freebsd-dev/contrib/gcc/reload1.c
2000-03-09 09:21:46 +00:00

10264 lines
330 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Reload pseudo regs into hard regs for insns that require hard regs.
Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "obstack.h"
#include "insn-config.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "flags.h"
#include "expr.h"
#include "regs.h"
#include "basic-block.h"
#include "reload.h"
#include "recog.h"
#include "output.h"
#include "real.h"
#include "toplev.h"
#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
#endif
/* This file contains the reload pass of the compiler, which is
run after register allocation has been done. It checks that
each insn is valid (operands required to be in registers really
are in registers of the proper class) and fixes up invalid ones
by copying values temporarily into registers for the insns
that need them.
The results of register allocation are described by the vector
reg_renumber; the insns still contain pseudo regs, but reg_renumber
can be used to find which hard reg, if any, a pseudo reg is in.
The technique we always use is to free up a few hard regs that are
called ``reload regs'', and for each place where a pseudo reg
must be in a hard reg, copy it temporarily into one of the reload regs.
Reload regs are allocated locally for every instruction that needs
reloads. When there are pseudos which are allocated to a register that
has been chosen as a reload reg, such pseudos must be ``spilled''.
This means that they go to other hard regs, or to stack slots if no other
available hard regs can be found. Spilling can invalidate more
insns, requiring additional need for reloads, so we must keep checking
until the process stabilizes.
For machines with different classes of registers, we must keep track
of the register class needed for each reload, and make sure that
we allocate enough reload registers of each class.
The file reload.c contains the code that checks one insn for
validity and reports the reloads that it needs. This file
is in charge of scanning the entire rtl code, accumulating the
reload needs, spilling, assigning reload registers to use for
fixing up each insn, and generating the new insns to copy values
into the reload registers. */
#ifndef REGISTER_MOVE_COST
#define REGISTER_MOVE_COST(x, y) 2
#endif
/* During reload_as_needed, element N contains a REG rtx for the hard reg
into which reg N has been reloaded (perhaps for a previous insn). */
static rtx *reg_last_reload_reg;
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
for an output reload that stores into reg N. */
static char *reg_has_output_reload;
/* Indicates which hard regs are reload-registers for an output reload
in the current insn. */
static HARD_REG_SET reg_is_output_reload;
/* Element N is the constant value to which pseudo reg N is equivalent,
or zero if pseudo reg N is not equivalent to a constant.
find_reloads looks at this in order to replace pseudo reg N
with the constant it stands for. */
rtx *reg_equiv_constant;
/* Element N is a memory location to which pseudo reg N is equivalent,
prior to any register elimination (such as frame pointer to stack
pointer). Depending on whether or not it is a valid address, this value
is transferred to either reg_equiv_address or reg_equiv_mem. */
rtx *reg_equiv_memory_loc;
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
This is used when the address is not valid as a memory address
(because its displacement is too big for the machine.) */
rtx *reg_equiv_address;
/* Element N is the memory slot to which pseudo reg N is equivalent,
or zero if pseudo reg N is not equivalent to a memory slot. */
rtx *reg_equiv_mem;
/* Widest width in which each pseudo reg is referred to (via subreg). */
static int *reg_max_ref_width;
/* Element N is the list of insns that initialized reg N from its equivalent
constant or memory slot. */
static rtx *reg_equiv_init;
/* Vector to remember old contents of reg_renumber before spilling. */
static short *reg_old_renumber;
/* During reload_as_needed, element N contains the last pseudo regno reloaded
into hard register N. If that pseudo reg occupied more than one register,
reg_reloaded_contents points to that pseudo for each spill register in
use; all of these must remain set for an inheritance to occur. */
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
/* During reload_as_needed, element N contains the insn for which
hard register N was last used. Its contents are significant only
when reg_reloaded_valid is set for this register. */
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
static HARD_REG_SET reg_reloaded_valid;
/* Indicate if the register was dead at the end of the reload.
This is only valid if reg_reloaded_contents is set and valid. */
static HARD_REG_SET reg_reloaded_dead;
/* Number of spill-regs so far; number of valid elements of spill_regs. */
static int n_spills;
/* In parallel with spill_regs, contains REG rtx's for those regs.
Holds the last rtx used for any given reg, or 0 if it has never
been used for spilling yet. This rtx is reused, provided it has
the proper mode. */
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
/* In parallel with spill_regs, contains nonzero for a spill reg
that was stored after the last time it was used.
The precise value is the insn generated to do the store. */
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
/* This is the register that was stored with spill_reg_store. This is a
copy of reload_out / reload_out_reg when the value was stored; if
reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
/* This table is the inverse mapping of spill_regs:
indexed by hard reg number,
it contains the position of that reg in spill_regs,
or -1 for something that is not in spill_regs.
?!? This is no longer accurate. */
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
/* This reg set indicates registers that can't be used as spill registers for
the currently processed insn. These are the hard registers which are live
during the insn, but not allocated to pseudos, as well as fixed
registers. */
static HARD_REG_SET bad_spill_regs;
/* These are the hard registers that can't be used as spill register for any
insn. This includes registers used for user variables and registers that
we can't eliminate. A register that appears in this set also can't be used
to retry register allocation. */
static HARD_REG_SET bad_spill_regs_global;
/* Describes order of use of registers for reloading
of spilled pseudo-registers. `n_spills' is the number of
elements that are actually valid; new ones are added at the end.
Both spill_regs and spill_reg_order are used on two occasions:
once during find_reload_regs, where they keep track of the spill registers
for a single insn, but also during reload_as_needed where they show all
the registers ever used by reload. For the latter case, the information
is calculated during finish_spills. */
static short spill_regs[FIRST_PSEUDO_REGISTER];
/* This vector of reg sets indicates, for each pseudo, which hard registers
may not be used for retrying global allocation because the register was
formerly spilled from one of them. If we allowed reallocating a pseudo to
a register that it was already allocated to, reload might not
terminate. */
static HARD_REG_SET *pseudo_previous_regs;
/* This vector of reg sets indicates, for each pseudo, which hard
registers may not be used for retrying global allocation because they
are used as spill registers during one of the insns in which the
pseudo is live. */
static HARD_REG_SET *pseudo_forbidden_regs;
/* All hard regs that have been used as spill registers for any insn are
marked in this set. */
static HARD_REG_SET used_spill_regs;
/* Index of last register assigned as a spill register. We allocate in
a round-robin fashion. */
static int last_spill_reg;
/* Describes order of preference for putting regs into spill_regs.
Contains the numbers of all the hard regs, in order most preferred first.
This order is different for each function.
It is set up by order_regs_for_reload.
Empty elements at the end contain -1. */
static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
/* Nonzero if indirect addressing is supported on the machine; this means
that spilling (REG n) does not require reloading it into a register in
order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
value indicates the level of indirect addressing supported, e.g., two
means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
a hard register. */
static char spill_indirect_levels;
/* Nonzero if indirect addressing is supported when the innermost MEM is
of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
which these are valid is the same as spill_indirect_levels, above. */
char indirect_symref_ok;
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
char double_reg_address_ok;
/* Record the stack slot for each spilled hard register. */
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
/* Width allocated so far for that stack slot. */
static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
/* Record which pseudos needed to be spilled. */
static regset spilled_pseudos;
/* First uid used by insns created by reload in this function.
Used in find_equiv_reg. */
int reload_first_uid;
/* Flag set by local-alloc or global-alloc if anything is live in
a call-clobbered reg across calls. */
int caller_save_needed;
/* Set to 1 while reload_as_needed is operating.
Required by some machines to handle any generated moves differently. */
int reload_in_progress = 0;
/* These arrays record the insn_code of insns that may be needed to
perform input and output reloads of special objects. They provide a
place to pass a scratch register. */
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
/* This obstack is used for allocation of rtl during register elimination.
The allocated storage can be freed once find_reloads has processed the
insn. */
struct obstack reload_obstack;
/* Points to the beginning of the reload_obstack. All insn_chain structures
are allocated first. */
char *reload_startobj;
/* The point after all insn_chain structures. Used to quickly deallocate
memory used while processing one insn. */
char *reload_firstobj;
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
/* List of labels that must never be deleted. */
extern rtx forced_labels;
/* List of insn_chain instructions, one for every insn that reload needs to
examine. */
struct insn_chain *reload_insn_chain;
#ifdef TREE_CODE
extern tree current_function_decl;
#else
extern union tree_node *current_function_decl;
#endif
/* List of all insns needing reloads. */
static struct insn_chain *insns_need_reload;
/* This structure is used to record information about register eliminations.
Each array entry describes one possible way of eliminating a register
in favor of another. If there is more than one way of eliminating a
particular register, the most preferred should be specified first. */
struct elim_table
{
int from; /* Register number to be eliminated. */
int to; /* Register number used as replacement. */
int initial_offset; /* Initial difference between values. */
int can_eliminate; /* Non-zero if this elimination can be done. */
int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
insns made by reload. */
int offset; /* Current offset between the two regs. */
int previous_offset; /* Offset at end of previous insn. */
int ref_outside_mem; /* "to" has been referenced outside a MEM. */
rtx from_rtx; /* REG rtx for the register to be eliminated.
We cannot simply compare the number since
we might then spuriously replace a hard
register corresponding to a pseudo
assigned to the reg to be eliminated. */
rtx to_rtx; /* REG rtx for the replacement. */
};
static struct elim_table * reg_eliminate = 0;
/* This is an intermediate structure to initialize the table. It has
exactly the members provided by ELIMINABLE_REGS. */
static struct elim_table_1
{
int from;
int to;
} reg_eliminate_1[] =
/* If a set of eliminable registers was specified, define the table from it.
Otherwise, default to the normal case of the frame pointer being
replaced by the stack pointer. */
#ifdef ELIMINABLE_REGS
ELIMINABLE_REGS;
#else
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
#endif
#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
/* Record the number of pending eliminations that have an offset not equal
to their initial offset. If non-zero, we use a new copy of each
replacement result in any insns encountered. */
int num_not_at_initial_offset;
/* Count the number of registers that we may be able to eliminate. */
static int num_eliminable;
/* And the number of registers that are equivalent to a constant that
can be eliminated to frame_pointer / arg_pointer + constant. */
static int num_eliminable_invariants;
/* For each label, we record the offset of each elimination. If we reach
a label by more than one path and an offset differs, we cannot do the
elimination. This information is indexed by the number of the label.
The first table is an array of flags that records whether we have yet
encountered a label and the second table is an array of arrays, one
entry in the latter array for each elimination. */
static char *offsets_known_at;
static int (*offsets_at)[NUM_ELIMINABLE_REGS];
/* Number of labels in the current function. */
static int num_labels;
struct hard_reg_n_uses
{
int regno;
unsigned int uses;
};
static void maybe_fix_stack_asms PROTO((void));
static void calculate_needs_all_insns PROTO((int));
static void calculate_needs PROTO((struct insn_chain *));
static void find_reload_regs PROTO((struct insn_chain *chain,
FILE *));
static void find_tworeg_group PROTO((struct insn_chain *, int,
FILE *));
static void find_group PROTO((struct insn_chain *, int,
FILE *));
static int possible_group_p PROTO((struct insn_chain *, int));
static void count_possible_groups PROTO((struct insn_chain *, int));
static int modes_equiv_for_class_p PROTO((enum machine_mode,
enum machine_mode,
enum reg_class));
static void delete_caller_save_insns PROTO((void));
static void spill_failure PROTO((rtx));
static void new_spill_reg PROTO((struct insn_chain *, int, int,
int, FILE *));
static void maybe_mark_pseudo_spilled PROTO((int));
static void delete_dead_insn PROTO((rtx));
static void alter_reg PROTO((int, int));
static void set_label_offsets PROTO((rtx, rtx, int));
static int eliminate_regs_in_insn PROTO((rtx, int));
static void update_eliminable_offsets PROTO((void));
static void mark_not_eliminable PROTO((rtx, rtx));
static void set_initial_elim_offsets PROTO((void));
static void verify_initial_elim_offsets PROTO((void));
static void set_initial_label_offsets PROTO((void));
static void set_offsets_for_label PROTO((rtx));
static void init_elim_table PROTO((void));
static void update_eliminables PROTO((HARD_REG_SET *));
static void spill_hard_reg PROTO((int, FILE *, int));
static int finish_spills PROTO((int, FILE *));
static void ior_hard_reg_set PROTO((HARD_REG_SET *, HARD_REG_SET *));
static void scan_paradoxical_subregs PROTO((rtx));
static int hard_reg_use_compare PROTO((const GENERIC_PTR, const GENERIC_PTR));
static void count_pseudo PROTO((struct hard_reg_n_uses *, int));
static void order_regs_for_reload PROTO((struct insn_chain *));
static void reload_as_needed PROTO((int));
static void forget_old_reloads_1 PROTO((rtx, rtx));
static int reload_reg_class_lower PROTO((const GENERIC_PTR, const GENERIC_PTR));
static void mark_reload_reg_in_use PROTO((int, int, enum reload_type,
enum machine_mode));
static void clear_reload_reg_in_use PROTO((int, int, enum reload_type,
enum machine_mode));
static int reload_reg_free_p PROTO((int, int, enum reload_type));
static int reload_reg_free_for_value_p PROTO((int, int, enum reload_type, rtx, rtx, int, int));
static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type));
static int allocate_reload_reg PROTO((struct insn_chain *, int, int,
int));
static void choose_reload_regs PROTO((struct insn_chain *));
static void merge_assigned_reloads PROTO((rtx));
static void emit_reload_insns PROTO((struct insn_chain *));
static void delete_output_reload PROTO((rtx, int, int));
static void delete_address_reloads PROTO((rtx, rtx));
static void delete_address_reloads_1 PROTO((rtx, rtx, rtx));
static rtx inc_for_reload PROTO((rtx, rtx, rtx, int));
static int constraint_accepts_reg_p PROTO((const char *, rtx));
static void reload_cse_regs_1 PROTO((rtx));
static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int));
static int reload_cse_mem_conflict_p PROTO((rtx, rtx));
static void reload_cse_invalidate_mem PROTO((rtx));
static void reload_cse_invalidate_rtx PROTO((rtx, rtx));
static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode));
static int reload_cse_noop_set_p PROTO((rtx, rtx));
static int reload_cse_simplify_set PROTO((rtx, rtx));
static int reload_cse_simplify_operands PROTO((rtx));
static void reload_cse_check_clobber PROTO((rtx, rtx));
static void reload_cse_record_set PROTO((rtx, rtx));
static void reload_combine PROTO((void));
static void reload_combine_note_use PROTO((rtx *, rtx));
static void reload_combine_note_store PROTO((rtx, rtx));
static void reload_cse_move2add PROTO((rtx));
static void move2add_note_store PROTO((rtx, rtx));
#ifdef AUTO_INC_DEC
static void add_auto_inc_notes PROTO((rtx, rtx));
#endif
/* Initialize the reload pass once per compilation. */
void
init_reload ()
{
register int i;
/* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
Set spill_indirect_levels to the number of levels such addressing is
permitted, zero if it is not permitted at all. */
register rtx tem
= gen_rtx_MEM (Pmode,
gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, LAST_VIRTUAL_REGISTER + 1),
GEN_INT (4)));
spill_indirect_levels = 0;
while (memory_address_p (QImode, tem))
{
spill_indirect_levels++;
tem = gen_rtx_MEM (Pmode, tem);
}
/* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
indirect_symref_ok = memory_address_p (QImode, tem);
/* See if reg+reg is a valid (and offsettable) address. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
tem = gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
gen_rtx_REG (Pmode, i));
/* This way, we make sure that reg+reg is an offsettable address. */
tem = plus_constant (tem, 4);
if (memory_address_p (QImode, tem))
{
double_reg_address_ok = 1;
break;
}
}
/* Initialize obstack for our rtl allocation. */
gcc_obstack_init (&reload_obstack);
reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
}
/* List of insn chains that are currently unused. */
static struct insn_chain *unused_insn_chains = 0;
/* Allocate an empty insn_chain structure. */
struct insn_chain *
new_insn_chain ()
{
struct insn_chain *c;
if (unused_insn_chains == 0)
{
c = (struct insn_chain *)
obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
c->live_before = OBSTACK_ALLOC_REG_SET (&reload_obstack);
c->live_after = OBSTACK_ALLOC_REG_SET (&reload_obstack);
}
else
{
c = unused_insn_chains;
unused_insn_chains = c->next;
}
c->is_caller_save_insn = 0;
c->need_operand_change = 0;
c->need_reload = 0;
c->need_elim = 0;
return c;
}
/* Small utility function to set all regs in hard reg set TO which are
allocated to pseudos in regset FROM. */
void
compute_use_by_pseudos (to, from)
HARD_REG_SET *to;
regset from;
{
int regno;
EXECUTE_IF_SET_IN_REG_SET
(from, FIRST_PSEUDO_REGISTER, regno,
{
int r = reg_renumber[regno];
int nregs;
if (r < 0)
{
/* reload_combine uses the information from
BASIC_BLOCK->global_live_at_start, which might still
contain registers that have not actually been allocated
since they have an equivalence. */
if (! reload_completed)
abort ();
}
else
{
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
while (nregs-- > 0)
SET_HARD_REG_BIT (*to, r + nregs);
}
});
}
/* Global variables used by reload and its subroutines. */
/* Set during calculate_needs if an insn needs register elimination. */
static int something_needs_elimination;
/* Set during calculate_needs if an insn needs an operand changed. */
int something_needs_operands_changed;
/* Nonzero means we couldn't get enough spill regs. */
static int failure;
/* Main entry point for the reload pass.
FIRST is the first insn of the function being compiled.
GLOBAL nonzero means we were called from global_alloc
and should attempt to reallocate any pseudoregs that we
displace from hard regs we will use for reloads.
If GLOBAL is zero, we do not have enough information to do that,
so any pseudo reg that is spilled must go to the stack.
DUMPFILE is the global-reg debugging dump file stream, or 0.
If it is nonzero, messages are written to it to describe
which registers are seized as reload regs, which pseudo regs
are spilled from them, and where the pseudo regs are reallocated to.
Return value is nonzero if reload failed
and we must not do any more for this function. */
int
reload (first, global, dumpfile)
rtx first;
int global;
FILE *dumpfile;
{
register int i;
register rtx insn;
register struct elim_table *ep;
/* The two pointers used to track the true location of the memory used
for label offsets. */
char *real_known_ptr = NULL_PTR;
int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
/* Make sure even insns with volatile mem refs are recognizable. */
init_recog ();
failure = 0;
reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
/* Make sure that the last insn in the chain
is not something that needs reloading. */
emit_note (NULL_PTR, NOTE_INSN_DELETED);
/* Enable find_equiv_reg to distinguish insns made by reload. */
reload_first_uid = get_max_uid ();
#ifdef SECONDARY_MEMORY_NEEDED
/* Initialize the secondary memory table. */
clear_secondary_mem ();
#endif
/* We don't have a stack slot for any spill reg yet. */
bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
/* Initialize the save area information for caller-save, in case some
are needed. */
init_save_areas ();
/* Compute which hard registers are now in use
as homes for pseudo registers.
This is done here rather than (eg) in global_alloc
because this point is reached even if not optimizing. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
mark_home_live (i);
/* A function that receives a nonlocal goto must save all call-saved
registers. */
if (current_function_has_nonlocal_label)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (! call_used_regs[i] && ! fixed_regs[i])
regs_ever_live[i] = 1;
}
/* Find all the pseudo registers that didn't get hard regs
but do have known equivalent constants or memory slots.
These include parameters (known equivalent to parameter slots)
and cse'd or loop-moved constant memory addresses.
Record constant equivalents in reg_equiv_constant
so they will be substituted by find_reloads.
Record memory equivalents in reg_mem_equiv so they can
be substituted eventually by altering the REG-rtx's. */
reg_equiv_constant = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx));
reg_equiv_memory_loc = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx));
reg_equiv_mem = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx));
reg_equiv_init = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx));
reg_equiv_address = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx));
reg_max_ref_width = (int *) xmalloc (max_regno * sizeof (int));
bzero ((char *) reg_max_ref_width, max_regno * sizeof (int));
reg_old_renumber = (short *) xmalloc (max_regno * sizeof (short));
bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
pseudo_forbidden_regs
= (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
pseudo_previous_regs
= (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
CLEAR_HARD_REG_SET (bad_spill_regs_global);
bzero ((char *) pseudo_previous_regs, max_regno * sizeof (HARD_REG_SET));
/* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
Also find all paradoxical subregs and find largest such for each pseudo.
On machines with small register classes, record hard registers that
are used for user variables. These can never be used for spills.
Also look for a "constant" NOTE_INSN_SETJMP. This means that all
caller-saved registers must be marked live. */
num_eliminable_invariants = 0;
for (insn = first; insn; insn = NEXT_INSN (insn))
{
rtx set = single_set (insn);
if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! call_used_regs[i])
regs_ever_live[i] = 1;
if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
{
rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
if (note
#ifdef LEGITIMATE_PIC_OPERAND_P
&& (! function_invariant_p (XEXP (note, 0))
|| ! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
#endif
)
{
rtx x = XEXP (note, 0);
i = REGNO (SET_DEST (set));
if (i > LAST_VIRTUAL_REGISTER)
{
if (GET_CODE (x) == MEM)
{
/* If the operand is a PLUS, the MEM may be shared,
so make sure we have an unshared copy here. */
if (GET_CODE (XEXP (x, 0)) == PLUS)
x = copy_rtx (x);
reg_equiv_memory_loc[i] = x;
}
else if (function_invariant_p (x))
{
if (GET_CODE (x) == PLUS)
{
/* This is PLUS of frame pointer and a constant,
and might be shared. Unshare it. */
reg_equiv_constant[i] = copy_rtx (x);
num_eliminable_invariants++;
}
else if (x == frame_pointer_rtx
|| x == arg_pointer_rtx)
{
reg_equiv_constant[i] = x;
num_eliminable_invariants++;
}
else if (LEGITIMATE_CONSTANT_P (x))
reg_equiv_constant[i] = x;
else
reg_equiv_memory_loc[i]
= force_const_mem (GET_MODE (SET_DEST (set)), x);
}
else
continue;
/* If this register is being made equivalent to a MEM
and the MEM is not SET_SRC, the equivalencing insn
is one with the MEM as a SET_DEST and it occurs later.
So don't mark this insn now. */
if (GET_CODE (x) != MEM
|| rtx_equal_p (SET_SRC (set), x))
reg_equiv_init[i]
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
}
}
}
/* If this insn is setting a MEM from a register equivalent to it,
this is the equivalencing insn. */
else if (set && GET_CODE (SET_DEST (set)) == MEM
&& GET_CODE (SET_SRC (set)) == REG
&& reg_equiv_memory_loc[REGNO (SET_SRC (set))]
&& rtx_equal_p (SET_DEST (set),
reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
reg_equiv_init[REGNO (SET_SRC (set))]
= gen_rtx_INSN_LIST (VOIDmode, insn,
reg_equiv_init[REGNO (SET_SRC (set))]);
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
scan_paradoxical_subregs (PATTERN (insn));
}
init_elim_table ();
num_labels = max_label_num () - get_first_label_num ();
/* Allocate the tables used to store offset information at labels. */
/* We used to use alloca here, but the size of what it would try to
allocate would occasionally cause it to exceed the stack limit and
cause a core dump. */
real_known_ptr = xmalloc (num_labels);
real_at_ptr
= (int (*)[NUM_ELIMINABLE_REGS])
xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
offsets_known_at = real_known_ptr - get_first_label_num ();
offsets_at
= (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
/* Alter each pseudo-reg rtx to contain its hard reg number.
Assign stack slots to the pseudos that lack hard regs or equivalents.
Do not touch virtual registers. */
for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
alter_reg (i, -1);
/* If we have some registers we think can be eliminated, scan all insns to
see if there is an insn that sets one of these registers to something
other than itself plus a constant. If so, the register cannot be
eliminated. Doing this scan here eliminates an extra pass through the
main reload loop in the most common case where register elimination
cannot be done. */
for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)
note_stores (PATTERN (insn), mark_not_eliminable);
#ifndef REGISTER_CONSTRAINTS
/* If all the pseudo regs have hard regs,
except for those that are never referenced,
we know that no reloads are needed. */
/* But that is not true if there are register constraints, since
in that case some pseudos might be in the wrong kind of hard reg. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] == -1 && REG_N_REFS (i) != 0)
break;
if (i == max_regno && num_eliminable == 0 && ! caller_save_needed)
{
free (real_known_ptr);
free (real_at_ptr);
free (reg_equiv_constant);
free (reg_equiv_memory_loc);
free (reg_equiv_mem);
free (reg_equiv_init);
free (reg_equiv_address);
free (reg_max_ref_width);
free (reg_old_renumber);
free (pseudo_previous_regs);
free (pseudo_forbidden_regs);
return 0;
}
#endif
maybe_fix_stack_asms ();
insns_need_reload = 0;
something_needs_elimination = 0;
/* Initialize to -1, which means take the first spill register. */
last_spill_reg = -1;
spilled_pseudos = ALLOCA_REG_SET ();
/* Spill any hard regs that we know we can't eliminate. */
CLEAR_HARD_REG_SET (used_spill_regs);
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (! ep->can_eliminate)
spill_hard_reg (ep->from, dumpfile, 1);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
if (frame_pointer_needed)
spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
#endif
finish_spills (global, dumpfile);
/* From now on, we may need to generate moves differently. We may also
allow modifications of insns which cause them to not be recognized.
Any such modifications will be cleaned up during reload itself. */
reload_in_progress = 1;
/* This loop scans the entire function each go-round
and repeats until one repetition spills no additional hard regs. */
for (;;)
{
int something_changed;
int did_spill;
struct insn_chain *chain;
HOST_WIDE_INT starting_frame_size;
/* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done
here because the stack size may be a part of the offset computation
for register elimination, and there might have been new stack slots
created in the last iteration of this loop. */
assign_stack_local (BLKmode, 0, 0);
starting_frame_size = get_frame_size ();
set_initial_elim_offsets ();
set_initial_label_offsets ();
/* For each pseudo register that has an equivalent location defined,
try to eliminate any eliminable registers (such as the frame pointer)
assuming initial offsets for the replacement register, which
is the normal case.
If the resulting location is directly addressable, substitute
the MEM we just got directly for the old REG.
If it is not addressable but is a constant or the sum of a hard reg
and constant, it is probably not addressable because the constant is
out of range, in that case record the address; we will generate
hairy code to compute the address in a register each time it is
needed. Similarly if it is a hard register, but one that is not
valid as an address register.
If the location is not addressable, but does not have one of the
above forms, assign a stack slot. We have to do this to avoid the
potential of producing lots of reloads if, e.g., a location involves
a pseudo that didn't get a hard register and has an equivalent memory
location that also involves a pseudo that didn't get a hard register.
Perhaps at some point we will improve reload_when_needed handling
so this problem goes away. But that's very hairy. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
{
rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
XEXP (x, 0)))
reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
else if (CONSTANT_P (XEXP (x, 0))
|| (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
|| (GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& (REGNO (XEXP (XEXP (x, 0), 0))
< FIRST_PSEUDO_REGISTER)
&& CONSTANT_P (XEXP (XEXP (x, 0), 1))))
reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
else
{
/* Make a new stack slot. Then indicate that something
changed so we go back and recompute offsets for
eliminable registers because the allocation of memory
below might change some offset. reg_equiv_{mem,address}
will be set up for this pseudo on the next pass around
the loop. */
reg_equiv_memory_loc[i] = 0;
reg_equiv_init[i] = 0;
alter_reg (i, -1);
}
}
if (caller_save_needed)
setup_save_areas ();
/* If we allocated another stack slot, redo elimination bookkeeping. */
if (starting_frame_size != get_frame_size ())
continue;
if (caller_save_needed)
{
save_call_clobbered_regs ();
/* That might have allocated new insn_chain structures. */
reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
}
calculate_needs_all_insns (global);
CLEAR_REG_SET (spilled_pseudos);
did_spill = 0;
something_changed = 0;
/* If we allocated any new memory locations, make another pass
since it might have changed elimination offsets. */
if (starting_frame_size != get_frame_size ())
something_changed = 1;
{
HARD_REG_SET to_spill;
CLEAR_HARD_REG_SET (to_spill);
update_eliminables (&to_spill);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (to_spill, i))
{
spill_hard_reg (i, dumpfile, 1);
did_spill = 1;
/* Regardless of the state of spills, if we previously had
a register that we thought we could eliminate, but no can
not eliminate, we must run another pass.
Consider pseudos which have an entry in reg_equiv_* which
reference an eliminable register. We must make another pass
to update reg_equiv_* so that we do not substitute in the
old value from when we thought the elimination could be
performed. */
something_changed = 1;
}
}
CLEAR_HARD_REG_SET (used_spill_regs);
/* Try to satisfy the needs for each insn. */
for (chain = insns_need_reload; chain != 0;
chain = chain->next_need_reload)
find_reload_regs (chain, dumpfile);
if (failure)
goto failed;
if (insns_need_reload != 0 || did_spill)
something_changed |= finish_spills (global, dumpfile);
if (! something_changed)
break;
if (caller_save_needed)
delete_caller_save_insns ();
}
/* If global-alloc was run, notify it of any register eliminations we have
done. */
if (global)
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->can_eliminate)
mark_elimination (ep->from, ep->to);
/* If a pseudo has no hard reg, delete the insns that made the equivalence.
If that insn didn't set the register (i.e., it copied the register to
memory), just delete that insn instead of the equivalencing insn plus
anything now dead. If we call delete_dead_insn on that insn, we may
delete the insn that actually sets the register if the register dies
there and that is incorrect. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
{
rtx list;
for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
{
rtx equiv_insn = XEXP (list, 0);
if (GET_CODE (equiv_insn) == NOTE)
continue;
if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
delete_dead_insn (equiv_insn);
else
{
PUT_CODE (equiv_insn, NOTE);
NOTE_SOURCE_FILE (equiv_insn) = 0;
NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
}
}
}
}
/* Use the reload registers where necessary
by generating move instructions to move the must-be-register
values into or out of the reload registers. */
if (insns_need_reload != 0 || something_needs_elimination
|| something_needs_operands_changed)
{
int old_frame_size = get_frame_size ();
reload_as_needed (global);
if (old_frame_size != get_frame_size ())
abort ();
if (num_eliminable)
verify_initial_elim_offsets ();
}
/* If we were able to eliminate the frame pointer, show that it is no
longer live at the start of any basic block. If it ls live by
virtue of being in a pseudo, that pseudo will be marked live
and hence the frame pointer will be known to be live via that
pseudo. */
if (! frame_pointer_needed)
for (i = 0; i < n_basic_blocks; i++)
CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
HARD_FRAME_POINTER_REGNUM);
/* Come here (with failure set nonzero) if we can't get enough spill regs
and we decide not to abort about it. */
failed:
reload_in_progress = 0;
/* Now eliminate all pseudo regs by modifying them into
their equivalent memory references.
The REG-rtx's for the pseudos are modified in place,
so all insns that used to refer to them now refer to memory.
For a reg that has a reg_equiv_address, all those insns
were changed by reloading so that no insns refer to it any longer;
but the DECL_RTL of a variable decl may refer to it,
and if so this causes the debugging info to mention the variable. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
rtx addr = 0;
int in_struct = 0;
int is_scalar;
int is_readonly = 0;
if (reg_equiv_memory_loc[i])
{
in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
}
if (reg_equiv_mem[i])
addr = XEXP (reg_equiv_mem[i], 0);
if (reg_equiv_address[i])
addr = reg_equiv_address[i];
if (addr)
{
if (reg_renumber[i] < 0)
{
rtx reg = regno_reg_rtx[i];
XEXP (reg, 0) = addr;
REG_USERVAR_P (reg) = 0;
RTX_UNCHANGING_P (reg) = is_readonly;
MEM_IN_STRUCT_P (reg) = in_struct;
MEM_SCALAR_P (reg) = is_scalar;
/* We have no alias information about this newly created
MEM. */
MEM_ALIAS_SET (reg) = 0;
PUT_CODE (reg, MEM);
}
else if (reg_equiv_mem[i])
XEXP (reg_equiv_mem[i], 0) = addr;
}
}
/* We must set reload_completed now since the cleanup_subreg_operands call
below will re-recognize each insn and reload may have generated insns
which are only valid during and after reload. */
reload_completed = 1;
/* Make a pass over all the insns and delete all USEs which we
inserted only to tag a REG_EQUAL note on them. Remove all
REG_DEAD and REG_UNUSED notes. Delete all CLOBBER insns and
simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
REG_LIBCALL notes since they are no longer useful or accurate.
Strip and regenerate REG_INC notes that may have been moved
around. */
for (insn = first; insn; insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
rtx *pnote;
if ((GET_CODE (PATTERN (insn)) == USE
&& find_reg_note (insn, REG_EQUAL, NULL_RTX))
|| GET_CODE (PATTERN (insn)) == CLOBBER)
{
PUT_CODE (insn, NOTE);
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
continue;
}
pnote = &REG_NOTES (insn);
while (*pnote != 0)
{
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|| REG_NOTE_KIND (*pnote) == REG_UNUSED
|| REG_NOTE_KIND (*pnote) == REG_INC
|| REG_NOTE_KIND (*pnote) == REG_RETVAL
|| REG_NOTE_KIND (*pnote) == REG_LIBCALL)
*pnote = XEXP (*pnote, 1);
else
pnote = &XEXP (*pnote, 1);
}
#ifdef AUTO_INC_DEC
add_auto_inc_notes (insn, PATTERN (insn));
#endif
/* And simplify (subreg (reg)) if it appears as an operand. */
cleanup_subreg_operands (insn);
}
/* If we are doing stack checking, give a warning if this function's
frame size is larger than we expect. */
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
{
HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
static int verbose_warned = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
size += UNITS_PER_WORD;
if (size > STACK_CHECK_MAX_FRAME_SIZE)
{
warning ("frame size too large for reliable stack checking");
if (! verbose_warned)
{
warning ("try reducing the number of local variables");
verbose_warned = 1;
}
}
}
/* Indicate that we no longer have known memory locations or constants. */
if (reg_equiv_constant)
free (reg_equiv_constant);
reg_equiv_constant = 0;
if (reg_equiv_memory_loc)
free (reg_equiv_memory_loc);
reg_equiv_memory_loc = 0;
if (real_known_ptr)
free (real_known_ptr);
if (real_at_ptr)
free (real_at_ptr);
free (reg_equiv_mem);
free (reg_equiv_init);
free (reg_equiv_address);
free (reg_max_ref_width);
free (reg_old_renumber);
free (pseudo_previous_regs);
free (pseudo_forbidden_regs);
FREE_REG_SET (spilled_pseudos);
CLEAR_HARD_REG_SET (used_spill_regs);
for (i = 0; i < n_spills; i++)
SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
/* Free all the insn_chain structures at once. */
obstack_free (&reload_obstack, reload_startobj);
unused_insn_chains = 0;
return failure;
}
/* Yet another special case. Unfortunately, reg-stack forces people to
write incorrect clobbers in asm statements. These clobbers must not
cause the register to appear in bad_spill_regs, otherwise we'll call
fatal_insn later. We clear the corresponding regnos in the live
register sets to avoid this.
The whole thing is rather sick, I'm afraid. */
static void
maybe_fix_stack_asms ()
{
#ifdef STACK_REGS
char *constraints[MAX_RECOG_OPERANDS];
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
struct insn_chain *chain;
for (chain = reload_insn_chain; chain != 0; chain = chain->next)
{
int i, noperands;
HARD_REG_SET clobbered, allowed;
rtx pat;
if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i'
|| (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
continue;
pat = PATTERN (chain->insn);
if (GET_CODE (pat) != PARALLEL)
continue;
CLEAR_HARD_REG_SET (clobbered);
CLEAR_HARD_REG_SET (allowed);
/* First, make a mask of all stack regs that are clobbered. */
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx t = XVECEXP (pat, 0, i);
if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
}
/* Get the operand values and constraints out of the insn. */
decode_asm_operands (pat, recog_operand, recog_operand_loc,
constraints, operand_mode);
/* For every operand, see what registers are allowed. */
for (i = 0; i < noperands; i++)
{
char *p = constraints[i];
/* For every alternative, we compute the class of registers allowed
for reloading in CLS, and merge its contents into the reg set
ALLOWED. */
int cls = (int) NO_REGS;
for (;;)
{
char c = *p++;
if (c == '\0' || c == ',' || c == '#')
{
/* End of one alternative - mark the regs in the current
class, and reset the class. */
IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
cls = NO_REGS;
if (c == '#')
do {
c = *p++;
} while (c != '\0' && c != ',');
if (c == '\0')
break;
continue;
}
switch (c)
{
case '=': case '+': case '*': case '%': case '?': case '!':
case '0': case '1': case '2': case '3': case '4': case 'm':
case '<': case '>': case 'V': case 'o': case '&': case 'E':
case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
case 'P':
#ifdef EXTRA_CONSTRAINT
case 'Q': case 'R': case 'S': case 'T': case 'U':
#endif
break;
case 'p':
cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
break;
case 'g':
case 'r':
cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
break;
default:
cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
}
}
}
/* Those of the registers which are clobbered, but allowed by the
constraints, must be usable as reload registers. So clear them
out of the life information. */
AND_HARD_REG_SET (allowed, clobbered);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (allowed, i))
{
CLEAR_REGNO_REG_SET (chain->live_before, i);
CLEAR_REGNO_REG_SET (chain->live_after, i);
}
}
#endif
}
/* Walk the chain of insns, and determine for each whether it needs reloads
and/or eliminations. Build the corresponding insns_need_reload list, and
set something_needs_elimination as appropriate. */
static void
calculate_needs_all_insns (global)
int global;
{
struct insn_chain **pprev_reload = &insns_need_reload;
struct insn_chain **pchain;
something_needs_elimination = 0;
for (pchain = &reload_insn_chain; *pchain != 0; pchain = &(*pchain)->next)
{
rtx insn;
struct insn_chain *chain;
chain = *pchain;
insn = chain->insn;
/* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
include REG_LABEL), we need to see what effects this has on the
known offsets at labels. */
if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
|| (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& REG_NOTES (insn) != 0))
set_label_offsets (insn, insn, 0);
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
rtx old_body = PATTERN (insn);
int old_code = INSN_CODE (insn);
rtx old_notes = REG_NOTES (insn);
int did_elimination = 0;
int operands_changed = 0;
rtx set = single_set (insn);
/* Skip insns that only set an equivalence. */
if (set && GET_CODE (SET_DEST (set)) == REG
&& reg_renumber[REGNO (SET_DEST (set))] < 0
&& reg_equiv_constant[REGNO (SET_DEST (set))])
{
/* Must clear out the shortcuts, in case they were set last
time through. */
chain->need_elim = 0;
chain->need_reload = 0;
chain->need_operand_change = 0;
continue;
}
/* If needed, eliminate any eliminable registers. */
if (num_eliminable || num_eliminable_invariants)
did_elimination = eliminate_regs_in_insn (insn, 0);
/* Analyze the instruction. */
operands_changed = find_reloads (insn, 0, spill_indirect_levels,
global, spill_reg_order);
/* If a no-op set needs more than one reload, this is likely
to be something that needs input address reloads. We
can't get rid of this cleanly later, and it is of no use
anyway, so discard it now.
We only do this when expensive_optimizations is enabled,
since this complements reload inheritance / output
reload deletion, and it can make debugging harder. */
if (flag_expensive_optimizations && n_reloads > 1)
{
rtx set = single_set (insn);
if (set
&& SET_SRC (set) == SET_DEST (set)
&& GET_CODE (SET_SRC (set)) == REG
&& REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
{
PUT_CODE (insn, NOTE);
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
continue;
}
}
if (num_eliminable)
update_eliminable_offsets ();
/* Remember for later shortcuts which insns had any reloads or
register eliminations. */
chain->need_elim = did_elimination;
chain->need_reload = n_reloads > 0;
chain->need_operand_change = operands_changed;
/* Discard any register replacements done. */
if (did_elimination)
{
obstack_free (&reload_obstack, reload_firstobj);
PATTERN (insn) = old_body;
INSN_CODE (insn) = old_code;
REG_NOTES (insn) = old_notes;
something_needs_elimination = 1;
}
something_needs_operands_changed |= operands_changed;
if (n_reloads != 0)
{
*pprev_reload = chain;
pprev_reload = &chain->next_need_reload;
calculate_needs (chain);
}
}
}
*pprev_reload = 0;
}
/* Compute the most additional registers needed by one instruction,
given by CHAIN. Collect information separately for each class of regs.
To compute the number of reload registers of each class needed for an
insn, we must simulate what choose_reload_regs can do. We do this by
splitting an insn into an "input" and an "output" part. RELOAD_OTHER
reloads are used in both. The input part uses those reloads,
RELOAD_FOR_INPUT reloads, which must be live over the entire input section
of reloads, and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the inputs.
The registers needed for output are RELOAD_OTHER and RELOAD_FOR_OUTPUT,
which are live for the entire output portion, and the maximum of all the
RELOAD_FOR_OUTPUT_ADDRESS reloads for each operand.
The total number of registers needed is the maximum of the
inputs and outputs. */
static void
calculate_needs (chain)
struct insn_chain *chain;
{
int i;
/* Each `struct needs' corresponds to one RELOAD_... type. */
struct {
struct needs other;
struct needs input;
struct needs output;
struct needs insn;
struct needs other_addr;
struct needs op_addr;
struct needs op_addr_reload;
struct needs in_addr[MAX_RECOG_OPERANDS];
struct needs in_addr_addr[MAX_RECOG_OPERANDS];
struct needs out_addr[MAX_RECOG_OPERANDS];
struct needs out_addr_addr[MAX_RECOG_OPERANDS];
} insn_needs;
bzero ((char *) chain->group_size, sizeof chain->group_size);
for (i = 0; i < N_REG_CLASSES; i++)
chain->group_mode[i] = VOIDmode;
bzero ((char *) &insn_needs, sizeof insn_needs);
/* Count each reload once in every class
containing the reload's own class. */
for (i = 0; i < n_reloads; i++)
{
register enum reg_class *p;
enum reg_class class = reload_reg_class[i];
int size;
enum machine_mode mode;
struct needs *this_needs;
/* Don't count the dummy reloads, for which one of the
regs mentioned in the insn can be used for reloading.
Don't count optional reloads.
Don't count reloads that got combined with others. */
if (reload_reg_rtx[i] != 0
|| reload_optional[i] != 0
|| (reload_out[i] == 0 && reload_in[i] == 0
&& ! reload_secondary_p[i]))
continue;
mode = reload_inmode[i];
if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
mode = reload_outmode[i];
size = CLASS_MAX_NREGS (class, mode);
/* Decide which time-of-use to count this reload for. */
switch (reload_when_needed[i])
{
case RELOAD_OTHER:
this_needs = &insn_needs.other;
break;
case RELOAD_FOR_INPUT:
this_needs = &insn_needs.input;
break;
case RELOAD_FOR_OUTPUT:
this_needs = &insn_needs.output;
break;
case RELOAD_FOR_INSN:
this_needs = &insn_needs.insn;
break;
case RELOAD_FOR_OTHER_ADDRESS:
this_needs = &insn_needs.other_addr;
break;
case RELOAD_FOR_INPUT_ADDRESS:
this_needs = &insn_needs.in_addr[reload_opnum[i]];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
this_needs = &insn_needs.in_addr_addr[reload_opnum[i]];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
this_needs = &insn_needs.out_addr[reload_opnum[i]];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
this_needs = &insn_needs.out_addr_addr[reload_opnum[i]];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
this_needs = &insn_needs.op_addr;
break;
case RELOAD_FOR_OPADDR_ADDR:
this_needs = &insn_needs.op_addr_reload;
break;
default:
abort();
}
if (size > 1)
{
enum machine_mode other_mode, allocate_mode;
/* Count number of groups needed separately from
number of individual regs needed. */
this_needs->groups[(int) class]++;
p = reg_class_superclasses[(int) class];
while (*p != LIM_REG_CLASSES)
this_needs->groups[(int) *p++]++;
/* Record size and mode of a group of this class. */
/* If more than one size group is needed,
make all groups the largest needed size. */
if (chain->group_size[(int) class] < size)
{
other_mode = chain->group_mode[(int) class];
allocate_mode = mode;
chain->group_size[(int) class] = size;
chain->group_mode[(int) class] = mode;
}
else
{
other_mode = mode;
allocate_mode = chain->group_mode[(int) class];
}
/* Crash if two dissimilar machine modes both need
groups of consecutive regs of the same class. */
if (other_mode != VOIDmode && other_mode != allocate_mode
&& ! modes_equiv_for_class_p (allocate_mode,
other_mode, class))
fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class",
chain->insn);
}
else if (size == 1)
{
this_needs->regs[(unsigned char)reload_nongroup[i]][(int) class] += 1;
p = reg_class_superclasses[(int) class];
while (*p != LIM_REG_CLASSES)
this_needs->regs[(unsigned char)reload_nongroup[i]][(int) *p++] += 1;
}
else
abort ();
}
/* All reloads have been counted for this insn;
now merge the various times of use.
This sets insn_needs, etc., to the maximum total number
of registers needed at any point in this insn. */
for (i = 0; i < N_REG_CLASSES; i++)
{
int j, in_max, out_max;
/* Compute normal and nongroup needs. */
for (j = 0; j <= 1; j++)
{
int k;
for (in_max = 0, out_max = 0, k = 0; k < reload_n_operands; k++)
{
in_max = MAX (in_max,
(insn_needs.in_addr[k].regs[j][i]
+ insn_needs.in_addr_addr[k].regs[j][i]));
out_max = MAX (out_max, insn_needs.out_addr[k].regs[j][i]);
out_max = MAX (out_max,
insn_needs.out_addr_addr[k].regs[j][i]);
}
/* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
and operand addresses but not things used to reload
them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads
don't conflict with things needed to reload inputs or
outputs. */
in_max = MAX (MAX (insn_needs.op_addr.regs[j][i],
insn_needs.op_addr_reload.regs[j][i]),
in_max);
out_max = MAX (out_max, insn_needs.insn.regs[j][i]);
insn_needs.input.regs[j][i]
= MAX (insn_needs.input.regs[j][i]
+ insn_needs.op_addr.regs[j][i]
+ insn_needs.insn.regs[j][i],
in_max + insn_needs.input.regs[j][i]);
insn_needs.output.regs[j][i] += out_max;
insn_needs.other.regs[j][i]
+= MAX (MAX (insn_needs.input.regs[j][i],
insn_needs.output.regs[j][i]),
insn_needs.other_addr.regs[j][i]);
}
/* Now compute group needs. */
for (in_max = 0, out_max = 0, j = 0; j < reload_n_operands; j++)
{
in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]);
in_max = MAX (in_max, insn_needs.in_addr_addr[j].groups[i]);
out_max = MAX (out_max, insn_needs.out_addr[j].groups[i]);
out_max = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]);
}
in_max = MAX (MAX (insn_needs.op_addr.groups[i],
insn_needs.op_addr_reload.groups[i]),
in_max);
out_max = MAX (out_max, insn_needs.insn.groups[i]);
insn_needs.input.groups[i]
= MAX (insn_needs.input.groups[i]
+ insn_needs.op_addr.groups[i]
+ insn_needs.insn.groups[i],
in_max + insn_needs.input.groups[i]);
insn_needs.output.groups[i] += out_max;
insn_needs.other.groups[i]
+= MAX (MAX (insn_needs.input.groups[i],
insn_needs.output.groups[i]),
insn_needs.other_addr.groups[i]);
}
/* Record the needs for later. */
chain->need = insn_needs.other;
}
/* Find a group of exactly 2 registers.
First try to fill out the group by spilling a single register which
would allow completion of the group.
Then try to create a new group from a pair of registers, neither of
which are explicitly used.
Then try to create a group from any pair of registers. */
static void
find_tworeg_group (chain, class, dumpfile)
struct insn_chain *chain;
int class;
FILE *dumpfile;
{
int i;
/* First, look for a register that will complete a group. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, other;
j = potential_reload_regs[i];
if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
&& ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
&& HARD_REGNO_MODE_OK (other, chain->group_mode[class])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
/* We don't want one part of another group.
We could get "two groups" that overlap! */
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))
|| (j < FIRST_PSEUDO_REGISTER - 1
&& (other = j + 1, spill_reg_order[other] >= 0)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))))
{
register enum reg_class *p;
/* We have found one that will complete a group,
so count off one group as provided. */
chain->need.groups[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
{
if (chain->group_size [(int) *p] <= chain->group_size [class])
chain->need.groups[(int) *p]--;
p++;
}
/* Indicate both these regs are part of a group. */
SET_HARD_REG_BIT (chain->counted_for_groups, j);
SET_HARD_REG_BIT (chain->counted_for_groups, other);
break;
}
}
/* We can't complete a group, so start one. */
if (i == FIRST_PSEUDO_REGISTER)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, k;
j = potential_reload_regs[i];
/* Verify that J+1 is a potential reload reg. */
for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
if (potential_reload_regs[k] == j + 1)
break;
if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
&& k < FIRST_PSEUDO_REGISTER
&& spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, j + 1)
&& ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1))
break;
}
/* I should be the index in potential_reload_regs
of the new reload reg we have found. */
new_spill_reg (chain, i, class, 0, dumpfile);
}
/* Find a group of more than 2 registers.
Look for a sufficient sequence of unspilled registers, and spill them all
at once. */
static void
find_group (chain, class, dumpfile)
struct insn_chain *chain;
int class;
FILE *dumpfile;
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j = potential_reload_regs[i];
if (j >= 0
&& j + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class]))
{
int k;
/* Check each reg in the sequence. */
for (k = 0; k < chain->group_size[class]; k++)
if (! (spill_reg_order[j + k] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
break;
/* We got a full sequence, so spill them all. */
if (k == chain->group_size[class])
{
register enum reg_class *p;
for (k = 0; k < chain->group_size[class]; k++)
{
int idx;
SET_HARD_REG_BIT (chain->counted_for_groups, j + k);
for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
if (potential_reload_regs[idx] == j + k)
break;
new_spill_reg (chain, idx, class, 0, dumpfile);
}
/* We have found one that will complete a group,
so count off one group as provided. */
chain->need.groups[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
{
if (chain->group_size [(int) *p]
<= chain->group_size [class])
chain->need.groups[(int) *p]--;
p++;
}
return;
}
}
}
/* There are no groups left. */
spill_failure (chain->insn);
failure = 1;
}
/* If pseudo REG conflicts with one of our reload registers, mark it as
spilled. */
static void
maybe_mark_pseudo_spilled (reg)
int reg;
{
int i;
int r = reg_renumber[reg];
int nregs;
if (r < 0)
abort ();
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
for (i = 0; i < n_spills; i++)
if (r <= spill_regs[i] && r + nregs > spill_regs[i])
{
SET_REGNO_REG_SET (spilled_pseudos, reg);
return;
}
}
/* Find more reload regs to satisfy the remaining need of an insn, which
is given by CHAIN.
Do it by ascending class number, since otherwise a reg
might be spilled for a big class and might fail to count
for a smaller class even though it belongs to that class.
Count spilled regs in `spills', and add entries to
`spill_regs' and `spill_reg_order'.
??? Note there is a problem here.
When there is a need for a group in a high-numbered class,
and also need for non-group regs that come from a lower class,
the non-group regs are chosen first. If there aren't many regs,
they might leave no room for a group.
This was happening on the 386. To fix it, we added the code
that calls possible_group_p, so that the lower class won't
break up the last possible group.
Really fixing the problem would require changes above
in counting the regs already spilled, and in choose_reload_regs.
It might be hard to avoid introducing bugs there. */
static void
find_reload_regs (chain, dumpfile)
struct insn_chain *chain;
FILE *dumpfile;
{
int i, class;
short *group_needs = chain->need.groups;
short *simple_needs = chain->need.regs[0];
short *nongroup_needs = chain->need.regs[1];
if (dumpfile)
fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
/* Compute the order of preference for hard registers to spill.
Store them by decreasing preference in potential_reload_regs. */
order_regs_for_reload (chain);
/* So far, no hard regs have been spilled. */
n_spills = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
spill_reg_order[i] = -1;
CLEAR_HARD_REG_SET (chain->used_spill_regs);
CLEAR_HARD_REG_SET (chain->counted_for_groups);
CLEAR_HARD_REG_SET (chain->counted_for_nongroups);
for (class = 0; class < N_REG_CLASSES; class++)
{
/* First get the groups of registers.
If we got single registers first, we might fragment
possible groups. */
while (group_needs[class] > 0)
{
/* If any single spilled regs happen to form groups,
count them now. Maybe we don't really need
to spill another group. */
count_possible_groups (chain, class);
if (group_needs[class] <= 0)
break;
/* Groups of size 2, the only groups used on most machines,
are treated specially. */
if (chain->group_size[class] == 2)
find_tworeg_group (chain, class, dumpfile);
else
find_group (chain, class, dumpfile);
if (failure)
return;
}
/* Now similarly satisfy all need for single registers. */
while (simple_needs[class] > 0 || nongroup_needs[class] > 0)
{
/* If we spilled enough regs, but they weren't counted
against the non-group need, see if we can count them now.
If so, we can avoid some actual spilling. */
if (simple_needs[class] <= 0 && nongroup_needs[class] > 0)
for (i = 0; i < n_spills; i++)
{
int regno = spill_regs[i];
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& !TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
&& !TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno)
&& nongroup_needs[class] > 0)
{
register enum reg_class *p;
SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
nongroup_needs[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
nongroup_needs[(int) *p++]--;
}
}
if (simple_needs[class] <= 0 && nongroup_needs[class] <= 0)
break;
/* Consider the potential reload regs that aren't
yet in use as reload regs, in order of preference.
Find the most preferred one that's in this class. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int regno = potential_reload_regs[i];
if (regno >= 0
&& TEST_HARD_REG_BIT (reg_class_contents[class], regno)
/* If this reg will not be available for groups,
pick one that does not foreclose possible groups.
This is a kludge, and not very general,
but it should be sufficient to make the 386 work,
and the problem should not occur on machines with
more registers. */
&& (nongroup_needs[class] == 0
|| possible_group_p (chain, regno)))
break;
}
/* If we couldn't get a register, try to get one even if we
might foreclose possible groups. This may cause problems
later, but that's better than aborting now, since it is
possible that we will, in fact, be able to form the needed
group even with this allocation. */
if (i >= FIRST_PSEUDO_REGISTER
&& asm_noperands (chain->insn) < 0)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (potential_reload_regs[i] >= 0
&& TEST_HARD_REG_BIT (reg_class_contents[class],
potential_reload_regs[i]))
break;
/* I should be the index in potential_reload_regs
of the new reload reg we have found. */
new_spill_reg (chain, i, class, 1, dumpfile);
if (failure)
return;
}
}
/* We know which hard regs to use, now mark the pseudos that live in them
as needing to be kicked out. */
EXECUTE_IF_SET_IN_REG_SET
(chain->live_before, FIRST_PSEUDO_REGISTER, i,
{
maybe_mark_pseudo_spilled (i);
});
EXECUTE_IF_SET_IN_REG_SET
(chain->live_after, FIRST_PSEUDO_REGISTER, i,
{
maybe_mark_pseudo_spilled (i);
});
IOR_HARD_REG_SET (used_spill_regs, chain->used_spill_regs);
}
void
dump_needs (chain, dumpfile)
struct insn_chain *chain;
FILE *dumpfile;
{
static char *reg_class_names[] = REG_CLASS_NAMES;
int i;
struct needs *n = &chain->need;
for (i = 0; i < N_REG_CLASSES; i++)
{
if (n->regs[i][0] > 0)
fprintf (dumpfile,
";; Need %d reg%s of class %s.\n",
n->regs[i][0], n->regs[i][0] == 1 ? "" : "s",
reg_class_names[i]);
if (n->regs[i][1] > 0)
fprintf (dumpfile,
";; Need %d nongroup reg%s of class %s.\n",
n->regs[i][1], n->regs[i][1] == 1 ? "" : "s",
reg_class_names[i]);
if (n->groups[i] > 0)
fprintf (dumpfile,
";; Need %d group%s (%smode) of class %s.\n",
n->groups[i], n->groups[i] == 1 ? "" : "s",
mode_name[(int) chain->group_mode[i]],
reg_class_names[i]);
}
}
/* Delete all insns that were inserted by emit_caller_save_insns during
this iteration. */
static void
delete_caller_save_insns ()
{
struct insn_chain *c = reload_insn_chain;
while (c != 0)
{
while (c != 0 && c->is_caller_save_insn)
{
struct insn_chain *next = c->next;
rtx insn = c->insn;
if (insn == BLOCK_HEAD (c->block))
BLOCK_HEAD (c->block) = NEXT_INSN (insn);
if (insn == BLOCK_END (c->block))
BLOCK_END (c->block) = PREV_INSN (insn);
if (c == reload_insn_chain)
reload_insn_chain = next;
if (NEXT_INSN (insn) != 0)
PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
if (PREV_INSN (insn) != 0)
NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
if (next)
next->prev = c->prev;
if (c->prev)
c->prev->next = next;
c->next = unused_insn_chains;
unused_insn_chains = c;
c = next;
}
if (c != 0)
c = c->next;
}
}
/* Nonzero if, after spilling reg REGNO for non-groups,
it will still be possible to find a group if we still need one. */
static int
possible_group_p (chain, regno)
struct insn_chain *chain;
int regno;
{
int i;
int class = (int) NO_REGS;
for (i = 0; i < (int) N_REG_CLASSES; i++)
if (chain->need.groups[i] > 0)
{
class = i;
break;
}
if (class == (int) NO_REGS)
return 1;
/* Consider each pair of consecutive registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
{
/* Ignore pairs that include reg REGNO. */
if (i == regno || i + 1 == regno)
continue;
/* Ignore pairs that are outside the class that needs the group.
??? Here we fail to handle the case where two different classes
independently need groups. But this never happens with our
current machine descriptions. */
if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
&& TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
continue;
/* A pair of consecutive regs we can still spill does the trick. */
if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
return 1;
/* A pair of one already spilled and one we can spill does it
provided the one already spilled is not otherwise reserved. */
if (spill_reg_order[i] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
&& spill_reg_order[i + 1] >= 0
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, i + 1)
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i + 1))
return 1;
if (spill_reg_order[i + 1] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
&& spill_reg_order[i] >= 0
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, i)
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i))
return 1;
}
return 0;
}
/* Count any groups of CLASS that can be formed from the registers recently
spilled. */
static void
count_possible_groups (chain, class)
struct insn_chain *chain;
int class;
{
HARD_REG_SET new;
int i, j;
/* Now find all consecutive groups of spilled registers
and mark each group off against the need for such groups.
But don't count them against ordinary need, yet. */
if (chain->group_size[class] == 0)
return;
CLEAR_HARD_REG_SET (new);
/* Make a mask of all the regs that are spill regs in class I. */
for (i = 0; i < n_spills; i++)
{
int regno = spill_regs[i];
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno))
SET_HARD_REG_BIT (new, regno);
}
/* Find each consecutive group of them. */
for (i = 0; i < FIRST_PSEUDO_REGISTER && chain->need.groups[class] > 0; i++)
if (TEST_HARD_REG_BIT (new, i)
&& i + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
&& HARD_REGNO_MODE_OK (i, chain->group_mode[class]))
{
for (j = 1; j < chain->group_size[class]; j++)
if (! TEST_HARD_REG_BIT (new, i + j))
break;
if (j == chain->group_size[class])
{
/* We found a group. Mark it off against this class's need for
groups, and against each superclass too. */
register enum reg_class *p;
chain->need.groups[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
{
if (chain->group_size [(int) *p] <= chain->group_size [class])
chain->need.groups[(int) *p]--;
p++;
}
/* Don't count these registers again. */
for (j = 0; j < chain->group_size[class]; j++)
SET_HARD_REG_BIT (chain->counted_for_groups, i + j);
}
/* Skip to the last reg in this group. When i is incremented above,
it will then point to the first reg of the next possible group. */
i += j - 1;
}
}
/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
another mode that needs to be reloaded for the same register class CLASS.
If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
ALLOCATE_MODE will never be smaller than OTHER_MODE.
This code used to also fail if any reg in CLASS allows OTHER_MODE but not
ALLOCATE_MODE. This test is unnecessary, because we will never try to put
something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
causes unnecessary failures on machines requiring alignment of register
groups when the two modes are different sizes, because the larger mode has
more strict alignment rules than the smaller mode. */
static int
modes_equiv_for_class_p (allocate_mode, other_mode, class)
enum machine_mode allocate_mode, other_mode;
enum reg_class class;
{
register int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
&& HARD_REGNO_MODE_OK (regno, allocate_mode)
&& ! HARD_REGNO_MODE_OK (regno, other_mode))
return 0;
}
return 1;
}
/* Handle the failure to find a register to spill.
INSN should be one of the insns which needed this particular spill reg. */
static void
spill_failure (insn)
rtx insn;
{
if (asm_noperands (PATTERN (insn)) >= 0)
error_for_asm (insn, "`asm' needs too many reloads");
else
fatal_insn ("Unable to find a register to spill.", insn);
}
/* Add a new register to the tables of available spill-registers.
CHAIN is the insn for which the register will be used; we decrease the
needs of that insn.
I is the index of this register in potential_reload_regs.
CLASS is the regclass whose need is being satisfied.
NONGROUP is 0 if this register is part of a group.
DUMPFILE is the same as the one that `reload' got. */
static void
new_spill_reg (chain, i, class, nongroup, dumpfile)
struct insn_chain *chain;
int i;
int class;
int nongroup;
FILE *dumpfile;
{
register enum reg_class *p;
int regno = potential_reload_regs[i];
if (i >= FIRST_PSEUDO_REGISTER)
{
spill_failure (chain->insn);
failure = 1;
return;
}
if (TEST_HARD_REG_BIT (bad_spill_regs, regno))
{
static char *reg_class_names[] = REG_CLASS_NAMES;
if (asm_noperands (PATTERN (chain->insn)) < 0)
{
/* The error message is still correct - we know only that it wasn't
an asm statement that caused the problem, but one of the global
registers declared by the users might have screwed us. */
error ("fixed or forbidden register %d (%s) was spilled for class %s.",
regno, reg_names[regno], reg_class_names[class]);
error ("This may be due to a compiler bug or to impossible asm");
error ("statements or clauses.");
fatal_insn ("This is the instruction:", chain->insn);
}
error_for_asm (chain->insn, "Invalid `asm' statement:");
error_for_asm (chain->insn,
"fixed or forbidden register %d (%s) was spilled for class %s.",
regno, reg_names[regno], reg_class_names[class]);
failure = 1;
return;
}
/* Make reg REGNO an additional reload reg. */
potential_reload_regs[i] = -1;
spill_regs[n_spills] = regno;
spill_reg_order[regno] = n_spills;
if (dumpfile)
fprintf (dumpfile, "Spilling reg %d.\n", regno);
SET_HARD_REG_BIT (chain->used_spill_regs, regno);
/* Clear off the needs we just satisfied. */
chain->need.regs[0][class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
chain->need.regs[0][(int) *p++]--;
if (nongroup && chain->need.regs[1][class] > 0)
{
SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
chain->need.regs[1][class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
chain->need.regs[1][(int) *p++]--;
}
n_spills++;
}
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
data that is dead in INSN. */
static void
delete_dead_insn (insn)
rtx insn;
{
rtx prev = prev_real_insn (insn);
rtx prev_dest;
/* If the previous insn sets a register that dies in our insn, delete it
too. */
if (prev && GET_CODE (PATTERN (prev)) == SET
&& (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
&& reg_mentioned_p (prev_dest, PATTERN (insn))
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
delete_dead_insn (prev);
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
/* Modify the home of pseudo-reg I.
The new home is present in reg_renumber[I].
FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
or it may be -1, meaning there is none or it is not relevant.
This is used so that all pseudos spilled from a given hard reg
can share one stack slot. */
static void
alter_reg (i, from_reg)
register int i;
int from_reg;
{
/* When outputting an inline function, this can happen
for a reg that isn't actually used. */
if (regno_reg_rtx[i] == 0)
return;
/* If the reg got changed to a MEM at rtl-generation time,
ignore it. */
if (GET_CODE (regno_reg_rtx[i]) != REG)
return;
/* Modify the reg-rtx to contain the new hard reg
number or else to contain its pseudo reg number. */
REGNO (regno_reg_rtx[i])
= reg_renumber[i] >= 0 ? reg_renumber[i] : i;
/* If we have a pseudo that is needed but has no hard reg or equivalent,
allocate a stack slot for it. */
if (reg_renumber[i] < 0
&& REG_N_REFS (i) > 0
&& reg_equiv_constant[i] == 0
&& reg_equiv_memory_loc[i] == 0)
{
register rtx x;
int inherent_size = PSEUDO_REGNO_BYTES (i);
int total_size = MAX (inherent_size, reg_max_ref_width[i]);
int adjust = 0;
/* Each pseudo reg has an inherent size which comes from its own mode,
and a total size which provides room for paradoxical subregs
which refer to the pseudo reg in wider modes.
We can use a slot already allocated if it provides both
enough inherent space and enough total space.
Otherwise, we allocate a new slot, making sure that it has no less
inherent space, and no less total space, then the previous slot. */
if (from_reg == -1)
{
/* No known place to spill from => no slot to reuse. */
x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
inherent_size == total_size ? 0 : -1);
if (BYTES_BIG_ENDIAN)
/* Cancel the big-endian correction done in assign_stack_local.
Get the address of the beginning of the slot.
This is so we can do a big-endian correction unconditionally
below. */
adjust = inherent_size - total_size;
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
}
/* Reuse a stack slot if possible. */
else if (spill_stack_slot[from_reg] != 0
&& spill_stack_slot_width[from_reg] >= total_size
&& (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
>= inherent_size))
x = spill_stack_slot[from_reg];
/* Allocate a bigger slot. */
else
{
/* Compute maximum size needed, both for inherent size
and for total size. */
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
rtx stack_slot;
if (spill_stack_slot[from_reg])
{
if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
> inherent_size)
mode = GET_MODE (spill_stack_slot[from_reg]);
if (spill_stack_slot_width[from_reg] > total_size)
total_size = spill_stack_slot_width[from_reg];
}
/* Make a slot with that size. */
x = assign_stack_local (mode, total_size,
inherent_size == total_size ? 0 : -1);
stack_slot = x;
if (BYTES_BIG_ENDIAN)
{
/* Cancel the big-endian correction done in assign_stack_local.
Get the address of the beginning of the slot.
This is so we can do a big-endian correction unconditionally
below. */
adjust = GET_MODE_SIZE (mode) - total_size;
if (adjust)
stack_slot = gen_rtx_MEM (mode_for_size (total_size
* BITS_PER_UNIT,
MODE_INT, 1),
plus_constant (XEXP (x, 0), adjust));
}
spill_stack_slot[from_reg] = stack_slot;
spill_stack_slot_width[from_reg] = total_size;
}
/* On a big endian machine, the "address" of the slot
is the address of the low part that fits its inherent mode. */
if (BYTES_BIG_ENDIAN && inherent_size < total_size)
adjust += (total_size - inherent_size);
/* If we have any adjustment to make, or if the stack slot is the
wrong mode, make a new stack slot. */
if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
{
x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
plus_constant (XEXP (x, 0), adjust));
/* If this was shared among registers, must ensure we never
set it readonly since that can cause scheduling
problems. Note we would only have in this adjustment
case in any event, since the code above doesn't set it. */
if (from_reg == -1)
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
}
/* Save the stack slot for later. */
reg_equiv_memory_loc[i] = x;
}
}
/* Mark the slots in regs_ever_live for the hard regs
used by pseudo-reg number REGNO. */
void
mark_home_live (regno)
int regno;
{
register int i, lim;
i = reg_renumber[regno];
if (i < 0)
return;
lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
while (i < lim)
regs_ever_live[i++] = 1;
}
/* This function handles the tracking of elimination offsets around branches.
X is a piece of RTL being scanned.
INSN is the insn that it came from, if any.
INITIAL_P is non-zero if we are to set the offset to be the initial
offset and zero if we are setting the offset of the label to be the
current offset. */
static void
set_label_offsets (x, insn, initial_p)
rtx x;
rtx insn;
int initial_p;
{
enum rtx_code code = GET_CODE (x);
rtx tem;
unsigned int i;
struct elim_table *p;
switch (code)
{
case LABEL_REF:
if (LABEL_REF_NONLOCAL_P (x))
return;
x = XEXP (x, 0);
/* ... fall through ... */
case CODE_LABEL:
/* If we know nothing about this label, set the desired offsets. Note
that this sets the offset at a label to be the offset before a label
if we don't know anything about the label. This is not correct for
the label after a BARRIER, but is the best guess we can make. If
we guessed wrong, we will suppress an elimination that might have
been possible had we been able to guess correctly. */
if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
{
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
offsets_at[CODE_LABEL_NUMBER (x)][i]
= (initial_p ? reg_eliminate[i].initial_offset
: reg_eliminate[i].offset);
offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
}
/* Otherwise, if this is the definition of a label and it is
preceded by a BARRIER, set our offsets to the known offset of
that label. */
else if (x == insn
&& (tem = prev_nonnote_insn (insn)) != 0
&& GET_CODE (tem) == BARRIER)
set_offsets_for_label (insn);
else
/* If neither of the above cases is true, compare each offset
with those previously recorded and suppress any eliminations
where the offsets disagree. */
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
if (offsets_at[CODE_LABEL_NUMBER (x)][i]
!= (initial_p ? reg_eliminate[i].initial_offset
: reg_eliminate[i].offset))
reg_eliminate[i].can_eliminate = 0;
return;
case JUMP_INSN:
set_label_offsets (PATTERN (insn), insn, initial_p);
/* ... fall through ... */
case INSN:
case CALL_INSN:
/* Any labels mentioned in REG_LABEL notes can be branched to indirectly
and hence must have all eliminations at their initial offsets. */
for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
if (REG_NOTE_KIND (tem) == REG_LABEL)
set_label_offsets (XEXP (tem, 0), insn, 1);
return;
case ADDR_VEC:
case ADDR_DIFF_VEC:
/* Each of the labels in the address vector must be at their initial
offsets. We want the first field for ADDR_VEC and the second
field for ADDR_DIFF_VEC. */
for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
insn, initial_p);
return;
case SET:
/* We only care about setting PC. If the source is not RETURN,
IF_THEN_ELSE, or a label, disable any eliminations not at
their initial offsets. Similarly if any arm of the IF_THEN_ELSE
isn't one of those possibilities. For branches to a label,
call ourselves recursively.
Note that this can disable elimination unnecessarily when we have
a non-local goto since it will look like a non-constant jump to
someplace in the current function. This isn't a significant
problem since such jumps will normally be when all elimination
pairs are back to their initial offsets. */
if (SET_DEST (x) != pc_rtx)
return;
switch (GET_CODE (SET_SRC (x)))
{
case PC:
case RETURN:
return;
case LABEL_REF:
set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
return;
case IF_THEN_ELSE:
tem = XEXP (SET_SRC (x), 1);
if (GET_CODE (tem) == LABEL_REF)
set_label_offsets (XEXP (tem, 0), insn, initial_p);
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
break;
tem = XEXP (SET_SRC (x), 2);
if (GET_CODE (tem) == LABEL_REF)
set_label_offsets (XEXP (tem, 0), insn, initial_p);
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
break;
return;
default:
break;
}
/* If we reach here, all eliminations must be at their initial
offset because we are doing a jump to a variable address. */
for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
if (p->offset != p->initial_offset)
p->can_eliminate = 0;
break;
default:
break;
}
}
/* Used for communication between the next two function to properly share
the vector for an ASM_OPERANDS. */
static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
/* Scan X and replace any eliminable registers (such as fp) with a
replacement (such as sp), plus an offset.
MEM_MODE is the mode of an enclosing MEM. We need this to know how
much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
MEM, we are allowed to replace a sum of a register and the constant zero
with the register, which we cannot do outside a MEM. In addition, we need
to record the fact that a register is referenced outside a MEM.
If INSN is an insn, it is the insn containing X. If we replace a REG
in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
CLOBBER of the pseudo after INSN so find_equiv_regs will know that
the REG is being modified.
Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
That's used when we eliminate in expressions stored in notes.
This means, do not set ref_outside_mem even if the reference
is outside of MEMs.
If we see a modification to a register we know about, take the
appropriate action (see case SET, below).
REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
replacements done assuming all offsets are at their initial values. If
they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
encounter, return the actual location so that find_reloads will do
the proper thing. */
rtx
eliminate_regs (x, mem_mode, insn)
rtx x;
enum machine_mode mem_mode;
rtx insn;
{
enum rtx_code code = GET_CODE (x);
struct elim_table *ep;
int regno;
rtx new;
int i, j;
char *fmt;
int copied = 0;
if (! current_function_decl)
return x;
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
case ASM_INPUT:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case RETURN:
return x;
case ADDRESSOF:
/* This is only for the benefit of the debugging backends, which call
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
removed after CSE. */
new = eliminate_regs (XEXP (x, 0), 0, insn);
if (GET_CODE (new) == MEM)
return XEXP (new, 0);
return x;
case REG:
regno = REGNO (x);
/* First handle the case where we encounter a bare register that
is eliminable. Replace it with a PLUS. */
if (regno < FIRST_PSEUDO_REGISTER)
{
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == x && ep->can_eliminate)
{
if (! mem_mode
/* Refs inside notes don't count for this purpose. */
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|| GET_CODE (insn) == INSN_LIST)))
ep->ref_outside_mem = 1;
return plus_constant (ep->to_rtx, ep->previous_offset);
}
}
else if (reg_renumber[regno] < 0 && reg_equiv_constant
&& reg_equiv_constant[regno]
&& ! CONSTANT_P (reg_equiv_constant[regno]))
return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
mem_mode, insn);
return x;
case PLUS:
/* If this is the sum of an eliminable register and a constant, rework
the sum. */
if (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
&& CONSTANT_P (XEXP (x, 1)))
{
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
{
if (! mem_mode
/* Refs inside notes don't count for this purpose. */
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|| GET_CODE (insn) == INSN_LIST)))
ep->ref_outside_mem = 1;
/* The only time we want to replace a PLUS with a REG (this
occurs when the constant operand of the PLUS is the negative
of the offset) is when we are inside a MEM. We won't want
to do so at other times because that would change the
structure of the insn in a way that reload can't handle.
We special-case the commonest situation in
eliminate_regs_in_insn, so just replace a PLUS with a
PLUS here, unless inside a MEM. */
if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == - ep->previous_offset)
return ep->to_rtx;
else
return gen_rtx_PLUS (Pmode, ep->to_rtx,
plus_constant (XEXP (x, 1),
ep->previous_offset));
}
/* If the register is not eliminable, we are done since the other
operand is a constant. */
return x;
}
/* If this is part of an address, we want to bring any constant to the
outermost PLUS. We will do this by doing register replacement in
our operands and seeing if a constant shows up in one of them.
We assume here this is part of an address (or a "load address" insn)
since an eliminable register is not likely to appear in any other
context.
If we have (plus (eliminable) (reg)), we want to produce
(plus (plus (replacement) (reg) (const))). If this was part of a
normal add insn, (plus (replacement) (reg)) will be pushed as a
reload. This is the desired action. */
{
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
{
/* If one side is a PLUS and the other side is a pseudo that
didn't get a hard register but has a reg_equiv_constant,
we must replace the constant here since it may no longer
be in the position of any operand. */
if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (new1)] < 0
&& reg_equiv_constant != 0
&& reg_equiv_constant[REGNO (new1)] != 0)
new1 = reg_equiv_constant[REGNO (new1)];
else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
&& REGNO (new0) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (new0)] < 0
&& reg_equiv_constant[REGNO (new0)] != 0)
new0 = reg_equiv_constant[REGNO (new0)];
new = form_sum (new0, new1);
/* As above, if we are not inside a MEM we do not want to
turn a PLUS into something else. We might try to do so here
for an addition of 0 if we aren't optimizing. */
if (! mem_mode && GET_CODE (new) != PLUS)
return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
else
return new;
}
}
return x;
case MULT:
/* If this is the product of an eliminable register and a
constant, apply the distribute law and move the constant out
so that we have (plus (mult ..) ..). This is needed in order
to keep load-address insns valid. This case is pathological.
We ignore the possibility of overflow here. */
if (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
{
if (! mem_mode
/* Refs inside notes don't count for this purpose. */
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|| GET_CODE (insn) == INSN_LIST)))
ep->ref_outside_mem = 1;
return
plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
ep->previous_offset * INTVAL (XEXP (x, 1)));
}
/* ... fall through ... */
case CALL:
case COMPARE:
case MINUS:
case DIV: case UDIV:
case MOD: case UMOD:
case AND: case IOR: case XOR:
case ROTATERT: case ROTATE:
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
case NE: case EQ:
case GE: case GT: case GEU: case GTU:
case LE: case LT: case LEU: case LTU:
{
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
rtx new1
= XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
}
return x;
case EXPR_LIST:
/* If we have something in XEXP (x, 0), the usual case, eliminate it. */
if (XEXP (x, 0))
{
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
{
/* If this is a REG_DEAD note, it is not valid anymore.
Using the eliminated version could result in creating a
REG_DEAD note for the stack or frame pointer. */
if (GET_MODE (x) == REG_DEAD)
return (XEXP (x, 1)
? eliminate_regs (XEXP (x, 1), mem_mode, insn)
: NULL_RTX);
x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
}
}
/* ... fall through ... */
case INSN_LIST:
/* Now do eliminations in the rest of the chain. If this was
an EXPR_LIST, this might result in allocating more memory than is
strictly needed, but it simplifies the code. */
if (XEXP (x, 1))
{
new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
if (new != XEXP (x, 1))
return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
}
return x;
case PRE_INC:
case POST_INC:
case PRE_DEC:
case POST_DEC:
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->to_rtx == XEXP (x, 0))
{
int size = GET_MODE_SIZE (mem_mode);
/* If more bytes than MEM_MODE are pushed, account for them. */
#ifdef PUSH_ROUNDING
if (ep->to_rtx == stack_pointer_rtx)
size = PUSH_ROUNDING (size);
#endif
if (code == PRE_DEC || code == POST_DEC)
ep->offset += size;
else
ep->offset -= size;
}
/* Fall through to generic unary operation case. */
case STRICT_LOW_PART:
case NEG: case NOT:
case SIGN_EXTEND: case ZERO_EXTEND:
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
case FLOAT: case FIX:
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
case ABS:
case SQRT:
case FFS:
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
return gen_rtx_fmt_e (code, GET_MODE (x), new);
return x;
case SUBREG:
/* Similar to above processing, but preserve SUBREG_WORD.
Convert (subreg (mem)) to (mem) if not paradoxical.
Also, if we have a non-paradoxical (subreg (pseudo)) and the
pseudo didn't get a hard reg, we must replace this with the
eliminated version of the memory location because push_reloads
may do the replacement in certain circumstances. */
if (GET_CODE (SUBREG_REG (x)) == REG
&& (GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& reg_equiv_memory_loc != 0
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
{
#if 0
new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
mem_mode, insn);
/* If we didn't change anything, we must retain the pseudo. */
if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
new = SUBREG_REG (x);
else
{
/* In this case, we must show that the pseudo is used in this
insn so that delete_output_reload will do the right thing. */
if (insn != 0 && GET_CODE (insn) != EXPR_LIST
&& GET_CODE (insn) != INSN_LIST)
REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode,
SUBREG_REG (x)),
insn))
= gen_rtx_EXPR_LIST (REG_EQUAL, new, NULL_RTX);
/* Ensure NEW isn't shared in case we have to reload it. */
new = copy_rtx (new);
}
#else
new = SUBREG_REG (x);
#endif
}
else
new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
if (new != XEXP (x, 0))
{
int x_size = GET_MODE_SIZE (GET_MODE (x));
int new_size = GET_MODE_SIZE (GET_MODE (new));
if (GET_CODE (new) == MEM
&& ((x_size < new_size
#ifdef WORD_REGISTER_OPERATIONS
/* On these machines, combine can create rtl of the form
(set (subreg:m1 (reg:m2 R) 0) ...)
where m1 < m2, and expects something interesting to
happen to the entire word. Moreover, it will use the
(reg:m2 R) later, expecting all bits to be preserved.
So if the number of words is the same, preserve the
subreg so that push_reloads can see it. */
&& ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
#endif
)
|| (x_size == new_size))
)
{
int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
enum machine_mode mode = GET_MODE (x);
if (BYTES_BIG_ENDIAN)
offset += (MIN (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (new)))
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
PUT_MODE (new, mode);
XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
return new;
}
else
return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
}
return x;
case USE:
/* If using a register that is the source of an eliminate we still
think can be performed, note it cannot be performed since we don't
know how this register is used. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == XEXP (x, 0))
ep->can_eliminate = 0;
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
return gen_rtx_fmt_e (code, GET_MODE (x), new);
return x;
case CLOBBER:
/* If clobbering a register that is the replacement register for an
elimination we still think can be performed, note that it cannot
be performed. Otherwise, we need not be concerned about it. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->to_rtx == XEXP (x, 0))
ep->can_eliminate = 0;
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
return gen_rtx_fmt_e (code, GET_MODE (x), new);
return x;
case ASM_OPERANDS:
{
rtx *temp_vec;
/* Properly handle sharing input and constraint vectors. */
if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
{
/* When we come to a new vector not seen before,
scan all its elements; keep the old vector if none
of them changes; otherwise, make a copy. */
old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
mem_mode, insn);
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
break;
if (i == ASM_OPERANDS_INPUT_LENGTH (x))
new_asm_operands_vec = old_asm_operands_vec;
else
new_asm_operands_vec
= gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
}
/* If we had to copy the vector, copy the entire ASM_OPERANDS. */
if (new_asm_operands_vec == old_asm_operands_vec)
return x;
new = gen_rtx_ASM_OPERANDS (VOIDmode, ASM_OPERANDS_TEMPLATE (x),
ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
ASM_OPERANDS_OUTPUT_IDX (x),
new_asm_operands_vec,
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
ASM_OPERANDS_SOURCE_FILE (x),
ASM_OPERANDS_SOURCE_LINE (x));
new->volatil = x->volatil;
return new;
}
case SET:
/* Check for setting a register that we know about. */
if (GET_CODE (SET_DEST (x)) == REG)
{
/* See if this is setting the replacement register for an
elimination.
If DEST is the hard frame pointer, we do nothing because we
assume that all assignments to the frame pointer are for
non-local gotos and are being done at a time when they are valid
and do not disturb anything else. Some machines want to
eliminate a fake argument pointer (or even a fake frame pointer)
with either the real frame or the stack pointer. Assignments to
the hard frame pointer must not prevent this elimination. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->to_rtx == SET_DEST (x)
&& SET_DEST (x) != hard_frame_pointer_rtx)
{
/* If it is being incremented, adjust the offset. Otherwise,
this elimination can't be done. */
rtx src = SET_SRC (x);
if (GET_CODE (src) == PLUS
&& XEXP (src, 0) == SET_DEST (x)
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
ep->offset -= INTVAL (XEXP (src, 1));
else
ep->can_eliminate = 0;
}
/* Now check to see we are assigning to a register that can be
eliminated. If so, it must be as part of a PARALLEL, since we
will not have been called if this is a single SET. So indicate
that we can no longer eliminate this reg. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
ep->can_eliminate = 0;
}
/* Now avoid the loop below in this common case. */
{
rtx new0 = eliminate_regs (SET_DEST (x), 0, insn);
rtx new1 = eliminate_regs (SET_SRC (x), 0, insn);
/* If SET_DEST changed from a REG to a MEM and INSN is an insn,
write a CLOBBER insn. */
if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
&& insn != 0 && GET_CODE (insn) != EXPR_LIST
&& GET_CODE (insn) != INSN_LIST)
emit_insn_after (gen_rtx_CLOBBER (VOIDmode, SET_DEST (x)), insn);
if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
return gen_rtx_SET (VOIDmode, new0, new1);
}
return x;
case MEM:
/* This is only for the benefit of the debugging backends, which call
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
removed after CSE. */
if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
/* Our only special processing is to pass the mode of the MEM to our
recursive call and copy the flags. While we are here, handle this
case more efficiently. */
new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
if (new != XEXP (x, 0))
{
new = gen_rtx_MEM (GET_MODE (x), new);
new->volatil = x->volatil;
new->unchanging = x->unchanging;
new->in_struct = x->in_struct;
return new;
}
else
return x;
default:
break;
}
/* Process each of our operands recursively. If any have changed, make a
copy of the rtx. */
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
{
if (*fmt == 'e')
{
new = eliminate_regs (XEXP (x, i), mem_mode, insn);
if (new != XEXP (x, i) && ! copied)
{
rtx new_x = rtx_alloc (code);
bcopy ((char *) x, (char *) new_x,
(sizeof (*new_x) - sizeof (new_x->fld)
+ sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
x = new_x;
copied = 1;
}
XEXP (x, i) = new;
}
else if (*fmt == 'E')
{
int copied_vec = 0;
for (j = 0; j < XVECLEN (x, i); j++)
{
new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
if (new != XVECEXP (x, i, j) && ! copied_vec)
{
rtvec new_v = gen_rtvec_vv (XVECLEN (x, i),
XVEC (x, i)->elem);
if (! copied)
{
rtx new_x = rtx_alloc (code);
bcopy ((char *) x, (char *) new_x,
(sizeof (*new_x) - sizeof (new_x->fld)
+ (sizeof (new_x->fld[0])
* GET_RTX_LENGTH (code))));
x = new_x;
copied = 1;
}
XVEC (x, i) = new_v;
copied_vec = 1;
}
XVECEXP (x, i, j) = new;
}
}
}
return x;
}
/* Scan INSN and eliminate all eliminable registers in it.
If REPLACE is nonzero, do the replacement destructively. Also
delete the insn as dead it if it is setting an eliminable register.
If REPLACE is zero, do all our allocations in reload_obstack.
If no eliminations were done and this insn doesn't require any elimination
processing (these are not identical conditions: it might be updating sp,
but not referencing fp; this needs to be seen during reload_as_needed so
that the offset between fp and sp can be taken into consideration), zero
is returned. Otherwise, 1 is returned. */
static int
eliminate_regs_in_insn (insn, replace)
rtx insn;
int replace;
{
rtx old_body = PATTERN (insn);
rtx old_set = single_set (insn);
rtx new_body;
int val = 0;
struct elim_table *ep;
if (! replace)
push_obstacks (&reload_obstack, &reload_obstack);
if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
&& REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
{
/* Check for setting an eliminable register. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
{
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
/* If this is setting the frame pointer register to the
hardware frame pointer register and this is an elimination
that will be done (tested above), this insn is really
adjusting the frame pointer downward to compensate for
the adjustment done before a nonlocal goto. */
if (ep->from == FRAME_POINTER_REGNUM
&& ep->to == HARD_FRAME_POINTER_REGNUM)
{
rtx src = SET_SRC (old_set);
int offset = 0, ok = 0;
rtx prev_insn, prev_set;
if (src == ep->to_rtx)
offset = 0, ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 0)) == CONST_INT
&& XEXP (src, 1) == ep->to_rtx)
offset = INTVAL (XEXP (src, 0)), ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 1)) == CONST_INT
&& XEXP (src, 0) == ep->to_rtx)
offset = INTVAL (XEXP (src, 1)), ok = 1;
else if ((prev_insn = prev_nonnote_insn (insn)) != 0
&& (prev_set = single_set (prev_insn)) != 0
&& rtx_equal_p (SET_DEST (prev_set), src))
{
src = SET_SRC (prev_set);
if (src == ep->to_rtx)
offset = 0, ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 0)) == CONST_INT
&& XEXP (src, 1) == ep->to_rtx)
offset = INTVAL (XEXP (src, 0)), ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 1)) == CONST_INT
&& XEXP (src, 0) == ep->to_rtx)
offset = INTVAL (XEXP (src, 1)), ok = 1;
}
if (ok)
{
if (replace)
{
rtx src
= plus_constant (ep->to_rtx, offset - ep->offset);
/* First see if this insn remains valid when we
make the change. If not, keep the INSN_CODE
the same and let reload fit it up. */
validate_change (insn, &SET_SRC (old_set), src, 1);
validate_change (insn, &SET_DEST (old_set),
ep->to_rtx, 1);
if (! apply_change_group ())
{
SET_SRC (old_set) = src;
SET_DEST (old_set) = ep->to_rtx;
}
}
val = 1;
goto done;
}
}
#endif
/* In this case this insn isn't serving a useful purpose. We
will delete it in reload_as_needed once we know that this
elimination is, in fact, being done.
If REPLACE isn't set, we can't delete this insn, but needn't
process it since it won't be used unless something changes. */
if (replace)
delete_dead_insn (insn);
val = 1;
goto done;
}
/* Check for (set (reg) (plus (reg from) (offset))) where the offset
in the insn is the negative of the offset in FROM. Substitute
(set (reg) (reg to)) for the insn and change its code.
We have to do this here, rather than in eliminate_regs, so that we can
change the insn code. */
if (GET_CODE (SET_SRC (old_set)) == PLUS
&& GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
&& GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT)
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (SET_SRC (old_set), 0)
&& ep->can_eliminate)
{
/* We must stop at the first elimination that will be used.
If this one would replace the PLUS with a REG, do it
now. Otherwise, quit the loop and let eliminate_regs
do its normal replacement. */
if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1)))
{
/* We assume here that we don't need a PARALLEL of
any CLOBBERs for this assignment. There's not
much we can do if we do need it. */
PATTERN (insn) = gen_rtx_SET (VOIDmode,
SET_DEST (old_set),
ep->to_rtx);
INSN_CODE (insn) = -1;
val = 1;
goto done;
}
break;
}
}
old_asm_operands_vec = 0;
/* Replace the body of this insn with a substituted form. If we changed
something, return non-zero.
If we are replacing a body that was a (set X (plus Y Z)), try to
re-recognize the insn. We do this in case we had a simple addition
but now can do this as a load-address. This saves an insn in this
common case. */
new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX);
if (new_body != old_body)
{
/* If we aren't replacing things permanently and we changed something,
make another copy to ensure that all the RTL is new. Otherwise
things can go wrong if find_reload swaps commutative operands
and one is inside RTL that has been copied while the other is not. */
/* Don't copy an asm_operands because (1) there's no need and (2)
copy_rtx can't do it properly when there are multiple outputs. */
if (! replace && asm_noperands (old_body) < 0)
new_body = copy_rtx (new_body);
/* If we had a move insn but now we don't, rerecognize it. This will
cause spurious re-recognition if the old move had a PARALLEL since
the new one still will, but we can't call single_set without
having put NEW_BODY into the insn and the re-recognition won't
hurt in this rare case. */
if (old_set != 0
&& ((GET_CODE (SET_SRC (old_set)) == REG
&& (GET_CODE (new_body) != SET
|| GET_CODE (SET_SRC (new_body)) != REG))
/* If this was a load from or store to memory, compare
the MEM in recog_operand to the one in the insn. If they
are not equal, then rerecognize the insn. */
|| (old_set != 0
&& ((GET_CODE (SET_SRC (old_set)) == MEM
&& SET_SRC (old_set) != recog_operand[1])
|| (GET_CODE (SET_DEST (old_set)) == MEM
&& SET_DEST (old_set) != recog_operand[0])))
/* If this was an add insn before, rerecognize. */
|| GET_CODE (SET_SRC (old_set)) == PLUS))
{
if (! validate_change (insn, &PATTERN (insn), new_body, 0))
/* If recognition fails, store the new body anyway.
It's normal to have recognition failures here
due to bizarre memory addresses; reloading will fix them. */
PATTERN (insn) = new_body;
}
else
PATTERN (insn) = new_body;
val = 1;
}
/* Loop through all elimination pairs. See if any have changed.
We also detect a cases where register elimination cannot be done,
namely, if a register would be both changed and referenced outside a MEM
in the resulting insn since such an insn is often undefined and, even if
not, we cannot know what meaning will be given to it. Note that it is
valid to have a register used in an address in an insn that changes it
(presumably with a pre- or post-increment or decrement).
If anything changes, return nonzero. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
ep->can_eliminate = 0;
ep->ref_outside_mem = 0;
if (ep->previous_offset != ep->offset)
val = 1;
}
done:
/* If we changed something, perform elimination in REG_NOTES. This is
needed even when REPLACE is zero because a REG_DEAD note might refer
to a register that we eliminate and could cause a different number
of spill registers to be needed in the final reload pass than in
the pre-passes. */
if (val && REG_NOTES (insn) != 0)
REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
if (! replace)
pop_obstacks ();
return val;
}
/* Loop through all elimination pairs.
Recalculate the number not at initial offset.
Compute the maximum offset (minimum offset if the stack does not
grow downward) for each elimination pair. */
static void
update_eliminable_offsets ()
{
struct elim_table *ep;
num_not_at_initial_offset = 0;
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
ep->previous_offset = ep->offset;
if (ep->can_eliminate && ep->offset != ep->initial_offset)
num_not_at_initial_offset++;
}
}
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
replacement we currently believe is valid, mark it as not eliminable if X
modifies DEST in any way other than by adding a constant integer to it.
If DEST is the frame pointer, we do nothing because we assume that
all assignments to the hard frame pointer are nonlocal gotos and are being
done at a time when they are valid and do not disturb anything else.
Some machines want to eliminate a fake argument pointer with either the
frame or stack pointer. Assignments to the hard frame pointer must not
prevent this elimination.
Called via note_stores from reload before starting its passes to scan
the insns of the function. */
static void
mark_not_eliminable (dest, x)
rtx dest;
rtx x;
{
register unsigned int i;
/* A SUBREG of a hard register here is just changing its mode. We should
not see a SUBREG of an eliminable hard register, but check just in
case. */
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (dest == hard_frame_pointer_rtx)
return;
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
&& (GET_CODE (x) != SET
|| GET_CODE (SET_SRC (x)) != PLUS
|| XEXP (SET_SRC (x), 0) != dest
|| GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
{
reg_eliminate[i].can_eliminate_previous
= reg_eliminate[i].can_eliminate = 0;
num_eliminable--;
}
}
/* Verify that the initial elimination offsets did not change since the
last call to set_initial_elim_offsets. This is used to catch cases
where something illegal happened during reload_as_needed that could
cause incorrect code to be generated if we did not check for it. */
static void
verify_initial_elim_offsets ()
{
int t;
#ifdef ELIMINABLE_REGS
struct elim_table *ep;
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
if (t != ep->initial_offset)
abort ();
}
#else
INITIAL_FRAME_POINTER_OFFSET (t);
if (t != reg_eliminate[0].initial_offset)
abort ();
#endif
}
/* Reset all offsets on eliminable registers to their initial values. */
static void
set_initial_elim_offsets ()
{
struct elim_table *ep = reg_eliminate;
#ifdef ELIMINABLE_REGS
for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
ep->previous_offset = ep->offset = ep->initial_offset;
}
#else
INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
ep->previous_offset = ep->offset = ep->initial_offset;
#endif
num_not_at_initial_offset = 0;
}
/* Initialize the known label offsets.
Set a known offset for each forced label to be at the initial offset
of each elimination. We do this because we assume that all
computed jumps occur from a location where each elimination is
at its initial offset.
For all other labels, show that we don't know the offsets. */
static void
set_initial_label_offsets ()
{
rtx x;
bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
for (x = forced_labels; x; x = XEXP (x, 1))
if (XEXP (x, 0))
set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
}
/* Set all elimination offsets to the known values for the code label given
by INSN. */
static void
set_offsets_for_label (insn)
rtx insn;
{
unsigned int i;
int label_nr = CODE_LABEL_NUMBER (insn);
struct elim_table *ep;
num_not_at_initial_offset = 0;
for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
{
ep->offset = ep->previous_offset = offsets_at[label_nr][i];
if (ep->can_eliminate && ep->offset != ep->initial_offset)
num_not_at_initial_offset++;
}
}
/* See if anything that happened changes which eliminations are valid.
For example, on the Sparc, whether or not the frame pointer can
be eliminated can depend on what registers have been used. We need
not check some conditions again (such as flag_omit_frame_pointer)
since they can't have changed. */
static void
update_eliminables (pset)
HARD_REG_SET *pset;
{
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
int previous_frame_pointer_needed = frame_pointer_needed;
#endif
struct elim_table *ep;
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
#ifdef ELIMINABLE_REGS
|| ! CAN_ELIMINATE (ep->from, ep->to)
#endif
)
ep->can_eliminate = 0;
/* Look for the case where we have discovered that we can't replace
register A with register B and that means that we will now be
trying to replace register A with register C. This means we can
no longer replace register C with register B and we need to disable
such an elimination, if it exists. This occurs often with A == ap,
B == sp, and C == fp. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
struct elim_table *op;
register int new_to = -1;
if (! ep->can_eliminate && ep->can_eliminate_previous)
{
/* Find the current elimination for ep->from, if there is a
new one. */
for (op = reg_eliminate;
op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
if (op->from == ep->from && op->can_eliminate)
{
new_to = op->to;
break;
}
/* See if there is an elimination of NEW_TO -> EP->TO. If so,
disable it. */
for (op = reg_eliminate;
op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
if (op->from == new_to && op->to == ep->to)
op->can_eliminate = 0;
}
}
/* See if any registers that we thought we could eliminate the previous
time are no longer eliminable. If so, something has changed and we
must spill the register. Also, recompute the number of eliminable
registers and see if the frame pointer is needed; it is if there is
no elimination of the frame pointer that we can perform. */
frame_pointer_needed = 1;
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
&& ep->to != HARD_FRAME_POINTER_REGNUM)
frame_pointer_needed = 0;
if (! ep->can_eliminate && ep->can_eliminate_previous)
{
ep->can_eliminate_previous = 0;
SET_HARD_REG_BIT (*pset, ep->from);
num_eliminable--;
}
}
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
/* If we didn't need a frame pointer last time, but we do now, spill
the hard frame pointer. */
if (frame_pointer_needed && ! previous_frame_pointer_needed)
SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
#endif
}
/* Initialize the table of registers to eliminate. */
static void
init_elim_table ()
{
struct elim_table *ep;
#ifdef ELIMINABLE_REGS
struct elim_table_1 *ep1;
#endif
if (!reg_eliminate)
{
reg_eliminate = (struct elim_table *)
xmalloc(sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
bzero ((PTR) reg_eliminate,
sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
}
/* Does this function require a frame pointer? */
frame_pointer_needed = (! flag_omit_frame_pointer
#ifdef EXIT_IGNORE_STACK
/* ?? If EXIT_IGNORE_STACK is set, we will not save
and restore sp for alloca. So we can't eliminate
the frame pointer in that case. At some point,
we should improve this by emitting the
sp-adjusting insns for this case. */
|| (current_function_calls_alloca
&& EXIT_IGNORE_STACK)
#endif
|| FRAME_POINTER_REQUIRED);
num_eliminable = 0;
#ifdef ELIMINABLE_REGS
for (ep = reg_eliminate, ep1 = reg_eliminate_1;
ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
{
ep->from = ep1->from;
ep->to = ep1->to;
ep->can_eliminate = ep->can_eliminate_previous
= (CAN_ELIMINATE (ep->from, ep->to)
&& ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
}
#else
reg_eliminate[0].from = reg_eliminate_1[0].from;
reg_eliminate[0].to = reg_eliminate_1[0].to;
reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
= ! frame_pointer_needed;
#endif
/* Count the number of eliminable registers and build the FROM and TO
REG rtx's. Note that code in gen_rtx will cause, e.g.,
gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
We depend on this. */
for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
num_eliminable += ep->can_eliminate;
ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
}
}
/* Kick all pseudos out of hard register REGNO.
If DUMPFILE is nonzero, log actions taken on that file.
If CANT_ELIMINATE is nonzero, it means that we are doing this spill
because we found we can't eliminate some register. In the case, no pseudos
are allowed to be in the register, even if they are only in a block that
doesn't require spill registers, unlike the case when we are spilling this
hard reg to produce another spill register.
Return nonzero if any pseudos needed to be kicked out. */
static void
spill_hard_reg (regno, dumpfile, cant_eliminate)
register int regno;
FILE *dumpfile;
int cant_eliminate;
{
register int i;
if (cant_eliminate)
{
SET_HARD_REG_BIT (bad_spill_regs_global, regno);
regs_ever_live[regno] = 1;
}
/* Spill every pseudo reg that was allocated to this reg
or to something that overlaps this reg. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] >= 0
&& reg_renumber[i] <= regno
&& (reg_renumber[i]
+ HARD_REGNO_NREGS (reg_renumber[i],
PSEUDO_REGNO_MODE (i))
> regno))
SET_REGNO_REG_SET (spilled_pseudos, i);
}
/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
static void
ior_hard_reg_set (set1, set2)
HARD_REG_SET *set1, *set2;
{
IOR_HARD_REG_SET (*set1, *set2);
}
/* After find_reload_regs has been run for all insn that need reloads,
and/or spill_hard_regs was called, this function is used to actually
spill pseudo registers and try to reallocate them. It also sets up the
spill_regs array for use by choose_reload_regs. */
static int
finish_spills (global, dumpfile)
int global;
FILE *dumpfile;
{
struct insn_chain *chain;
int something_changed = 0;
int i;
/* Build the spill_regs array for the function. */
/* If there are some registers still to eliminate and one of the spill regs
wasn't ever used before, additional stack space may have to be
allocated to store this register. Thus, we may have changed the offset
between the stack and frame pointers, so mark that something has changed.
One might think that we need only set VAL to 1 if this is a call-used
register. However, the set of registers that must be saved by the
prologue is not identical to the call-used set. For example, the
register used by the call insn for the return PC is a call-used register,
but must be saved by the prologue. */
n_spills = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (used_spill_regs, i))
{
spill_reg_order[i] = n_spills;
spill_regs[n_spills++] = i;
if (num_eliminable && ! regs_ever_live[i])
something_changed = 1;
regs_ever_live[i] = 1;
}
else
spill_reg_order[i] = -1;
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (REGNO_REG_SET_P (spilled_pseudos, i))
{
/* Record the current hard register the pseudo is allocated to in
pseudo_previous_regs so we avoid reallocating it to the same
hard reg in a later pass. */
if (reg_renumber[i] < 0)
abort ();
SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
/* Mark it as no longer having a hard register home. */
reg_renumber[i] = -1;
/* We will need to scan everything again. */
something_changed = 1;
}
/* Retry global register allocation if possible. */
if (global)
{
bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
/* For every insn that needs reloads, set the registers used as spill
regs in pseudo_forbidden_regs for every pseudo live across the
insn. */
for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
{
EXECUTE_IF_SET_IN_REG_SET
(chain->live_before, FIRST_PSEUDO_REGISTER, i,
{
ior_hard_reg_set (pseudo_forbidden_regs + i,
&chain->used_spill_regs);
});
EXECUTE_IF_SET_IN_REG_SET
(chain->live_after, FIRST_PSEUDO_REGISTER, i,
{
ior_hard_reg_set (pseudo_forbidden_regs + i,
&chain->used_spill_regs);
});
}
/* Retry allocating the spilled pseudos. For each reg, merge the
various reg sets that indicate which hard regs can't be used,
and call retry_global_alloc.
We change spill_pseudos here to only contain pseudos that did not
get a new hard register. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_old_renumber[i] != reg_renumber[i])
{
HARD_REG_SET forbidden;
COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
retry_global_alloc (i, forbidden);
if (reg_renumber[i] >= 0)
CLEAR_REGNO_REG_SET (spilled_pseudos, i);
}
}
/* Fix up the register information in the insn chain.
This involves deleting those of the spilled pseudos which did not get
a new hard register home from the live_{before,after} sets. */
for (chain = reload_insn_chain; chain; chain = chain->next)
{
HARD_REG_SET used_by_pseudos;
HARD_REG_SET used_by_pseudos2;
AND_COMPL_REG_SET (chain->live_before, spilled_pseudos);
AND_COMPL_REG_SET (chain->live_after, spilled_pseudos);
/* Mark any unallocated hard regs as available for spills. That
makes inheritance work somewhat better. */
if (chain->need_reload)
{
REG_SET_TO_HARD_REG_SET (used_by_pseudos, chain->live_before);
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, chain->live_after);
IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
/* Save the old value for the sanity test below. */
COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
compute_use_by_pseudos (&used_by_pseudos, chain->live_before);
compute_use_by_pseudos (&used_by_pseudos, chain->live_after);
COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
/* Make sure we only enlarge the set. */
GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
abort ();
ok:;
}
}
/* Let alter_reg modify the reg rtx's for the modified pseudos. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
int regno = reg_renumber[i];
if (reg_old_renumber[i] == regno)
continue;
alter_reg (i, reg_old_renumber[i]);
reg_old_renumber[i] = regno;
if (dumpfile)
{
if (regno == -1)
fprintf (dumpfile, " Register %d now on stack.\n\n", i);
else
fprintf (dumpfile, " Register %d now in %d.\n\n",
i, reg_renumber[i]);
}
}
return something_changed;
}
/* Find all paradoxical subregs within X and update reg_max_ref_width.
Also mark any hard registers used to store user variables as
forbidden from being used for spill registers. */
static void
scan_paradoxical_subregs (x)
register rtx x;
{
register int i;
register char *fmt;
register enum rtx_code code = GET_CODE (x);
switch (code)
{
case REG:
#if 0
if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
&& REG_USERVAR_P (x))
SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
#endif
return;
case CONST_INT:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
case CC0:
case PC:
case USE:
case CLOBBER:
return;
case SUBREG:
if (GET_CODE (SUBREG_REG (x)) == REG
&& GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
reg_max_ref_width[REGNO (SUBREG_REG (x))]
= GET_MODE_SIZE (GET_MODE (x));
return;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
scan_paradoxical_subregs (XEXP (x, i));
else if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >=0; j--)
scan_paradoxical_subregs (XVECEXP (x, i, j));
}
}
}
static int
hard_reg_use_compare (p1p, p2p)
const GENERIC_PTR p1p;
const GENERIC_PTR p2p;
{
struct hard_reg_n_uses *p1 = (struct hard_reg_n_uses *)p1p;
struct hard_reg_n_uses *p2 = (struct hard_reg_n_uses *)p2p;
int bad1 = TEST_HARD_REG_BIT (bad_spill_regs, p1->regno);
int bad2 = TEST_HARD_REG_BIT (bad_spill_regs, p2->regno);
if (bad1 && bad2)
return p1->regno - p2->regno;
if (bad1)
return 1;
if (bad2)
return -1;
if (p1->uses > p2->uses)
return 1;
if (p1->uses < p2->uses)
return -1;
/* If regs are equally good, sort by regno,
so that the results of qsort leave nothing to chance. */
return p1->regno - p2->regno;
}
/* Used for communication between order_regs_for_reload and count_pseudo.
Used to avoid counting one pseudo twice. */
static regset pseudos_counted;
/* Update the costs in N_USES, considering that pseudo REG is live. */
static void
count_pseudo (n_uses, reg)
struct hard_reg_n_uses *n_uses;
int reg;
{
int r = reg_renumber[reg];
int nregs;
if (REGNO_REG_SET_P (pseudos_counted, reg))
return;
SET_REGNO_REG_SET (pseudos_counted, reg);
if (r < 0)
abort ();
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
while (nregs-- > 0)
n_uses[r++].uses += REG_N_REFS (reg);
}
/* Choose the order to consider regs for use as reload registers
based on how much trouble would be caused by spilling one.
Store them in order of decreasing preference in potential_reload_regs. */
static void
order_regs_for_reload (chain)
struct insn_chain *chain;
{
register int i;
register int o = 0;
struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
pseudos_counted = ALLOCA_REG_SET ();
COPY_HARD_REG_SET (bad_spill_regs, bad_spill_regs_global);
/* Count number of uses of each hard reg by pseudo regs allocated to it
and then order them by decreasing use. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j;
hard_reg_n_uses[i].regno = i;
hard_reg_n_uses[i].uses = 0;
/* Test the various reasons why we can't use a register for
spilling in this insn. */
if (fixed_regs[i]
|| REGNO_REG_SET_P (chain->live_before, i)
|| REGNO_REG_SET_P (chain->live_after, i))
{
SET_HARD_REG_BIT (bad_spill_regs, i);
continue;
}
/* Now find out which pseudos are allocated to it, and update
hard_reg_n_uses. */
CLEAR_REG_SET (pseudos_counted);
EXECUTE_IF_SET_IN_REG_SET
(chain->live_before, FIRST_PSEUDO_REGISTER, j,
{
count_pseudo (hard_reg_n_uses, j);
});
EXECUTE_IF_SET_IN_REG_SET
(chain->live_after, FIRST_PSEUDO_REGISTER, j,
{
count_pseudo (hard_reg_n_uses, j);
});
}
FREE_REG_SET (pseudos_counted);
/* Prefer registers not so far used, for use in temporary loading.
Among them, if REG_ALLOC_ORDER is defined, use that order.
Otherwise, prefer registers not preserved by calls. */
#ifdef REG_ALLOC_ORDER
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int regno = reg_alloc_order[i];
if (hard_reg_n_uses[regno].uses == 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, regno))
potential_reload_regs[o++] = regno;
}
#else
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i]
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i))
potential_reload_regs[o++] = i;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i]
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i))
potential_reload_regs[o++] = i;
}
#endif
qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
sizeof hard_reg_n_uses[0], hard_reg_use_compare);
/* Now add the regs that are already used,
preferring those used less often. The fixed and otherwise forbidden
registers will be at the end of this list. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (hard_reg_n_uses[i].uses != 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
}
/* Reload pseudo-registers into hard regs around each insn as needed.
Additional register load insns are output before the insn that needs it
and perhaps store insns after insns that modify the reloaded pseudo reg.
reg_last_reload_reg and reg_reloaded_contents keep track of
which registers are already available in reload registers.
We update these for the reloads that we perform,
as the insns are scanned. */
static void
reload_as_needed (live_known)
int live_known;
{
struct insn_chain *chain;
#if defined (AUTO_INC_DEC) || defined (INSN_CLOBBERS_REGNO_P)
register int i;
#endif
rtx x;
bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
bzero ((char *) spill_reg_store, sizeof spill_reg_store);
reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx));
bzero ((char *) reg_last_reload_reg, max_regno * sizeof (rtx));
reg_has_output_reload = (char *) alloca (max_regno);
CLEAR_HARD_REG_SET (reg_reloaded_valid);
set_initial_elim_offsets ();
for (chain = reload_insn_chain; chain; chain = chain->next)
{
rtx prev;
rtx insn = chain->insn;
rtx old_next = NEXT_INSN (insn);
/* If we pass a label, copy the offsets from the label information
into the current offsets of each elimination. */
if (GET_CODE (insn) == CODE_LABEL)
set_offsets_for_label (insn);
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
rtx oldpat = PATTERN (insn);
/* If this is a USE and CLOBBER of a MEM, ensure that any
references to eliminable registers have been removed. */
if ((GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
&& GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
XEXP (XEXP (PATTERN (insn), 0), 0)
= eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
GET_MODE (XEXP (PATTERN (insn), 0)),
NULL_RTX);
/* If we need to do register elimination processing, do so.
This might delete the insn, in which case we are done. */
if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
{
eliminate_regs_in_insn (insn, 1);
if (GET_CODE (insn) == NOTE)
{
update_eliminable_offsets ();
continue;
}
}
/* If need_elim is nonzero but need_reload is zero, one might think
that we could simply set n_reloads to 0. However, find_reloads
could have done some manipulation of the insn (such as swapping
commutative operands), and these manipulations are lost during
the first pass for every insn that needs register elimination.
So the actions of find_reloads must be redone here. */
if (! chain->need_elim && ! chain->need_reload
&& ! chain->need_operand_change)
n_reloads = 0;
/* First find the pseudo regs that must be reloaded for this insn.
This info is returned in the tables reload_... (see reload.h).
Also modify the body of INSN by substituting RELOAD
rtx's for those pseudo regs. */
else
{
bzero (reg_has_output_reload, max_regno);
CLEAR_HARD_REG_SET (reg_is_output_reload);
find_reloads (insn, 1, spill_indirect_levels, live_known,
spill_reg_order);
}
if (num_eliminable && chain->need_elim)
update_eliminable_offsets ();
if (n_reloads > 0)
{
rtx next = NEXT_INSN (insn);
rtx p;
prev = PREV_INSN (insn);
/* Now compute which reload regs to reload them into. Perhaps
reusing reload regs from previous insns, or else output
load insns to reload them. Maybe output store insns too.
Record the choices of reload reg in reload_reg_rtx. */
choose_reload_regs (chain);
/* Merge any reloads that we didn't combine for fear of
increasing the number of spill registers needed but now
discover can be safely merged. */
if (SMALL_REGISTER_CLASSES)
merge_assigned_reloads (insn);
/* Generate the insns to reload operands into or out of
their reload regs. */
emit_reload_insns (chain);
/* Substitute the chosen reload regs from reload_reg_rtx
into the insn's body (or perhaps into the bodies of other
load and store insn that we just made for reloading
and that we moved the structure into). */
subst_reloads ();
/* If this was an ASM, make sure that all the reload insns
we have generated are valid. If not, give an error
and delete them. */
if (asm_noperands (PATTERN (insn)) >= 0)
for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
&& (recog_memoized (p) < 0
|| (extract_insn (p), ! constrain_operands (1))))
{
error_for_asm (insn,
"`asm' operand requires impossible reload");
PUT_CODE (p, NOTE);
NOTE_SOURCE_FILE (p) = 0;
NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
}
}
/* Any previously reloaded spilled pseudo reg, stored in this insn,
is no longer validly lying around to save a future reload.
Note that this does not detect pseudos that were reloaded
for this insn in order to be stored in
(obeying register constraints). That is correct; such reload
registers ARE still valid. */
note_stores (oldpat, forget_old_reloads_1);
/* There may have been CLOBBER insns placed after INSN. So scan
between INSN and NEXT and use them to forget old reloads. */
for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
note_stores (PATTERN (x), forget_old_reloads_1);
#ifdef AUTO_INC_DEC
/* Likewise for regs altered by auto-increment in this insn.
REG_INC notes have been changed by reloading:
find_reloads_address_1 records substitutions for them,
which have been performed by subst_reloads above. */
for (i = n_reloads - 1; i >= 0; i--)
{
rtx in_reg = reload_in_reg[i];
if (in_reg)
{
enum rtx_code code = GET_CODE (in_reg);
/* PRE_INC / PRE_DEC will have the reload register ending up
with the same value as the stack slot, but that doesn't
hold true for POST_INC / POST_DEC. Either we have to
convert the memory access to a true POST_INC / POST_DEC,
or we can't use the reload register for inheritance. */
if ((code == POST_INC || code == POST_DEC)
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
REGNO (reload_reg_rtx[i]))
/* Make sure it is the inc/dec pseudo, and not
some other (e.g. output operand) pseudo. */
&& (reg_reloaded_contents[REGNO (reload_reg_rtx[i])]
== REGNO (XEXP (in_reg, 0))))
{
rtx reload_reg = reload_reg_rtx[i];
enum machine_mode mode = GET_MODE (reload_reg);
int n = 0;
rtx p;
for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
{
/* We really want to ignore REG_INC notes here, so
use PATTERN (p) as argument to reg_set_p . */
if (reg_set_p (reload_reg, PATTERN (p)))
break;
n = count_occurrences (PATTERN (p), reload_reg);
if (! n)
continue;
if (n == 1)
{
n = validate_replace_rtx (reload_reg,
gen_rtx (code, mode,
reload_reg),
p);
/* We must also verify that the constraints
are met after the replacement. */
extract_insn (p);
if (n)
n = constrain_operands (1);
else
break;
/* If the constraints were not met, then
undo the replacement. */
if (!n)
{
validate_replace_rtx (gen_rtx (code, mode,
reload_reg),
reload_reg, p);
break;
}
}
break;
}
if (n == 1)
{
REG_NOTES (p)
= gen_rtx_EXPR_LIST (REG_INC, reload_reg,
REG_NOTES (p));
/* Mark this as having an output reload so that the
REG_INC processing code below won't invalidate
the reload for inheritance. */
SET_HARD_REG_BIT (reg_is_output_reload,
REGNO (reload_reg));
reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
}
else
forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX);
}
else if ((code == PRE_INC || code == PRE_DEC)
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
REGNO (reload_reg_rtx[i]))
/* Make sure it is the inc/dec pseudo, and not
some other (e.g. output operand) pseudo. */
&& (reg_reloaded_contents[REGNO (reload_reg_rtx[i])]
== REGNO (XEXP (in_reg, 0))))
{
SET_HARD_REG_BIT (reg_is_output_reload,
REGNO (reload_reg_rtx[i]));
reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
}
}
}
/* If a pseudo that got a hard register is auto-incremented,
we must purge records of copying it into pseudos without
hard registers. */
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
if (REG_NOTE_KIND (x) == REG_INC)
{
/* See if this pseudo reg was reloaded in this insn.
If so, its last-reload info is still valid
because it is based on this insn's reload. */
for (i = 0; i < n_reloads; i++)
if (reload_out[i] == XEXP (x, 0))
break;
if (i == n_reloads)
forget_old_reloads_1 (XEXP (x, 0), NULL_RTX);
}
#endif
}
/* A reload reg's contents are unknown after a label. */
if (GET_CODE (insn) == CODE_LABEL)
CLEAR_HARD_REG_SET (reg_reloaded_valid);
/* Don't assume a reload reg is still good after a call insn
if it is a call-used reg. */
else if (GET_CODE (insn) == CALL_INSN)
AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
/* In case registers overlap, allow certain insns to invalidate
particular hard registers. */
#ifdef INSN_CLOBBERS_REGNO_P
for (i = 0 ; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (reg_reloaded_valid, i)
&& INSN_CLOBBERS_REGNO_P (insn, i))
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i);
#endif
#ifdef USE_C_ALLOCA
alloca (0);
#endif
}
}
/* Discard all record of any value reloaded from X,
or reloaded in X from someplace else;
unless X is an output reload reg of the current insn.
X may be a hard reg (the reload reg)
or it may be a pseudo reg that was reloaded from. */
static void
forget_old_reloads_1 (x, ignored)
rtx x;
rtx ignored ATTRIBUTE_UNUSED;
{
register int regno;
int nr;
int offset = 0;
/* note_stores does give us subregs of hard regs. */
while (GET_CODE (x) == SUBREG)
{
offset += SUBREG_WORD (x);
x = SUBREG_REG (x);
}
if (GET_CODE (x) != REG)
return;
regno = REGNO (x) + offset;
if (regno >= FIRST_PSEUDO_REGISTER)
nr = 1;
else
{
int i;
nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
/* Storing into a spilled-reg invalidates its contents.
This can happen if a block-local pseudo is allocated to that reg
and it wasn't spilled because this block's total need is 0.
Then some insn might have an optional reload and use this reg. */
for (i = 0; i < nr; i++)
/* But don't do this if the reg actually serves as an output
reload reg in the current instruction. */
if (n_reloads == 0
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
}
/* Since value of X has changed,
forget any value previously copied from it. */
while (nr-- > 0)
/* But don't forget a copy if this is the output reload
that establishes the copy's validity. */
if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
reg_last_reload_reg[regno + nr] = 0;
}
/* For each reload, the mode of the reload register. */
static enum machine_mode reload_mode[MAX_RELOADS];
/* For each reload, the largest number of registers it will require. */
static int reload_nregs[MAX_RELOADS];
/* Comparison function for qsort to decide which of two reloads
should be handled first. *P1 and *P2 are the reload numbers. */
static int
reload_reg_class_lower (r1p, r2p)
const GENERIC_PTR r1p;
const GENERIC_PTR r2p;
{
register int r1 = *(short *)r1p, r2 = *(short *)r2p;
register int t;
/* Consider required reloads before optional ones. */
t = reload_optional[r1] - reload_optional[r2];
if (t != 0)
return t;
/* Count all solitary classes before non-solitary ones. */
t = ((reg_class_size[(int) reload_reg_class[r2]] == 1)
- (reg_class_size[(int) reload_reg_class[r1]] == 1));
if (t != 0)
return t;
/* Aside from solitaires, consider all multi-reg groups first. */
t = reload_nregs[r2] - reload_nregs[r1];
if (t != 0)
return t;
/* Consider reloads in order of increasing reg-class number. */
t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2];
if (t != 0)
return t;
/* If reloads are equally urgent, sort by reload number,
so that the results of qsort leave nothing to chance. */
return r1 - r2;
}
/* The following HARD_REG_SETs indicate when each hard register is
used for a reload of various parts of the current insn. */
/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
static HARD_REG_SET reload_reg_used;
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
static HARD_REG_SET reload_reg_used_in_op_addr;
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
/* If reg is in use for a RELOAD_FOR_INSN reload. */
static HARD_REG_SET reload_reg_used_in_insn;
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
static HARD_REG_SET reload_reg_used_in_other_addr;
/* If reg is in use as a reload reg for any sort of reload. */
static HARD_REG_SET reload_reg_used_at_all;
/* If reg is use as an inherited reload. We just mark the first register
in the group. */
static HARD_REG_SET reload_reg_used_for_inherit;
/* Records which hard regs are used in any way, either as explicit use or
by being allocated to a pseudo during any point of the current insn. */
static HARD_REG_SET reg_used_in_insn;
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
TYPE. MODE is used to indicate how many consecutive regs are
actually used. */
static void
mark_reload_reg_in_use (regno, opnum, type, mode)
int regno;
int opnum;
enum reload_type type;
enum machine_mode mode;
{
int nregs = HARD_REGNO_NREGS (regno, mode);
int i;
for (i = regno; i < nregs + regno; i++)
{
switch (type)
{
case RELOAD_OTHER:
SET_HARD_REG_BIT (reload_reg_used, i);
break;
case RELOAD_FOR_INPUT_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
break;
case RELOAD_FOR_INPADDR_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
break;
case RELOAD_FOR_OPERAND_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
break;
case RELOAD_FOR_OPADDR_ADDR:
SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
break;
case RELOAD_FOR_OTHER_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
break;
case RELOAD_FOR_INPUT:
SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
break;
case RELOAD_FOR_OUTPUT:
SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
break;
case RELOAD_FOR_INSN:
SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
break;
}
SET_HARD_REG_BIT (reload_reg_used_at_all, i);
}
}
/* Similarly, but show REGNO is no longer in use for a reload. */
static void
clear_reload_reg_in_use (regno, opnum, type, mode)
int regno;
int opnum;
enum reload_type type;
enum machine_mode mode;
{
int nregs = HARD_REGNO_NREGS (regno, mode);
int start_regno, end_regno;
int i;
/* A complication is that for some reload types, inheritance might
allow multiple reloads of the same types to share a reload register.
We set check_opnum if we have to check only reloads with the same
operand number, and check_any if we have to check all reloads. */
int check_opnum = 0;
int check_any = 0;
HARD_REG_SET *used_in_set;
switch (type)
{
case RELOAD_OTHER:
used_in_set = &reload_reg_used;
break;
case RELOAD_FOR_INPUT_ADDRESS:
used_in_set = &reload_reg_used_in_input_addr[opnum];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
check_opnum = 1;
used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
used_in_set = &reload_reg_used_in_output_addr[opnum];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
check_opnum = 1;
used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
used_in_set = &reload_reg_used_in_op_addr;
break;
case RELOAD_FOR_OPADDR_ADDR:
check_any = 1;
used_in_set = &reload_reg_used_in_op_addr_reload;
break;
case RELOAD_FOR_OTHER_ADDRESS:
used_in_set = &reload_reg_used_in_other_addr;
check_any = 1;
break;
case RELOAD_FOR_INPUT:
used_in_set = &reload_reg_used_in_input[opnum];
break;
case RELOAD_FOR_OUTPUT:
used_in_set = &reload_reg_used_in_output[opnum];
break;
case RELOAD_FOR_INSN:
used_in_set = &reload_reg_used_in_insn;
break;
default:
abort ();
}
/* We resolve conflicts with remaining reloads of the same type by
excluding the intervals of of reload registers by them from the
interval of freed reload registers. Since we only keep track of
one set of interval bounds, we might have to exclude somewhat
more then what would be necessary if we used a HARD_REG_SET here.
But this should only happen very infrequently, so there should
be no reason to worry about it. */
start_regno = regno;
end_regno = regno + nregs;
if (check_opnum || check_any)
{
for (i = n_reloads - 1; i >= 0; i--)
{
if (reload_when_needed[i] == type
&& (check_any || reload_opnum[i] == opnum)
&& reload_reg_rtx[i])
{
int conflict_start = true_regnum (reload_reg_rtx[i]);
int conflict_end
= (conflict_start
+ HARD_REGNO_NREGS (conflict_start, reload_mode[i]));
/* If there is an overlap with the first to-be-freed register,
adjust the interval start. */
if (conflict_start <= start_regno && conflict_end > start_regno)
start_regno = conflict_end;
/* Otherwise, if there is a conflict with one of the other
to-be-freed registers, adjust the interval end. */
if (conflict_start > start_regno && conflict_start < end_regno)
end_regno = conflict_start;
}
}
}
for (i = start_regno; i < end_regno; i++)
CLEAR_HARD_REG_BIT (*used_in_set, i);
}
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
specified by OPNUM and TYPE. */
static int
reload_reg_free_p (regno, opnum, type)
int regno;
int opnum;
enum reload_type type;
{
int i;
/* In use for a RELOAD_OTHER means it's not available for anything. */
if (TEST_HARD_REG_BIT (reload_reg_used, regno))
return 0;
switch (type)
{
case RELOAD_OTHER:
/* In use for anything means we can't use it for RELOAD_OTHER. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPUT:
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
return 0;
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
return 0;
/* If it is used for some other input, can't use it. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
/* If it is used in a later operand's address, can't use it. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPUT_ADDRESS:
/* Can't use a register if it is used for an input address for this
operand or used as an input in an earlier one. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
return 0;
for (i = 0; i < opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPADDR_ADDRESS:
/* Can't use a register if it is used for an input address
for this operand or used as an input in an earlier
one. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
return 0;
for (i = 0; i < opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return 1;
case RELOAD_FOR_OUTPUT_ADDRESS:
/* Can't use a register if it is used for an output address for this
operand or used as an output in this or a later operand. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
return 0;
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OUTADDR_ADDRESS:
/* Can't use a register if it is used for an output address
for this operand or used as an output in this or a
later operand. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
return 0;
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OPERAND_ADDRESS:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
case RELOAD_FOR_OPADDR_ADDR:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
case RELOAD_FOR_OUTPUT:
/* This cannot share a register with RELOAD_FOR_INSN reloads, other
outputs, or an operand address for this or an earlier output. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
for (i = 0; i <= opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
return 0;
return 1;
case RELOAD_FOR_INSN:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
case RELOAD_FOR_OTHER_ADDRESS:
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
}
abort ();
}
/* Return 1 if the value in reload reg REGNO, as used by a reload
needed for the part of the insn specified by OPNUM and TYPE,
is still available in REGNO at the end of the insn.
We can assume that the reload reg was already tested for availability
at the time it is needed, and we should not check this again,
in case the reg has already been marked in use. */
static int
reload_reg_reaches_end_p (regno, opnum, type)
int regno;
int opnum;
enum reload_type type;
{
int i;
switch (type)
{
case RELOAD_OTHER:
/* Since a RELOAD_OTHER reload claims the reg for the entire insn,
its value must reach the end. */
return 1;
/* If this use is for part of the insn,
its value reaches if no subsequent part uses the same register.
Just like the above function, don't try to do this with lots
of fallthroughs. */
case RELOAD_FOR_OTHER_ADDRESS:
/* Here we check for everything else, since these don't conflict
with anything else and everything comes later. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used, regno));
case RELOAD_FOR_INPUT_ADDRESS:
case RELOAD_FOR_INPADDR_ADDRESS:
/* Similar, except that we check only for this and subsequent inputs
and the address of only subsequent inputs and we do not need
to check for RELOAD_OTHER objects since they are known not to
conflict. */
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
case RELOAD_FOR_INPUT:
/* Similar to input address, except we start at the next operand for
both input and input address and we do not check for
RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
would conflict. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
/* ... fall through ... */
case RELOAD_FOR_OPERAND_ADDRESS:
/* Check outputs and their addresses. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OPADDR_ADDR:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
case RELOAD_FOR_INSN:
/* These conflict with other outputs with RELOAD_OTHER. So
we need only check for output addresses. */
opnum = -1;
/* ... fall through ... */
case RELOAD_FOR_OUTPUT:
case RELOAD_FOR_OUTPUT_ADDRESS:
case RELOAD_FOR_OUTADDR_ADDRESS:
/* We already know these can't conflict with a later output. So the
only thing to check are later output addresses. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
return 0;
return 1;
}
abort ();
}
/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
Return 0 otherwise.
This function uses the same algorithm as reload_reg_free_p above. */
int
reloads_conflict (r1, r2)
int r1, r2;
{
enum reload_type r1_type = reload_when_needed[r1];
enum reload_type r2_type = reload_when_needed[r2];
int r1_opnum = reload_opnum[r1];
int r2_opnum = reload_opnum[r2];
/* RELOAD_OTHER conflicts with everything. */
if (r2_type == RELOAD_OTHER)
return 1;
/* Otherwise, check conflicts differently for each type. */
switch (r1_type)
{
case RELOAD_FOR_INPUT:
return (r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS
|| r2_type == RELOAD_FOR_OPADDR_ADDR
|| r2_type == RELOAD_FOR_INPUT
|| ((r2_type == RELOAD_FOR_INPUT_ADDRESS
|| r2_type == RELOAD_FOR_INPADDR_ADDRESS)
&& r2_opnum > r1_opnum));
case RELOAD_FOR_INPUT_ADDRESS:
return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
case RELOAD_FOR_INPADDR_ADDRESS:
return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
case RELOAD_FOR_OUTPUT_ADDRESS:
return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
case RELOAD_FOR_OUTADDR_ADDRESS:
return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
case RELOAD_FOR_OPERAND_ADDRESS:
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
case RELOAD_FOR_OPADDR_ADDR:
return (r2_type == RELOAD_FOR_INPUT
|| r2_type == RELOAD_FOR_OPADDR_ADDR);
case RELOAD_FOR_OUTPUT:
return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
|| ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
|| r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
&& r2_opnum >= r1_opnum));
case RELOAD_FOR_INSN:
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
|| r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
case RELOAD_FOR_OTHER_ADDRESS:
return r2_type == RELOAD_FOR_OTHER_ADDRESS;
case RELOAD_OTHER:
return 1;
default:
abort ();
}
}
/* Vector of reload-numbers showing the order in which the reloads should
be processed. */
short reload_order[MAX_RELOADS];
/* Indexed by reload number, 1 if incoming value
inherited from previous insns. */
char reload_inherited[MAX_RELOADS];
/* For an inherited reload, this is the insn the reload was inherited from,
if we know it. Otherwise, this is 0. */
rtx reload_inheritance_insn[MAX_RELOADS];
/* If non-zero, this is a place to get the value of the reload,
rather than using reload_in. */
rtx reload_override_in[MAX_RELOADS];
/* For each reload, the hard register number of the register used,
or -1 if we did not need a register for this reload. */
int reload_spill_index[MAX_RELOADS];
/* Return 1 if the value in reload reg REGNO, as used by a reload
needed for the part of the insn specified by OPNUM and TYPE,
may be used to load VALUE into it.
Other read-only reloads with the same value do not conflict
unless OUT is non-zero and these other reloads have to live while
output reloads live.
If OUT is CONST0_RTX, this is a special case: it means that the
test should not be for using register REGNO as reload register, but
for copying from register REGNO into the reload register.
RELOADNUM is the number of the reload we want to load this value for;
a reload does not conflict with itself.
When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
reloads that load an address for the very reload we are considering.
The caller has to make sure that there is no conflict with the return
register. */
static int
reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
ignore_address_reloads)
int regno;
int opnum;
enum reload_type type;
rtx value, out;
int reloadnum;
int ignore_address_reloads;
{
int time1;
int i;
int copy = 0;
/* ??? reload_reg_used is abused to hold the registers that are not
available as spill registers, including hard registers that are
earlyclobbered in asms. As a temporary measure, reject anything
in reload_reg_used. */
if (TEST_HARD_REG_BIT (reload_reg_used, regno))
return 0;
if (out == const0_rtx)
{
copy = 1;
out = NULL_RTX;
}
/* We use some pseudo 'time' value to check if the lifetimes of the
new register use would overlap with the one of a previous reload
that is not read-only or uses a different value.
The 'time' used doesn't have to be linear in any shape or form, just
monotonic.
Some reload types use different 'buckets' for each operand.
So there are MAX_RECOG_OPERANDS different time values for each
such reload type.
We compute TIME1 as the time when the register for the prospective
new reload ceases to be live, and TIME2 for each existing
reload as the time when that the reload register of that reload
becomes live.
Where there is little to be gained by exact lifetime calculations,
we just make conservative assumptions, i.e. a longer lifetime;
this is done in the 'default:' cases. */
switch (type)
{
case RELOAD_FOR_OTHER_ADDRESS:
time1 = 0;
break;
case RELOAD_OTHER:
time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
break;
/* For each input, we might have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
respectively, to the time values for these, we get distinct time
values. To get distinct time values for each operand, we have to
multiply opnum by at least three. We round that up to four because
multiply by four is often cheaper. */
case RELOAD_FOR_INPADDR_ADDRESS:
time1 = opnum * 4 + 2;
break;
case RELOAD_FOR_INPUT_ADDRESS:
time1 = opnum * 4 + 3;
break;
case RELOAD_FOR_INPUT:
/* All RELOAD_FOR_INPUT reloads remain live till the instruction
executes (inclusive). */
time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OPADDR_ADDR:
/* opnum * 4 + 4
<= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
time1 = MAX_RECOG_OPERANDS * 4 + 1;
break;
case RELOAD_FOR_OPERAND_ADDRESS:
/* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
is executed. */
time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
break;
default:
time1 = MAX_RECOG_OPERANDS * 5 + 5;
}
for (i = 0; i < n_reloads; i++)
{
rtx reg = reload_reg_rtx[i];
if (reg && GET_CODE (reg) == REG
&& ((unsigned) regno - true_regnum (reg)
<= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
&& i != reloadnum)
{
if (! reload_in[i] || ! rtx_equal_p (reload_in[i], value)
|| reload_out[i] || out)
{
int time2;
switch (reload_when_needed[i])
{
case RELOAD_FOR_OTHER_ADDRESS:
time2 = 0;
break;
case RELOAD_FOR_INPADDR_ADDRESS:
/* find_reloads makes sure that a
RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
by at most one - the first -
RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
address reload is inherited, the address address reload
goes away, so we can ignore this conflict. */
if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
/* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
Then the address address is still needed to store
back the new address. */
&& ! reload_out[reloadnum])
continue;
/* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
reloads go away. */
if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
&& ignore_address_reloads
/* Unless we are reloading an auto_inc expression. */
&& ! reload_out[reloadnum])
continue;
time2 = reload_opnum[i] * 4 + 2;
break;
case RELOAD_FOR_INPUT_ADDRESS:
if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
&& ignore_address_reloads
&& ! reload_out[reloadnum])
continue;
time2 = reload_opnum[i] * 4 + 3;
break;
case RELOAD_FOR_INPUT:
time2 = reload_opnum[i] * 4 + 4;
break;
/* reload_opnum[i] * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
== MAX_RECOG_OPERAND * 4 */
case RELOAD_FOR_OPADDR_ADDR:
if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
&& ! reload_out[reloadnum])
continue;
time2 = MAX_RECOG_OPERANDS * 4 + 1;
break;
case RELOAD_FOR_OPERAND_ADDRESS:
time2 = MAX_RECOG_OPERANDS * 4 + 2;
break;
case RELOAD_FOR_INSN:
time2 = MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OUTPUT:
/* All RELOAD_FOR_OUTPUT reloads become live just after the
instruction is executed. */
time2 = MAX_RECOG_OPERANDS * 4 + 4;
break;
/* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
the RELOAD_FOR_OUTPUT reloads, so assign it the same time
value. */
case RELOAD_FOR_OUTADDR_ADDRESS:
if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
&& ! reload_out[reloadnum])
continue;
time2 = MAX_RECOG_OPERANDS * 4 + 4 + reload_opnum[i];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
time2 = MAX_RECOG_OPERANDS * 4 + 5 + reload_opnum[i];
break;
case RELOAD_OTHER:
/* If there is no conflict in the input part, handle this
like an output reload. */
if (! reload_in[i] || rtx_equal_p (reload_in[i], value))
{
time2 = MAX_RECOG_OPERANDS * 4 + 4;
break;
}
time2 = 1;
/* RELOAD_OTHER might be live beyond instruction execution,
but this is not obvious when we set time2 = 1. So check
here if there might be a problem with the new reload
clobbering the register used by the RELOAD_OTHER. */
if (out)
return 0;
break;
default:
return 0;
}
if ((time1 >= time2
&& (! reload_in[i] || reload_out[i]
|| ! rtx_equal_p (reload_in[i], value)))
|| (out && reload_out_reg[reloadnum]
&& time2 >= MAX_RECOG_OPERANDS * 4 + 3))
return 0;
}
}
}
return 1;
}
/* Find a spill register to use as a reload register for reload R.
LAST_RELOAD is non-zero if this is the last reload for the insn being
processed.
Set reload_reg_rtx[R] to the register allocated.
If NOERROR is nonzero, we return 1 if successful,
or 0 if we couldn't find a spill reg and we didn't change anything. */
static int
allocate_reload_reg (chain, r, last_reload, noerror)
struct insn_chain *chain;
int r;
int last_reload;
int noerror;
{
rtx insn = chain->insn;
int i, pass, count, regno;
rtx new;
/* If we put this reload ahead, thinking it is a group,
then insist on finding a group. Otherwise we can grab a
reg that some other reload needs.
(That can happen when we have a 68000 DATA_OR_FP_REG
which is a group of data regs or one fp reg.)
We need not be so restrictive if there are no more reloads
for this insn.
??? Really it would be nicer to have smarter handling
for that kind of reg class, where a problem like this is normal.
Perhaps those classes should be avoided for reloading
by use of more alternatives. */
int force_group = reload_nregs[r] > 1 && ! last_reload;
/* If we want a single register and haven't yet found one,
take any reg in the right class and not in use.
If we want a consecutive group, here is where we look for it.
We use two passes so we can first look for reload regs to
reuse, which are already in use for other reloads in this insn,
and only then use additional registers.
I think that maximizing reuse is needed to make sure we don't
run out of reload regs. Suppose we have three reloads, and
reloads A and B can share regs. These need two regs.
Suppose A and B are given different regs.
That leaves none for C. */
for (pass = 0; pass < 2; pass++)
{
/* I is the index in spill_regs.
We advance it round-robin between insns to use all spill regs
equally, so that inherited reloads have a chance
of leapfrogging each other. Don't do this, however, when we have
group needs and failure would be fatal; if we only have a relatively
small number of spill registers, and more than one of them has
group needs, then by starting in the middle, we may end up
allocating the first one in such a way that we are not left with
sufficient groups to handle the rest. */
if (noerror || ! force_group)
i = last_spill_reg;
else
i = -1;
for (count = 0; count < n_spills; count++)
{
int class = (int) reload_reg_class[r];
int regnum;
i++;
if (i >= n_spills)
i -= n_spills;
regnum = spill_regs[i];
if ((reload_reg_free_p (regnum, reload_opnum[r],
reload_when_needed[r])
|| (reload_in[r]
/* We check reload_reg_used to make sure we
don't clobber the return register. */
&& ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
&& reload_reg_free_for_value_p (regnum,
reload_opnum[r],
reload_when_needed[r],
reload_in[r],
reload_out[r], r, 1)))
&& TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
&& HARD_REGNO_MODE_OK (regnum, reload_mode[r])
/* Look first for regs to share, then for unshared. But
don't share regs used for inherited reloads; they are
the ones we want to preserve. */
&& (pass
|| (TEST_HARD_REG_BIT (reload_reg_used_at_all,
regnum)
&& ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
regnum))))
{
int nr = HARD_REGNO_NREGS (regnum, reload_mode[r]);
/* Avoid the problem where spilling a GENERAL_OR_FP_REG
(on 68000) got us two FP regs. If NR is 1,
we would reject both of them. */
if (force_group)
nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]);
/* If we need only one reg, we have already won. */
if (nr == 1)
{
/* But reject a single reg if we demand a group. */
if (force_group)
continue;
break;
}
/* Otherwise check that as many consecutive regs as we need
are available here.
Also, don't use for a group registers that are
needed for nongroups. */
if (! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regnum))
while (nr > 1)
{
regno = regnum + nr - 1;
if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& spill_reg_order[regno] >= 0
&& reload_reg_free_p (regno, reload_opnum[r],
reload_when_needed[r])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups,
regno)))
break;
nr--;
}
if (nr == 1)
break;
}
}
/* If we found something on pass 1, omit pass 2. */
if (count < n_spills)
break;
}
/* We should have found a spill register by now. */
if (count == n_spills)
{
if (noerror)
return 0;
goto failure;
}
/* I is the index in SPILL_REG_RTX of the reload register we are to
allocate. Get an rtx for it and find its register number. */
new = spill_reg_rtx[i];
if (new == 0 || GET_MODE (new) != reload_mode[r])
spill_reg_rtx[i] = new
= gen_rtx_REG (reload_mode[r], spill_regs[i]);
regno = true_regnum (new);
/* Detect when the reload reg can't hold the reload mode.
This used to be one `if', but Sequent compiler can't handle that. */
if (HARD_REGNO_MODE_OK (regno, reload_mode[r]))
{
enum machine_mode test_mode = VOIDmode;
if (reload_in[r])
test_mode = GET_MODE (reload_in[r]);
/* If reload_in[r] has VOIDmode, it means we will load it
in whatever mode the reload reg has: to wit, reload_mode[r].
We have already tested that for validity. */
/* Aside from that, we need to test that the expressions
to reload from or into have modes which are valid for this
reload register. Otherwise the reload insns would be invalid. */
if (! (reload_in[r] != 0 && test_mode != VOIDmode
&& ! HARD_REGNO_MODE_OK (regno, test_mode)))
if (! (reload_out[r] != 0
&& ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r]))))
{
/* The reg is OK. */
last_spill_reg = i;
/* Mark as in use for this insn the reload regs we use
for this. */
mark_reload_reg_in_use (spill_regs[i], reload_opnum[r],
reload_when_needed[r], reload_mode[r]);
reload_reg_rtx[r] = new;
reload_spill_index[r] = spill_regs[i];
return 1;
}
}
/* The reg is not OK. */
if (noerror)
return 0;
failure:
if (asm_noperands (PATTERN (insn)) < 0)
/* It's the compiler's fault. */
fatal_insn ("Could not find a spill register", insn);
/* It's the user's fault; the operand's mode and constraint
don't match. Disable this reload so we don't crash in final. */
error_for_asm (insn,
"`asm' operand constraint incompatible with operand size");
reload_in[r] = 0;
reload_out[r] = 0;
reload_reg_rtx[r] = 0;
reload_optional[r] = 1;
reload_secondary_p[r] = 1;
return 1;
}
/* Assign hard reg targets for the pseudo-registers we must reload
into hard regs for this insn.
Also output the instructions to copy them in and out of the hard regs.
For machines with register classes, we are responsible for
finding a reload reg in the proper class. */
static void
choose_reload_regs (chain)
struct insn_chain *chain;
{
rtx insn = chain->insn;
register int i, j;
int max_group_size = 1;
enum reg_class group_class = NO_REGS;
int inheritance;
int pass;
rtx save_reload_reg_rtx[MAX_RELOADS];
char save_reload_inherited[MAX_RELOADS];
rtx save_reload_inheritance_insn[MAX_RELOADS];
rtx save_reload_override_in[MAX_RELOADS];
int save_reload_spill_index[MAX_RELOADS];
HARD_REG_SET save_reload_reg_used;
HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_op_addr;
HARD_REG_SET save_reload_reg_used_in_op_addr_reload;
HARD_REG_SET save_reload_reg_used_in_insn;
HARD_REG_SET save_reload_reg_used_in_other_addr;
HARD_REG_SET save_reload_reg_used_at_all;
bzero (reload_inherited, MAX_RELOADS);
bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
CLEAR_HARD_REG_SET (reload_reg_used);
CLEAR_HARD_REG_SET (reload_reg_used_at_all);
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
CLEAR_HARD_REG_SET (reg_used_in_insn);
{
HARD_REG_SET tmp;
REG_SET_TO_HARD_REG_SET (tmp, chain->live_before);
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
REG_SET_TO_HARD_REG_SET (tmp, chain->live_after);
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
compute_use_by_pseudos (&reg_used_in_insn, chain->live_before);
compute_use_by_pseudos (&reg_used_in_insn, chain->live_after);
}
for (i = 0; i < reload_n_operands; i++)
{
CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
}
IOR_COMPL_HARD_REG_SET (reload_reg_used, chain->used_spill_regs);
#if 0 /* Not needed, now that we can always retry without inheritance. */
/* See if we have more mandatory reloads than spill regs.
If so, then we cannot risk optimizations that could prevent
reloads from sharing one spill register.
Since we will try finding a better register than reload_reg_rtx
unless it is equal to reload_in or reload_out, count such reloads. */
{
int tem = 0;
for (j = 0; j < n_reloads; j++)
if (! reload_optional[j]
&& (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
&& (reload_reg_rtx[j] == 0
|| (! rtx_equal_p (reload_reg_rtx[j], reload_in[j])
&& ! rtx_equal_p (reload_reg_rtx[j], reload_out[j]))))
tem++;
if (tem > n_spills)
must_reuse = 1;
}
#endif
/* In order to be certain of getting the registers we need,
we must sort the reloads into order of increasing register class.
Then our grabbing of reload registers will parallel the process
that provided the reload registers.
Also note whether any of the reloads wants a consecutive group of regs.
If so, record the maximum size of the group desired and what
register class contains all the groups needed by this insn. */
for (j = 0; j < n_reloads; j++)
{
reload_order[j] = j;
reload_spill_index[j] = -1;
reload_mode[j]
= (reload_inmode[j] == VOIDmode
|| (GET_MODE_SIZE (reload_outmode[j])
> GET_MODE_SIZE (reload_inmode[j])))
? reload_outmode[j] : reload_inmode[j];
reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]);
if (reload_nregs[j] > 1)
{
max_group_size = MAX (reload_nregs[j], max_group_size);
group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class];
}
/* If we have already decided to use a certain register,
don't use it in another way. */
if (reload_reg_rtx[j])
mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j],
reload_when_needed[j], reload_mode[j]);
}
if (n_reloads > 1)
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
bcopy ((char *) reload_reg_rtx, (char *) save_reload_reg_rtx,
sizeof reload_reg_rtx);
bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited);
bcopy ((char *) reload_inheritance_insn,
(char *) save_reload_inheritance_insn,
sizeof reload_inheritance_insn);
bcopy ((char *) reload_override_in, (char *) save_reload_override_in,
sizeof reload_override_in);
bcopy ((char *) reload_spill_index, (char *) save_reload_spill_index,
sizeof reload_spill_index);
COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used);
COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all);
COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr,
reload_reg_used_in_op_addr);
COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr_reload,
reload_reg_used_in_op_addr_reload);
COPY_HARD_REG_SET (save_reload_reg_used_in_insn,
reload_reg_used_in_insn);
COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr,
reload_reg_used_in_other_addr);
for (i = 0; i < reload_n_operands; i++)
{
COPY_HARD_REG_SET (save_reload_reg_used_in_output[i],
reload_reg_used_in_output[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_input[i],
reload_reg_used_in_input[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i],
reload_reg_used_in_input_addr[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_inpaddr_addr[i],
reload_reg_used_in_inpaddr_addr[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i],
reload_reg_used_in_output_addr[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_outaddr_addr[i],
reload_reg_used_in_outaddr_addr[i]);
}
/* If -O, try first with inheritance, then turning it off.
If not -O, don't do inheritance.
Using inheritance when not optimizing leads to paradoxes
with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
because one side of the comparison might be inherited. */
for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
{
/* Process the reloads in order of preference just found.
Beyond this point, subregs can be found in reload_reg_rtx.
This used to look for an existing reloaded home for all
of the reloads, and only then perform any new reloads.
But that could lose if the reloads were done out of reg-class order
because a later reload with a looser constraint might have an old
home in a register needed by an earlier reload with a tighter constraint.
To solve this, we make two passes over the reloads, in the order
described above. In the first pass we try to inherit a reload
from a previous insn. If there is a later reload that needs a
class that is a proper subset of the class being processed, we must
also allocate a spill register during the first pass.
Then make a second pass over the reloads to allocate any reloads
that haven't been given registers yet. */
CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
rtx search_equiv = NULL_RTX;
/* Ignore reloads that got marked inoperative. */
if (reload_out[r] == 0 && reload_in[r] == 0
&& ! reload_secondary_p[r])
continue;
/* If find_reloads chose to use reload_in or reload_out as a reload
register, we don't need to chose one. Otherwise, try even if it
found one since we might save an insn if we find the value lying
around.
Try also when reload_in is a pseudo without a hard reg. */
if (reload_in[r] != 0 && reload_reg_rtx[r] != 0
&& (rtx_equal_p (reload_in[r], reload_reg_rtx[r])
|| (rtx_equal_p (reload_out[r], reload_reg_rtx[r])
&& GET_CODE (reload_in[r]) != MEM
&& true_regnum (reload_in[r]) < FIRST_PSEUDO_REGISTER)))
continue;
#if 0 /* No longer needed for correct operation.
It might give better code, or might not; worth an experiment? */
/* If this is an optional reload, we can't inherit from earlier insns
until we are sure that any non-optional reloads have been allocated.
The following code takes advantage of the fact that optional reloads
are at the end of reload_order. */
if (reload_optional[r] != 0)
for (i = 0; i < j; i++)
if ((reload_out[reload_order[i]] != 0
|| reload_in[reload_order[i]] != 0
|| reload_secondary_p[reload_order[i]])
&& ! reload_optional[reload_order[i]]
&& reload_reg_rtx[reload_order[i]] == 0)
allocate_reload_reg (chain, reload_order[i], 0, inheritance);
#endif
/* First see if this pseudo is already available as reloaded
for a previous insn. We cannot try to inherit for reloads
that are smaller than the maximum number of registers needed
for groups unless the register we would allocate cannot be used
for the groups.
We could check here to see if this is a secondary reload for
an object that is already in a register of the desired class.
This would avoid the need for the secondary reload register.
But this is complex because we can't easily determine what
objects might want to be loaded via this reload. So let a
register be allocated here. In `emit_reload_insns' we suppress
one of the loads in the case described above. */
if (inheritance)
{
int word = 0;
register int regno = -1;
enum machine_mode mode;
if (reload_in[r] == 0)
;
else if (GET_CODE (reload_in[r]) == REG)
{
regno = REGNO (reload_in[r]);
mode = GET_MODE (reload_in[r]);
}
else if (GET_CODE (reload_in_reg[r]) == REG)
{
regno = REGNO (reload_in_reg[r]);
mode = GET_MODE (reload_in_reg[r]);
}
else if (GET_CODE (reload_in_reg[r]) == SUBREG
&& GET_CODE (SUBREG_REG (reload_in_reg[r])) == REG)
{
word = SUBREG_WORD (reload_in_reg[r]);
regno = REGNO (SUBREG_REG (reload_in_reg[r]));
if (regno < FIRST_PSEUDO_REGISTER)
regno += word;
mode = GET_MODE (reload_in_reg[r]);
}
#ifdef AUTO_INC_DEC
else if ((GET_CODE (reload_in_reg[r]) == PRE_INC
|| GET_CODE (reload_in_reg[r]) == PRE_DEC
|| GET_CODE (reload_in_reg[r]) == POST_INC
|| GET_CODE (reload_in_reg[r]) == POST_DEC)
&& GET_CODE (XEXP (reload_in_reg[r], 0)) == REG)
{
regno = REGNO (XEXP (reload_in_reg[r], 0));
mode = GET_MODE (XEXP (reload_in_reg[r], 0));
reload_out[r] = reload_in[r];
}
#endif
#if 0
/* This won't work, since REGNO can be a pseudo reg number.
Also, it takes much more hair to keep track of all the things
that can invalidate an inherited reload of part of a pseudoreg. */
else if (GET_CODE (reload_in[r]) == SUBREG
&& GET_CODE (SUBREG_REG (reload_in[r])) == REG)
regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]);
#endif
if (regno >= 0 && reg_last_reload_reg[regno] != 0)
{
enum reg_class class = reload_reg_class[r], last_class;
rtx last_reg = reg_last_reload_reg[regno];
i = REGNO (last_reg) + word;
last_class = REGNO_REG_CLASS (i);
if ((GET_MODE_SIZE (GET_MODE (last_reg))
>= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
&& reg_reloaded_contents[i] == regno
&& TEST_HARD_REG_BIT (reg_reloaded_valid, i)
&& HARD_REGNO_MODE_OK (i, reload_mode[r])
&& (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
/* Even if we can't use this register as a reload
register, we might use it for reload_override_in,
if copying it to the desired class is cheap
enough. */
|| ((REGISTER_MOVE_COST (last_class, class)
< MEMORY_MOVE_COST (mode, class, 1))
#ifdef SECONDARY_INPUT_RELOAD_CLASS
&& (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
last_reg)
== NO_REGS)
#endif
#ifdef SECONDARY_MEMORY_NEEDED
&& ! SECONDARY_MEMORY_NEEDED (last_class, class,
mode)
#endif
))
&& (reload_nregs[r] == max_group_size
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
i))
&& reload_reg_free_for_value_p (i, reload_opnum[r],
reload_when_needed[r],
reload_in[r],
const0_rtx, r, 1))
{
/* If a group is needed, verify that all the subsequent
registers still have their values intact. */
int nr
= HARD_REGNO_NREGS (i, reload_mode[r]);
int k;
for (k = 1; k < nr; k++)
if (reg_reloaded_contents[i + k] != regno
|| ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
break;
if (k == nr)
{
int i1;
last_reg = (GET_MODE (last_reg) == mode
? last_reg : gen_rtx_REG (mode, i));
/* We found a register that contains the
value we need. If this register is the
same as an `earlyclobber' operand of the
current insn, just mark it as a place to
reload from since we can't use it as the
reload register itself. */
for (i1 = 0; i1 < n_earlyclobbers; i1++)
if (reg_overlap_mentioned_for_reload_p
(reg_last_reload_reg[regno],
reload_earlyclobbers[i1]))
break;
if (i1 != n_earlyclobbers
|| ! (reload_reg_free_for_value_p
(i, reload_opnum[r], reload_when_needed[r],
reload_in[r], reload_out[r], r, 1))
/* Don't use it if we'd clobber a pseudo reg. */
|| (TEST_HARD_REG_BIT (reg_used_in_insn, i)
&& reload_out[r]
&& ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
/* Don't clobber the frame pointer. */
|| (i == HARD_FRAME_POINTER_REGNUM
&& reload_out[r])
/* Don't really use the inherited spill reg
if we need it wider than we've got it. */
|| (GET_MODE_SIZE (reload_mode[r])
> GET_MODE_SIZE (mode))
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
i)
/* If find_reloads chose reload_out as reload
register, stay with it - that leaves the
inherited register for subsequent reloads. */
|| (reload_out[r] && reload_reg_rtx[r]
&& rtx_equal_p (reload_out[r],
reload_reg_rtx[r])))
{
reload_override_in[r] = last_reg;
reload_inheritance_insn[r]
= reg_reloaded_insn[i];
}
else
{
int k;
/* We can use this as a reload reg. */
/* Mark the register as in use for this part of
the insn. */
mark_reload_reg_in_use (i,
reload_opnum[r],
reload_when_needed[r],
reload_mode[r]);
reload_reg_rtx[r] = last_reg;
reload_inherited[r] = 1;
reload_inheritance_insn[r]
= reg_reloaded_insn[i];
reload_spill_index[r] = i;
for (k = 0; k < nr; k++)
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
i + k);
}
}
}
}
}
/* Here's another way to see if the value is already lying around. */
if (inheritance
&& reload_in[r] != 0
&& ! reload_inherited[r]
&& reload_out[r] == 0
&& (CONSTANT_P (reload_in[r])
|| GET_CODE (reload_in[r]) == PLUS
|| GET_CODE (reload_in[r]) == REG
|| GET_CODE (reload_in[r]) == MEM)
&& (reload_nregs[r] == max_group_size
|| ! reg_classes_intersect_p (reload_reg_class[r], group_class)))
search_equiv = reload_in[r];
/* If this is an output reload from a simple move insn, look
if an equivalence for the input is available. */
else if (inheritance && reload_in[r] == 0 && reload_out[r] != 0)
{
rtx set = single_set (insn);
if (set
&& rtx_equal_p (reload_out[r], SET_DEST (set))
&& CONSTANT_P (SET_SRC (set)))
search_equiv = SET_SRC (set);
}
if (search_equiv)
{
register rtx equiv
= find_equiv_reg (search_equiv, insn, reload_reg_class[r],
-1, NULL_PTR, 0, reload_mode[r]);
int regno;
if (equiv != 0)
{
if (GET_CODE (equiv) == REG)
regno = REGNO (equiv);
else if (GET_CODE (equiv) == SUBREG)
{
/* This must be a SUBREG of a hard register.
Make a new REG since this might be used in an
address and not all machines support SUBREGs
there. */
regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
equiv = gen_rtx_REG (reload_mode[r], regno);
}
else
abort ();
}
/* If we found a spill reg, reject it unless it is free
and of the desired class. */
if (equiv != 0
&& ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
&& ! reload_reg_free_for_value_p (regno, reload_opnum[r],
reload_when_needed[r],
reload_in[r],
reload_out[r], r, 1))
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
regno)))
equiv = 0;
if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r]))
equiv = 0;
/* We found a register that contains the value we need.
If this register is the same as an `earlyclobber' operand
of the current insn, just mark it as a place to reload from
since we can't use it as the reload register itself. */
if (equiv != 0)
for (i = 0; i < n_earlyclobbers; i++)
if (reg_overlap_mentioned_for_reload_p (equiv,
reload_earlyclobbers[i]))
{
reload_override_in[r] = equiv;
equiv = 0;
break;
}
/* If the equiv register we have found is explicitly clobbered
in the current insn, it depends on the reload type if we
can use it, use it for reload_override_in, or not at all.
In particular, we then can't use EQUIV for a
RELOAD_FOR_OUTPUT_ADDRESS reload. */
if (equiv != 0 && regno_clobbered_p (regno, insn))
{
switch (reload_when_needed[r])
{
case RELOAD_FOR_OTHER_ADDRESS:
case RELOAD_FOR_INPADDR_ADDRESS:
case RELOAD_FOR_INPUT_ADDRESS:
case RELOAD_FOR_OPADDR_ADDR:
break;
case RELOAD_OTHER:
case RELOAD_FOR_INPUT:
case RELOAD_FOR_OPERAND_ADDRESS:
reload_override_in[r] = equiv;
/* Fall through. */
default:
equiv = 0;
break;
}
}
/* If we found an equivalent reg, say no code need be generated
to load it, and use it as our reload reg. */
if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
{
int nr = HARD_REGNO_NREGS (regno, reload_mode[r]);
int k;
reload_reg_rtx[r] = equiv;
reload_inherited[r] = 1;
/* If reg_reloaded_valid is not set for this register,
there might be a stale spill_reg_store lying around.
We must clear it, since otherwise emit_reload_insns
might delete the store. */
if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
spill_reg_store[regno] = NULL_RTX;
/* If any of the hard registers in EQUIV are spill
registers, mark them as in use for this insn. */
for (k = 0; k < nr; k++)
{
i = spill_reg_order[regno + k];
if (i >= 0)
{
mark_reload_reg_in_use (regno, reload_opnum[r],
reload_when_needed[r],
reload_mode[r]);
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
regno + k);
}
}
}
}
/* If we found a register to use already, or if this is an optional
reload, we are done. */
if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0)
continue;
#if 0 /* No longer needed for correct operation. Might or might not
give better code on the average. Want to experiment? */
/* See if there is a later reload that has a class different from our
class that intersects our class or that requires less register
than our reload. If so, we must allocate a register to this
reload now, since that reload might inherit a previous reload
and take the only available register in our class. Don't do this
for optional reloads since they will force all previous reloads
to be allocated. Also don't do this for reloads that have been
turned off. */
for (i = j + 1; i < n_reloads; i++)
{
int s = reload_order[i];
if ((reload_in[s] == 0 && reload_out[s] == 0
&& ! reload_secondary_p[s])
|| reload_optional[s])
continue;
if ((reload_reg_class[s] != reload_reg_class[r]
&& reg_classes_intersect_p (reload_reg_class[r],
reload_reg_class[s]))
|| reload_nregs[s] < reload_nregs[r])
break;
}
if (i == n_reloads)
continue;
allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance);
#endif
}
/* Now allocate reload registers for anything non-optional that
didn't get one yet. */
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
/* Ignore reloads that got marked inoperative. */
if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
continue;
/* Skip reloads that already have a register allocated or are
optional. */
if (reload_reg_rtx[r] != 0 || reload_optional[r])
continue;
if (! allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance))
break;
}
/* If that loop got all the way, we have won. */
if (j == n_reloads)
break;
/* Loop around and try without any inheritance. */
/* First undo everything done by the failed attempt
to allocate with inheritance. */
bcopy ((char *) save_reload_reg_rtx, (char *) reload_reg_rtx,
sizeof reload_reg_rtx);
bcopy ((char *) save_reload_inherited, (char *) reload_inherited,
sizeof reload_inherited);
bcopy ((char *) save_reload_inheritance_insn,
(char *) reload_inheritance_insn,
sizeof reload_inheritance_insn);
bcopy ((char *) save_reload_override_in, (char *) reload_override_in,
sizeof reload_override_in);
bcopy ((char *) save_reload_spill_index, (char *) reload_spill_index,
sizeof reload_spill_index);
COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used);
COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all);
COPY_HARD_REG_SET (reload_reg_used_in_op_addr,
save_reload_reg_used_in_op_addr);
COPY_HARD_REG_SET (reload_reg_used_in_op_addr_reload,
save_reload_reg_used_in_op_addr_reload);
COPY_HARD_REG_SET (reload_reg_used_in_insn,
save_reload_reg_used_in_insn);
COPY_HARD_REG_SET (reload_reg_used_in_other_addr,
save_reload_reg_used_in_other_addr);
for (i = 0; i < reload_n_operands; i++)
{
COPY_HARD_REG_SET (reload_reg_used_in_input[i],
save_reload_reg_used_in_input[i]);
COPY_HARD_REG_SET (reload_reg_used_in_output[i],
save_reload_reg_used_in_output[i]);
COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i],
save_reload_reg_used_in_input_addr[i]);
COPY_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i],
save_reload_reg_used_in_inpaddr_addr[i]);
COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i],
save_reload_reg_used_in_output_addr[i]);
COPY_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i],
save_reload_reg_used_in_outaddr_addr[i]);
}
}
/* If we thought we could inherit a reload, because it seemed that
nothing else wanted the same reload register earlier in the insn,
verify that assumption, now that all reloads have been assigned.
Likewise for reloads where reload_override_in has been set. */
/* If doing expensive optimizations, do one preliminary pass that doesn't
cancel any inheritance, but removes reloads that have been needed only
for reloads that we know can be inherited. */
for (pass = flag_expensive_optimizations; pass >= 0; pass--)
{
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
rtx check_reg;
if (reload_inherited[r] && reload_reg_rtx[r])
check_reg = reload_reg_rtx[r];
else if (reload_override_in[r]
&& (GET_CODE (reload_override_in[r]) == REG
|| GET_CODE (reload_override_in[r]) == SUBREG))
check_reg = reload_override_in[r];
else
continue;
if (! reload_reg_free_for_value_p (true_regnum (check_reg),
reload_opnum[r],
reload_when_needed[r],
reload_in[r],
(reload_inherited[r]
? reload_out[r] : const0_rtx),
r, 1))
{
if (pass)
continue;
reload_inherited[r] = 0;
reload_override_in[r] = 0;
}
/* If we can inherit a RELOAD_FOR_INPUT, or can use a
reload_override_in, then we do not need its related
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
likewise for other reload types.
We handle this by removing a reload when its only replacement
is mentioned in reload_in of the reload we are going to inherit.
A special case are auto_inc expressions; even if the input is
inherited, we still need the address for the output. We can
recognize them because they have RELOAD_OUT set but not
RELOAD_OUT_REG.
If we suceeded removing some reload and we are doing a preliminary
pass just to remove such reloads, make another pass, since the
removal of one reload might allow us to inherit another one. */
else if ((! reload_out[r] || reload_out_reg[r])
&& reload_in[r]
&& remove_address_replacements (reload_in[r]) && pass)
pass = 2;
}
}
/* Now that reload_override_in is known valid,
actually override reload_in. */
for (j = 0; j < n_reloads; j++)
if (reload_override_in[j])
reload_in[j] = reload_override_in[j];
/* If this reload won't be done because it has been cancelled or is
optional and not inherited, clear reload_reg_rtx so other
routines (such as subst_reloads) don't get confused. */
for (j = 0; j < n_reloads; j++)
if (reload_reg_rtx[j] != 0
&& ((reload_optional[j] && ! reload_inherited[j])
|| (reload_in[j] == 0 && reload_out[j] == 0
&& ! reload_secondary_p[j])))
{
int regno = true_regnum (reload_reg_rtx[j]);
if (spill_reg_order[regno] >= 0)
clear_reload_reg_in_use (regno, reload_opnum[j],
reload_when_needed[j], reload_mode[j]);
reload_reg_rtx[j] = 0;
reload_spill_index[j] = -1;
}
/* Record which pseudos and which spill regs have output reloads. */
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
i = reload_spill_index[r];
/* I is nonneg if this reload uses a register.
If reload_reg_rtx[r] is 0, this is an optional reload
that we opted to ignore. */
if (reload_out_reg[r] != 0 && GET_CODE (reload_out_reg[r]) == REG
&& reload_reg_rtx[r] != 0)
{
register int nregno = REGNO (reload_out_reg[r]);
int nr = 1;
if (nregno < FIRST_PSEUDO_REGISTER)
nr = HARD_REGNO_NREGS (nregno, reload_mode[r]);
while (--nr >= 0)
reg_has_output_reload[nregno + nr] = 1;
if (i >= 0)
{
nr = HARD_REGNO_NREGS (i, reload_mode[r]);
while (--nr >= 0)
SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
}
if (reload_when_needed[r] != RELOAD_OTHER
&& reload_when_needed[r] != RELOAD_FOR_OUTPUT
&& reload_when_needed[r] != RELOAD_FOR_INSN)
abort ();
}
}
}
/* Deallocate the reload register for reload R. This is called from
remove_address_replacements. */
void
deallocate_reload_reg (r)
int r;
{
int regno;
if (! reload_reg_rtx[r])
return;
regno = true_regnum (reload_reg_rtx[r]);
reload_reg_rtx[r] = 0;
if (spill_reg_order[regno] >= 0)
clear_reload_reg_in_use (regno, reload_opnum[r], reload_when_needed[r],
reload_mode[r]);
reload_spill_index[r] = -1;
}
/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
reloads of the same item for fear that we might not have enough reload
registers. However, normally they will get the same reload register
and hence actually need not be loaded twice.
Here we check for the most common case of this phenomenon: when we have
a number of reloads for the same object, each of which were allocated
the same reload_reg_rtx, that reload_reg_rtx is not used for any other
reload, and is not modified in the insn itself. If we find such,
merge all the reloads and set the resulting reload to RELOAD_OTHER.
This will not increase the number of spill registers needed and will
prevent redundant code. */
static void
merge_assigned_reloads (insn)
rtx insn;
{
int i, j;
/* Scan all the reloads looking for ones that only load values and
are not already RELOAD_OTHER and ones whose reload_reg_rtx are
assigned and not modified by INSN. */
for (i = 0; i < n_reloads; i++)
{
int conflicting_input = 0;
int max_input_address_opnum = -1;
int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER
|| reload_out[i] != 0 || reload_reg_rtx[i] == 0
|| reg_set_p (reload_reg_rtx[i], insn))
continue;
/* Look at all other reloads. Ensure that the only use of this
reload_reg_rtx is in a reload that just loads the same value
as we do. Note that any secondary reloads must be of the identical
class since the values, modes, and result registers are the
same, so we need not do anything with any secondary reloads. */
for (j = 0; j < n_reloads; j++)
{
if (i == j || reload_reg_rtx[j] == 0
|| ! reg_overlap_mentioned_p (reload_reg_rtx[j],
reload_reg_rtx[i]))
continue;
if (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
&& reload_opnum[j] > max_input_address_opnum)
max_input_address_opnum = reload_opnum[j];
/* If the reload regs aren't exactly the same (e.g, different modes)
or if the values are different, we can't merge this reload.
But if it is an input reload, we might still merge
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
|| reload_out[j] != 0 || reload_in[j] == 0
|| ! rtx_equal_p (reload_in[i], reload_in[j]))
{
if (reload_when_needed[j] != RELOAD_FOR_INPUT
|| ((reload_when_needed[i] != RELOAD_FOR_INPUT_ADDRESS
|| reload_opnum[i] > reload_opnum[j])
&& reload_when_needed[i] != RELOAD_FOR_OTHER_ADDRESS))
break;
conflicting_input = 1;
if (min_conflicting_input_opnum > reload_opnum[j])
min_conflicting_input_opnum = reload_opnum[j];
}
}
/* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
we, in fact, found any matching reloads. */
if (j == n_reloads
&& max_input_address_opnum <= min_conflicting_input_opnum)
{
for (j = 0; j < n_reloads; j++)
if (i != j && reload_reg_rtx[j] != 0
&& rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
&& (! conflicting_input
|| reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
|| reload_when_needed[j] == RELOAD_FOR_OTHER_ADDRESS))
{
reload_when_needed[i] = RELOAD_OTHER;
reload_in[j] = 0;
reload_spill_index[j] = -1;
transfer_replacements (i, j);
}
/* If this is now RELOAD_OTHER, look for any reloads that load
parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
if they were for inputs, RELOAD_OTHER for outputs. Note that
this test is equivalent to looking for reloads for this operand
number. */
if (reload_when_needed[i] == RELOAD_OTHER)
for (j = 0; j < n_reloads; j++)
if (reload_in[j] != 0
&& reload_when_needed[i] != RELOAD_OTHER
&& reg_overlap_mentioned_for_reload_p (reload_in[j],
reload_in[i]))
reload_when_needed[j]
= ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
|| reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
}
}
}
/* Output insns to reload values in and out of the chosen reload regs. */
static void
emit_reload_insns (chain)
struct insn_chain *chain;
{
rtx insn = chain->insn;
register int j;
rtx input_reload_insns[MAX_RECOG_OPERANDS];
rtx other_input_address_reload_insns = 0;
rtx other_input_reload_insns = 0;
rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
rtx output_reload_insns[MAX_RECOG_OPERANDS];
rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
rtx operand_reload_insns = 0;
rtx other_operand_reload_insns = 0;
rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
rtx following_insn = NEXT_INSN (insn);
rtx before_insn = PREV_INSN (insn);
int special;
/* Values to be put in spill_reg_store are put here first. */
rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
HARD_REG_SET reg_reloaded_died;
CLEAR_HARD_REG_SET (reg_reloaded_died);
for (j = 0; j < reload_n_operands; j++)
input_reload_insns[j] = input_address_reload_insns[j]
= inpaddr_address_reload_insns[j]
= output_reload_insns[j] = output_address_reload_insns[j]
= outaddr_address_reload_insns[j]
= other_output_reload_insns[j] = 0;
/* Now output the instructions to copy the data into and out of the
reload registers. Do these in the order that the reloads were reported,
since reloads of base and index registers precede reloads of operands
and the operands may need the base and index registers reloaded. */
for (j = 0; j < n_reloads; j++)
{
register rtx old;
rtx oldequiv_reg = 0;
rtx this_reload_insn = 0;
int expect_occurrences = 1;
if (reload_reg_rtx[j]
&& REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
new_spill_reg_store[REGNO (reload_reg_rtx[j])] = 0;
old = (reload_in[j] && GET_CODE (reload_in[j]) == MEM
? reload_in_reg[j] : reload_in[j]);
if (old != 0
/* AUTO_INC reloads need to be handled even if inherited. We got an
AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
&& (! reload_inherited[j] || (reload_out[j] && ! reload_out_reg[j]))
&& ! rtx_equal_p (reload_reg_rtx[j], old)
&& reload_reg_rtx[j] != 0)
{
register rtx reloadreg = reload_reg_rtx[j];
rtx oldequiv = 0;
enum machine_mode mode;
rtx *where;
/* Determine the mode to reload in.
This is very tricky because we have three to choose from.
There is the mode the insn operand wants (reload_inmode[J]).
There is the mode of the reload register RELOADREG.
There is the intrinsic mode of the operand, which we could find
by stripping some SUBREGs.
It turns out that RELOADREG's mode is irrelevant:
we can change that arbitrarily.
Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
then the reload reg may not support QImode moves, so use SImode.
If foo is in memory due to spilling a pseudo reg, this is safe,
because the QImode value is in the least significant part of a
slot big enough for a SImode. If foo is some other sort of
memory reference, then it is impossible to reload this case,
so previous passes had better make sure this never happens.
Then consider a one-word union which has SImode and one of its
members is a float, being fetched as (SUBREG:SF union:SI).
We must fetch that as SFmode because we could be loading into
a float-only register. In this case OLD's mode is correct.
Consider an immediate integer: it has VOIDmode. Here we need
to get a mode from something else.
In some cases, there is a fourth mode, the operand's
containing mode. If the insn specifies a containing mode for
this operand, it overrides all others.
I am not sure whether the algorithm here is always right,
but it does the right things in those cases. */
mode = GET_MODE (old);
if (mode == VOIDmode)
mode = reload_inmode[j];
#ifdef SECONDARY_INPUT_RELOAD_CLASS
/* If we need a secondary register for this operation, see if
the value is already in a register in that class. Don't
do this if the secondary register will be used as a scratch
register. */
if (reload_secondary_in_reload[j] >= 0
&& reload_secondary_in_icode[j] == CODE_FOR_nothing
&& optimize)
oldequiv
= find_equiv_reg (old, insn,
reload_reg_class[reload_secondary_in_reload[j]],
-1, NULL_PTR, 0, mode);
#endif
/* If reloading from memory, see if there is a register
that already holds the same value. If so, reload from there.
We can pass 0 as the reload_reg_p argument because
any other reload has either already been emitted,
in which case find_equiv_reg will see the reload-insn,
or has yet to be emitted, in which case it doesn't matter
because we will use this equiv reg right away. */
if (oldequiv == 0 && optimize
&& (GET_CODE (old) == MEM
|| (GET_CODE (old) == REG
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (old)] < 0)))
oldequiv = find_equiv_reg (old, insn, ALL_REGS,
-1, NULL_PTR, 0, mode);
if (oldequiv)
{
int regno = true_regnum (oldequiv);
/* Don't use OLDEQUIV if any other reload changes it at an
earlier stage of this insn or at this stage. */
if (! reload_reg_free_for_value_p (regno, reload_opnum[j],
reload_when_needed[j],
reload_in[j], const0_rtx, j,
0))
oldequiv = 0;
/* If it is no cheaper to copy from OLDEQUIV into the
reload register than it would be to move from memory,
don't use it. Likewise, if we need a secondary register
or memory. */
if (oldequiv != 0
&& ((REGNO_REG_CLASS (regno) != reload_reg_class[j]
&& (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
reload_reg_class[j])
>= MEMORY_MOVE_COST (mode, reload_reg_class[j], 1)))
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|| (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
mode, oldequiv)
!= NO_REGS)
#endif
#ifdef SECONDARY_MEMORY_NEEDED
|| SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
reload_reg_class[j],
mode)
#endif
))
oldequiv = 0;
}
/* delete_output_reload is only invoked properly if old contains
the original pseudo register. Since this is replaced with a
hard reg when RELOAD_OVERRIDE_IN is set, see if we can
find the pseudo in RELOAD_IN_REG. */
if (oldequiv == 0
&& reload_override_in[j]
&& GET_CODE (reload_in_reg[j]) == REG)
{
oldequiv = old;
old = reload_in_reg[j];
}
if (oldequiv == 0)
oldequiv = old;
else if (GET_CODE (oldequiv) == REG)
oldequiv_reg = oldequiv;
else if (GET_CODE (oldequiv) == SUBREG)
oldequiv_reg = SUBREG_REG (oldequiv);
/* If we are reloading from a register that was recently stored in
with an output-reload, see if we can prove there was
actually no need to store the old value in it. */
if (optimize && GET_CODE (oldequiv) == REG
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
&& spill_reg_store[REGNO (oldequiv)]
&& GET_CODE (old) == REG
&& (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
reload_out_reg[j])))
delete_output_reload (insn, j, REGNO (oldequiv));
/* Encapsulate both RELOADREG and OLDEQUIV into that mode,
then load RELOADREG from OLDEQUIV. Note that we cannot use
gen_lowpart_common since it can do the wrong thing when
RELOADREG has a multi-word mode. Note that RELOADREG
must always be a REG here. */
if (GET_MODE (reloadreg) != mode)
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
oldequiv = SUBREG_REG (oldequiv);
if (GET_MODE (oldequiv) != VOIDmode
&& mode != GET_MODE (oldequiv))
oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
/* Switch to the right place to emit the reload insns. */
switch (reload_when_needed[j])
{
case RELOAD_OTHER:
where = &other_input_reload_insns;
break;
case RELOAD_FOR_INPUT:
where = &input_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_INPUT_ADDRESS:
where = &input_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
where = &inpaddr_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
where = &output_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
where = &outaddr_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
where = &operand_reload_insns;
break;
case RELOAD_FOR_OPADDR_ADDR:
where = &other_operand_reload_insns;
break;
case RELOAD_FOR_OTHER_ADDRESS:
where = &other_input_address_reload_insns;
break;
default:
abort ();
}
push_to_sequence (*where);
special = 0;
/* Auto-increment addresses must be reloaded in a special way. */
if (reload_out[j] && ! reload_out_reg[j])
{
/* We are not going to bother supporting the case where a
incremented register can't be copied directly from
OLDEQUIV since this seems highly unlikely. */
if (reload_secondary_in_reload[j] >= 0)
abort ();
if (reload_inherited[j])
oldequiv = reloadreg;
old = XEXP (reload_in_reg[j], 0);
if (optimize && GET_CODE (oldequiv) == REG
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
&& spill_reg_store[REGNO (oldequiv)]
&& GET_CODE (old) == REG
&& (dead_or_set_p (insn,
spill_reg_stored_to[REGNO (oldequiv)])
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
old)))
delete_output_reload (insn, j, REGNO (oldequiv));
/* Prevent normal processing of this reload. */
special = 1;
/* Output a special code sequence for this case. */
new_spill_reg_store[REGNO (reloadreg)]
= inc_for_reload (reloadreg, oldequiv, reload_out[j],
reload_inc[j]);
}
/* If we are reloading a pseudo-register that was set by the previous
insn, see if we can get rid of that pseudo-register entirely
by redirecting the previous insn into our reload register. */
else if (optimize && GET_CODE (old) == REG
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
&& dead_or_set_p (insn, old)
/* This is unsafe if some other reload
uses the same reg first. */
&& reload_reg_free_for_value_p (REGNO (reloadreg),
reload_opnum[j],
reload_when_needed[j],
old, reload_out[j],
j, 0))
{
rtx temp = PREV_INSN (insn);
while (temp && GET_CODE (temp) == NOTE)
temp = PREV_INSN (temp);
if (temp
&& GET_CODE (temp) == INSN
&& GET_CODE (PATTERN (temp)) == SET
&& SET_DEST (PATTERN (temp)) == old
/* Make sure we can access insn_operand_constraint. */
&& asm_noperands (PATTERN (temp)) < 0
/* This is unsafe if prev insn rejects our reload reg. */
&& constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0],
reloadreg)
/* This is unsafe if operand occurs more than once in current
insn. Perhaps some occurrences aren't reloaded. */
&& count_occurrences (PATTERN (insn), old) == 1
/* Don't risk splitting a matching pair of operands. */
&& ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
{
/* Store into the reload register instead of the pseudo. */
SET_DEST (PATTERN (temp)) = reloadreg;
/* If the previous insn is an output reload, the source is
a reload register, and its spill_reg_store entry will
contain the previous destination. This is now
invalid. */
if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
&& REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
{
spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
}
/* If these are the only uses of the pseudo reg,
pretend for GDB it lives in the reload reg we used. */
if (REG_N_DEATHS (REGNO (old)) == 1
&& REG_N_SETS (REGNO (old)) == 1)
{
reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]);
alter_reg (REGNO (old), -1);
}
special = 1;
}
}
/* We can't do that, so output an insn to load RELOADREG. */
if (! special)
{
#ifdef SECONDARY_INPUT_RELOAD_CLASS
rtx second_reload_reg = 0;
enum insn_code icode;
/* If we have a secondary reload, pick up the secondary register
and icode, if any. If OLDEQUIV and OLD are different or
if this is an in-out reload, recompute whether or not we
still need a secondary register and what the icode should
be. If we still need a secondary register and the class or
icode is different, go back to reloading from OLD if using
OLDEQUIV means that we got the wrong type of register. We
cannot have different class or icode due to an in-out reload
because we don't make such reloads when both the input and
output need secondary reload registers. */
if (reload_secondary_in_reload[j] >= 0)
{
int secondary_reload = reload_secondary_in_reload[j];
rtx real_oldequiv = oldequiv;
rtx real_old = old;
rtx tmp;
/* If OLDEQUIV is a pseudo with a MEM, get the real MEM
and similarly for OLD.
See comments in get_secondary_reload in reload.c. */
/* If it is a pseudo that cannot be replaced with its
equivalent MEM, we must fall back to reload_in, which
will have all the necessary substitutions registered.
Likewise for a pseudo that can't be replaced with its
equivalent constant.
Take extra care for subregs of such pseudos. Note that
we cannot use reg_equiv_mem in this case because it is
not in the right mode. */
tmp = oldequiv;
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (GET_CODE (tmp) == REG
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|| reg_equiv_constant[REGNO (tmp)] != 0))
{
if (! reg_equiv_mem[REGNO (tmp)]
|| num_not_at_initial_offset
|| GET_CODE (oldequiv) == SUBREG)
real_oldequiv = reload_in[j];
else
real_oldequiv = reg_equiv_mem[REGNO (tmp)];
}
tmp = old;
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (GET_CODE (tmp) == REG
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|| reg_equiv_constant[REGNO (tmp)] != 0))
{
if (! reg_equiv_mem[REGNO (tmp)]
|| num_not_at_initial_offset
|| GET_CODE (old) == SUBREG)
real_old = reload_in[j];
else
real_old = reg_equiv_mem[REGNO (tmp)];
}
second_reload_reg = reload_reg_rtx[secondary_reload];
icode = reload_secondary_in_icode[j];
if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
|| (reload_in[j] != 0 && reload_out[j] != 0))
{
enum reg_class new_class
= SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
mode, real_oldequiv);
if (new_class == NO_REGS)
second_reload_reg = 0;
else
{
enum insn_code new_icode;
enum machine_mode new_mode;
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
REGNO (second_reload_reg)))
oldequiv = old, real_oldequiv = real_old;
else
{
new_icode = reload_in_optab[(int) mode];
if (new_icode != CODE_FOR_nothing
&& ((insn_operand_predicate[(int) new_icode][0]
&& ! ((*insn_operand_predicate[(int) new_icode][0])
(reloadreg, mode)))
|| (insn_operand_predicate[(int) new_icode][1]
&& ! ((*insn_operand_predicate[(int) new_icode][1])
(real_oldequiv, mode)))))
new_icode = CODE_FOR_nothing;
if (new_icode == CODE_FOR_nothing)
new_mode = mode;
else
new_mode = insn_operand_mode[(int) new_icode][2];
if (GET_MODE (second_reload_reg) != new_mode)
{
if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
new_mode))
oldequiv = old, real_oldequiv = real_old;
else
second_reload_reg
= gen_rtx_REG (new_mode,
REGNO (second_reload_reg));
}
}
}
}
/* If we still need a secondary reload register, check
to see if it is being used as a scratch or intermediate
register and generate code appropriately. If we need
a scratch register, use REAL_OLDEQUIV since the form of
the insn may depend on the actual address if it is
a MEM. */
if (second_reload_reg)
{
if (icode != CODE_FOR_nothing)
{
emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
second_reload_reg));
special = 1;
}
else
{
/* See if we need a scratch register to load the
intermediate register (a tertiary reload). */
enum insn_code tertiary_icode
= reload_secondary_in_icode[secondary_reload];
if (tertiary_icode != CODE_FOR_nothing)
{
rtx third_reload_reg
= reload_reg_rtx[reload_secondary_in_reload[secondary_reload]];
emit_insn ((GEN_FCN (tertiary_icode)
(second_reload_reg, real_oldequiv,
third_reload_reg)));
}
else
gen_reload (second_reload_reg, real_oldequiv,
reload_opnum[j],
reload_when_needed[j]);
oldequiv = second_reload_reg;
}
}
}
#endif
if (! special && ! rtx_equal_p (reloadreg, oldequiv))
{
rtx real_oldequiv = oldequiv;
if ((GET_CODE (oldequiv) == REG
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
&& (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
|| reg_equiv_constant[REGNO (oldequiv)] != 0))
|| (GET_CODE (oldequiv) == SUBREG
&& GET_CODE (SUBREG_REG (oldequiv)) == REG
&& (REGNO (SUBREG_REG (oldequiv))
>= FIRST_PSEUDO_REGISTER)
&& ((reg_equiv_memory_loc
[REGNO (SUBREG_REG (oldequiv))] != 0)
|| (reg_equiv_constant
[REGNO (SUBREG_REG (oldequiv))] != 0))))
real_oldequiv = reload_in[j];
gen_reload (reloadreg, real_oldequiv, reload_opnum[j],
reload_when_needed[j]);
}
}
this_reload_insn = get_last_insn ();
/* End this sequence. */
*where = get_insns ();
end_sequence ();
/* Update reload_override_in so that delete_address_reloads_1
can see the actual register usage. */
if (oldequiv_reg)
reload_override_in[j] = oldequiv;
}
/* When inheriting a wider reload, we have a MEM in reload_in[j],
e.g. inheriting a SImode output reload for
(mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
if (optimize && reload_inherited[j] && reload_in[j]
&& GET_CODE (reload_in[j]) == MEM
&& GET_CODE (reload_in_reg[j]) == MEM
&& reload_spill_index[j] >= 0
&& TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
{
expect_occurrences
= count_occurrences (PATTERN (insn), reload_in[j]) == 1 ? 0 : -1;
reload_in[j]
= regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
}
/* If we are reloading a register that was recently stored in with an
output-reload, see if we can prove there was
actually no need to store the old value in it. */
if (optimize
&& (reload_inherited[j] || reload_override_in[j])
&& reload_reg_rtx[j]
&& GET_CODE (reload_reg_rtx[j]) == REG
&& spill_reg_store[REGNO (reload_reg_rtx[j])] != 0
#if 0
/* There doesn't seem to be any reason to restrict this to pseudos
and doing so loses in the case where we are copying from a
register of the wrong class. */
&& REGNO (spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
>= FIRST_PSEUDO_REGISTER
#endif
/* The insn might have already some references to stackslots
replaced by MEMs, while reload_out_reg still names the
original pseudo. */
&& (dead_or_set_p (insn,
spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
|| rtx_equal_p (spill_reg_stored_to[REGNO (reload_reg_rtx[j])],
reload_out_reg[j])))
delete_output_reload (insn, j, REGNO (reload_reg_rtx[j]));
/* Input-reloading is done. Now do output-reloading,
storing the value from the reload-register after the main insn
if reload_out[j] is nonzero.
??? At some point we need to support handling output reloads of
JUMP_INSNs or insns that set cc0. */
/* If this is an output reload that stores something that is
not loaded in this same reload, see if we can eliminate a previous
store. */
{
rtx pseudo = reload_out_reg[j];
if (pseudo
&& GET_CODE (pseudo) == REG
&& ! rtx_equal_p (reload_in_reg[j], pseudo)
&& REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
&& reg_last_reload_reg[REGNO (pseudo)])
{
int pseudo_no = REGNO (pseudo);
int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
/* We don't need to test full validity of last_regno for
inherit here; we only want to know if the store actually
matches the pseudo. */
if (reg_reloaded_contents[last_regno] == pseudo_no
&& spill_reg_store[last_regno]
&& rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
delete_output_reload (insn, j, last_regno);
}
}
old = reload_out_reg[j];
if (old != 0
&& reload_reg_rtx[j] != old
&& reload_reg_rtx[j] != 0)
{
register rtx reloadreg = reload_reg_rtx[j];
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
register rtx second_reloadreg = 0;
#endif
rtx note, p;
enum machine_mode mode;
int special = 0;
/* An output operand that dies right away does need a reload,
but need not be copied from it. Show the new location in the
REG_UNUSED note. */
if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
&& (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
{
XEXP (note, 0) = reload_reg_rtx[j];
continue;
}
/* Likewise for a SUBREG of an operand that dies. */
else if (GET_CODE (old) == SUBREG
&& GET_CODE (SUBREG_REG (old)) == REG
&& 0 != (note = find_reg_note (insn, REG_UNUSED,
SUBREG_REG (old))))
{
XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
reload_reg_rtx[j]);
continue;
}
else if (GET_CODE (old) == SCRATCH)
/* If we aren't optimizing, there won't be a REG_UNUSED note,
but we don't want to make an output reload. */
continue;
#if 0
/* Strip off of OLD any size-increasing SUBREGs such as
(SUBREG:SI foo:QI 0). */
while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
&& (GET_MODE_SIZE (GET_MODE (old))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
old = SUBREG_REG (old);
#endif
/* If is a JUMP_INSN, we can't support output reloads yet. */
if (GET_CODE (insn) == JUMP_INSN)
abort ();
if (reload_when_needed[j] == RELOAD_OTHER)
start_sequence ();
else
push_to_sequence (output_reload_insns[reload_opnum[j]]);
old = reload_out[j];
/* Determine the mode to reload in.
See comments above (for input reloading). */
mode = GET_MODE (old);
if (mode == VOIDmode)
{
/* VOIDmode should never happen for an output. */
if (asm_noperands (PATTERN (insn)) < 0)
/* It's the compiler's fault. */
fatal_insn ("VOIDmode on an output", insn);
error_for_asm (insn, "output operand is constant in `asm'");
/* Prevent crash--use something we know is valid. */
mode = word_mode;
old = gen_rtx_REG (mode, REGNO (reloadreg));
}
if (GET_MODE (reloadreg) != mode)
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
/* If we need two reload regs, set RELOADREG to the intermediate
one, since it will be stored into OLD. We might need a secondary
register only for an input reload, so check again here. */
if (reload_secondary_out_reload[j] >= 0)
{
rtx real_old = old;
if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_mem[REGNO (old)] != 0)
real_old = reg_equiv_mem[REGNO (old)];
if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j],
mode, real_old)
!= NO_REGS))
{
second_reloadreg = reloadreg;
reloadreg = reload_reg_rtx[reload_secondary_out_reload[j]];
/* See if RELOADREG is to be used as a scratch register
or as an intermediate register. */
if (reload_secondary_out_icode[j] != CODE_FOR_nothing)
{
emit_insn ((GEN_FCN (reload_secondary_out_icode[j])
(real_old, second_reloadreg, reloadreg)));
special = 1;
}
else
{
/* See if we need both a scratch and intermediate reload
register. */
int secondary_reload = reload_secondary_out_reload[j];
enum insn_code tertiary_icode
= reload_secondary_out_icode[secondary_reload];
if (GET_MODE (reloadreg) != mode)
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
if (tertiary_icode != CODE_FOR_nothing)
{
rtx third_reloadreg
= reload_reg_rtx[reload_secondary_out_reload[secondary_reload]];
rtx tem;
/* Copy primary reload reg to secondary reload reg.
(Note that these have been swapped above, then
secondary reload reg to OLD using our insn. */
/* If REAL_OLD is a paradoxical SUBREG, remove it
and try to put the opposite SUBREG on
RELOADREG. */
if (GET_CODE (real_old) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (real_old))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
&& 0 != (tem = gen_lowpart_common
(GET_MODE (SUBREG_REG (real_old)),
reloadreg)))
real_old = SUBREG_REG (real_old), reloadreg = tem;
gen_reload (reloadreg, second_reloadreg,
reload_opnum[j], reload_when_needed[j]);
emit_insn ((GEN_FCN (tertiary_icode)
(real_old, reloadreg, third_reloadreg)));
special = 1;
}
else
/* Copy between the reload regs here and then to
OUT later. */
gen_reload (reloadreg, second_reloadreg,
reload_opnum[j], reload_when_needed[j]);
}
}
}
#endif
/* Output the last reload insn. */
if (! special)
{
rtx set;
/* Don't output the last reload if OLD is not the dest of
INSN and is in the src and is clobbered by INSN. */
if (! flag_expensive_optimizations
|| GET_CODE (old) != REG
|| !(set = single_set (insn))
|| rtx_equal_p (old, SET_DEST (set))
|| !reg_mentioned_p (old, SET_SRC (set))
|| !regno_clobbered_p (REGNO (old), insn))
gen_reload (old, reloadreg, reload_opnum[j],
reload_when_needed[j]);
}
/* Look at all insns we emitted, just to be safe. */
for (p = get_insns (); p; p = NEXT_INSN (p))
if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
{
rtx pat = PATTERN (p);
/* If this output reload doesn't come from a spill reg,
clear any memory of reloaded copies of the pseudo reg.
If this output reload comes from a spill reg,
reg_has_output_reload will make this do nothing. */
note_stores (pat, forget_old_reloads_1);
if (reg_mentioned_p (reload_reg_rtx[j], pat))
{
rtx set = single_set (insn);
if (reload_spill_index[j] < 0
&& set
&& SET_SRC (set) == reload_reg_rtx[j])
{
int src = REGNO (SET_SRC (set));
reload_spill_index[j] = src;
SET_HARD_REG_BIT (reg_is_output_reload, src);
if (find_regno_note (insn, REG_DEAD, src))
SET_HARD_REG_BIT (reg_reloaded_died, src);
}
if (REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
{
int s = reload_secondary_out_reload[j];
set = single_set (p);
/* If this reload copies only to the secondary reload
register, the secondary reload does the actual
store. */
if (s >= 0 && set == NULL_RTX)
; /* We can't tell what function the secondary reload
has and where the actual store to the pseudo is
made; leave new_spill_reg_store alone. */
else if (s >= 0
&& SET_SRC (set) == reload_reg_rtx[j]
&& SET_DEST (set) == reload_reg_rtx[s])
{
/* Usually the next instruction will be the
secondary reload insn; if we can confirm
that it is, setting new_spill_reg_store to
that insn will allow an extra optimization. */
rtx s_reg = reload_reg_rtx[s];
rtx next = NEXT_INSN (p);
reload_out[s] = reload_out[j];
reload_out_reg[s] = reload_out_reg[j];
set = single_set (next);
if (set && SET_SRC (set) == s_reg
&& ! new_spill_reg_store[REGNO (s_reg)])
{
SET_HARD_REG_BIT (reg_is_output_reload,
REGNO (s_reg));
new_spill_reg_store[REGNO (s_reg)] = next;
}
}
else
new_spill_reg_store[REGNO (reload_reg_rtx[j])] = p;
}
}
}
if (reload_when_needed[j] == RELOAD_OTHER)
{
emit_insns (other_output_reload_insns[reload_opnum[j]]);
other_output_reload_insns[reload_opnum[j]] = get_insns ();
}
else
output_reload_insns[reload_opnum[j]] = get_insns ();
end_sequence ();
}
}
/* Now write all the insns we made for reloads in the order expected by
the allocation functions. Prior to the insn being reloaded, we write
the following reloads:
RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
RELOAD_OTHER reloads.
For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
RELOAD_FOR_INPUT reload for the operand.
RELOAD_FOR_OPADDR_ADDRS reloads.
RELOAD_FOR_OPERAND_ADDRESS reloads.
After the insn being reloaded, we write the following:
For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
reloads for the operand. The RELOAD_OTHER output reloads are
output in descending order by reload number. */
emit_insns_before (other_input_address_reload_insns, insn);
emit_insns_before (other_input_reload_insns, insn);
for (j = 0; j < reload_n_operands; j++)
{
emit_insns_before (inpaddr_address_reload_insns[j], insn);
emit_insns_before (input_address_reload_insns[j], insn);
emit_insns_before (input_reload_insns[j], insn);
}
emit_insns_before (other_operand_reload_insns, insn);
emit_insns_before (operand_reload_insns, insn);
for (j = 0; j < reload_n_operands; j++)
{
emit_insns_before (outaddr_address_reload_insns[j], following_insn);
emit_insns_before (output_address_reload_insns[j], following_insn);
emit_insns_before (output_reload_insns[j], following_insn);
emit_insns_before (other_output_reload_insns[j], following_insn);
}
/* Keep basic block info up to date. */
if (n_basic_blocks)
{
if (BLOCK_HEAD (chain->block) == insn)
BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
if (BLOCK_END (chain->block) == insn)
BLOCK_END (chain->block) = PREV_INSN (following_insn);
}
/* For all the spill regs newly reloaded in this instruction,
record what they were reloaded from, so subsequent instructions
can inherit the reloads.
Update spill_reg_store for the reloads of this insn.
Copy the elements that were updated in the loop above. */
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
register int i = reload_spill_index[r];
/* If this is a non-inherited input reload from a pseudo, we must
clear any memory of a previous store to the same pseudo. Only do
something if there will not be an output reload for the pseudo
being reloaded. */
if (reload_in_reg[r] != 0
&& ! (reload_inherited[r] || reload_override_in[r]))
{
rtx reg = reload_in_reg[r];
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (GET_CODE (reg) == REG
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
&& ! reg_has_output_reload[REGNO (reg)])
{
int nregno = REGNO (reg);
if (reg_last_reload_reg[nregno])
{
int last_regno = REGNO (reg_last_reload_reg[nregno]);
if (reg_reloaded_contents[last_regno] == nregno)
spill_reg_store[last_regno] = 0;
}
}
}
/* I is nonneg if this reload used a register.
If reload_reg_rtx[r] is 0, this is an optional reload
that we opted to ignore. */
if (i >= 0 && reload_reg_rtx[r] != 0)
{
int nr
= HARD_REGNO_NREGS (i, GET_MODE (reload_reg_rtx[r]));
int k;
int part_reaches_end = 0;
int all_reaches_end = 1;
/* For a multi register reload, we need to check if all or part
of the value lives to the end. */
for (k = 0; k < nr; k++)
{
if (reload_reg_reaches_end_p (i + k, reload_opnum[r],
reload_when_needed[r]))
part_reaches_end = 1;
else
all_reaches_end = 0;
}
/* Ignore reloads that don't reach the end of the insn in
entirety. */
if (all_reaches_end)
{
/* First, clear out memory of what used to be in this spill reg.
If consecutive registers are used, clear them all. */
for (k = 0; k < nr; k++)
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
/* Maybe the spill reg contains a copy of reload_out. */
if (reload_out[r] != 0
&& (GET_CODE (reload_out[r]) == REG
#ifdef AUTO_INC_DEC
|| ! reload_out_reg[r]
#endif
|| GET_CODE (reload_out_reg[r]) == REG))
{
rtx out = (GET_CODE (reload_out[r]) == REG
? reload_out[r]
: reload_out_reg[r]
? reload_out_reg[r]
/* AUTO_INC */ : XEXP (reload_in_reg[r], 0));
register int nregno = REGNO (out);
int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
: HARD_REGNO_NREGS (nregno,
GET_MODE (reload_reg_rtx[r])));
spill_reg_store[i] = new_spill_reg_store[i];
spill_reg_stored_to[i] = out;
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
/* If NREGNO is a hard register, it may occupy more than
one register. If it does, say what is in the
rest of the registers assuming that both registers
agree on how many words the object takes. If not,
invalidate the subsequent registers. */
if (nregno < FIRST_PSEUDO_REGISTER)
for (k = 1; k < nnr; k++)
reg_last_reload_reg[nregno + k]
= (nr == nnr
? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
REGNO (reload_reg_rtx[r]) + k)
: 0);
/* Now do the inverse operation. */
for (k = 0; k < nr; k++)
{
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
reg_reloaded_contents[i + k]
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
? nregno
: nregno + k);
reg_reloaded_insn[i + k] = insn;
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
}
}
/* Maybe the spill reg contains a copy of reload_in. Only do
something if there will not be an output reload for
the register being reloaded. */
else if (reload_out_reg[r] == 0
&& reload_in[r] != 0
&& ((GET_CODE (reload_in[r]) == REG
&& REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER
&& ! reg_has_output_reload[REGNO (reload_in[r])])
|| (GET_CODE (reload_in_reg[r]) == REG
&& ! reg_has_output_reload[REGNO (reload_in_reg[r])]))
&& ! reg_set_p (reload_reg_rtx[r], PATTERN (insn)))
{
register int nregno;
int nnr;
if (GET_CODE (reload_in[r]) == REG
&& REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER)
nregno = REGNO (reload_in[r]);
else if (GET_CODE (reload_in_reg[r]) == REG)
nregno = REGNO (reload_in_reg[r]);
else
nregno = REGNO (XEXP (reload_in_reg[r], 0));
nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
: HARD_REGNO_NREGS (nregno,
GET_MODE (reload_reg_rtx[r])));
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
if (nregno < FIRST_PSEUDO_REGISTER)
for (k = 1; k < nnr; k++)
reg_last_reload_reg[nregno + k]
= (nr == nnr
? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
REGNO (reload_reg_rtx[r]) + k)
: 0);
/* Unless we inherited this reload, show we haven't
recently done a store.
Previous stores of inherited auto_inc expressions
also have to be discarded. */
if (! reload_inherited[r]
|| (reload_out[r] && ! reload_out_reg[r]))
spill_reg_store[i] = 0;
for (k = 0; k < nr; k++)
{
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
reg_reloaded_contents[i + k]
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
? nregno
: nregno + k);
reg_reloaded_insn[i + k] = insn;
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
}
}
}
/* However, if part of the reload reaches the end, then we must
invalidate the old info for the part that survives to the end. */
else if (part_reaches_end)
{
for (k = 0; k < nr; k++)
if (reload_reg_reaches_end_p (i + k,
reload_opnum[r],
reload_when_needed[r]))
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
}
}
/* The following if-statement was #if 0'd in 1.34 (or before...).
It's reenabled in 1.35 because supposedly nothing else
deals with this problem. */
/* If a register gets output-reloaded from a non-spill register,
that invalidates any previous reloaded copy of it.
But forget_old_reloads_1 won't get to see it, because
it thinks only about the original insn. So invalidate it here. */
if (i < 0 && reload_out[r] != 0
&& (GET_CODE (reload_out[r]) == REG
|| (GET_CODE (reload_out[r]) == MEM
&& GET_CODE (reload_out_reg[r]) == REG)))
{
rtx out = (GET_CODE (reload_out[r]) == REG
? reload_out[r] : reload_out_reg[r]);
register int nregno = REGNO (out);
if (nregno >= FIRST_PSEUDO_REGISTER)
{
rtx src_reg, store_insn;
reg_last_reload_reg[nregno] = 0;
/* If we can find a hard register that is stored, record
the storing insn so that we may delete this insn with
delete_output_reload. */
src_reg = reload_reg_rtx[r];
/* If this is an optional reload, try to find the source reg
from an input reload. */
if (! src_reg)
{
rtx set = single_set (insn);
if (set && SET_DEST (set) == reload_out[r])
{
int k;
src_reg = SET_SRC (set);
store_insn = insn;
for (k = 0; k < n_reloads; k++)
{
if (reload_in[k] == src_reg)
{
src_reg = reload_reg_rtx[k];
break;
}
}
}
}
else
store_insn = new_spill_reg_store[REGNO (src_reg)];
if (src_reg && GET_CODE (src_reg) == REG
&& REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
{
int src_regno = REGNO (src_reg);
int nr = HARD_REGNO_NREGS (src_regno, reload_mode[r]);
/* The place where to find a death note varies with
PRESERVE_DEATH_INFO_REGNO_P . The condition is not
necessarily checked exactly in the code that moves
notes, so just check both locations. */
rtx note = find_regno_note (insn, REG_DEAD, src_regno);
if (! note)
note = find_regno_note (store_insn, REG_DEAD, src_regno);
while (nr-- > 0)
{
spill_reg_store[src_regno + nr] = store_insn;
spill_reg_stored_to[src_regno + nr] = out;
reg_reloaded_contents[src_regno + nr] = nregno;
reg_reloaded_insn[src_regno + nr] = store_insn;
CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
if (note)
SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
else
CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
}
reg_last_reload_reg[nregno] = src_reg;
}
}
else
{
int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (reload_out[r]));
while (num_regs-- > 0)
reg_last_reload_reg[nregno + num_regs] = 0;
}
}
}
IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
}
/* Emit code to perform a reload from IN (which may be a reload register) to
OUT (which may also be a reload register). IN or OUT is from operand
OPNUM with reload type TYPE.
Returns first insn emitted. */
rtx
gen_reload (out, in, opnum, type)
rtx out;
rtx in;
int opnum;
enum reload_type type;
{
rtx last = get_last_insn ();
rtx tem;
/* If IN is a paradoxical SUBREG, remove it and try to put the
opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
if (GET_CODE (in) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (in))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
in = SUBREG_REG (in), out = tem;
else if (GET_CODE (out) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (out))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
out = SUBREG_REG (out), in = tem;
/* How to do this reload can get quite tricky. Normally, we are being
asked to reload a simple operand, such as a MEM, a constant, or a pseudo
register that didn't get a hard register. In that case we can just
call emit_move_insn.
We can also be asked to reload a PLUS that adds a register or a MEM to
another register, constant or MEM. This can occur during frame pointer
elimination and while reloading addresses. This case is handled by
trying to emit a single insn to perform the add. If it is not valid,
we use a two insn sequence.
Finally, we could be called to handle an 'o' constraint by putting
an address into a register. In that case, we first try to do this
with a named pattern of "reload_load_address". If no such pattern
exists, we just emit a SET insn and hope for the best (it will normally
be valid on machines that use 'o').
This entire process is made complex because reload will never
process the insns we generate here and so we must ensure that
they will fit their constraints and also by the fact that parts of
IN might be being reloaded separately and replaced with spill registers.
Because of this, we are, in some sense, just guessing the right approach
here. The one listed above seems to work.
??? At some point, this whole thing needs to be rethought. */
if (GET_CODE (in) == PLUS
&& (GET_CODE (XEXP (in, 0)) == REG
|| GET_CODE (XEXP (in, 0)) == SUBREG
|| GET_CODE (XEXP (in, 0)) == MEM)
&& (GET_CODE (XEXP (in, 1)) == REG
|| GET_CODE (XEXP (in, 1)) == SUBREG
|| CONSTANT_P (XEXP (in, 1))
|| GET_CODE (XEXP (in, 1)) == MEM))
{
/* We need to compute the sum of a register or a MEM and another
register, constant, or MEM, and put it into the reload
register. The best possible way of doing this is if the machine
has a three-operand ADD insn that accepts the required operands.
The simplest approach is to try to generate such an insn and see if it
is recognized and matches its constraints. If so, it can be used.
It might be better not to actually emit the insn unless it is valid,
but we need to pass the insn as an operand to `recog' and
`extract_insn' and it is simpler to emit and then delete the insn if
not valid than to dummy things up. */
rtx op0, op1, tem, insn;
int code;
op0 = find_replacement (&XEXP (in, 0));
op1 = find_replacement (&XEXP (in, 1));
/* Since constraint checking is strict, commutativity won't be
checked, so we need to do that here to avoid spurious failure
if the add instruction is two-address and the second operand
of the add is the same as the reload reg, which is frequently
the case. If the insn would be A = B + A, rearrange it so
it will be A = A + B as constrain_operands expects. */
if (GET_CODE (XEXP (in, 1)) == REG
&& REGNO (out) == REGNO (XEXP (in, 1)))
tem = op0, op0 = op1, op1 = tem;
if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
code = recog_memoized (insn);
if (code >= 0)
{
extract_insn (insn);
/* We want constrain operands to treat this insn strictly in
its validity determination, i.e., the way it would after reload
has completed. */
if (constrain_operands (1))
return insn;
}
delete_insns_since (last);
/* If that failed, we must use a conservative two-insn sequence.
use move to copy constant, MEM, or pseudo register to the reload
register since "move" will be able to handle an arbitrary operand,
unlike add which can't, in general. Then add the registers.
If there is another way to do this for a specific machine, a
DEFINE_PEEPHOLE should be specified that recognizes the sequence
we emit below. */
code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
|| (GET_CODE (op1) == REG
&& REGNO (op1) >= FIRST_PSEUDO_REGISTER)
|| (code != CODE_FOR_nothing
&& ! (*insn_operand_predicate[code][2]) (op1, insn_operand_mode[code][2])))
tem = op0, op0 = op1, op1 = tem;
gen_reload (out, op0, opnum, type);
/* If OP0 and OP1 are the same, we can use OUT for OP1.
This fixes a problem on the 32K where the stack pointer cannot
be used as an operand of an add insn. */
if (rtx_equal_p (op0, op1))
op1 = out;
insn = emit_insn (gen_add2_insn (out, op1));
/* If that failed, copy the address register to the reload register.
Then add the constant to the reload register. */
code = recog_memoized (insn);
if (code >= 0)
{
extract_insn (insn);
/* We want constrain operands to treat this insn strictly in
its validity determination, i.e., the way it would after reload
has completed. */
if (constrain_operands (1))
{
/* Add a REG_EQUIV note so that find_equiv_reg can find it. */
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
return insn;
}
}
delete_insns_since (last);
gen_reload (out, op1, opnum, type);
insn = emit_insn (gen_add2_insn (out, op0));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
}
#ifdef SECONDARY_MEMORY_NEEDED
/* If we need a memory location to do the move, do it that way. */
else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
&& GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
REGNO_REG_CLASS (REGNO (out)),
GET_MODE (out)))
{
/* Get the memory to use and rewrite both registers to its mode. */
rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
if (GET_MODE (loc) != GET_MODE (out))
out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
if (GET_MODE (loc) != GET_MODE (in))
in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
gen_reload (loc, in, opnum, type);
gen_reload (out, loc, opnum, type);
}
#endif
/* If IN is a simple operand, use gen_move_insn. */
else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
emit_insn (gen_move_insn (out, in));
#ifdef HAVE_reload_load_address
else if (HAVE_reload_load_address)
emit_insn (gen_reload_load_address (out, in));
#endif
/* Otherwise, just write (set OUT IN) and hope for the best. */
else
emit_insn (gen_rtx_SET (VOIDmode, out, in));
/* Return the first insn emitted.
We can not just return get_last_insn, because there may have
been multiple instructions emitted. Also note that gen_move_insn may
emit more than one insn itself, so we can not assume that there is one
insn emitted per emit_insn_before call. */
return last ? NEXT_INSN (last) : get_insns ();
}
/* Delete a previously made output-reload
whose result we now believe is not needed.
First we double-check.
INSN is the insn now being processed.
LAST_RELOAD_REG is the hard register number for which we want to delete
the last output reload.
J is the reload-number that originally used REG. The caller has made
certain that reload J doesn't use REG any longer for input. */
static void
delete_output_reload (insn, j, last_reload_reg)
rtx insn;
int j;
int last_reload_reg;
{
rtx output_reload_insn = spill_reg_store[last_reload_reg];
rtx reg = spill_reg_stored_to[last_reload_reg];
int k;
int n_occurrences;
int n_inherited = 0;
register rtx i1;
rtx substed;
/* Get the raw pseudo-register referred to. */
while (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
substed = reg_equiv_memory_loc[REGNO (reg)];
/* This is unsafe if the operand occurs more often in the current
insn than it is inherited. */
for (k = n_reloads - 1; k >= 0; k--)
{
rtx reg2 = reload_in[k];
if (! reg2)
continue;
if (GET_CODE (reg2) == MEM || reload_override_in[k])
reg2 = reload_in_reg[k];
#ifdef AUTO_INC_DEC
if (reload_out[k] && ! reload_out_reg[k])
reg2 = XEXP (reload_in_reg[k], 0);
#endif
while (GET_CODE (reg2) == SUBREG)
reg2 = SUBREG_REG (reg2);
if (rtx_equal_p (reg2, reg))
{
if (reload_inherited[k] || reload_override_in[k] || k == j)
{
n_inherited++;
reg2 = reload_out_reg[k];
if (! reg2)
continue;
while (GET_CODE (reg2) == SUBREG)
reg2 = XEXP (reg2, 0);
if (rtx_equal_p (reg2, reg))
n_inherited++;
}
else
return;
}
}
n_occurrences = count_occurrences (PATTERN (insn), reg);
if (substed)
n_occurrences += count_occurrences (PATTERN (insn), substed);
if (n_occurrences > n_inherited)
return;
/* If the pseudo-reg we are reloading is no longer referenced
anywhere between the store into it and here,
and no jumps or labels intervene, then the value can get
here through the reload reg alone.
Otherwise, give up--return. */
for (i1 = NEXT_INSN (output_reload_insn);
i1 != insn; i1 = NEXT_INSN (i1))
{
if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
return;
if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
&& reg_mentioned_p (reg, PATTERN (i1)))
{
/* If this is USE in front of INSN, we only have to check that
there are no more references than accounted for by inheritance. */
while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
{
n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
i1 = NEXT_INSN (i1);
}
if (n_occurrences <= n_inherited && i1 == insn)
break;
return;
}
}
/* The caller has already checked that REG dies or is set in INSN.
It has also checked that we are optimizing, and thus some inaccurancies
in the debugging information are acceptable.
So we could just delete output_reload_insn.
But in some cases we can improve the debugging information without
sacrificing optimization - maybe even improving the code:
See if the pseudo reg has been completely replaced
with reload regs. If so, delete the store insn
and forget we had a stack slot for the pseudo. */
if (reload_out[j] != reload_in[j]
&& REG_N_DEATHS (REGNO (reg)) == 1
&& REG_N_SETS (REGNO (reg)) == 1
&& REG_BASIC_BLOCK (REGNO (reg)) >= 0
&& find_regno_note (insn, REG_DEAD, REGNO (reg)))
{
rtx i2;
/* We know that it was used only between here
and the beginning of the current basic block.
(We also know that the last use before INSN was
the output reload we are thinking of deleting, but never mind that.)
Search that range; see if any ref remains. */
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
{
rtx set = single_set (i2);
/* Uses which just store in the pseudo don't count,
since if they are the only uses, they are dead. */
if (set != 0 && SET_DEST (set) == reg)
continue;
if (GET_CODE (i2) == CODE_LABEL
|| GET_CODE (i2) == JUMP_INSN)
break;
if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
&& reg_mentioned_p (reg, PATTERN (i2)))
{
/* Some other ref remains; just delete the output reload we
know to be dead. */
delete_address_reloads (output_reload_insn, insn);
PUT_CODE (output_reload_insn, NOTE);
NOTE_SOURCE_FILE (output_reload_insn) = 0;
NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
return;
}
}
/* Delete the now-dead stores into this pseudo. */
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
{
rtx set = single_set (i2);
if (set != 0 && SET_DEST (set) == reg)
{
delete_address_reloads (i2, insn);
/* This might be a basic block head,
thus don't use delete_insn. */
PUT_CODE (i2, NOTE);
NOTE_SOURCE_FILE (i2) = 0;
NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
}
if (GET_CODE (i2) == CODE_LABEL
|| GET_CODE (i2) == JUMP_INSN)
break;
}
/* For the debugging info,
say the pseudo lives in this reload reg. */
reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]);
alter_reg (REGNO (reg), -1);
}
delete_address_reloads (output_reload_insn, insn);
PUT_CODE (output_reload_insn, NOTE);
NOTE_SOURCE_FILE (output_reload_insn) = 0;
NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
}
/* We are going to delete DEAD_INSN. Recursively delete loads of
reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
CURRENT_INSN is being reloaded, so we have to check its reloads too. */
static void
delete_address_reloads (dead_insn, current_insn)
rtx dead_insn, current_insn;
{
rtx set = single_set (dead_insn);
rtx set2, dst, prev, next;
if (set)
{
rtx dst = SET_DEST (set);
if (GET_CODE (dst) == MEM)
delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
}
/* If we deleted the store from a reloaded post_{in,de}c expression,
we can delete the matching adds. */
prev = PREV_INSN (dead_insn);
next = NEXT_INSN (dead_insn);
if (! prev || ! next)
return;
set = single_set (next);
set2 = single_set (prev);
if (! set || ! set2
|| GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
|| GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
return;
dst = SET_DEST (set);
if (! rtx_equal_p (dst, SET_DEST (set2))
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
|| (INTVAL (XEXP (SET_SRC (set), 1))
!= - INTVAL (XEXP (SET_SRC (set2), 1))))
return;
delete_insn (prev);
delete_insn (next);
}
/* Subfunction of delete_address_reloads: process registers found in X. */
static void
delete_address_reloads_1 (dead_insn, x, current_insn)
rtx dead_insn, x, current_insn;
{
rtx prev, set, dst, i2;
int i, j;
enum rtx_code code = GET_CODE (x);
if (code != REG)
{
char *fmt= GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >=0; j--)
delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
current_insn);
}
}
return;
}
if (spill_reg_order[REGNO (x)] < 0)
return;
/* Scan backwards for the insn that sets x. This might be a way back due
to inheritance. */
for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
{
code = GET_CODE (prev);
if (code == CODE_LABEL || code == JUMP_INSN)
return;
if (GET_RTX_CLASS (code) != 'i')
continue;
if (reg_set_p (x, PATTERN (prev)))
break;
if (reg_referenced_p (x, PATTERN (prev)))
return;
}
if (! prev || INSN_UID (prev) < reload_first_uid)
return;
/* Check that PREV only sets the reload register. */
set = single_set (prev);
if (! set)
return;
dst = SET_DEST (set);
if (GET_CODE (dst) != REG
|| ! rtx_equal_p (dst, x))
return;
if (! reg_set_p (dst, PATTERN (dead_insn)))
{
/* Check if DST was used in a later insn -
it might have been inherited. */
for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
{
if (GET_CODE (i2) == CODE_LABEL)
break;
if (GET_RTX_CLASS (GET_CODE (i2)) != 'i')
continue;
if (reg_referenced_p (dst, PATTERN (i2)))
{
/* If there is a reference to the register in the current insn,
it might be loaded in a non-inherited reload. If no other
reload uses it, that means the register is set before
referenced. */
if (i2 == current_insn)
{
for (j = n_reloads - 1; j >= 0; j--)
if ((reload_reg_rtx[j] == dst && reload_inherited[j])
|| reload_override_in[j] == dst)
return;
for (j = n_reloads - 1; j >= 0; j--)
if (reload_in[j] && reload_reg_rtx[j] == dst)
break;
if (j >= 0)
break;
}
return;
}
if (GET_CODE (i2) == JUMP_INSN)
break;
/* If DST is still live at CURRENT_INSN, check if it is used for
any reload. Note that even if CURRENT_INSN sets DST, we still
have to check the reloads. */
if (i2 == current_insn)
{
for (j = n_reloads - 1; j >= 0; j--)
if ((reload_reg_rtx[j] == dst && reload_inherited[j])
|| reload_override_in[j] == dst)
return;
/* ??? We can't finish the loop here, because dst might be
allocated to a pseudo in this block if no reload in this
block needs any of the clsses containing DST - see
spill_hard_reg. There is no easy way to tell this, so we
have to scan till the end of the basic block. */
}
if (reg_set_p (dst, PATTERN (i2)))
break;
}
}
delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
reg_reloaded_contents[REGNO (dst)] = -1;
/* Can't use delete_insn here because PREV might be a basic block head. */
PUT_CODE (prev, NOTE);
NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (prev) = 0;
}
/* Output reload-insns to reload VALUE into RELOADREG.
VALUE is an autoincrement or autodecrement RTX whose operand
is a register or memory location;
so reloading involves incrementing that location.
IN is either identical to VALUE, or some cheaper place to reload from.
INC_AMOUNT is the number to increment or decrement by (always positive).
This cannot be deduced from VALUE.
Return the instruction that stores into RELOADREG. */
static rtx
inc_for_reload (reloadreg, in, value, inc_amount)
rtx reloadreg;
rtx in, value;
int inc_amount;
{
/* REG or MEM to be copied and incremented. */
rtx incloc = XEXP (value, 0);
/* Nonzero if increment after copying. */
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
rtx last;
rtx inc;
rtx add_insn;
int code;
rtx store;
rtx real_in = in == value ? XEXP (in, 0) : in;
/* No hard register is equivalent to this register after
inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
we could inc/dec that register as well (maybe even using it for
the source), but I'm not sure it's worth worrying about. */
if (GET_CODE (incloc) == REG)
reg_last_reload_reg[REGNO (incloc)] = 0;
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
inc_amount = - inc_amount;
inc = GEN_INT (inc_amount);
/* If this is post-increment, first copy the location to the reload reg. */
if (post && real_in != reloadreg)
emit_insn (gen_move_insn (reloadreg, real_in));
if (in == value)
{
/* See if we can directly increment INCLOC. Use a method similar to
that in gen_reload. */
last = get_last_insn ();
add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
gen_rtx_PLUS (GET_MODE (incloc),
incloc, inc)));
code = recog_memoized (add_insn);
if (code >= 0)
{
extract_insn (add_insn);
if (constrain_operands (1))
{
/* If this is a pre-increment and we have incremented the value
where it lives, copy the incremented value to RELOADREG to
be used as an address. */
if (! post)
emit_insn (gen_move_insn (reloadreg, incloc));
return add_insn;
}
}
delete_insns_since (last);
}
/* If couldn't do the increment directly, must increment in RELOADREG.
The way we do this depends on whether this is pre- or post-increment.
For pre-increment, copy INCLOC to the reload register, increment it
there, then save back. */
if (! post)
{
if (in != reloadreg)
emit_insn (gen_move_insn (reloadreg, real_in));
emit_insn (gen_add2_insn (reloadreg, inc));
store = emit_insn (gen_move_insn (incloc, reloadreg));
}
else
{
/* Postincrement.
Because this might be a jump insn or a compare, and because RELOADREG
may not be available after the insn in an input reload, we must do
the incrementation before the insn being reloaded for.
We have already copied IN to RELOADREG. Increment the copy in
RELOADREG, save that back, then decrement RELOADREG so it has
the original value. */
emit_insn (gen_add2_insn (reloadreg, inc));
store = emit_insn (gen_move_insn (incloc, reloadreg));
emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
}
return store;
}
/* Return 1 if we are certain that the constraint-string STRING allows
the hard register REG. Return 0 if we can't be sure of this. */
static int
constraint_accepts_reg_p (string, reg)
const char *string;
rtx reg;
{
int value = 0;
int regno = true_regnum (reg);
int c;
/* Initialize for first alternative. */
value = 0;
/* Check that each alternative contains `g' or `r'. */
while (1)
switch (c = *string++)
{
case 0:
/* If an alternative lacks `g' or `r', we lose. */
return value;
case ',':
/* If an alternative lacks `g' or `r', we lose. */
if (value == 0)
return 0;
/* Initialize for next alternative. */
value = 0;
break;
case 'g':
case 'r':
/* Any general reg wins for this alternative. */
if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
value = 1;
break;
default:
/* Any reg in specified class wins for this alternative. */
{
enum reg_class class = REG_CLASS_FROM_LETTER (c);
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
value = 1;
}
}
}
/* Return the number of places FIND appears within X, but don't count
an occurrence if some SET_DEST is FIND. */
int
count_occurrences (x, find)
register rtx x, find;
{
register int i, j;
register enum rtx_code code;
register char *format_ptr;
int count;
if (x == find)
return 1;
if (x == 0)
return 0;
code = GET_CODE (x);
switch (code)
{
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
return 0;
case MEM:
if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
return 1;
break;
case SET:
if (SET_DEST (x) == find)
return count_occurrences (SET_SRC (x), find);
break;
default:
break;
}
format_ptr = GET_RTX_FORMAT (code);
count = 0;
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
count += count_occurrences (XEXP (x, i), find);
break;
case 'E':
if (XVEC (x, i) != NULL)
{
for (j = 0; j < XVECLEN (x, i); j++)
count += count_occurrences (XVECEXP (x, i, j), find);
}
break;
}
}
return count;
}
/* This array holds values which are equivalent to a hard register
during reload_cse_regs. Each array element is an EXPR_LIST of
values. Each time a hard register is set, we set the corresponding
array element to the value. Each time a hard register is copied
into memory, we add the memory location to the corresponding array
element. We don't store values or memory addresses with side
effects in this array.
If the value is a CONST_INT, then the mode of the containing
EXPR_LIST is the mode in which that CONST_INT was referenced.
We sometimes clobber a specific entry in a list. In that case, we
just set XEXP (list-entry, 0) to 0. */
static rtx *reg_values;
/* This is a preallocated REG rtx which we use as a temporary in
reload_cse_invalidate_regno, so that we don't need to allocate a
new one each time through a loop in that function. */
static rtx invalidate_regno_rtx;
/* Invalidate any entries in reg_values which depend on REGNO,
including those for REGNO itself. This is called if REGNO is
changing. If CLOBBER is true, then always forget anything we
currently know about REGNO. MODE is the mode of the assignment to
REGNO, which is used to determine how many hard registers are being
changed. If MODE is VOIDmode, then only REGNO is being changed;
this is used when invalidating call clobbered registers across a
call. */
static void
reload_cse_invalidate_regno (regno, mode, clobber)
int regno;
enum machine_mode mode;
int clobber;
{
int endregno;
register int i;
/* Our callers don't always go through true_regnum; we may see a
pseudo-register here from a CLOBBER or the like. We probably
won't ever see a pseudo-register that has a real register number,
for we check anyhow for safety. */
if (regno >= FIRST_PSEUDO_REGISTER)
regno = reg_renumber[regno];
if (regno < 0)
return;
if (mode == VOIDmode)
endregno = regno + 1;
else
endregno = regno + HARD_REGNO_NREGS (regno, mode);
if (clobber)
for (i = regno; i < endregno; i++)
reg_values[i] = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
rtx x;
for (x = reg_values[i]; x; x = XEXP (x, 1))
{
if (XEXP (x, 0) != 0
&& refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_PTR))
{
/* If this is the only entry on the list, clear
reg_values[i]. Otherwise, just clear this entry on
the list. */
if (XEXP (x, 1) == 0 && x == reg_values[i])
{
reg_values[i] = 0;
break;
}
XEXP (x, 0) = 0;
}
}
}
/* We must look at earlier registers, in case REGNO is part of a
multi word value but is not the first register. If an earlier
register has a value in a mode which overlaps REGNO, then we must
invalidate that earlier register. Note that we do not need to
check REGNO or later registers (we must not check REGNO itself,
because we would incorrectly conclude that there was a conflict). */
for (i = 0; i < regno; i++)
{
rtx x;
for (x = reg_values[i]; x; x = XEXP (x, 1))
{
if (XEXP (x, 0) != 0)
{
PUT_MODE (invalidate_regno_rtx, GET_MODE (x));
REGNO (invalidate_regno_rtx) = i;
if (refers_to_regno_p (regno, endregno, invalidate_regno_rtx,
NULL_PTR))
{
reload_cse_invalidate_regno (i, VOIDmode, 1);
break;
}
}
}
}
}
/* The memory at address MEM_BASE is being changed.
Return whether this change will invalidate VAL. */
static int
reload_cse_mem_conflict_p (mem_base, val)
rtx mem_base;
rtx val;
{
enum rtx_code code;
char *fmt;
int i;
code = GET_CODE (val);
switch (code)
{
/* Get rid of a few simple cases quickly. */
case REG:
case PC:
case CC0:
case SCRATCH:
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case MEM:
if (GET_MODE (mem_base) == BLKmode
|| GET_MODE (val) == BLKmode)
return 1;
if (anti_dependence (val, mem_base))
return 1;
/* The address may contain nested MEMs. */
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (reload_cse_mem_conflict_p (mem_base, XEXP (val, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (val, i); j++)
if (reload_cse_mem_conflict_p (mem_base, XVECEXP (val, i, j)))
return 1;
}
}
return 0;
}
/* Invalidate any entries in reg_values which are changed because of a
store to MEM_RTX. If this is called because of a non-const call
instruction, MEM_RTX is (mem:BLK const0_rtx). */
static void
reload_cse_invalidate_mem (mem_rtx)
rtx mem_rtx;
{
register int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
rtx x;
for (x = reg_values[i]; x; x = XEXP (x, 1))
{
if (XEXP (x, 0) != 0
&& reload_cse_mem_conflict_p (mem_rtx, XEXP (x, 0)))
{
/* If this is the only entry on the list, clear
reg_values[i]. Otherwise, just clear this entry on
the list. */
if (XEXP (x, 1) == 0 && x == reg_values[i])
{
reg_values[i] = 0;
break;
}
XEXP (x, 0) = 0;
}
}
}
}
/* Invalidate DEST, which is being assigned to or clobbered. The
second parameter exists so that this function can be passed to
note_stores; it is ignored. */
static void
reload_cse_invalidate_rtx (dest, ignore)
rtx dest;
rtx ignore ATTRIBUTE_UNUSED;
{
while (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SUBREG)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG)
reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1);
else if (GET_CODE (dest) == MEM)
reload_cse_invalidate_mem (dest);
}
/* Do a very simple CSE pass over the hard registers.
This function detects no-op moves where we happened to assign two
different pseudo-registers to the same hard register, and then
copied one to the other. Reload will generate a useless
instruction copying a register to itself.
This function also detects cases where we load a value from memory
into two different registers, and (if memory is more expensive than
registers) changes it to simply copy the first register into the
second register.
Another optimization is performed that scans the operands of each
instruction to see whether the value is already available in a
hard register. It then replaces the operand with the hard register
if possible, much like an optional reload would. */
static void
reload_cse_regs_1 (first)
rtx first;
{
char *firstobj;
rtx callmem;
register int i;
rtx insn;
init_alias_analysis ();
reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
bzero ((char *)reg_values, FIRST_PSEUDO_REGISTER * sizeof (rtx));
/* Create our EXPR_LIST structures on reload_obstack, so that we can
free them when we are done. */
push_obstacks (&reload_obstack, &reload_obstack);
firstobj = (char *) obstack_alloc (&reload_obstack, 0);
/* We pass this to reload_cse_invalidate_mem to invalidate all of
memory for a non-const call instruction. */
callmem = gen_rtx_MEM (BLKmode, const0_rtx);
/* This is used in reload_cse_invalidate_regno to avoid consing a
new REG in a loop in that function. */
invalidate_regno_rtx = gen_rtx_REG (VOIDmode, 0);
for (insn = first; insn; insn = NEXT_INSN (insn))
{
rtx body;
if (GET_CODE (insn) == CODE_LABEL)
{
/* Forget all the register values at a code label. We don't
try to do anything clever around jumps. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_values[i] = 0;
continue;
}
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_values[i] = 0;
continue;
}
#endif
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
/* If this is a call instruction, forget anything stored in a
call clobbered register, or, if this is not a const call, in
memory. */
if (GET_CODE (insn) == CALL_INSN)
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i])
reload_cse_invalidate_regno (i, VOIDmode, 1);
if (! CONST_CALL_P (insn))
reload_cse_invalidate_mem (callmem);
}
/* Forget all the register values at a volatile asm. */
if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == ASM_OPERANDS
&& MEM_VOLATILE_P (PATTERN (insn)))
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_values[i] = 0;
body = PATTERN (insn);
if (GET_CODE (body) == SET)
{
int count = 0;
if (reload_cse_noop_set_p (body, insn))
{
/* If this sets the return value of the function, we must keep
a USE around, in case this is in a different basic block
than the final USE. Otherwise, we could loose important
register lifeness information on SMALL_REGISTER_CLASSES
machines, where return registers might be used as spills:
subsequent passes assume that spill registers are dead at
the end of a basic block. */
if (REG_FUNCTION_VALUE_P (SET_DEST (body)))
{
pop_obstacks ();
PATTERN (insn) = gen_rtx_USE (VOIDmode, SET_DEST (body));
INSN_CODE (insn) = -1;
REG_NOTES (insn) = NULL_RTX;
push_obstacks (&reload_obstack, &reload_obstack);
}
else
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
/* We're done with this insn. */
continue;
}
/* It's not a no-op, but we can try to simplify it. */
count += reload_cse_simplify_set (body, insn);
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn);
reload_cse_record_set (body, body);
}
else if (GET_CODE (body) == PARALLEL)
{
int count = 0;
rtx value = NULL_RTX;
/* If every action in a PARALLEL is a noop, we can delete
the entire PARALLEL. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == SET)
{
if (! reload_cse_noop_set_p (part, insn))
break;
if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
{
if (value)
break;
value = SET_DEST (part);
}
}
else if (GET_CODE (part) != CLOBBER)
break;
}
if (i < 0)
{
if (value)
{
pop_obstacks ();
PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
INSN_CODE (insn) = -1;
REG_NOTES (insn) = NULL_RTX;
push_obstacks (&reload_obstack, &reload_obstack);
}
else
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
/* We're done with this insn. */
continue;
}
/* It's not a no-op, but we can try to simplify it. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn);
/* Look through the PARALLEL and record the values being
set, if possible. Also handle any CLOBBERs. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx x = XVECEXP (body, 0, i);
if (GET_CODE (x) == SET)
reload_cse_record_set (x, body);
else
note_stores (x, reload_cse_invalidate_rtx);
}
}
else
note_stores (body, reload_cse_invalidate_rtx);
#ifdef AUTO_INC_DEC
/* Clobber any registers which appear in REG_INC notes. We
could keep track of the changes to their values, but it is
unlikely to help. */
{
rtx x;
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
if (REG_NOTE_KIND (x) == REG_INC)
reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX);
}
#endif
/* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
after we have processed the insn. */
if (GET_CODE (insn) == CALL_INSN)
{
rtx x;
for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX);
}
}
/* Free all the temporary structures we created, and go back to the
regular obstacks. */
obstack_free (&reload_obstack, firstobj);
pop_obstacks ();
}
/* Call cse / combine like post-reload optimization phases.
FIRST is the first instruction. */
void
reload_cse_regs (first)
rtx first;
{
reload_cse_regs_1 (first);
reload_combine ();
reload_cse_move2add (first);
if (flag_expensive_optimizations)
reload_cse_regs_1 (first);
}
/* Return whether the values known for REGNO are equal to VAL. MODE
is the mode of the object that VAL is being copied to; this matters
if VAL is a CONST_INT. */
static int
reload_cse_regno_equal_p (regno, val, mode)
int regno;
rtx val;
enum machine_mode mode;
{
rtx x;
if (val == 0)
return 0;
for (x = reg_values[regno]; x; x = XEXP (x, 1))
if (XEXP (x, 0) != 0
&& rtx_equal_p (XEXP (x, 0), val)
&& (! flag_float_store || GET_CODE (XEXP (x, 0)) != MEM
|| GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
&& (GET_CODE (val) != CONST_INT
|| mode == GET_MODE (x)
|| (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
/* On a big endian machine if the value spans more than
one register then this register holds the high part of
it and we can't use it.
??? We should also compare with the high part of the
value. */
&& !(WORDS_BIG_ENDIAN
&& HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
GET_MODE_BITSIZE (GET_MODE (x))))))
return 1;
return 0;
}
/* See whether a single set is a noop. SET is the set instruction we
are should check, and INSN is the instruction from which it came. */
static int
reload_cse_noop_set_p (set, insn)
rtx set;
rtx insn;
{
rtx src, dest;
enum machine_mode dest_mode;
int dreg, sreg;
int ret;
src = SET_SRC (set);
dest = SET_DEST (set);
dest_mode = GET_MODE (dest);
if (side_effects_p (src))
return 0;
dreg = true_regnum (dest);
sreg = true_regnum (src);
/* Check for setting a register to itself. In this case, we don't
have to worry about REG_DEAD notes. */
if (dreg >= 0 && dreg == sreg)
return 1;
ret = 0;
if (dreg >= 0)
{
/* Check for setting a register to itself. */
if (dreg == sreg)
ret = 1;
/* Check for setting a register to a value which we already know
is in the register. */
else if (reload_cse_regno_equal_p (dreg, src, dest_mode))
ret = 1;
/* Check for setting a register DREG to another register SREG
where SREG is equal to a value which is already in DREG. */
else if (sreg >= 0)
{
rtx x;
for (x = reg_values[sreg]; x; x = XEXP (x, 1))
{
rtx tmp;
if (XEXP (x, 0) == 0)
continue;
if (dest_mode == GET_MODE (x))
tmp = XEXP (x, 0);
else if (GET_MODE_BITSIZE (dest_mode)
< GET_MODE_BITSIZE (GET_MODE (x)))
tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
else
continue;
if (tmp
&& reload_cse_regno_equal_p (dreg, tmp, dest_mode))
{
ret = 1;
break;
}
}
}
}
else if (GET_CODE (dest) == MEM)
{
/* Check for storing a register to memory when we know that the
register is equivalent to the memory location. */
if (sreg >= 0
&& reload_cse_regno_equal_p (sreg, dest, dest_mode)
&& ! side_effects_p (dest))
ret = 1;
}
return ret;
}
/* Try to simplify a single SET instruction. SET is the set pattern.
INSN is the instruction it came from.
This function only handles one case: if we set a register to a value
which is not a register, we try to find that value in some other register
and change the set into a register copy. */
static int
reload_cse_simplify_set (set, insn)
rtx set;
rtx insn;
{
int dreg;
rtx src;
enum machine_mode dest_mode;
enum reg_class dclass;
register int i;
dreg = true_regnum (SET_DEST (set));
if (dreg < 0)
return 0;
src = SET_SRC (set);
if (side_effects_p (src) || true_regnum (src) >= 0)
return 0;
dclass = REGNO_REG_CLASS (dreg);
/* If memory loads are cheaper than register copies, don't change them. */
if (GET_CODE (src) == MEM
&& MEMORY_MOVE_COST (GET_MODE (src), dclass, 1) < 2)
return 0;
/* If the constant is cheaper than a register, don't change it. */
if (CONSTANT_P (src)
&& rtx_cost (src, SET) < 2)
return 0;
dest_mode = GET_MODE (SET_DEST (set));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (i != dreg
&& REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2
&& reload_cse_regno_equal_p (i, src, dest_mode))
{
int validated;
/* Pop back to the real obstacks while changing the insn. */
pop_obstacks ();
validated = validate_change (insn, &SET_SRC (set),
gen_rtx_REG (dest_mode, i), 1);
/* Go back to the obstack we are using for temporary
storage. */
push_obstacks (&reload_obstack, &reload_obstack);
if (validated)
return 1;
}
}
return 0;
}
/* Try to replace operands in INSN with equivalent values that are already
in registers. This can be viewed as optional reloading.
For each non-register operand in the insn, see if any hard regs are
known to be equivalent to that operand. Record the alternatives which
can accept these hard registers. Among all alternatives, select the
ones which are better or equal to the one currently matching, where
"better" is in terms of '?' and '!' constraints. Among the remaining
alternatives, select the one which replaces most operands with
hard registers. */
static int
reload_cse_simplify_operands (insn)
rtx insn;
{
#ifdef REGISTER_CONSTRAINTS
int i,j;
const char *constraints[MAX_RECOG_OPERANDS];
/* Vector recording how bad an alternative is. */
int *alternative_reject;
/* Vector recording how many registers can be introduced by choosing
this alternative. */
int *alternative_nregs;
/* Array of vectors recording, for each operand and each alternative,
which hard register to substitute, or -1 if the operand should be
left as it is. */
int *op_alt_regno[MAX_RECOG_OPERANDS];
/* Array of alternatives, sorted in order of decreasing desirability. */
int *alternative_order;
rtx reg = gen_rtx_REG (VOIDmode, -1);
extract_insn (insn);
if (recog_n_alternatives == 0 || recog_n_operands == 0)
return 0;
/* Figure out which alternative currently matches. */
if (! constrain_operands (1))
fatal_insn_not_found (insn);
alternative_reject = (int *) alloca (recog_n_alternatives * sizeof (int));
alternative_nregs = (int *) alloca (recog_n_alternatives * sizeof (int));
alternative_order = (int *) alloca (recog_n_alternatives * sizeof (int));
bzero ((char *)alternative_reject, recog_n_alternatives * sizeof (int));
bzero ((char *)alternative_nregs, recog_n_alternatives * sizeof (int));
for (i = 0; i < recog_n_operands; i++)
{
enum machine_mode mode;
int regno;
const char *p;
op_alt_regno[i] = (int *) alloca (recog_n_alternatives * sizeof (int));
for (j = 0; j < recog_n_alternatives; j++)
op_alt_regno[i][j] = -1;
p = constraints[i] = recog_constraints[i];
mode = recog_operand_mode[i];
/* Add the reject values for each alternative given by the constraints
for this operand. */
j = 0;
while (*p != '\0')
{
char c = *p++;
if (c == ',')
j++;
else if (c == '?')
alternative_reject[j] += 3;
else if (c == '!')
alternative_reject[j] += 300;
}
/* We won't change operands which are already registers. We
also don't want to modify output operands. */
regno = true_regnum (recog_operand[i]);
if (regno >= 0
|| constraints[i][0] == '='
|| constraints[i][0] == '+')
continue;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
int class = (int) NO_REGS;
if (! reload_cse_regno_equal_p (regno, recog_operand[i], mode))
continue;
REGNO (reg) = regno;
PUT_MODE (reg, mode);
/* We found a register equal to this operand. Now look for all
alternatives that can accept this register and have not been
assigned a register they can use yet. */
j = 0;
p = constraints[i];
for (;;)
{
char c = *p++;
switch (c)
{
case '=': case '+': case '?':
case '#': case '&': case '!':
case '*': case '%':
case '0': case '1': case '2': case '3': case '4':
case 'm': case '<': case '>': case 'V': case 'o':
case 'E': case 'F': case 'G': case 'H':
case 's': case 'i': case 'n':
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P':
#ifdef EXTRA_CONSTRAINT
case 'Q': case 'R': case 'S': case 'T': case 'U':
#endif
case 'p': case 'X':
/* These don't say anything we care about. */
break;
case 'g': case 'r':
class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
break;
default:
class
= reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
break;
case ',': case '\0':
/* See if REGNO fits this alternative, and set it up as the
replacement register if we don't have one for this
alternative yet and the operand being replaced is not
a cheap CONST_INT. */
if (op_alt_regno[i][j] == -1
&& reg_fits_class_p (reg, class, 0, mode)
&& (GET_CODE (recog_operand[i]) != CONST_INT
|| rtx_cost (recog_operand[i], SET) > rtx_cost (reg, SET)))
{
alternative_nregs[j]++;
op_alt_regno[i][j] = regno;
}
j++;
break;
}
if (c == '\0')
break;
}
}
}
/* Record all alternatives which are better or equal to the currently
matching one in the alternative_order array. */
for (i = j = 0; i < recog_n_alternatives; i++)
if (alternative_reject[i] <= alternative_reject[which_alternative])
alternative_order[j++] = i;
recog_n_alternatives = j;
/* Sort it. Given a small number of alternatives, a dumb algorithm
won't hurt too much. */
for (i = 0; i < recog_n_alternatives - 1; i++)
{
int best = i;
int best_reject = alternative_reject[alternative_order[i]];
int best_nregs = alternative_nregs[alternative_order[i]];
int tmp;
for (j = i + 1; j < recog_n_alternatives; j++)
{
int this_reject = alternative_reject[alternative_order[j]];
int this_nregs = alternative_nregs[alternative_order[j]];
if (this_reject < best_reject
|| (this_reject == best_reject && this_nregs < best_nregs))
{
best = j;
best_reject = this_reject;
best_nregs = this_nregs;
}
}
tmp = alternative_order[best];
alternative_order[best] = alternative_order[i];
alternative_order[i] = tmp;
}
/* Substitute the operands as determined by op_alt_regno for the best
alternative. */
j = alternative_order[0];
/* Pop back to the real obstacks while changing the insn. */
pop_obstacks ();
for (i = 0; i < recog_n_operands; i++)
{
enum machine_mode mode = recog_operand_mode[i];
if (op_alt_regno[i][j] == -1)
continue;
validate_change (insn, recog_operand_loc[i],
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
}
for (i = recog_n_dups - 1; i >= 0; i--)
{
int op = recog_dup_num[i];
enum machine_mode mode = recog_operand_mode[op];
if (op_alt_regno[op][j] == -1)
continue;
validate_change (insn, recog_dup_loc[i],
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
}
/* Go back to the obstack we are using for temporary
storage. */
push_obstacks (&reload_obstack, &reload_obstack);
return apply_change_group ();
#else
return 0;
#endif
}
/* These two variables are used to pass information from
reload_cse_record_set to reload_cse_check_clobber. */
static int reload_cse_check_clobbered;
static rtx reload_cse_check_src;
/* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set
RELOAD_CSE_CHECK_CLOBBERED. This is called via note_stores. The
second argument, which is passed by note_stores, is ignored. */
static void
reload_cse_check_clobber (dest, ignore)
rtx dest;
rtx ignore ATTRIBUTE_UNUSED;
{
if (reg_overlap_mentioned_p (dest, reload_cse_check_src))
reload_cse_check_clobbered = 1;
}
/* Record the result of a SET instruction. SET is the set pattern.
BODY is the pattern of the insn that it came from. */
static void
reload_cse_record_set (set, body)
rtx set;
rtx body;
{
rtx dest, src, x;
int dreg, sreg;
enum machine_mode dest_mode;
dest = SET_DEST (set);
src = SET_SRC (set);
dreg = true_regnum (dest);
sreg = true_regnum (src);
dest_mode = GET_MODE (dest);
/* Some machines don't define AUTO_INC_DEC, but they still use push
instructions. We need to catch that case here in order to
invalidate the stack pointer correctly. Note that invalidating
the stack pointer is different from invalidating DEST. */
x = dest;
while (GET_CODE (x) == SUBREG
|| GET_CODE (x) == ZERO_EXTRACT
|| GET_CODE (x) == SIGN_EXTRACT
|| GET_CODE (x) == STRICT_LOW_PART)
x = XEXP (x, 0);
if (push_operand (x, GET_MODE (x)))
{
reload_cse_invalidate_rtx (stack_pointer_rtx, NULL_RTX);
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
/* We can only handle an assignment to a register, or a store of a
register to a memory location. For other cases, we just clobber
the destination. We also have to just clobber if there are side
effects in SRC or DEST. */
if ((dreg < 0 && GET_CODE (dest) != MEM)
|| side_effects_p (src)
|| side_effects_p (dest))
{
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
#ifdef HAVE_cc0
/* We don't try to handle values involving CC, because it's a pain
to keep track of when they have to be invalidated. */
if (reg_mentioned_p (cc0_rtx, src)
|| reg_mentioned_p (cc0_rtx, dest))
{
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
#endif
/* If BODY is a PARALLEL, then we need to see whether the source of
SET is clobbered by some other instruction in the PARALLEL. */
if (GET_CODE (body) == PARALLEL)
{
int i;
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx x;
x = XVECEXP (body, 0, i);
if (x == set)
continue;
reload_cse_check_clobbered = 0;
reload_cse_check_src = src;
note_stores (x, reload_cse_check_clobber);
if (reload_cse_check_clobbered)
{
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
}
}
if (dreg >= 0)
{
int i;
/* This is an assignment to a register. Update the value we
have stored for the register. */
if (sreg >= 0)
{
rtx x;
/* This is a copy from one register to another. Any values
which were valid for SREG are now valid for DREG. If the
mode changes, we use gen_lowpart_common to extract only
the part of the value that is copied. */
reg_values[dreg] = 0;
for (x = reg_values[sreg]; x; x = XEXP (x, 1))
{
rtx tmp;
if (XEXP (x, 0) == 0)
continue;
if (dest_mode == GET_MODE (XEXP (x, 0)))
tmp = XEXP (x, 0);
else if (GET_MODE_BITSIZE (dest_mode)
> GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
continue;
else
tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
if (tmp)
reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, tmp,
reg_values[dreg]);
}
}
else
reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, src, NULL_RTX);
/* We've changed DREG, so invalidate any values held by other
registers that depend upon it. */
reload_cse_invalidate_regno (dreg, dest_mode, 0);
/* If this assignment changes more than one hard register,
forget anything we know about the others. */
for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++)
reg_values[dreg + i] = 0;
}
else if (GET_CODE (dest) == MEM)
{
/* Invalidate conflicting memory locations. */
reload_cse_invalidate_mem (dest);
/* If we're storing a register to memory, add DEST to the list
in REG_VALUES. */
if (sreg >= 0 && ! side_effects_p (dest))
reg_values[sreg] = gen_rtx_EXPR_LIST (dest_mode, dest,
reg_values[sreg]);
}
else
{
/* We should have bailed out earlier. */
abort ();
}
}
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
addressing now.
This code might also be useful when reload gave up on reg+reg addresssing
because of clashes between the return register and INDEX_REG_CLASS. */
/* The maximum number of uses of a register we can keep track of to
replace them with reg+reg addressing. */
#define RELOAD_COMBINE_MAX_USES 6
/* INSN is the insn where a register has ben used, and USEP points to the
location of the register within the rtl. */
struct reg_use { rtx insn, *usep; };
/* If the register is used in some unknown fashion, USE_INDEX is negative.
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
indicates where it becomes live again.
Otherwise, USE_INDEX is the index of the last encountered use of the
register (which is first among these we have seen since we scan backwards),
OFFSET contains the constant offset that is added to the register in
all encountered uses, and USE_RUID indicates the first encountered, i.e.
last, of these uses.
STORE_RUID is always meaningful if we only want to use a value in a
register in a different place: it denotes the next insn in the insn
stream (i.e. the last ecountered) that sets or clobbers the register. */
static struct
{
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
int use_index;
rtx offset;
int store_ruid;
int use_ruid;
} reg_state[FIRST_PSEUDO_REGISTER];
/* Reverse linear uid. This is increased in reload_combine while scanning
the instructions from last to first. It is used to set last_label_ruid
and the store_ruid / use_ruid fields in reg_state. */
static int reload_combine_ruid;
#define LABEL_LIVE(LABEL) \
(label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
static void
reload_combine ()
{
rtx insn, set;
int first_index_reg = 1, last_index_reg = 0;
int i;
int last_label_ruid;
int min_labelno, n_labels;
HARD_REG_SET ever_live_at_start, *label_live;
/* If reg+reg can be used in offsetable memory adresses, the main chunk of
reload has already used it where appropriate, so there is no use in
trying to generate it now. */
if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
return;
/* To avoid wasting too much time later searching for an index register,
determine the minimum and maximum index register numbers. */
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i))
{
if (! last_index_reg)
last_index_reg = i;
first_index_reg = i;
}
}
/* If no index register is available, we can quit now. */
if (first_index_reg > last_index_reg)
return;
/* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
information is a bit fuzzy immediately after reload, but it's
still good enough to determine which registers are live at a jump
destination. */
min_labelno = get_first_label_num ();
n_labels = max_label_num () - min_labelno;
label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
CLEAR_HARD_REG_SET (ever_live_at_start);
for (i = n_basic_blocks - 1; i >= 0; i--)
{
insn = BLOCK_HEAD (i);
if (GET_CODE (insn) == CODE_LABEL)
{
HARD_REG_SET live;
REG_SET_TO_HARD_REG_SET (live, BASIC_BLOCK (i)->global_live_at_start);
compute_use_by_pseudos (&live, BASIC_BLOCK (i)->global_live_at_start);
COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
IOR_HARD_REG_SET (ever_live_at_start, live);
}
}
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
last_label_ruid = reload_combine_ruid = 0;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
reg_state[i].store_ruid = reload_combine_ruid;
if (fixed_regs[i])
reg_state[i].use_index = -1;
else
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
}
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
{
rtx note;
/* We cannot do our optimization across labels. Invalidating all the use
information we have would be costly, so we just note where the label
is and then later disable any optimization that would cross it. */
if (GET_CODE (insn) == CODE_LABEL)
last_label_ruid = reload_combine_ruid;
if (GET_CODE (insn) == BARRIER)
{
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
}
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
reload_combine_ruid++;
/* Look for (set (REGX) (CONST_INT))
(set (REGX) (PLUS (REGX) (REGY)))
...
... (MEM (REGX)) ...
and convert it to
(set (REGZ) (CONST_INT))
...
... (MEM (PLUS (REGZ) (REGY)))... .
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
and that we know all uses of REGX before it dies. */
set = single_set (insn);
if (set != NULL_RTX
&& GET_CODE (SET_DEST (set)) == REG
&& (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
GET_MODE (SET_DEST (set)))
== 1)
&& GET_CODE (SET_SRC (set)) == PLUS
&& GET_CODE (XEXP (SET_SRC (set), 1)) == REG
&& rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
&& last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
{
rtx reg = SET_DEST (set);
rtx plus = SET_SRC (set);
rtx base = XEXP (plus, 1);
rtx prev = prev_nonnote_insn (insn);
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
int regno = REGNO (reg);
rtx const_reg;
rtx reg_sum = NULL_RTX;
/* Now, we need an index register.
We'll set index_reg to this index register, const_reg to the
register that is to be loaded with the constant
(denoted as REGZ in the substitution illustration above),
and reg_sum to the register-register that we want to use to
substitute uses of REG (typically in MEMs) with.
First check REG and BASE for being index registers;
we can use them even if they are not dead. */
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
REGNO (base)))
{
const_reg = reg;
reg_sum = plus;
}
else
{
/* Otherwise, look for a free index register. Since we have
checked above that neiter REG nor BASE are index registers,
if we find anything at all, it will be different from these
two registers. */
for (i = first_index_reg; i <= last_index_reg; i++)
{
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
&& HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
{
rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
const_reg = index_reg;
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
break;
}
}
}
/* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
(REGY), i.e. BASE, is not clobbered before the last use we'll
create. */
if (prev_set
&& GET_CODE (SET_SRC (prev_set)) == CONST_INT
&& rtx_equal_p (SET_DEST (prev_set), reg)
&& reg_state[regno].use_index >= 0
&& reg_state[REGNO (base)].store_ruid <= reg_state[regno].use_ruid
&& reg_sum)
{
int i;
/* Change destination register and - if necessary - the
constant value in PREV, the constant loading instruction. */
validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
if (reg_state[regno].offset != const0_rtx)
validate_change (prev,
&SET_SRC (prev_set),
GEN_INT (INTVAL (SET_SRC (prev_set))
+ INTVAL (reg_state[regno].offset)),
1);
/* Now for every use of REG that we have recorded, replace REG
with REG_SUM. */
for (i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
validate_change (reg_state[regno].reg_use[i].insn,
reg_state[regno].reg_use[i].usep,
reg_sum, 1);
if (apply_change_group ())
{
rtx *np;
/* Delete the reg-reg addition. */
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
if (reg_state[regno].offset != const0_rtx)
{
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
are now invalid. */
for (np = &REG_NOTES (prev); *np; )
{
if (REG_NOTE_KIND (*np) == REG_EQUAL
|| REG_NOTE_KIND (*np) == REG_EQUIV)
*np = XEXP (*np, 1);
else
np = &XEXP (*np, 1);
}
}
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[REGNO (const_reg)].store_ruid = reload_combine_ruid;
continue;
}
}
}
note_stores (PATTERN (insn), reload_combine_note_store);
if (GET_CODE (insn) == CALL_INSN)
{
rtx link;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
if (call_used_regs[i])
{
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[i].store_ruid = reload_combine_ruid;
}
}
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx use = XEXP (link, 0);
int regno = REGNO (XEXP (use, 0));
if (GET_CODE (use) == CLOBBER)
{
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[regno].store_ruid = reload_combine_ruid;
}
else
reg_state[regno].use_index = -1;
}
}
if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) != RETURN)
{
/* Non-spill registers might be used at the call destination in
some unknown fashion, so we have to mark the unknown use. */
HARD_REG_SET *live;
if ((condjump_p (insn) || condjump_in_parallel_p (insn))
&& JUMP_LABEL (insn))
live = &LABEL_LIVE (JUMP_LABEL (insn));
else
live = &ever_live_at_start;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
if (TEST_HARD_REG_BIT (*live, i))
reg_state[i].use_index = -1;
}
}
reload_combine_note_use (&PATTERN (insn), insn);
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& GET_CODE (XEXP (note, 0)) == REG)
{
int regno = REGNO (XEXP (note, 0));
reg_state[regno].store_ruid = reload_combine_ruid;
reg_state[regno].use_index = -1;
}
}
}
free (label_live);
}
/* Check if DST is a register or a subreg of a register; if it is,
update reg_state[regno].store_ruid and reg_state[regno].use_index
accordingly. Called via note_stores from reload_combine. */
static void
reload_combine_note_store (dst, set)
rtx dst, set;
{
int regno = 0;
int i;
unsigned size = GET_MODE_SIZE (GET_MODE (dst));
if (GET_CODE (dst) == SUBREG)
{
regno = SUBREG_WORD (dst);
dst = SUBREG_REG (dst);
}
if (GET_CODE (dst) != REG)
return;
regno += REGNO (dst);
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
careful with registers / register parts that are not full words.
Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
if (GET_CODE (set) != SET
|| GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|| GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
{
for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--)
{
reg_state[i].use_index = -1;
reg_state[i].store_ruid = reload_combine_ruid;
}
}
else
{
for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--)
{
reg_state[i].store_ruid = reload_combine_ruid;
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
}
}
}
/* XP points to a piece of rtl that has to be checked for any uses of
registers.
*XP is the pattern of INSN, or a part of it.
Called from reload_combine, and recursively by itself. */
static void
reload_combine_note_use (xp, insn)
rtx *xp, insn;
{
rtx x = *xp;
enum rtx_code code = x->code;
char *fmt;
int i, j;
rtx offset = const0_rtx; /* For the REG case below. */
switch (code)
{
case SET:
if (GET_CODE (SET_DEST (x)) == REG)
{
reload_combine_note_use (&SET_SRC (x), insn);
return;
}
break;
case CLOBBER:
if (GET_CODE (SET_DEST (x)) == REG)
return;
break;
case PLUS:
/* We are interested in (plus (reg) (const_int)) . */
if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT)
break;
offset = XEXP (x, 1);
x = XEXP (x, 0);
/* Fall through. */
case REG:
{
int regno = REGNO (x);
int use_index;
/* Some spurious USEs of pseudo registers might remain.
Just ignore them. */
if (regno >= FIRST_PSEUDO_REGISTER)
return;
/* If this register is already used in some unknown fashion, we
can't do anything.
If we decrement the index from zero to -1, we can't store more
uses, so this register becomes used in an unknown fashion. */
use_index = --reg_state[regno].use_index;
if (use_index < 0)
return;
if (use_index != RELOAD_COMBINE_MAX_USES - 1)
{
/* We have found another use for a register that is already
used later. Check if the offsets match; if not, mark the
register as used in an unknown fashion. */
if (! rtx_equal_p (offset, reg_state[regno].offset))
{
reg_state[regno].use_index = -1;
return;
}
}
else
{
/* This is the first use of this register we have seen since we
marked it as dead. */
reg_state[regno].offset = offset;
reg_state[regno].use_ruid = reload_combine_ruid;
}
reg_state[regno].reg_use[use_index].insn = insn;
reg_state[regno].reg_use[use_index].usep = xp;
return;
}
default:
break;
}
/* Recursively process the components of X. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
reload_combine_note_use (&XEXP (x, i), insn);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
reload_combine_note_use (&XVECEXP (x, i, j), insn);
}
}
}
/* See if we can reduce the cost of a constant by replacing a move with
an add. */
/* We cannot do our optimization across labels. Invalidating all the
information about register contents we have would be costly, so we
use last_label_luid (local variable of reload_cse_move2add) to note
where the label is and then later disable any optimization that would
cross it.
reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
reg_set_luid[n] is larger than last_label_luid[n] . */
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
/* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
reg_mode[n] to be valid.
If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
has been set to reg_offset[n] in mode reg_mode[n] .
If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
register n has been set to the sum of reg_offset[n] and register
reg_base_reg[n], calculated in mode reg_mode[n] . */
static rtx reg_offset[FIRST_PSEUDO_REGISTER];
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
/* move2add_luid is linearily increased while scanning the instructions
from first to last. It is used to set reg_set_luid in
reload_cse_move2add and move2add_note_store. */
static int move2add_luid;
/* Generate a CONST_INT and force it in the range of MODE. */
static rtx
gen_mode_int (mode, value)
enum machine_mode mode;
HOST_WIDE_INT value;
{
HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
int width = GET_MODE_BITSIZE (mode);
/* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
sign extend it. */
if (width > 0 && width < HOST_BITS_PER_WIDE_INT
&& (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
cval |= (HOST_WIDE_INT) -1 << width;
return GEN_INT (cval);
}
static void
reload_cse_move2add (first)
rtx first;
{
int i;
rtx insn;
int last_label_luid;
for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
reg_set_luid[i] = 0;
last_label_luid = 0;
move2add_luid = 1;
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
{
rtx pat, note;
if (GET_CODE (insn) == CODE_LABEL)
last_label_luid = move2add_luid;
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
pat = PATTERN (insn);
/* For simplicity, we only perform this optimization on
straightforward SETs. */
if (GET_CODE (pat) == SET
&& GET_CODE (SET_DEST (pat)) == REG)
{
rtx reg = SET_DEST (pat);
int regno = REGNO (reg);
rtx src = SET_SRC (pat);
/* Check if we have valid information on the contents of this
register in the mode of REG. */
/* ??? We don't know how zero / sign extension is handled, hence
we can't go from a narrower to a wider mode. */
if (reg_set_luid[regno] > last_label_luid
&& (GET_MODE_SIZE (GET_MODE (reg))
<= GET_MODE_SIZE (reg_mode[regno]))
&& GET_CODE (reg_offset[regno]) == CONST_INT)
{
/* Try to transform (set (REGX) (CONST_INT A))
...
(set (REGX) (CONST_INT B))
to
(set (REGX) (CONST_INT A))
...
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
{
int success = 0;
rtx new_src
= gen_mode_int (GET_MODE (reg),
INTVAL (src) - INTVAL (reg_offset[regno]));
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
use (set (reg) (reg)) instead.
We don't delete this insn, nor do we convert it into a
note, to avoid losing register notes or the return
value flag. jump2 already knowns how to get rid of
no-op moves. */
if (new_src == const0_rtx)
success = validate_change (insn, &SET_SRC (pat), reg, 0);
else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
&& have_add2_insn (GET_MODE (reg)))
success = validate_change (insn, &PATTERN (insn),
gen_add2_insn (reg, new_src), 0);
reg_set_luid[regno] = move2add_luid;
reg_mode[regno] = GET_MODE (reg);
reg_offset[regno] = src;
continue;
}
/* Try to transform (set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT B)))
to
(REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
else if (GET_CODE (src) == REG
&& reg_base_reg[regno] == REGNO (src)
&& reg_set_luid[regno] > reg_set_luid[REGNO (src)])
{
rtx next = next_nonnote_insn (insn);
rtx set;
if (next)
set = single_set (next);
if (next
&& set
&& SET_DEST (set) == reg
&& GET_CODE (SET_SRC (set)) == PLUS
&& XEXP (SET_SRC (set), 0) == reg
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
{
rtx src3 = XEXP (SET_SRC (set), 1);
rtx new_src
= gen_mode_int (GET_MODE (reg),
INTVAL (src3)
- INTVAL (reg_offset[regno]));
int success = 0;
if (new_src == const0_rtx)
/* See above why we create (set (reg) (reg)) here. */
success
= validate_change (next, &SET_SRC (set), reg, 0);
else if ((rtx_cost (new_src, PLUS)
< 2 + rtx_cost (src3, SET))
&& have_add2_insn (GET_MODE (reg)))
success
= validate_change (next, &PATTERN (next),
gen_add2_insn (reg, new_src), 0);
if (success)
{
/* INSN might be the first insn in a basic block
if the preceding insn is a conditional jump
or a possible-throwing call. */
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
insn = next;
reg_set_luid[regno] = move2add_luid;
reg_mode[regno] = GET_MODE (reg);
reg_offset[regno] = src3;
continue;
}
}
}
}
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& GET_CODE (XEXP (note, 0)) == REG)
{
/* Indicate that this register has been recently written to,
but the exact contents are not available. */
int regno = REGNO (XEXP (note, 0));
if (regno < FIRST_PSEUDO_REGISTER)
{
reg_set_luid[regno] = move2add_luid;
reg_offset[regno] = note;
}
}
}
note_stores (PATTERN (insn), move2add_note_store);
/* If this is a CALL_INSN, all call used registers are stored with
unknown values. */
if (GET_CODE (insn) == CALL_INSN)
{
for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
{
if (call_used_regs[i])
{
reg_set_luid[i] = move2add_luid;
reg_offset[i] = insn; /* Invalidate contents. */
}
}
}
}
}
/* SET is a SET or CLOBBER that sets DST.
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
Called from reload_cse_move2add via note_stores. */
static void
move2add_note_store (dst, set)
rtx dst, set;
{
int regno = 0;
int i;
enum machine_mode mode = GET_MODE (dst);
if (GET_CODE (dst) == SUBREG)
{
regno = SUBREG_WORD (dst);
dst = SUBREG_REG (dst);
}
if (GET_CODE (dst) != REG)
return;
regno += REGNO (dst);
if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
&& GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
&& GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
{
rtx src = SET_SRC (set);
reg_mode[regno] = mode;
switch (GET_CODE (src))
{
case PLUS:
{
rtx src0 = XEXP (src, 0);
if (GET_CODE (src0) == REG)
{
if (REGNO (src0) != regno
|| reg_offset[regno] != const0_rtx)
{
reg_base_reg[regno] = REGNO (src0);
reg_set_luid[regno] = move2add_luid;
}
reg_offset[regno] = XEXP (src, 1);
break;
}
reg_set_luid[regno] = move2add_luid;
reg_offset[regno] = set; /* Invalidate contents. */
break;
}
case REG:
reg_base_reg[regno] = REGNO (SET_SRC (set));
reg_offset[regno] = const0_rtx;
reg_set_luid[regno] = move2add_luid;
break;
default:
reg_base_reg[regno] = -1;
reg_offset[regno] = SET_SRC (set);
reg_set_luid[regno] = move2add_luid;
break;
}
}
else
{
for (i = regno + HARD_REGNO_NREGS (regno, mode) - 1; i >= regno; i--)
{
/* Indicate that this register has been recently written to,
but the exact contents are not available. */
reg_set_luid[i] = move2add_luid;
reg_offset[i] = dst;
}
}
}
#ifdef AUTO_INC_DEC
static void
add_auto_inc_notes (insn, x)
rtx insn;
rtx x;
{
enum rtx_code code = GET_CODE (x);
char *fmt;
int i, j;
if (code == MEM && auto_inc_p (XEXP (x, 0)))
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
return;
}
/* Scan all the operand sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
add_auto_inc_notes (insn, XEXP (x, i));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_auto_inc_notes (insn, XVECEXP (x, i, j));
}
}
#endif