freebsd-dev/contrib/llvm/tools/clang/lib/Lex/PPMacroExpansion.cpp
Dimitry Andric f785676f2a Upgrade our copy of llvm/clang to 3.4 release. This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.

The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3.  The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.

Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>

MFC after:	1 month
2014-02-16 19:44:07 +00:00

1495 lines
58 KiB
C++

//===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the top level handling of macro expasion for the
// preprocessor.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/MacroArgs.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/CodeCompletionHandler.h"
#include "clang/Lex/ExternalPreprocessorSource.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/MacroInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdio>
#include <ctime>
using namespace clang;
MacroDirective *
Preprocessor::getMacroDirectiveHistory(const IdentifierInfo *II) const {
assert(II->hadMacroDefinition() && "Identifier has not been not a macro!");
macro_iterator Pos = Macros.find(II);
assert(Pos != Macros.end() && "Identifier macro info is missing!");
return Pos->second;
}
void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
assert(MD && "MacroDirective should be non-zero!");
assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
MacroDirective *&StoredMD = Macros[II];
MD->setPrevious(StoredMD);
StoredMD = MD;
II->setHasMacroDefinition(MD->isDefined());
bool isImportedMacro = isa<DefMacroDirective>(MD) &&
cast<DefMacroDirective>(MD)->isImported();
if (II->isFromAST() && !isImportedMacro)
II->setChangedSinceDeserialization();
}
void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
MacroDirective *MD) {
assert(II && MD);
MacroDirective *&StoredMD = Macros[II];
assert(!StoredMD &&
"the macro history was modified before initializing it from a pch");
StoredMD = MD;
// Setup the identifier as having associated macro history.
II->setHasMacroDefinition(true);
if (!MD->isDefined())
II->setHasMacroDefinition(false);
}
/// RegisterBuiltinMacro - Register the specified identifier in the identifier
/// table and mark it as a builtin macro to be expanded.
static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
// Get the identifier.
IdentifierInfo *Id = PP.getIdentifierInfo(Name);
// Mark it as being a macro that is builtin.
MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
MI->setIsBuiltinMacro();
PP.appendDefMacroDirective(Id, MI);
return Id;
}
/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
/// identifier table.
void Preprocessor::RegisterBuiltinMacros() {
Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
// GCC Extensions.
Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
// Clang Extensions.
Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
// Modules.
if (LangOpts.Modules) {
Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
// __MODULE__
if (!LangOpts.CurrentModule.empty())
Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
else
Ident__MODULE__ = 0;
} else {
Ident__building_module = 0;
Ident__MODULE__ = 0;
}
// Microsoft Extensions.
if (LangOpts.MicrosoftExt)
Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
else
Ident__pragma = 0;
}
/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
/// in its expansion, currently expands to that token literally.
static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
const IdentifierInfo *MacroIdent,
Preprocessor &PP) {
IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
// If the token isn't an identifier, it's always literally expanded.
if (II == 0) return true;
// If the information about this identifier is out of date, update it from
// the external source.
if (II->isOutOfDate())
PP.getExternalSource()->updateOutOfDateIdentifier(*II);
// If the identifier is a macro, and if that macro is enabled, it may be
// expanded so it's not a trivial expansion.
if (II->hasMacroDefinition() && PP.getMacroInfo(II)->isEnabled() &&
// Fast expanding "#define X X" is ok, because X would be disabled.
II != MacroIdent)
return false;
// If this is an object-like macro invocation, it is safe to trivially expand
// it.
if (MI->isObjectLike()) return true;
// If this is a function-like macro invocation, it's safe to trivially expand
// as long as the identifier is not a macro argument.
for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
I != E; ++I)
if (*I == II)
return false; // Identifier is a macro argument.
return true;
}
/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
/// lexed is a '('. If so, consume the token and return true, if not, this
/// method should have no observable side-effect on the lexed tokens.
bool Preprocessor::isNextPPTokenLParen() {
// Do some quick tests for rejection cases.
unsigned Val;
if (CurLexer)
Val = CurLexer->isNextPPTokenLParen();
else if (CurPTHLexer)
Val = CurPTHLexer->isNextPPTokenLParen();
else
Val = CurTokenLexer->isNextTokenLParen();
if (Val == 2) {
// We have run off the end. If it's a source file we don't
// examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
// macro stack.
if (CurPPLexer)
return false;
for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
IncludeStackInfo &Entry = IncludeMacroStack[i-1];
if (Entry.TheLexer)
Val = Entry.TheLexer->isNextPPTokenLParen();
else if (Entry.ThePTHLexer)
Val = Entry.ThePTHLexer->isNextPPTokenLParen();
else
Val = Entry.TheTokenLexer->isNextTokenLParen();
if (Val != 2)
break;
// Ran off the end of a source file?
if (Entry.ThePPLexer)
return false;
}
}
// Okay, if we know that the token is a '(', lex it and return. Otherwise we
// have found something that isn't a '(' or we found the end of the
// translation unit. In either case, return false.
return Val == 1;
}
/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
/// expanded as a macro, handle it and return the next token as 'Identifier'.
bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
MacroDirective *MD) {
MacroDirective::DefInfo Def = MD->getDefinition();
assert(Def.isValid());
MacroInfo *MI = Def.getMacroInfo();
// If this is a macro expansion in the "#if !defined(x)" line for the file,
// then the macro could expand to different things in other contexts, we need
// to disable the optimization in this case.
if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
// If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
if (MI->isBuiltinMacro()) {
if (Callbacks) Callbacks->MacroExpands(Identifier, MD,
Identifier.getLocation(),/*Args=*/0);
ExpandBuiltinMacro(Identifier);
return true;
}
/// Args - If this is a function-like macro expansion, this contains,
/// for each macro argument, the list of tokens that were provided to the
/// invocation.
MacroArgs *Args = 0;
// Remember where the end of the expansion occurred. For an object-like
// macro, this is the identifier. For a function-like macro, this is the ')'.
SourceLocation ExpansionEnd = Identifier.getLocation();
// If this is a function-like macro, read the arguments.
if (MI->isFunctionLike()) {
// Remember that we are now parsing the arguments to a macro invocation.
// Preprocessor directives used inside macro arguments are not portable, and
// this enables the warning.
InMacroArgs = true;
Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd);
// Finished parsing args.
InMacroArgs = false;
// If there was an error parsing the arguments, bail out.
if (Args == 0) return true;
++NumFnMacroExpanded;
} else {
++NumMacroExpanded;
}
// Notice that this macro has been used.
markMacroAsUsed(MI);
// Remember where the token is expanded.
SourceLocation ExpandLoc = Identifier.getLocation();
SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
if (Callbacks) {
if (InMacroArgs) {
// We can have macro expansion inside a conditional directive while
// reading the function macro arguments. To ensure, in that case, that
// MacroExpands callbacks still happen in source order, queue this
// callback to have it happen after the function macro callback.
DelayedMacroExpandsCallbacks.push_back(
MacroExpandsInfo(Identifier, MD, ExpansionRange));
} else {
Callbacks->MacroExpands(Identifier, MD, ExpansionRange, Args);
if (!DelayedMacroExpandsCallbacks.empty()) {
for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) {
MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i];
// FIXME: We lose macro args info with delayed callback.
Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, /*Args=*/0);
}
DelayedMacroExpandsCallbacks.clear();
}
}
}
// If the macro definition is ambiguous, complain.
if (Def.getDirective()->isAmbiguous()) {
Diag(Identifier, diag::warn_pp_ambiguous_macro)
<< Identifier.getIdentifierInfo();
Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
<< Identifier.getIdentifierInfo();
for (MacroDirective::DefInfo PrevDef = Def.getPreviousDefinition();
PrevDef && !PrevDef.isUndefined();
PrevDef = PrevDef.getPreviousDefinition()) {
if (PrevDef.getDirective()->isAmbiguous()) {
Diag(PrevDef.getMacroInfo()->getDefinitionLoc(),
diag::note_pp_ambiguous_macro_other)
<< Identifier.getIdentifierInfo();
}
}
}
// If we started lexing a macro, enter the macro expansion body.
// If this macro expands to no tokens, don't bother to push it onto the
// expansion stack, only to take it right back off.
if (MI->getNumTokens() == 0) {
// No need for arg info.
if (Args) Args->destroy(*this);
// Propagate whitespace info as if we had pushed, then popped,
// a macro context.
Identifier.setFlag(Token::LeadingEmptyMacro);
PropagateLineStartLeadingSpaceInfo(Identifier);
++NumFastMacroExpanded;
return false;
} else if (MI->getNumTokens() == 1 &&
isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
*this)) {
// Otherwise, if this macro expands into a single trivially-expanded
// token: expand it now. This handles common cases like
// "#define VAL 42".
// No need for arg info.
if (Args) Args->destroy(*this);
// Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
// identifier to the expanded token.
bool isAtStartOfLine = Identifier.isAtStartOfLine();
bool hasLeadingSpace = Identifier.hasLeadingSpace();
// Replace the result token.
Identifier = MI->getReplacementToken(0);
// Restore the StartOfLine/LeadingSpace markers.
Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
// Update the tokens location to include both its expansion and physical
// locations.
SourceLocation Loc =
SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
ExpansionEnd,Identifier.getLength());
Identifier.setLocation(Loc);
// If this is a disabled macro or #define X X, we must mark the result as
// unexpandable.
if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
if (MacroInfo *NewMI = getMacroInfo(NewII))
if (!NewMI->isEnabled() || NewMI == MI) {
Identifier.setFlag(Token::DisableExpand);
// Don't warn for "#define X X" like "#define bool bool" from
// stdbool.h.
if (NewMI != MI || MI->isFunctionLike())
Diag(Identifier, diag::pp_disabled_macro_expansion);
}
}
// Since this is not an identifier token, it can't be macro expanded, so
// we're done.
++NumFastMacroExpanded;
return true;
}
// Start expanding the macro.
EnterMacro(Identifier, ExpansionEnd, MI, Args);
return false;
}
enum Bracket {
Brace,
Paren
};
/// CheckMatchedBrackets - Returns true if the braces and parentheses in the
/// token vector are properly nested.
static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
SmallVector<Bracket, 8> Brackets;
for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
E = Tokens.end();
I != E; ++I) {
if (I->is(tok::l_paren)) {
Brackets.push_back(Paren);
} else if (I->is(tok::r_paren)) {
if (Brackets.empty() || Brackets.back() == Brace)
return false;
Brackets.pop_back();
} else if (I->is(tok::l_brace)) {
Brackets.push_back(Brace);
} else if (I->is(tok::r_brace)) {
if (Brackets.empty() || Brackets.back() == Paren)
return false;
Brackets.pop_back();
}
}
if (!Brackets.empty())
return false;
return true;
}
/// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
/// vector of tokens in NewTokens. The new number of arguments will be placed
/// in NumArgs and the ranges which need to surrounded in parentheses will be
/// in ParenHints.
/// Returns false if the token stream cannot be changed. If this is because
/// of an initializer list starting a macro argument, the range of those
/// initializer lists will be place in InitLists.
static bool GenerateNewArgTokens(Preprocessor &PP,
SmallVectorImpl<Token> &OldTokens,
SmallVectorImpl<Token> &NewTokens,
unsigned &NumArgs,
SmallVectorImpl<SourceRange> &ParenHints,
SmallVectorImpl<SourceRange> &InitLists) {
if (!CheckMatchedBrackets(OldTokens))
return false;
// Once it is known that the brackets are matched, only a simple count of the
// braces is needed.
unsigned Braces = 0;
// First token of a new macro argument.
SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
// First closing brace in a new macro argument. Used to generate
// SourceRanges for InitLists.
SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
NumArgs = 0;
Token TempToken;
// Set to true when a macro separator token is found inside a braced list.
// If true, the fixed argument spans multiple old arguments and ParenHints
// will be updated.
bool FoundSeparatorToken = false;
for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
E = OldTokens.end();
I != E; ++I) {
if (I->is(tok::l_brace)) {
++Braces;
} else if (I->is(tok::r_brace)) {
--Braces;
if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
ClosingBrace = I;
} else if (I->is(tok::eof)) {
// EOF token is used to separate macro arguments
if (Braces != 0) {
// Assume comma separator is actually braced list separator and change
// it back to a comma.
FoundSeparatorToken = true;
I->setKind(tok::comma);
I->setLength(1);
} else { // Braces == 0
// Separator token still separates arguments.
++NumArgs;
// If the argument starts with a brace, it can't be fixed with
// parentheses. A different diagnostic will be given.
if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
InitLists.push_back(
SourceRange(ArgStartIterator->getLocation(),
PP.getLocForEndOfToken(ClosingBrace->getLocation())));
ClosingBrace = E;
}
// Add left paren
if (FoundSeparatorToken) {
TempToken.startToken();
TempToken.setKind(tok::l_paren);
TempToken.setLocation(ArgStartIterator->getLocation());
TempToken.setLength(0);
NewTokens.push_back(TempToken);
}
// Copy over argument tokens
NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
// Add right paren and store the paren locations in ParenHints
if (FoundSeparatorToken) {
SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
TempToken.startToken();
TempToken.setKind(tok::r_paren);
TempToken.setLocation(Loc);
TempToken.setLength(0);
NewTokens.push_back(TempToken);
ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
Loc));
}
// Copy separator token
NewTokens.push_back(*I);
// Reset values
ArgStartIterator = I + 1;
FoundSeparatorToken = false;
}
}
}
return !ParenHints.empty() && InitLists.empty();
}
/// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
/// token is the '(' of the macro, this method is invoked to read all of the
/// actual arguments specified for the macro invocation. This returns null on
/// error.
MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
MacroInfo *MI,
SourceLocation &MacroEnd) {
// The number of fixed arguments to parse.
unsigned NumFixedArgsLeft = MI->getNumArgs();
bool isVariadic = MI->isVariadic();
// Outer loop, while there are more arguments, keep reading them.
Token Tok;
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
// an argument value in a macro could expand to ',' or '(' or ')'.
LexUnexpandedToken(Tok);
assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
// ArgTokens - Build up a list of tokens that make up each argument. Each
// argument is separated by an EOF token. Use a SmallVector so we can avoid
// heap allocations in the common case.
SmallVector<Token, 64> ArgTokens;
bool ContainsCodeCompletionTok = false;
SourceLocation TooManyArgsLoc;
unsigned NumActuals = 0;
while (Tok.isNot(tok::r_paren)) {
if (ContainsCodeCompletionTok && (Tok.is(tok::eof) || Tok.is(tok::eod)))
break;
assert((Tok.is(tok::l_paren) || Tok.is(tok::comma)) &&
"only expect argument separators here");
unsigned ArgTokenStart = ArgTokens.size();
SourceLocation ArgStartLoc = Tok.getLocation();
// C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
// that we already consumed the first one.
unsigned NumParens = 0;
while (1) {
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
// an argument value in a macro could expand to ',' or '(' or ')'.
LexUnexpandedToken(Tok);
if (Tok.is(tok::eof) || Tok.is(tok::eod)) { // "#if f(<eof>" & "#if f(\n"
if (!ContainsCodeCompletionTok) {
Diag(MacroName, diag::err_unterm_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
// Do not lose the EOF/EOD. Return it to the client.
MacroName = Tok;
return 0;
} else {
// Do not lose the EOF/EOD.
Token *Toks = new Token[1];
Toks[0] = Tok;
EnterTokenStream(Toks, 1, true, true);
break;
}
} else if (Tok.is(tok::r_paren)) {
// If we found the ) token, the macro arg list is done.
if (NumParens-- == 0) {
MacroEnd = Tok.getLocation();
break;
}
} else if (Tok.is(tok::l_paren)) {
++NumParens;
} else if (Tok.is(tok::comma) && NumParens == 0 &&
!(Tok.getFlags() & Token::IgnoredComma)) {
// In Microsoft-compatibility mode, single commas from nested macro
// expansions should not be considered as argument separators. We test
// for this with the IgnoredComma token flag above.
// Comma ends this argument if there are more fixed arguments expected.
// However, if this is a variadic macro, and this is part of the
// variadic part, then the comma is just an argument token.
if (!isVariadic) break;
if (NumFixedArgsLeft > 1)
break;
} else if (Tok.is(tok::comment) && !KeepMacroComments) {
// If this is a comment token in the argument list and we're just in
// -C mode (not -CC mode), discard the comment.
continue;
} else if (Tok.getIdentifierInfo() != 0) {
// Reading macro arguments can cause macros that we are currently
// expanding from to be popped off the expansion stack. Doing so causes
// them to be reenabled for expansion. Here we record whether any
// identifiers we lex as macro arguments correspond to disabled macros.
// If so, we mark the token as noexpand. This is a subtle aspect of
// C99 6.10.3.4p2.
if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
if (!MI->isEnabled())
Tok.setFlag(Token::DisableExpand);
} else if (Tok.is(tok::code_completion)) {
ContainsCodeCompletionTok = true;
if (CodeComplete)
CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
MI, NumActuals);
// Don't mark that we reached the code-completion point because the
// parser is going to handle the token and there will be another
// code-completion callback.
}
ArgTokens.push_back(Tok);
}
// If this was an empty argument list foo(), don't add this as an empty
// argument.
if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
break;
// If this is not a variadic macro, and too many args were specified, emit
// an error.
if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
if (ArgTokens.size() != ArgTokenStart)
TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
else
TooManyArgsLoc = ArgStartLoc;
}
// Empty arguments are standard in C99 and C++0x, and are supported as an
// extension in other modes.
if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
Diag(Tok, LangOpts.CPlusPlus11 ?
diag::warn_cxx98_compat_empty_fnmacro_arg :
diag::ext_empty_fnmacro_arg);
// Add a marker EOF token to the end of the token list for this argument.
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(Tok.getLocation());
EOFTok.setLength(0);
ArgTokens.push_back(EOFTok);
++NumActuals;
if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
--NumFixedArgsLeft;
}
// Okay, we either found the r_paren. Check to see if we parsed too few
// arguments.
unsigned MinArgsExpected = MI->getNumArgs();
// If this is not a variadic macro, and too many args were specified, emit
// an error.
if (!isVariadic && NumActuals > MinArgsExpected &&
!ContainsCodeCompletionTok) {
// Emit the diagnostic at the macro name in case there is a missing ).
// Emitting it at the , could be far away from the macro name.
Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
// Commas from braced initializer lists will be treated as argument
// separators inside macros. Attempt to correct for this with parentheses.
// TODO: See if this can be generalized to angle brackets for templates
// inside macro arguments.
SmallVector<Token, 4> FixedArgTokens;
unsigned FixedNumArgs = 0;
SmallVector<SourceRange, 4> ParenHints, InitLists;
if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
ParenHints, InitLists)) {
if (!InitLists.empty()) {
DiagnosticBuilder DB =
Diag(MacroName,
diag::note_init_list_at_beginning_of_macro_argument);
for (SmallVector<SourceRange, 4>::iterator
Range = InitLists.begin(), RangeEnd = InitLists.end();
Range != RangeEnd; ++Range) {
if (DB.hasMaxRanges())
break;
DB << *Range;
}
}
return 0;
}
if (FixedNumArgs != MinArgsExpected)
return 0;
DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
for (SmallVector<SourceRange, 4>::iterator
ParenLocation = ParenHints.begin(), ParenEnd = ParenHints.end();
ParenLocation != ParenEnd; ++ParenLocation) {
if (DB.hasMaxFixItHints())
break;
DB << FixItHint::CreateInsertion(ParenLocation->getBegin(), "(");
if (DB.hasMaxFixItHints())
break;
DB << FixItHint::CreateInsertion(ParenLocation->getEnd(), ")");
}
ArgTokens.swap(FixedArgTokens);
NumActuals = FixedNumArgs;
}
// See MacroArgs instance var for description of this.
bool isVarargsElided = false;
if (ContainsCodeCompletionTok) {
// Recover from not-fully-formed macro invocation during code-completion.
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(Tok.getLocation());
EOFTok.setLength(0);
for (; NumActuals < MinArgsExpected; ++NumActuals)
ArgTokens.push_back(EOFTok);
}
if (NumActuals < MinArgsExpected) {
// There are several cases where too few arguments is ok, handle them now.
if (NumActuals == 0 && MinArgsExpected == 1) {
// #define A(X) or #define A(...) ---> A()
// If there is exactly one argument, and that argument is missing,
// then we have an empty "()" argument empty list. This is fine, even if
// the macro expects one argument (the argument is just empty).
isVarargsElided = MI->isVariadic();
} else if (MI->isVariadic() &&
(NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
(NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
// Varargs where the named vararg parameter is missing: OK as extension.
// #define A(x, ...)
// A("blah")
//
// If the macro contains the comma pasting extension, the diagnostic
// is suppressed; we know we'll get another diagnostic later.
if (!MI->hasCommaPasting()) {
Diag(Tok, diag::ext_missing_varargs_arg);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
}
// Remember this occurred, allowing us to elide the comma when used for
// cases like:
// #define A(x, foo...) blah(a, ## foo)
// #define B(x, ...) blah(a, ## __VA_ARGS__)
// #define C(...) blah(a, ## __VA_ARGS__)
// A(x) B(x) C()
isVarargsElided = true;
} else if (!ContainsCodeCompletionTok) {
// Otherwise, emit the error.
Diag(Tok, diag::err_too_few_args_in_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
return 0;
}
// Add a marker EOF token to the end of the token list for this argument.
SourceLocation EndLoc = Tok.getLocation();
Tok.startToken();
Tok.setKind(tok::eof);
Tok.setLocation(EndLoc);
Tok.setLength(0);
ArgTokens.push_back(Tok);
// If we expect two arguments, add both as empty.
if (NumActuals == 0 && MinArgsExpected == 2)
ArgTokens.push_back(Tok);
} else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
!ContainsCodeCompletionTok) {
// Emit the diagnostic at the macro name in case there is a missing ).
// Emitting it at the , could be far away from the macro name.
Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
return 0;
}
return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
}
/// \brief Keeps macro expanded tokens for TokenLexers.
//
/// Works like a stack; a TokenLexer adds the macro expanded tokens that is
/// going to lex in the cache and when it finishes the tokens are removed
/// from the end of the cache.
Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
ArrayRef<Token> tokens) {
assert(tokLexer);
if (tokens.empty())
return 0;
size_t newIndex = MacroExpandedTokens.size();
bool cacheNeedsToGrow = tokens.size() >
MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
MacroExpandedTokens.append(tokens.begin(), tokens.end());
if (cacheNeedsToGrow) {
// Go through all the TokenLexers whose 'Tokens' pointer points in the
// buffer and update the pointers to the (potential) new buffer array.
for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) {
TokenLexer *prevLexer;
size_t tokIndex;
llvm::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i];
prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
}
}
MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
return MacroExpandedTokens.data() + newIndex;
}
void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
assert(!MacroExpandingLexersStack.empty());
size_t tokIndex = MacroExpandingLexersStack.back().second;
assert(tokIndex < MacroExpandedTokens.size());
// Pop the cached macro expanded tokens from the end.
MacroExpandedTokens.resize(tokIndex);
MacroExpandingLexersStack.pop_back();
}
/// ComputeDATE_TIME - Compute the current time, enter it into the specified
/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
/// the identifier tokens inserted.
static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
Preprocessor &PP) {
time_t TT = time(0);
struct tm *TM = localtime(&TT);
static const char * const Months[] = {
"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
};
{
SmallString<32> TmpBuffer;
llvm::raw_svector_ostream TmpStream(TmpBuffer);
TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
TM->tm_mday, TM->tm_year + 1900);
Token TmpTok;
TmpTok.startToken();
PP.CreateString(TmpStream.str(), TmpTok);
DATELoc = TmpTok.getLocation();
}
{
SmallString<32> TmpBuffer;
llvm::raw_svector_ostream TmpStream(TmpBuffer);
TmpStream << llvm::format("\"%02d:%02d:%02d\"",
TM->tm_hour, TM->tm_min, TM->tm_sec);
Token TmpTok;
TmpTok.startToken();
PP.CreateString(TmpStream.str(), TmpTok);
TIMELoc = TmpTok.getLocation();
}
}
/// HasFeature - Return true if we recognize and implement the feature
/// specified by the identifier as a standard language feature.
static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) {
const LangOptions &LangOpts = PP.getLangOpts();
StringRef Feature = II->getName();
// Normalize the feature name, __foo__ becomes foo.
if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
Feature = Feature.substr(2, Feature.size() - 4);
return llvm::StringSwitch<bool>(Feature)
.Case("address_sanitizer", LangOpts.Sanitize.Address)
.Case("attribute_analyzer_noreturn", true)
.Case("attribute_availability", true)
.Case("attribute_availability_with_message", true)
.Case("attribute_cf_returns_not_retained", true)
.Case("attribute_cf_returns_retained", true)
.Case("attribute_deprecated_with_message", true)
.Case("attribute_ext_vector_type", true)
.Case("attribute_ns_returns_not_retained", true)
.Case("attribute_ns_returns_retained", true)
.Case("attribute_ns_consumes_self", true)
.Case("attribute_ns_consumed", true)
.Case("attribute_cf_consumed", true)
.Case("attribute_objc_ivar_unused", true)
.Case("attribute_objc_method_family", true)
.Case("attribute_overloadable", true)
.Case("attribute_unavailable_with_message", true)
.Case("attribute_unused_on_fields", true)
.Case("blocks", LangOpts.Blocks)
.Case("c_thread_safety_attributes", true)
.Case("cxx_exceptions", LangOpts.Exceptions)
.Case("cxx_rtti", LangOpts.RTTI)
.Case("enumerator_attributes", true)
.Case("memory_sanitizer", LangOpts.Sanitize.Memory)
.Case("thread_sanitizer", LangOpts.Sanitize.Thread)
.Case("dataflow_sanitizer", LangOpts.Sanitize.DataFlow)
// Objective-C features
.Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
.Case("objc_arc", LangOpts.ObjCAutoRefCount)
.Case("objc_arc_weak", LangOpts.ObjCARCWeak)
.Case("objc_default_synthesize_properties", LangOpts.ObjC2)
.Case("objc_fixed_enum", LangOpts.ObjC2)
.Case("objc_instancetype", LangOpts.ObjC2)
.Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules)
.Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile())
.Case("objc_property_explicit_atomic", true) // Does clang support explicit "atomic" keyword?
.Case("objc_protocol_qualifier_mangling", true)
.Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport())
.Case("ownership_holds", true)
.Case("ownership_returns", true)
.Case("ownership_takes", true)
.Case("objc_bool", true)
.Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile())
.Case("objc_array_literals", LangOpts.ObjC2)
.Case("objc_dictionary_literals", LangOpts.ObjC2)
.Case("objc_boxed_expressions", LangOpts.ObjC2)
.Case("arc_cf_code_audited", true)
// C11 features
.Case("c_alignas", LangOpts.C11)
.Case("c_atomic", LangOpts.C11)
.Case("c_generic_selections", LangOpts.C11)
.Case("c_static_assert", LangOpts.C11)
.Case("c_thread_local",
LangOpts.C11 && PP.getTargetInfo().isTLSSupported())
// C++11 features
.Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11)
.Case("cxx_alias_templates", LangOpts.CPlusPlus11)
.Case("cxx_alignas", LangOpts.CPlusPlus11)
.Case("cxx_atomic", LangOpts.CPlusPlus11)
.Case("cxx_attributes", LangOpts.CPlusPlus11)
.Case("cxx_auto_type", LangOpts.CPlusPlus11)
.Case("cxx_constexpr", LangOpts.CPlusPlus11)
.Case("cxx_decltype", LangOpts.CPlusPlus11)
.Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11)
.Case("cxx_default_function_template_args", LangOpts.CPlusPlus11)
.Case("cxx_defaulted_functions", LangOpts.CPlusPlus11)
.Case("cxx_delegating_constructors", LangOpts.CPlusPlus11)
.Case("cxx_deleted_functions", LangOpts.CPlusPlus11)
.Case("cxx_explicit_conversions", LangOpts.CPlusPlus11)
.Case("cxx_generalized_initializers", LangOpts.CPlusPlus11)
.Case("cxx_implicit_moves", LangOpts.CPlusPlus11)
.Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11)
.Case("cxx_inline_namespaces", LangOpts.CPlusPlus11)
.Case("cxx_lambdas", LangOpts.CPlusPlus11)
.Case("cxx_local_type_template_args", LangOpts.CPlusPlus11)
.Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11)
.Case("cxx_noexcept", LangOpts.CPlusPlus11)
.Case("cxx_nullptr", LangOpts.CPlusPlus11)
.Case("cxx_override_control", LangOpts.CPlusPlus11)
.Case("cxx_range_for", LangOpts.CPlusPlus11)
.Case("cxx_raw_string_literals", LangOpts.CPlusPlus11)
.Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11)
.Case("cxx_rvalue_references", LangOpts.CPlusPlus11)
.Case("cxx_strong_enums", LangOpts.CPlusPlus11)
.Case("cxx_static_assert", LangOpts.CPlusPlus11)
.Case("cxx_thread_local",
LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported())
.Case("cxx_trailing_return", LangOpts.CPlusPlus11)
.Case("cxx_unicode_literals", LangOpts.CPlusPlus11)
.Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11)
.Case("cxx_user_literals", LangOpts.CPlusPlus11)
.Case("cxx_variadic_templates", LangOpts.CPlusPlus11)
// C++1y features
.Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus1y)
.Case("cxx_binary_literals", LangOpts.CPlusPlus1y)
.Case("cxx_contextual_conversions", LangOpts.CPlusPlus1y)
//.Case("cxx_generic_lambdas", LangOpts.CPlusPlus1y)
.Case("cxx_init_captures", LangOpts.CPlusPlus1y)
.Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus1y)
.Case("cxx_return_type_deduction", LangOpts.CPlusPlus1y)
//.Case("cxx_runtime_arrays", LangOpts.CPlusPlus1y)
.Case("cxx_variable_templates", LangOpts.CPlusPlus1y)
// Type traits
.Case("has_nothrow_assign", LangOpts.CPlusPlus)
.Case("has_nothrow_copy", LangOpts.CPlusPlus)
.Case("has_nothrow_constructor", LangOpts.CPlusPlus)
.Case("has_trivial_assign", LangOpts.CPlusPlus)
.Case("has_trivial_copy", LangOpts.CPlusPlus)
.Case("has_trivial_constructor", LangOpts.CPlusPlus)
.Case("has_trivial_destructor", LangOpts.CPlusPlus)
.Case("has_virtual_destructor", LangOpts.CPlusPlus)
.Case("is_abstract", LangOpts.CPlusPlus)
.Case("is_base_of", LangOpts.CPlusPlus)
.Case("is_class", LangOpts.CPlusPlus)
.Case("is_convertible_to", LangOpts.CPlusPlus)
.Case("is_empty", LangOpts.CPlusPlus)
.Case("is_enum", LangOpts.CPlusPlus)
.Case("is_final", LangOpts.CPlusPlus)
.Case("is_literal", LangOpts.CPlusPlus)
.Case("is_standard_layout", LangOpts.CPlusPlus)
.Case("is_pod", LangOpts.CPlusPlus)
.Case("is_polymorphic", LangOpts.CPlusPlus)
.Case("is_sealed", LangOpts.MicrosoftExt)
.Case("is_trivial", LangOpts.CPlusPlus)
.Case("is_trivially_assignable", LangOpts.CPlusPlus)
.Case("is_trivially_constructible", LangOpts.CPlusPlus)
.Case("is_trivially_copyable", LangOpts.CPlusPlus)
.Case("is_union", LangOpts.CPlusPlus)
.Case("modules", LangOpts.Modules)
.Case("tls", PP.getTargetInfo().isTLSSupported())
.Case("underlying_type", LangOpts.CPlusPlus)
.Default(false);
}
/// HasExtension - Return true if we recognize and implement the feature
/// specified by the identifier, either as an extension or a standard language
/// feature.
static bool HasExtension(const Preprocessor &PP, const IdentifierInfo *II) {
if (HasFeature(PP, II))
return true;
// If the use of an extension results in an error diagnostic, extensions are
// effectively unavailable, so just return false here.
if (PP.getDiagnostics().getExtensionHandlingBehavior() ==
DiagnosticsEngine::Ext_Error)
return false;
const LangOptions &LangOpts = PP.getLangOpts();
StringRef Extension = II->getName();
// Normalize the extension name, __foo__ becomes foo.
if (Extension.startswith("__") && Extension.endswith("__") &&
Extension.size() >= 4)
Extension = Extension.substr(2, Extension.size() - 4);
// Because we inherit the feature list from HasFeature, this string switch
// must be less restrictive than HasFeature's.
return llvm::StringSwitch<bool>(Extension)
// C11 features supported by other languages as extensions.
.Case("c_alignas", true)
.Case("c_atomic", true)
.Case("c_generic_selections", true)
.Case("c_static_assert", true)
.Case("c_thread_local", PP.getTargetInfo().isTLSSupported())
// C++11 features supported by other languages as extensions.
.Case("cxx_atomic", LangOpts.CPlusPlus)
.Case("cxx_deleted_functions", LangOpts.CPlusPlus)
.Case("cxx_explicit_conversions", LangOpts.CPlusPlus)
.Case("cxx_inline_namespaces", LangOpts.CPlusPlus)
.Case("cxx_local_type_template_args", LangOpts.CPlusPlus)
.Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus)
.Case("cxx_override_control", LangOpts.CPlusPlus)
.Case("cxx_range_for", LangOpts.CPlusPlus)
.Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus)
.Case("cxx_rvalue_references", LangOpts.CPlusPlus)
// C++1y features supported by other languages as extensions.
.Case("cxx_binary_literals", true)
.Case("cxx_init_captures", LangOpts.CPlusPlus11)
.Case("cxx_variable_templates", true)
.Default(false);
}
/// HasAttribute - Return true if we recognize and implement the attribute
/// specified by the given identifier.
static bool HasAttribute(const IdentifierInfo *II) {
StringRef Name = II->getName();
// Normalize the attribute name, __foo__ becomes foo.
if (Name.startswith("__") && Name.endswith("__") && Name.size() >= 4)
Name = Name.substr(2, Name.size() - 4);
// FIXME: Do we need to handle namespaces here?
return llvm::StringSwitch<bool>(Name)
#include "clang/Lex/AttrSpellings.inc"
.Default(false);
}
/// EvaluateHasIncludeCommon - Process a '__has_include("path")'
/// or '__has_include_next("path")' expression.
/// Returns true if successful.
static bool EvaluateHasIncludeCommon(Token &Tok,
IdentifierInfo *II, Preprocessor &PP,
const DirectoryLookup *LookupFrom) {
// Save the location of the current token. If a '(' is later found, use
// that location. If not, use the end of this location instead.
SourceLocation LParenLoc = Tok.getLocation();
// These expressions are only allowed within a preprocessor directive.
if (!PP.isParsingIfOrElifDirective()) {
PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName();
return false;
}
// Get '('.
PP.LexNonComment(Tok);
// Ensure we have a '('.
if (Tok.isNot(tok::l_paren)) {
// No '(', use end of last token.
LParenLoc = PP.getLocForEndOfToken(LParenLoc);
PP.Diag(LParenLoc, diag::err_pp_missing_lparen) << II->getName();
// If the next token looks like a filename or the start of one,
// assume it is and process it as such.
if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) &&
!Tok.is(tok::less))
return false;
} else {
// Save '(' location for possible missing ')' message.
LParenLoc = Tok.getLocation();
if (PP.getCurrentLexer()) {
// Get the file name.
PP.getCurrentLexer()->LexIncludeFilename(Tok);
} else {
// We're in a macro, so we can't use LexIncludeFilename; just
// grab the next token.
PP.Lex(Tok);
}
}
// Reserve a buffer to get the spelling.
SmallString<128> FilenameBuffer;
StringRef Filename;
SourceLocation EndLoc;
switch (Tok.getKind()) {
case tok::eod:
// If the token kind is EOD, the error has already been diagnosed.
return false;
case tok::angle_string_literal:
case tok::string_literal: {
bool Invalid = false;
Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
if (Invalid)
return false;
break;
}
case tok::less:
// This could be a <foo/bar.h> file coming from a macro expansion. In this
// case, glue the tokens together into FilenameBuffer and interpret those.
FilenameBuffer.push_back('<');
if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) {
// Let the caller know a <eod> was found by changing the Token kind.
Tok.setKind(tok::eod);
return false; // Found <eod> but no ">"? Diagnostic already emitted.
}
Filename = FilenameBuffer.str();
break;
default:
PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
return false;
}
SourceLocation FilenameLoc = Tok.getLocation();
// Get ')'.
PP.LexNonComment(Tok);
// Ensure we have a trailing ).
if (Tok.isNot(tok::r_paren)) {
PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_missing_rparen)
<< II->getName();
PP.Diag(LParenLoc, diag::note_matching) << "(";
return false;
}
bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
// If GetIncludeFilenameSpelling set the start ptr to null, there was an
// error.
if (Filename.empty())
return false;
// Search include directories.
const DirectoryLookup *CurDir;
const FileEntry *File =
PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, CurDir, NULL,
NULL, NULL);
// Get the result value. A result of true means the file exists.
return File != 0;
}
/// EvaluateHasInclude - Process a '__has_include("path")' expression.
/// Returns true if successful.
static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
Preprocessor &PP) {
return EvaluateHasIncludeCommon(Tok, II, PP, NULL);
}
/// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
/// Returns true if successful.
static bool EvaluateHasIncludeNext(Token &Tok,
IdentifierInfo *II, Preprocessor &PP) {
// __has_include_next is like __has_include, except that we start
// searching after the current found directory. If we can't do this,
// issue a diagnostic.
const DirectoryLookup *Lookup = PP.GetCurDirLookup();
if (PP.isInPrimaryFile()) {
Lookup = 0;
PP.Diag(Tok, diag::pp_include_next_in_primary);
} else if (Lookup == 0) {
PP.Diag(Tok, diag::pp_include_next_absolute_path);
} else {
// Start looking up in the next directory.
++Lookup;
}
return EvaluateHasIncludeCommon(Tok, II, PP, Lookup);
}
/// \brief Process __building_module(identifier) expression.
/// \returns true if we are building the named module, false otherwise.
static bool EvaluateBuildingModule(Token &Tok,
IdentifierInfo *II, Preprocessor &PP) {
// Get '('.
PP.LexNonComment(Tok);
// Ensure we have a '('.
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pp_missing_lparen) << II->getName();
return false;
}
// Save '(' location for possible missing ')' message.
SourceLocation LParenLoc = Tok.getLocation();
// Get the module name.
PP.LexNonComment(Tok);
// Ensure that we have an identifier.
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_expected_id_building_module);
return false;
}
bool Result
= Tok.getIdentifierInfo()->getName() == PP.getLangOpts().CurrentModule;
// Get ')'.
PP.LexNonComment(Tok);
// Ensure we have a trailing ).
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pp_missing_rparen) << II->getName();
PP.Diag(LParenLoc, diag::note_matching) << "(";
return false;
}
return Result;
}
/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
/// as a builtin macro, handle it and return the next token as 'Tok'.
void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
// Figure out which token this is.
IdentifierInfo *II = Tok.getIdentifierInfo();
assert(II && "Can't be a macro without id info!");
// If this is an _Pragma or Microsoft __pragma directive, expand it,
// invoke the pragma handler, then lex the token after it.
if (II == Ident_Pragma)
return Handle_Pragma(Tok);
else if (II == Ident__pragma) // in non-MS mode this is null
return HandleMicrosoft__pragma(Tok);
++NumBuiltinMacroExpanded;
SmallString<128> TmpBuffer;
llvm::raw_svector_ostream OS(TmpBuffer);
// Set up the return result.
Tok.setIdentifierInfo(0);
Tok.clearFlag(Token::NeedsCleaning);
if (II == Ident__LINE__) {
// C99 6.10.8: "__LINE__: The presumed line number (within the current
// source file) of the current source line (an integer constant)". This can
// be affected by #line.
SourceLocation Loc = Tok.getLocation();
// Advance to the location of the first _, this might not be the first byte
// of the token if it starts with an escaped newline.
Loc = AdvanceToTokenCharacter(Loc, 0);
// One wrinkle here is that GCC expands __LINE__ to location of the *end* of
// a macro expansion. This doesn't matter for object-like macros, but
// can matter for a function-like macro that expands to contain __LINE__.
// Skip down through expansion points until we find a file loc for the
// end of the expansion history.
Loc = SourceMgr.getExpansionRange(Loc).second;
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
// __LINE__ expands to a simple numeric value.
OS << (PLoc.isValid()? PLoc.getLine() : 1);
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
// C99 6.10.8: "__FILE__: The presumed name of the current source file (a
// character string literal)". This can be affected by #line.
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
// __BASE_FILE__ is a GNU extension that returns the top of the presumed
// #include stack instead of the current file.
if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
SourceLocation NextLoc = PLoc.getIncludeLoc();
while (NextLoc.isValid()) {
PLoc = SourceMgr.getPresumedLoc(NextLoc);
if (PLoc.isInvalid())
break;
NextLoc = PLoc.getIncludeLoc();
}
}
// Escape this filename. Turn '\' -> '\\' '"' -> '\"'
SmallString<128> FN;
if (PLoc.isValid()) {
FN += PLoc.getFilename();
Lexer::Stringify(FN);
OS << '"' << FN.str() << '"';
}
Tok.setKind(tok::string_literal);
} else if (II == Ident__DATE__) {
if (!DATELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"Mmm dd yyyy\""));
Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
Tok.getLocation(),
Tok.getLength()));
return;
} else if (II == Ident__TIME__) {
if (!TIMELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"hh:mm:ss\""));
Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
Tok.getLocation(),
Tok.getLength()));
return;
} else if (II == Ident__INCLUDE_LEVEL__) {
// Compute the presumed include depth of this token. This can be affected
// by GNU line markers.
unsigned Depth = 0;
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
if (PLoc.isValid()) {
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
for (; PLoc.isValid(); ++Depth)
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
}
// __INCLUDE_LEVEL__ expands to a simple numeric value.
OS << Depth;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__TIMESTAMP__) {
// MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
// of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
// Get the file that we are lexing out of. If we're currently lexing from
// a macro, dig into the include stack.
const FileEntry *CurFile = 0;
PreprocessorLexer *TheLexer = getCurrentFileLexer();
if (TheLexer)
CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
const char *Result;
if (CurFile) {
time_t TT = CurFile->getModificationTime();
struct tm *TM = localtime(&TT);
Result = asctime(TM);
} else {
Result = "??? ??? ?? ??:??:?? ????\n";
}
// Surround the string with " and strip the trailing newline.
OS << '"' << StringRef(Result, strlen(Result)-1) << '"';
Tok.setKind(tok::string_literal);
} else if (II == Ident__COUNTER__) {
// __COUNTER__ expands to a simple numeric value.
OS << CounterValue++;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__has_feature ||
II == Ident__has_extension ||
II == Ident__has_builtin ||
II == Ident__has_attribute) {
// The argument to these builtins should be a parenthesized identifier.
SourceLocation StartLoc = Tok.getLocation();
bool IsValid = false;
IdentifierInfo *FeatureII = 0;
// Read the '('.
LexUnexpandedToken(Tok);
if (Tok.is(tok::l_paren)) {
// Read the identifier
LexUnexpandedToken(Tok);
if ((FeatureII = Tok.getIdentifierInfo())) {
// Read the ')'.
LexUnexpandedToken(Tok);
if (Tok.is(tok::r_paren))
IsValid = true;
}
}
bool Value = false;
if (!IsValid)
Diag(StartLoc, diag::err_feature_check_malformed);
else if (II == Ident__has_builtin) {
// Check for a builtin is trivial.
Value = FeatureII->getBuiltinID() != 0;
} else if (II == Ident__has_attribute)
Value = HasAttribute(FeatureII);
else if (II == Ident__has_extension)
Value = HasExtension(*this, FeatureII);
else {
assert(II == Ident__has_feature && "Must be feature check");
Value = HasFeature(*this, FeatureII);
}
OS << (int)Value;
if (IsValid)
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__has_include ||
II == Ident__has_include_next) {
// The argument to these two builtins should be a parenthesized
// file name string literal using angle brackets (<>) or
// double-quotes ("").
bool Value;
if (II == Ident__has_include)
Value = EvaluateHasInclude(Tok, II, *this);
else
Value = EvaluateHasIncludeNext(Tok, II, *this);
OS << (int)Value;
if (Tok.is(tok::r_paren))
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__has_warning) {
// The argument should be a parenthesized string literal.
// The argument to these builtins should be a parenthesized identifier.
SourceLocation StartLoc = Tok.getLocation();
bool IsValid = false;
bool Value = false;
// Read the '('.
LexUnexpandedToken(Tok);
do {
if (Tok.isNot(tok::l_paren)) {
Diag(StartLoc, diag::err_warning_check_malformed);
break;
}
LexUnexpandedToken(Tok);
std::string WarningName;
SourceLocation StrStartLoc = Tok.getLocation();
if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
/*MacroExpansion=*/false)) {
// Eat tokens until ')'.
while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
Tok.isNot(tok::eof))
LexUnexpandedToken(Tok);
break;
}
// Is the end a ')'?
if (!(IsValid = Tok.is(tok::r_paren))) {
Diag(StartLoc, diag::err_warning_check_malformed);
break;
}
if (WarningName.size() < 3 || WarningName[0] != '-' ||
WarningName[1] != 'W') {
Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
break;
}
// Finally, check if the warning flags maps to a diagnostic group.
// We construct a SmallVector here to talk to getDiagnosticIDs().
// Although we don't use the result, this isn't a hot path, and not
// worth special casing.
SmallVector<diag::kind, 10> Diags;
Value = !getDiagnostics().getDiagnosticIDs()->
getDiagnosticsInGroup(WarningName.substr(2), Diags);
} while (false);
OS << (int)Value;
if (IsValid)
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__building_module) {
// The argument to this builtin should be an identifier. The
// builtin evaluates to 1 when that identifier names the module we are
// currently building.
OS << (int)EvaluateBuildingModule(Tok, II, *this);
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__MODULE__) {
// The current module as an identifier.
OS << getLangOpts().CurrentModule;
IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
Tok.setIdentifierInfo(ModuleII);
Tok.setKind(ModuleII->getTokenID());
} else {
llvm_unreachable("Unknown identifier!");
}
CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
}
void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
// If the 'used' status changed, and the macro requires 'unused' warning,
// remove its SourceLocation from the warn-for-unused-macro locations.
if (MI->isWarnIfUnused() && !MI->isUsed())
WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
MI->setIsUsed(true);
}