|
|
pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
|
|
ss++;
|
|
}
|
|
|
|
sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
|
|
tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
|
|
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
|
|
|
|
while (ss < (int16_t)maxIndex)
|
|
pPDADCValues[kk++] = VpdTable_I[ii][ss++];
|
|
|
|
Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
|
|
VpdTable_I[ii][sizeCurrVpdTable-2]);
|
|
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
|
|
/*
|
|
* for last gain, pdGainBoundary == Pmax_t2, so will
|
|
* have to extrapolate
|
|
*/
|
|
if (tgtIndex > maxIndex) { /* need to extrapolate above */
|
|
while(ss < (int16_t)tgtIndex) {
|
|
tmpVal = (uint16_t)
|
|
(VpdTable_I[ii][sizeCurrVpdTable-1] +
|
|
(ss-maxIndex)*Vpd_step);
|
|
pPDADCValues[kk++] = (tmpVal > 127) ?
|
|
127 : tmpVal;
|
|
ss++;
|
|
}
|
|
} /* extrapolated above */
|
|
} /* for all pdGainUsed */
|
|
|
|
while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
|
|
pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
|
|
ii++;
|
|
}
|
|
while (kk < 128) {
|
|
pPDADCValues[kk] = pPDADCValues[kk-1];
|
|
kk++;
|
|
}
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
|
|
}
|
|
|
|
|
|
/* Same as 2413 set power table */
|
|
static HAL_BOOL
|
|
ar2425SetPowerTable(struct ath_hal *ah,
|
|
int16_t *minPower, int16_t *maxPower,
|
|
const struct ieee80211_channel *chan,
|
|
uint16_t *rfXpdGain)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
|
|
uint16_t pdGainOverlap_t2;
|
|
int16_t minCalPower2413_t2;
|
|
uint16_t *pdadcValues = ahp->ah_pcdacTable;
|
|
uint16_t gainBoundaries[4];
|
|
uint32_t i, reg32, regoffset;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
|
|
__func__, freq, chan->ic_flags);
|
|
|
|
if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
|
|
else if (IEEE80211_IS_CHAN_B(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
|
|
else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
|
|
|
|
ar2425getGainBoundariesAndPdadcsForPowers(ah, freq,
|
|
pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
|
|
rfXpdGain, pdadcValues);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
|
|
(pRawDataset->pDataPerChannel[0].numPdGains - 1));
|
|
|
|
/*
|
|
* Note the pdadc table may not start at 0 dBm power, could be
|
|
* negative or greater than 0. Need to offset the power
|
|
* values by the amount of minPower for griffin
|
|
*/
|
|
if (minCalPower2413_t2 != 0)
|
|
ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
|
|
else
|
|
ahp->ah_txPowerIndexOffset = 0;
|
|
|
|
/* Finally, write the power values into the baseband power table */
|
|
regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
|
|
for (i = 0; i < 32; i++) {
|
|
reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
|
|
((pdadcValues[4*i + 1] & 0xFF) << 8) |
|
|
((pdadcValues[4*i + 2] & 0xFF) << 16) |
|
|
((pdadcValues[4*i + 3] & 0xFF) << 24) ;
|
|
OS_REG_WRITE(ah, regoffset, reg32);
|
|
regoffset += 4;
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_TPCRG5,
|
|
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
|
|
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
|
|
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
|
|
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
|
|
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static int16_t
|
|
ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
|
|
{
|
|
uint32_t ii,jj;
|
|
uint16_t Pmin=0,numVpd;
|
|
|
|
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
|
|
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
|
|
/* work backwards 'cause highest pdGain for lowest power */
|
|
numVpd = data->pDataPerPDGain[jj].numVpd;
|
|
if (numVpd > 0) {
|
|
Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
|
|
return(Pmin);
|
|
}
|
|
}
|
|
return(Pmin);
|
|
}
|
|
|
|
static int16_t
|
|
ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
|
|
{
|
|
uint32_t ii;
|
|
uint16_t Pmax=0,numVpd;
|
|
|
|
for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
|
|
/* work forwards cuase lowest pdGain for highest power */
|
|
numVpd = data->pDataPerPDGain[ii].numVpd;
|
|
if (numVpd > 0) {
|
|
Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
|
|
return(Pmax);
|
|
}
|
|
}
|
|
return(Pmax);
|
|
}
|
|
|
|
static
|
|
HAL_BOOL
|
|
ar2425GetChannelMaxMinPower(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *maxPow, int16_t *minPow)
|
|
{
|
|
uint16_t freq = chan->ic_freq; /* NB: never mapped */
|
|
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
|
|
const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
|
|
uint16_t numChannels;
|
|
int totalD,totalF, totalMin,last, i;
|
|
|
|
*maxPow = 0;
|
|
|
|
if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
|
|
else if (IEEE80211_IS_CHAN_B(chan))
|
|
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
|
|
else
|
|
return(AH_FALSE);
|
|
|
|
numChannels = pRawDataset->numChannels;
|
|
data = pRawDataset->pDataPerChannel;
|
|
|
|
/* Make sure the channel is in the range of the TP values
|
|
* (freq piers)
|
|
*/
|
|
if (numChannels < 1)
|
|
return(AH_FALSE);
|
|
|
|
if ((freq < data[0].channelValue) ||
|
|
(freq > data[numChannels-1].channelValue)) {
|
|
if (freq < data[0].channelValue) {
|
|
*maxPow = ar2425GetMaxPower(ah, &data[0]);
|
|
*minPow = ar2425GetMinPower(ah, &data[0]);
|
|
return(AH_TRUE);
|
|
} else {
|
|
*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
|
|
*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
|
|
return(AH_TRUE);
|
|
}
|
|
}
|
|
|
|
/* Linearly interpolate the power value now */
|
|
for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
|
|
last = i++);
|
|
totalD = data[i].channelValue - data[last].channelValue;
|
|
if (totalD > 0) {
|
|
totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
|
|
*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
|
|
ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
|
|
totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
|
|
*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
|
|
ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
|
|
return(AH_TRUE);
|
|
} else {
|
|
if (freq == data[i].channelValue) {
|
|
*maxPow = ar2425GetMaxPower(ah, &data[i]);
|
|
*minPow = ar2425GetMinPower(ah, &data[i]);
|
|
return(AH_TRUE);
|
|
} else
|
|
return(AH_FALSE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free memory for analog bank scratch buffers
|
|
*/
|
|
static void
|
|
ar2425RfDetach(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
HALASSERT(ahp->ah_rfHal != AH_NULL);
|
|
ath_hal_free(ahp->ah_rfHal);
|
|
ahp->ah_rfHal = AH_NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for analog bank scratch buffers
|
|
* Scratch Buffer will be reinitialized every reset so no need to zero now
|
|
*/
|
|
static HAL_BOOL
|
|
ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
struct ar2425State *priv;
|
|
|
|
HALASSERT(ah->ah_magic == AR5212_MAGIC);
|
|
|
|
HALASSERT(ahp->ah_rfHal == AH_NULL);
|
|
priv = ath_hal_malloc(sizeof(struct ar2425State));
|
|
if (priv == AH_NULL) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: cannot allocate private state\n", __func__);
|
|
*status = HAL_ENOMEM; /* XXX */
|
|
return AH_FALSE;
|
|
}
|
|
priv->base.rfDetach = ar2425RfDetach;
|
|
priv->base.writeRegs = ar2425WriteRegs;
|
|
priv->base.getRfBank = ar2425GetRfBank;
|
|
priv->base.setChannel = ar2425SetChannel;
|
|
priv->base.setRfRegs = ar2425SetRfRegs;
|
|
priv->base.setPowerTable = ar2425SetPowerTable;
|
|
priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
|
|
priv->base.getNfAdjust = ar5212GetNfAdjust;
|
|
|
|
ahp->ah_pcdacTable = priv->pcdacTable;
|
|
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
|
|
ahp->ah_rfHal = &priv->base;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar2425Probe(struct ath_hal *ah)
|
|
{
|
|
return IS_2425(ah) || IS_2417(ah);
|
|
}
|
|
AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
|