freebsd-dev/contrib/llvm/lib/Support/Unix/Program.inc
Dimitry Andric f785676f2a Upgrade our copy of llvm/clang to 3.4 release. This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.

The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3.  The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.

Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>

MFC after:	1 month
2014-02-16 19:44:07 +00:00

462 lines
14 KiB
C++

//===- llvm/Support/Unix/Program.cpp -----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Unix specific portion of the Program class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only generic UNIX code that
//=== is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//
#include "Unix.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FileSystem.h"
#include <llvm/Config/config.h>
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_POSIX_SPAWN
#ifdef __sun__
#define _RESTRICT_KYWD
#endif
#include <spawn.h>
#if !defined(__APPLE__)
extern char **environ;
#else
#include <crt_externs.h> // _NSGetEnviron
#endif
#endif
namespace llvm {
using namespace sys;
ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {}
// This function just uses the PATH environment variable to find the program.
std::string
sys::FindProgramByName(const std::string& progName) {
// Check some degenerate cases
if (progName.length() == 0) // no program
return "";
std::string temp = progName;
// Use the given path verbatim if it contains any slashes; this matches
// the behavior of sh(1) and friends.
if (progName.find('/') != std::string::npos)
return temp;
// At this point, the file name is valid and does not contain slashes. Search
// for it through the directories specified in the PATH environment variable.
// Get the path. If its empty, we can't do anything to find it.
const char *PathStr = getenv("PATH");
if (PathStr == 0)
return "";
// Now we have a colon separated list of directories to search; try them.
size_t PathLen = strlen(PathStr);
while (PathLen) {
// Find the first colon...
const char *Colon = std::find(PathStr, PathStr+PathLen, ':');
// Check to see if this first directory contains the executable...
SmallString<128> FilePath(PathStr,Colon);
sys::path::append(FilePath, progName);
if (sys::fs::can_execute(Twine(FilePath)))
return FilePath.str(); // Found the executable!
// Nope it wasn't in this directory, check the next path in the list!
PathLen -= Colon-PathStr;
PathStr = Colon;
// Advance past duplicate colons
while (*PathStr == ':') {
PathStr++;
PathLen--;
}
}
return "";
}
static bool RedirectIO(const StringRef *Path, int FD, std::string* ErrMsg) {
if (Path == 0) // Noop
return false;
std::string File;
if (Path->empty())
// Redirect empty paths to /dev/null
File = "/dev/null";
else
File = *Path;
// Open the file
int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666);
if (InFD == -1) {
MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for "
+ (FD == 0 ? "input" : "output"));
return true;
}
// Install it as the requested FD
if (dup2(InFD, FD) == -1) {
MakeErrMsg(ErrMsg, "Cannot dup2");
close(InFD);
return true;
}
close(InFD); // Close the original FD
return false;
}
#ifdef HAVE_POSIX_SPAWN
static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg,
posix_spawn_file_actions_t *FileActions) {
if (Path == 0) // Noop
return false;
const char *File;
if (Path->empty())
// Redirect empty paths to /dev/null
File = "/dev/null";
else
File = Path->c_str();
if (int Err = posix_spawn_file_actions_addopen(
FileActions, FD, File,
FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666))
return MakeErrMsg(ErrMsg, "Cannot dup2", Err);
return false;
}
#endif
static void TimeOutHandler(int Sig) {
}
static void SetMemoryLimits (unsigned size)
{
#if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT
struct rlimit r;
__typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576;
// Heap size
getrlimit (RLIMIT_DATA, &r);
r.rlim_cur = limit;
setrlimit (RLIMIT_DATA, &r);
#ifdef RLIMIT_RSS
// Resident set size.
getrlimit (RLIMIT_RSS, &r);
r.rlim_cur = limit;
setrlimit (RLIMIT_RSS, &r);
#endif
#ifdef RLIMIT_AS // e.g. NetBSD doesn't have it.
// Don't set virtual memory limit if built with any Sanitizer. They need 80Tb
// of virtual memory for shadow memory mapping.
#if !LLVM_MEMORY_SANITIZER_BUILD && !LLVM_ADDRESS_SANITIZER_BUILD
// Virtual memory.
getrlimit (RLIMIT_AS, &r);
r.rlim_cur = limit;
setrlimit (RLIMIT_AS, &r);
#endif
#endif
#endif
}
}
static bool Execute(ProcessInfo &PI, StringRef Program, const char **args,
const char **envp, const StringRef **redirects,
unsigned memoryLimit, std::string *ErrMsg) {
if (!llvm::sys::fs::exists(Program)) {
if (ErrMsg)
*ErrMsg = std::string("Executable \"") + Program.str() +
std::string("\" doesn't exist!");
return false;
}
// If this OS has posix_spawn and there is no memory limit being implied, use
// posix_spawn. It is more efficient than fork/exec.
#ifdef HAVE_POSIX_SPAWN
if (memoryLimit == 0) {
posix_spawn_file_actions_t FileActionsStore;
posix_spawn_file_actions_t *FileActions = 0;
// If we call posix_spawn_file_actions_addopen we have to make sure the
// c strings we pass to it stay alive until the call to posix_spawn,
// so we copy any StringRefs into this variable.
std::string RedirectsStorage[3];
if (redirects) {
std::string *RedirectsStr[3] = {0, 0, 0};
for (int I = 0; I < 3; ++I) {
if (redirects[I]) {
RedirectsStorage[I] = *redirects[I];
RedirectsStr[I] = &RedirectsStorage[I];
}
}
FileActions = &FileActionsStore;
posix_spawn_file_actions_init(FileActions);
// Redirect stdin/stdout.
if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) ||
RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions))
return false;
if (redirects[1] == 0 || redirects[2] == 0 ||
*redirects[1] != *redirects[2]) {
// Just redirect stderr
if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions))
return false;
} else {
// If stdout and stderr should go to the same place, redirect stderr
// to the FD already open for stdout.
if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2))
return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err);
}
}
if (!envp)
#if !defined(__APPLE__)
envp = const_cast<const char **>(environ);
#else
// environ is missing in dylibs.
envp = const_cast<const char **>(*_NSGetEnviron());
#endif
// Explicitly initialized to prevent what appears to be a valgrind false
// positive.
pid_t PID = 0;
int Err = posix_spawn(&PID, Program.str().c_str(), FileActions, /*attrp*/0,
const_cast<char **>(args), const_cast<char **>(envp));
if (FileActions)
posix_spawn_file_actions_destroy(FileActions);
if (Err)
return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err);
PI.Pid = PID;
return true;
}
#endif
// Create a child process.
int child = fork();
switch (child) {
// An error occurred: Return to the caller.
case -1:
MakeErrMsg(ErrMsg, "Couldn't fork");
return false;
// Child process: Execute the program.
case 0: {
// Redirect file descriptors...
if (redirects) {
// Redirect stdin
if (RedirectIO(redirects[0], 0, ErrMsg)) { return false; }
// Redirect stdout
if (RedirectIO(redirects[1], 1, ErrMsg)) { return false; }
if (redirects[1] && redirects[2] &&
*(redirects[1]) == *(redirects[2])) {
// If stdout and stderr should go to the same place, redirect stderr
// to the FD already open for stdout.
if (-1 == dup2(1,2)) {
MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout");
return false;
}
} else {
// Just redirect stderr
if (RedirectIO(redirects[2], 2, ErrMsg)) { return false; }
}
}
// Set memory limits
if (memoryLimit!=0) {
SetMemoryLimits(memoryLimit);
}
// Execute!
std::string PathStr = Program;
if (envp != 0)
execve(PathStr.c_str(),
const_cast<char **>(args),
const_cast<char **>(envp));
else
execv(PathStr.c_str(),
const_cast<char **>(args));
// If the execve() failed, we should exit. Follow Unix protocol and
// return 127 if the executable was not found, and 126 otherwise.
// Use _exit rather than exit so that atexit functions and static
// object destructors cloned from the parent process aren't
// redundantly run, and so that any data buffered in stdio buffers
// cloned from the parent aren't redundantly written out.
_exit(errno == ENOENT ? 127 : 126);
}
// Parent process: Break out of the switch to do our processing.
default:
break;
}
PI.Pid = child;
return true;
}
namespace llvm {
ProcessInfo sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait,
bool WaitUntilTerminates, std::string *ErrMsg) {
#ifdef HAVE_SYS_WAIT_H
struct sigaction Act, Old;
assert(PI.Pid && "invalid pid to wait on, process not started?");
int WaitPidOptions = 0;
pid_t ChildPid = PI.Pid;
if (WaitUntilTerminates) {
SecondsToWait = 0;
ChildPid = -1; // mimic a wait() using waitpid()
} else if (SecondsToWait) {
// Install a timeout handler. The handler itself does nothing, but the
// simple fact of having a handler at all causes the wait below to return
// with EINTR, unlike if we used SIG_IGN.
memset(&Act, 0, sizeof(Act));
Act.sa_handler = TimeOutHandler;
sigemptyset(&Act.sa_mask);
sigaction(SIGALRM, &Act, &Old);
alarm(SecondsToWait);
} else if (SecondsToWait == 0)
WaitPidOptions = WNOHANG;
// Parent process: Wait for the child process to terminate.
int status;
ProcessInfo WaitResult;
WaitResult.Pid = waitpid(ChildPid, &status, WaitPidOptions);
if (WaitResult.Pid != PI.Pid) {
if (WaitResult.Pid == 0) {
// Non-blocking wait.
return WaitResult;
} else {
if (SecondsToWait && errno == EINTR) {
// Kill the child.
kill(PI.Pid, SIGKILL);
// Turn off the alarm and restore the signal handler
alarm(0);
sigaction(SIGALRM, &Old, 0);
// Wait for child to die
if (wait(&status) != ChildPid)
MakeErrMsg(ErrMsg, "Child timed out but wouldn't die");
else
MakeErrMsg(ErrMsg, "Child timed out", 0);
WaitResult.ReturnCode = -2; // Timeout detected
return WaitResult;
} else if (errno != EINTR) {
MakeErrMsg(ErrMsg, "Error waiting for child process");
WaitResult.ReturnCode = -1;
return WaitResult;
}
}
}
// We exited normally without timeout, so turn off the timer.
if (SecondsToWait && !WaitUntilTerminates) {
alarm(0);
sigaction(SIGALRM, &Old, 0);
}
// Return the proper exit status. Detect error conditions
// so we can return -1 for them and set ErrMsg informatively.
int result = 0;
if (WIFEXITED(status)) {
result = WEXITSTATUS(status);
WaitResult.ReturnCode = result;
if (result == 127) {
if (ErrMsg)
*ErrMsg = llvm::sys::StrError(ENOENT);
WaitResult.ReturnCode = -1;
return WaitResult;
}
if (result == 126) {
if (ErrMsg)
*ErrMsg = "Program could not be executed";
WaitResult.ReturnCode = -1;
return WaitResult;
}
} else if (WIFSIGNALED(status)) {
if (ErrMsg) {
*ErrMsg = strsignal(WTERMSIG(status));
#ifdef WCOREDUMP
if (WCOREDUMP(status))
*ErrMsg += " (core dumped)";
#endif
}
// Return a special value to indicate that the process received an unhandled
// signal during execution as opposed to failing to execute.
WaitResult.ReturnCode = -2;
}
#else
if (ErrMsg)
*ErrMsg = "Program::Wait is not implemented on this platform yet!";
WaitResult.ReturnCode = -2;
#endif
return WaitResult;
}
error_code sys::ChangeStdinToBinary(){
// Do nothing, as Unix doesn't differentiate between text and binary.
return make_error_code(errc::success);
}
error_code sys::ChangeStdoutToBinary(){
// Do nothing, as Unix doesn't differentiate between text and binary.
return make_error_code(errc::success);
}
error_code sys::ChangeStderrToBinary(){
// Do nothing, as Unix doesn't differentiate between text and binary.
return make_error_code(errc::success);
}
bool llvm::sys::argumentsFitWithinSystemLimits(ArrayRef<const char*> Args) {
static long ArgMax = sysconf(_SC_ARG_MAX);
// System says no practical limit.
if (ArgMax == -1)
return true;
// Conservatively account for space required by environment variables.
ArgMax /= 2;
size_t ArgLength = 0;
for (ArrayRef<const char*>::iterator I = Args.begin(), E = Args.end();
I != E; ++I) {
ArgLength += strlen(*I) + 1;
if (ArgLength > size_t(ArgMax)) {
return false;
}
}
return true;
}
}