freebsd-dev/sys/dev/bhnd/nvram/bhnd_nvram_data_bcmraw.c
Landon J. Fuller 77cb4d3e50 bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding.
- Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM
  parsing from the actual underlying NVRAM data provider (e.g. CFE firmware
  devices).
- Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling
  higher-level NVRAM operations (indexed lookup, data conversion, etc) from
  the underlying NVRAM file format parsing/serialization.
- Implemented a new high-level bhnd_nvram_store API, providing indexed
  variable lookup, pending write tracking, etc on top of an arbitrary
  bhnd_nvram_data instance.
- Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store
  API.
- Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM
  variable values, including applying format-specific behavior when
  converting to/from the NVRAM string representations.
- Dropped the now unnecessary bhnd_nvram driver, and moved the
  broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom.
- Implemented a new nvram_map file format:
        - Variable definitions are now defined separately from the SPROM
          layout. This will also allow us to define CIS tuple NVRAM
          mappings referencing the common NVRAM variable definitions.
        - Variables can now be defined within arbitrary named groups.
        - Textual descriptions and help information can be defined inline
          for both variables and variable groups.
        - Implemented a new, compact encoding of SPROM image layout
          offsets.
- Source-level (but not build system) support for building the NVRAM file
  format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a
  userspace library.

The new compact SPROM image layout encoding is loosely modeled on Apple
dyld compressed LINKEDIT symbol binding opcodes; it provides a compact
state-machine encoding of the mapping between NVRAM variables and the SPROM
image offset, mask, and shift instructions necessary to decode or encode
the SPROM variable data.

The compact encoding reduces the size of the generated SPROM layout data
from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables
also simplify iteration of the SPROM variables, as it's no longer
neccessary to iterate the full NVRAM variable definition table, but
instead simply scan the SPROM revision's layout opcode table.

Approved by:    adrian (mentor)
Differential Revision:  https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00

381 lines
9.3 KiB
C

/*-
* Copyright (c) 2016 Landon Fuller <landonf@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef _KERNEL
#include <sys/param.h>
#include <sys/ctype.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#else /* !_KERNEL */
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif /* _KERNEL */
#include "bhnd_nvram_private.h"
#include "bhnd_nvram_datavar.h"
/*
* Broadcom-RAW NVRAM data class.
*
* The Broadcom NVRAM NUL-delimited ASCII format is used by most
* Broadcom SoCs.
*
* The NVRAM data is encoded as a stream of of NUL-terminated 'key=value'
* strings; the end of the stream is denoted by a single extra NUL character.
*/
struct bhnd_nvram_bcmraw;
/** BCM-RAW NVRAM data class instance */
struct bhnd_nvram_bcmraw {
struct bhnd_nvram_data nv; /**< common instance state */
char *data; /**< backing buffer */
size_t size; /**< buffer size */
size_t count; /**< variable count */
};
BHND_NVRAM_DATA_CLASS_DEFN(bcmraw, "Broadcom (RAW)",
sizeof(struct bhnd_nvram_bcmraw))
static int
bhnd_nvram_bcmraw_probe(struct bhnd_nvram_io *io)
{
char envp[16];
size_t envp_len;
int error;
/*
* Fetch the initial bytes to try to identify BCM data.
*
* We always assert a low probe priority, as we only scan the initial
* bytes of the file.
*/
envp_len = bhnd_nv_ummin(sizeof(envp), bhnd_nvram_io_getsize(io));
if ((error = bhnd_nvram_io_read(io, 0x0, envp, envp_len)))
return (error);
/* A zero-length BCM-RAW buffer should contain a single terminating
* NUL */
if (envp_len == 0)
return (ENXIO);
if (envp_len == 1) {
if (envp[0] != '\0')
return (ENXIO);
return (BHND_NVRAM_DATA_PROBE_MAYBE);
}
/* Don't match on non-ASCII, non-printable data */
for (size_t i = 0; i < envp_len; i++) {
char c = envp[i];
if (envp[i] == '\0')
break;
if (!bhnd_nv_isprint(c))
return (ENXIO);
}
/* The first character should be a valid key char */
if (!bhnd_nv_isalpha(envp[0]))
return (ENXIO);
return (BHND_NVRAM_DATA_PROBE_MAYBE);
}
/**
* Initialize @p bcm with the provided NVRAM data mapped by @p src.
*
* @param bcm A newly allocated data instance.
*/
static int
bhnd_nvram_bcmraw_init(struct bhnd_nvram_bcmraw *bcm, struct bhnd_nvram_io *src)
{
size_t io_size;
size_t capacity, offset;
int error;
/* Fetch the input image size */
io_size = bhnd_nvram_io_getsize(src);
/* Allocate a buffer large enough to hold the NVRAM image, and
* an extra EOF-signaling NUL (on the chance it's missing from the
* source data) */
if (io_size == SIZE_MAX)
return (ENOMEM);
capacity = io_size + 1 /* room for extra NUL */;
bcm->size = io_size;
if ((bcm->data = bhnd_nv_malloc(capacity)) == NULL)
return (ENOMEM);
/* Copy in the NVRAM image */
if ((error = bhnd_nvram_io_read(src, 0x0, bcm->data, io_size)))
return (error);
/* Process the buffer */
bcm->count = 0;
for (offset = 0; offset < bcm->size; offset++) {
char *envp;
const char *name, *value;
size_t envp_len;
size_t name_len, value_len;
/* Parse the key=value string */
envp = (char *) (bcm->data + offset);
envp_len = strnlen(envp, bcm->size - offset);
error = bhnd_nvram_parse_env(envp, envp_len, '=', &name,
&name_len, &value, &value_len);
if (error) {
BHND_NV_LOG("error parsing envp at offset %#zx: %d\n",
offset, error);
return (error);
}
/* Insert a '\0' character, replacing the '=' delimiter and
* allowing us to vend references directly to the variable
* name */
*(envp + name_len) = '\0';
/* Add to variable count */
bcm->count++;
/* Seek past the value's terminating '\0' */
offset += envp_len;
if (offset == io_size) {
BHND_NV_LOG("missing terminating NUL at offset %#zx\n",
offset);
return (EINVAL);
}
/* If we hit EOF without finding a terminating NUL
* byte, we need to append it */
if (++offset == bcm->size) {
BHND_NV_ASSERT(offset < capacity,
("appending past end of buffer"));
bcm->size++;
*(bcm->data + offset) = '\0';
}
/* Check for explicit EOF (encoded as a single empty NUL
* terminated string) */
if (*(bcm->data + offset) == '\0')
break;
}
/* Reclaim any unused space in he backing buffer */
if (offset < bcm->size) {
bcm->data = bhnd_nv_reallocf(bcm->data, bcm->size);
if (bcm->data == NULL)
return (ENOMEM);
}
return (0);
}
static int
bhnd_nvram_bcmraw_new(struct bhnd_nvram_data *nv, struct bhnd_nvram_io *io)
{
struct bhnd_nvram_bcmraw *bcm;
int error;
bcm = (struct bhnd_nvram_bcmraw *)nv;
/* Parse the BCM input data and initialize our backing
* data representation */
if ((error = bhnd_nvram_bcmraw_init(bcm, io))) {
bhnd_nvram_bcmraw_free(nv);
return (error);
}
return (0);
}
static void
bhnd_nvram_bcmraw_free(struct bhnd_nvram_data *nv)
{
struct bhnd_nvram_bcmraw *bcm = (struct bhnd_nvram_bcmraw *)nv;
if (bcm->data != NULL)
bhnd_nv_free(bcm->data);
}
static size_t
bhnd_nvram_bcmraw_count(struct bhnd_nvram_data *nv)
{
struct bhnd_nvram_bcmraw *bcm = (struct bhnd_nvram_bcmraw *)nv;
return (bcm->count);
}
static int
bhnd_nvram_bcmraw_size(struct bhnd_nvram_data *nv, size_t *size)
{
return (bhnd_nvram_bcmraw_serialize(nv, NULL, size));
}
static int
bhnd_nvram_bcmraw_serialize(struct bhnd_nvram_data *nv, void *buf, size_t *len)
{
struct bhnd_nvram_bcmraw *bcm;
char * const p = (char *)buf;
size_t limit;
size_t offset;
bcm = (struct bhnd_nvram_bcmraw *)nv;
/* Save the output buffer limit */
if (buf == NULL)
limit = 0;
else
limit = *len;
/* The serialized form will be exactly the length
* of our backing buffer representation */
*len = bcm->size;
/* Skip serialization if not requested, or report ENOMEM if
* buffer is too small */
if (buf == NULL) {
return (0);
} else if (*len > limit) {
return (ENOMEM);
}
/* Write all variables to the output buffer */
memcpy(buf, bcm->data, *len);
/* Rewrite all '\0' delimiters back to '=' */
offset = 0;
while (offset < bcm->size) {
size_t name_len, value_len;
name_len = strlen(p + offset);
/* EOF? */
if (name_len == 0) {
BHND_NV_ASSERT(*(p + offset) == '\0',
("no NUL terminator"));
offset++;
break;
}
/* Rewrite 'name\0' to 'name=' */
offset += name_len;
BHND_NV_ASSERT(*(p + offset) == '\0', ("incorrect offset"));
*(p + offset) = '=';
offset++;
value_len = strlen(p + offset);
offset += value_len + 1;
}
return (0);
}
static uint32_t
bhnd_nvram_bcmraw_caps(struct bhnd_nvram_data *nv)
{
return (BHND_NVRAM_DATA_CAP_READ_PTR|BHND_NVRAM_DATA_CAP_DEVPATHS);
}
static const char *
bhnd_nvram_bcmraw_next(struct bhnd_nvram_data *nv, void **cookiep)
{
struct bhnd_nvram_bcmraw *bcm;
const char *envp;
bcm = (struct bhnd_nvram_bcmraw *)nv;
if (*cookiep == NULL) {
/* Start at the first NVRAM data record */
envp = bcm->data;
} else {
/* Seek to next record */
envp = *cookiep;
envp += strlen(envp) + 1; /* key + '\0' */
envp += strlen(envp) + 1; /* value + '\0' */
}
/* EOF? */
if (*envp == '\0')
return (NULL);
*cookiep = (void *)(uintptr_t)envp;
return (envp);
}
static void *
bhnd_nvram_bcmraw_find(struct bhnd_nvram_data *nv, const char *name)
{
return (bhnd_nvram_data_generic_find(nv, name));
}
static int
bhnd_nvram_bcmraw_getvar(struct bhnd_nvram_data *nv, void *cookiep, void *buf,
size_t *len, bhnd_nvram_type type)
{
return (bhnd_nvram_data_generic_rp_getvar(nv, cookiep, buf, len, type));
}
static const void *
bhnd_nvram_bcmraw_getvar_ptr(struct bhnd_nvram_data *nv, void *cookiep,
size_t *len, bhnd_nvram_type *type)
{
const char *envp;
/* Cookie points to key\0value\0 -- get the value address */
envp = cookiep;
envp += strlen(envp) + 1; /* key + '\0' */
*len = strlen(envp) + 1; /* value + '\0' */
*type = BHND_NVRAM_TYPE_STRING;
return (envp);
}
static const char *
bhnd_nvram_bcmraw_getvar_name(struct bhnd_nvram_data *nv, void *cookiep)
{
/* Cookie points to key\0value\0 */
return (cookiep);
}