freebsd-dev/tests/sys/netmap/ctrl-api-test.c
Vincenzo Maffione 4f6858e8a9 netmap: add test cases for multiple host rings
Extend the netmap unit tests with new test cases for the multiple-host-rings
feature introduced by r345269.

MFC after:	1 week
2019-04-13 12:50:47 +00:00

2003 lines
47 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2018 Vincenzo Maffione
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <net/if.h>
#include <net/netmap.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <signal.h>
#ifdef __FreeBSD__
#include "freebsd_test_suite/macros.h"
static int
eventfd(int x __unused, int y __unused)
{
errno = ENODEV;
return -1;
}
#else /* __linux__ */
#include <sys/eventfd.h>
#endif
static int
exec_command(int argc, const char *const argv[])
{
pid_t child_pid;
pid_t wret;
int child_status;
int i;
printf("Executing command: ");
for (i = 0; i < argc - 1; i++) {
if (!argv[i]) {
/* Invalid argument. */
return -1;
}
if (i > 0) {
putchar(' ');
}
printf("%s", argv[i]);
}
putchar('\n');
child_pid = fork();
if (child_pid == 0) {
char **av;
int fds[3];
/* Child process. Redirect stdin, stdout
* and stderr. */
for (i = 0; i < 3; i++) {
close(i);
fds[i] = open("/dev/null", O_RDONLY);
if (fds[i] < 0) {
for (i--; i >= 0; i--) {
close(fds[i]);
}
return -1;
}
}
/* Make a copy of the arguments, passing them to execvp. */
av = calloc(argc, sizeof(av[0]));
if (!av) {
exit(EXIT_FAILURE);
}
for (i = 0; i < argc - 1; i++) {
av[i] = strdup(argv[i]);
if (!av[i]) {
exit(EXIT_FAILURE);
}
}
execvp(av[0], av);
perror("execvp()");
exit(EXIT_FAILURE);
}
wret = waitpid(child_pid, &child_status, 0);
if (wret < 0) {
fprintf(stderr, "waitpid() failed: %s\n", strerror(errno));
return wret;
}
if (WIFEXITED(child_status)) {
return WEXITSTATUS(child_status);
}
return -1;
}
#define THRET_SUCCESS ((void *)128)
#define THRET_FAILURE ((void *)0)
struct TestContext {
char ifname[64];
char ifname_ext[128];
char bdgname[64];
uint32_t nr_tx_slots; /* slots in tx rings */
uint32_t nr_rx_slots; /* slots in rx rings */
uint16_t nr_tx_rings; /* number of tx rings */
uint16_t nr_rx_rings; /* number of rx rings */
uint16_t nr_host_tx_rings; /* number of host tx rings */
uint16_t nr_host_rx_rings; /* number of host rx rings */
uint16_t nr_mem_id; /* id of the memory allocator */
uint16_t nr_ringid; /* ring(s) we care about */
uint32_t nr_mode; /* specify NR_REG_* modes */
uint32_t nr_extra_bufs; /* number of requested extra buffers */
uint64_t nr_flags; /* additional flags (see below) */
uint32_t nr_hdr_len; /* for PORT_HDR_SET and PORT_HDR_GET */
uint32_t nr_first_cpu_id; /* vale polling */
uint32_t nr_num_polling_cpus; /* vale polling */
uint32_t sync_kloop_mode; /* sync-kloop */
int fd; /* netmap file descriptor */
void *csb; /* CSB entries (atok and ktoa) */
struct nmreq_option *nr_opt; /* list of options */
sem_t *sem; /* for thread synchronization */
};
static struct TestContext ctx_;
typedef int (*testfunc_t)(struct TestContext *ctx);
static void
nmreq_hdr_init(struct nmreq_header *hdr, const char *ifname)
{
memset(hdr, 0, sizeof(*hdr));
hdr->nr_version = NETMAP_API;
strncpy(hdr->nr_name, ifname, sizeof(hdr->nr_name) - 1);
}
/* Single NETMAP_REQ_PORT_INFO_GET. */
static int
port_info_get(struct TestContext *ctx)
{
struct nmreq_port_info_get req;
struct nmreq_header hdr;
int success;
int ret;
printf("Testing NETMAP_REQ_PORT_INFO_GET on '%s'\n", ctx->ifname_ext);
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_PORT_INFO_GET;
hdr.nr_body = (uintptr_t)&req;
memset(&req, 0, sizeof(req));
req.nr_mem_id = ctx->nr_mem_id;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, PORT_INFO_GET)");
return ret;
}
printf("nr_memsize %llu\n", (unsigned long long)req.nr_memsize);
printf("nr_tx_slots %u\n", req.nr_tx_slots);
printf("nr_rx_slots %u\n", req.nr_rx_slots);
printf("nr_tx_rings %u\n", req.nr_tx_rings);
printf("nr_rx_rings %u\n", req.nr_rx_rings);
printf("nr_mem_id %u\n", req.nr_mem_id);
success = req.nr_memsize && req.nr_tx_slots && req.nr_rx_slots &&
req.nr_tx_rings && req.nr_rx_rings && req.nr_tx_rings;
if (!success) {
return -1;
}
/* Write back results to the context structure. */
ctx->nr_tx_slots = req.nr_tx_slots;
ctx->nr_rx_slots = req.nr_rx_slots;
ctx->nr_tx_rings = req.nr_tx_rings;
ctx->nr_rx_rings = req.nr_rx_rings;
ctx->nr_mem_id = req.nr_mem_id;
return 0;
}
/* Single NETMAP_REQ_REGISTER, no use. */
static int
port_register(struct TestContext *ctx)
{
struct nmreq_register req;
struct nmreq_header hdr;
int success;
int ret;
printf("Testing NETMAP_REQ_REGISTER(mode=%d,ringid=%d,"
"flags=0x%llx) on '%s'\n",
ctx->nr_mode, ctx->nr_ringid, (unsigned long long)ctx->nr_flags,
ctx->ifname_ext);
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_REGISTER;
hdr.nr_body = (uintptr_t)&req;
hdr.nr_options = (uintptr_t)ctx->nr_opt;
memset(&req, 0, sizeof(req));
req.nr_mem_id = ctx->nr_mem_id;
req.nr_mode = ctx->nr_mode;
req.nr_ringid = ctx->nr_ringid;
req.nr_flags = ctx->nr_flags;
req.nr_tx_slots = ctx->nr_tx_slots;
req.nr_rx_slots = ctx->nr_rx_slots;
req.nr_tx_rings = ctx->nr_tx_rings;
req.nr_host_tx_rings = ctx->nr_host_tx_rings;
req.nr_host_rx_rings = ctx->nr_host_rx_rings;
req.nr_rx_rings = ctx->nr_rx_rings;
req.nr_extra_bufs = ctx->nr_extra_bufs;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, REGISTER)");
return ret;
}
printf("nr_offset 0x%llx\n", (unsigned long long)req.nr_offset);
printf("nr_memsize %llu\n", (unsigned long long)req.nr_memsize);
printf("nr_tx_slots %u\n", req.nr_tx_slots);
printf("nr_rx_slots %u\n", req.nr_rx_slots);
printf("nr_tx_rings %u\n", req.nr_tx_rings);
printf("nr_rx_rings %u\n", req.nr_rx_rings);
printf("nr_host_tx_rings %u\n", req.nr_host_tx_rings);
printf("nr_host_rx_rings %u\n", req.nr_host_rx_rings);
printf("nr_mem_id %u\n", req.nr_mem_id);
printf("nr_extra_bufs %u\n", req.nr_extra_bufs);
success = req.nr_memsize && (ctx->nr_mode == req.nr_mode) &&
(ctx->nr_ringid == req.nr_ringid) &&
(ctx->nr_flags == req.nr_flags) &&
((!ctx->nr_tx_slots && req.nr_tx_slots) ||
(ctx->nr_tx_slots == req.nr_tx_slots)) &&
((!ctx->nr_rx_slots && req.nr_rx_slots) ||
(ctx->nr_rx_slots == req.nr_rx_slots)) &&
((!ctx->nr_tx_rings && req.nr_tx_rings) ||
(ctx->nr_tx_rings == req.nr_tx_rings)) &&
((!ctx->nr_rx_rings && req.nr_rx_rings) ||
(ctx->nr_rx_rings == req.nr_rx_rings)) &&
((!ctx->nr_host_tx_rings && req.nr_host_tx_rings) ||
(ctx->nr_host_tx_rings == req.nr_host_tx_rings)) &&
((!ctx->nr_host_rx_rings && req.nr_host_rx_rings) ||
(ctx->nr_host_rx_rings == req.nr_host_rx_rings)) &&
((!ctx->nr_mem_id && req.nr_mem_id) ||
(ctx->nr_mem_id == req.nr_mem_id)) &&
(ctx->nr_extra_bufs == req.nr_extra_bufs);
if (!success) {
return -1;
}
/* Write back results to the context structure.*/
ctx->nr_tx_slots = req.nr_tx_slots;
ctx->nr_rx_slots = req.nr_rx_slots;
ctx->nr_tx_rings = req.nr_tx_rings;
ctx->nr_rx_rings = req.nr_rx_rings;
ctx->nr_host_tx_rings = req.nr_host_tx_rings;
ctx->nr_host_rx_rings = req.nr_host_rx_rings;
ctx->nr_mem_id = req.nr_mem_id;
ctx->nr_extra_bufs = req.nr_extra_bufs;
return 0;
}
static int
niocregif(struct TestContext *ctx, int netmap_api)
{
struct nmreq req;
int success;
int ret;
printf("Testing legacy NIOCREGIF on '%s'\n", ctx->ifname_ext);
memset(&req, 0, sizeof(req));
memcpy(req.nr_name, ctx->ifname_ext, sizeof(req.nr_name));
req.nr_name[sizeof(req.nr_name) - 1] = '\0';
req.nr_version = netmap_api;
req.nr_ringid = ctx->nr_ringid;
req.nr_flags = ctx->nr_mode | ctx->nr_flags;
req.nr_tx_slots = ctx->nr_tx_slots;
req.nr_rx_slots = ctx->nr_rx_slots;
req.nr_tx_rings = ctx->nr_tx_rings;
req.nr_rx_rings = ctx->nr_rx_rings;
req.nr_arg2 = ctx->nr_mem_id;
req.nr_arg3 = ctx->nr_extra_bufs;
ret = ioctl(ctx->fd, NIOCREGIF, &req);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCREGIF)");
return ret;
}
printf("nr_offset 0x%x\n", req.nr_offset);
printf("nr_memsize %u\n", req.nr_memsize);
printf("nr_tx_slots %u\n", req.nr_tx_slots);
printf("nr_rx_slots %u\n", req.nr_rx_slots);
printf("nr_tx_rings %u\n", req.nr_tx_rings);
printf("nr_rx_rings %u\n", req.nr_rx_rings);
printf("nr_version %d\n", req.nr_version);
printf("nr_ringid %x\n", req.nr_ringid);
printf("nr_flags %x\n", req.nr_flags);
printf("nr_arg2 %u\n", req.nr_arg2);
printf("nr_arg3 %u\n", req.nr_arg3);
success = req.nr_memsize &&
(ctx->nr_ringid == req.nr_ringid) &&
((ctx->nr_mode | ctx->nr_flags) == req.nr_flags) &&
((!ctx->nr_tx_slots && req.nr_tx_slots) ||
(ctx->nr_tx_slots == req.nr_tx_slots)) &&
((!ctx->nr_rx_slots && req.nr_rx_slots) ||
(ctx->nr_rx_slots == req.nr_rx_slots)) &&
((!ctx->nr_tx_rings && req.nr_tx_rings) ||
(ctx->nr_tx_rings == req.nr_tx_rings)) &&
((!ctx->nr_rx_rings && req.nr_rx_rings) ||
(ctx->nr_rx_rings == req.nr_rx_rings)) &&
((!ctx->nr_mem_id && req.nr_arg2) ||
(ctx->nr_mem_id == req.nr_arg2)) &&
(ctx->nr_extra_bufs == req.nr_arg3);
if (!success) {
return -1;
}
/* Write back results to the context structure.*/
ctx->nr_tx_slots = req.nr_tx_slots;
ctx->nr_rx_slots = req.nr_rx_slots;
ctx->nr_tx_rings = req.nr_tx_rings;
ctx->nr_rx_rings = req.nr_rx_rings;
ctx->nr_mem_id = req.nr_arg2;
ctx->nr_extra_bufs = req.nr_arg3;
return ret;
}
/* The 11 ABI is the one right before the introduction of the new NIOCCTRL
* ABI. The 11 ABI is useful to perform tests with legacy applications
* (which use the 11 ABI) and new kernel (which uses 12, or higher).
* However, version 14 introduced a change in the layout of struct netmap_if,
* so that binary backward compatibility to 11 is not supported anymore.
*/
#define NETMAP_API_NIOCREGIF 14
static int
legacy_regif_default(struct TestContext *ctx)
{
return niocregif(ctx, NETMAP_API_NIOCREGIF);
}
static int
legacy_regif_all_nic(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ALL_NIC;
return niocregif(ctx, NETMAP_API);
}
static int
legacy_regif_12(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ALL_NIC;
return niocregif(ctx, NETMAP_API_NIOCREGIF+1);
}
static int
legacy_regif_sw(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_SW;
return niocregif(ctx, NETMAP_API_NIOCREGIF);
}
static int
legacy_regif_future(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_NIC_SW;
/* Test forward compatibility for the legacy ABI. This means
* using an older kernel (with ABI 12 or higher) and a newer
* application (with ABI greater than NETMAP_API). */
return niocregif(ctx, NETMAP_API+2);
}
static int
legacy_regif_extra_bufs(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ALL_NIC;
ctx->nr_extra_bufs = 20; /* arbitrary number of extra bufs */
return niocregif(ctx, NETMAP_API_NIOCREGIF);
}
static int
legacy_regif_extra_bufs_pipe(struct TestContext *ctx)
{
strncat(ctx->ifname_ext, "{pipeexbuf", sizeof(ctx->ifname_ext));
ctx->nr_mode = NR_REG_ALL_NIC;
ctx->nr_extra_bufs = 58; /* arbitrary number of extra bufs */
return niocregif(ctx, NETMAP_API_NIOCREGIF);
}
static int
legacy_regif_extra_bufs_pipe_vale(struct TestContext *ctx)
{
strncpy(ctx->ifname_ext, "valeX1:Y4", sizeof(ctx->ifname_ext));
return legacy_regif_extra_bufs_pipe(ctx);
}
/* Only valid after a successful port_register(). */
static int
num_registered_rings(struct TestContext *ctx)
{
if (ctx->nr_flags & NR_TX_RINGS_ONLY) {
return ctx->nr_tx_rings;
}
if (ctx->nr_flags & NR_RX_RINGS_ONLY) {
return ctx->nr_rx_rings;
}
return ctx->nr_tx_rings + ctx->nr_rx_rings;
}
static int
port_register_hwall_host(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_NIC_SW;
return port_register(ctx);
}
static int
port_register_hostall(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_SW;
return port_register(ctx);
}
static int
port_register_hwall(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ALL_NIC;
return port_register(ctx);
}
static int
port_register_single_hw_pair(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ONE_NIC;
ctx->nr_ringid = 0;
return port_register(ctx);
}
static int
port_register_single_host_pair(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ONE_SW;
ctx->nr_host_tx_rings = 2;
ctx->nr_host_rx_rings = 2;
ctx->nr_ringid = 1;
return port_register(ctx);
}
static int
port_register_hostall_many(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_SW;
ctx->nr_host_tx_rings = 5;
ctx->nr_host_rx_rings = 4;
return port_register(ctx);
}
static int
port_register_hwall_tx(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ALL_NIC;
ctx->nr_flags |= NR_TX_RINGS_ONLY;
return port_register(ctx);
}
static int
port_register_hwall_rx(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_ALL_NIC;
ctx->nr_flags |= NR_RX_RINGS_ONLY;
return port_register(ctx);
}
/* NETMAP_REQ_VALE_ATTACH */
static int
vale_attach(struct TestContext *ctx)
{
struct nmreq_vale_attach req;
struct nmreq_header hdr;
char vpname[sizeof(ctx->bdgname) + 1 + sizeof(ctx->ifname_ext)];
int ret;
snprintf(vpname, sizeof(vpname), "%s:%s", ctx->bdgname, ctx->ifname_ext);
printf("Testing NETMAP_REQ_VALE_ATTACH on '%s'\n", vpname);
nmreq_hdr_init(&hdr, vpname);
hdr.nr_reqtype = NETMAP_REQ_VALE_ATTACH;
hdr.nr_body = (uintptr_t)&req;
memset(&req, 0, sizeof(req));
req.reg.nr_mem_id = ctx->nr_mem_id;
if (ctx->nr_mode == 0) {
ctx->nr_mode = NR_REG_ALL_NIC; /* default */
}
req.reg.nr_mode = ctx->nr_mode;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, VALE_ATTACH)");
return ret;
}
printf("nr_mem_id %u\n", req.reg.nr_mem_id);
return ((!ctx->nr_mem_id && req.reg.nr_mem_id > 1) ||
(ctx->nr_mem_id == req.reg.nr_mem_id)) &&
(ctx->nr_flags == req.reg.nr_flags)
? 0
: -1;
}
/* NETMAP_REQ_VALE_DETACH */
static int
vale_detach(struct TestContext *ctx)
{
struct nmreq_header hdr;
struct nmreq_vale_detach req;
char vpname[256];
int ret;
snprintf(vpname, sizeof(vpname), "%s:%s", ctx->bdgname, ctx->ifname_ext);
printf("Testing NETMAP_REQ_VALE_DETACH on '%s'\n", vpname);
nmreq_hdr_init(&hdr, vpname);
hdr.nr_reqtype = NETMAP_REQ_VALE_DETACH;
hdr.nr_body = (uintptr_t)&req;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, VALE_DETACH)");
return ret;
}
return 0;
}
/* First NETMAP_REQ_VALE_ATTACH, then NETMAP_REQ_VALE_DETACH. */
static int
vale_attach_detach(struct TestContext *ctx)
{
int ret;
if ((ret = vale_attach(ctx)) != 0) {
return ret;
}
return vale_detach(ctx);
}
static int
vale_attach_detach_host_rings(struct TestContext *ctx)
{
ctx->nr_mode = NR_REG_NIC_SW;
return vale_attach_detach(ctx);
}
/* First NETMAP_REQ_PORT_HDR_SET and the NETMAP_REQ_PORT_HDR_GET
* to check that we get the same value. */
static int
port_hdr_set_and_get(struct TestContext *ctx)
{
struct nmreq_port_hdr req;
struct nmreq_header hdr;
int ret;
printf("Testing NETMAP_REQ_PORT_HDR_SET on '%s'\n", ctx->ifname_ext);
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
hdr.nr_body = (uintptr_t)&req;
memset(&req, 0, sizeof(req));
req.nr_hdr_len = ctx->nr_hdr_len;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, PORT_HDR_SET)");
return ret;
}
if (req.nr_hdr_len != ctx->nr_hdr_len) {
return -1;
}
printf("Testing NETMAP_REQ_PORT_HDR_GET on '%s'\n", ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
req.nr_hdr_len = 0;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, PORT_HDR_SET)");
return ret;
}
printf("nr_hdr_len %u\n", req.nr_hdr_len);
return (req.nr_hdr_len == ctx->nr_hdr_len) ? 0 : -1;
}
/*
* Possible lengths for the VirtIO network header, as specified by
* the standard:
* http://docs.oasis-open.org/virtio/virtio/v1.0/cs04/virtio-v1.0-cs04.html
*/
#define VIRTIO_NET_HDR_LEN 10
#define VIRTIO_NET_HDR_LEN_WITH_MERGEABLE_RXBUFS 12
static int
vale_ephemeral_port_hdr_manipulation(struct TestContext *ctx)
{
int ret;
strncpy(ctx->ifname_ext, "vale:eph0", sizeof(ctx->ifname_ext));
ctx->nr_mode = NR_REG_ALL_NIC;
if ((ret = port_register(ctx))) {
return ret;
}
/* Try to set and get all the acceptable values. */
ctx->nr_hdr_len = VIRTIO_NET_HDR_LEN_WITH_MERGEABLE_RXBUFS;
if ((ret = port_hdr_set_and_get(ctx))) {
return ret;
}
ctx->nr_hdr_len = 0;
if ((ret = port_hdr_set_and_get(ctx))) {
return ret;
}
ctx->nr_hdr_len = VIRTIO_NET_HDR_LEN;
if ((ret = port_hdr_set_and_get(ctx))) {
return ret;
}
return 0;
}
static int
vale_persistent_port(struct TestContext *ctx)
{
struct nmreq_vale_newif req;
struct nmreq_header hdr;
int result;
int ret;
strncpy(ctx->ifname_ext, "per4", sizeof(ctx->ifname_ext));
printf("Testing NETMAP_REQ_VALE_NEWIF on '%s'\n", ctx->ifname_ext);
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_VALE_NEWIF;
hdr.nr_body = (uintptr_t)&req;
memset(&req, 0, sizeof(req));
req.nr_mem_id = ctx->nr_mem_id;
req.nr_tx_slots = ctx->nr_tx_slots;
req.nr_rx_slots = ctx->nr_rx_slots;
req.nr_tx_rings = ctx->nr_tx_rings;
req.nr_rx_rings = ctx->nr_rx_rings;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, VALE_NEWIF)");
return ret;
}
/* Attach the persistent VALE port to a switch and then detach. */
result = vale_attach_detach(ctx);
printf("Testing NETMAP_REQ_VALE_DELIF on '%s'\n", ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_VALE_DELIF;
hdr.nr_body = (uintptr_t)NULL;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, VALE_NEWIF)");
if (result == 0) {
result = ret;
}
}
return result;
}
/* Single NETMAP_REQ_POOLS_INFO_GET. */
static int
pools_info_get(struct TestContext *ctx)
{
struct nmreq_pools_info req;
struct nmreq_header hdr;
int ret;
printf("Testing NETMAP_REQ_POOLS_INFO_GET on '%s'\n", ctx->ifname_ext);
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_POOLS_INFO_GET;
hdr.nr_body = (uintptr_t)&req;
memset(&req, 0, sizeof(req));
req.nr_mem_id = ctx->nr_mem_id;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, POOLS_INFO_GET)");
return ret;
}
printf("nr_memsize %llu\n", (unsigned long long)req.nr_memsize);
printf("nr_mem_id %u\n", req.nr_mem_id);
printf("nr_if_pool_offset 0x%llx\n",
(unsigned long long)req.nr_if_pool_offset);
printf("nr_if_pool_objtotal %u\n", req.nr_if_pool_objtotal);
printf("nr_if_pool_objsize %u\n", req.nr_if_pool_objsize);
printf("nr_ring_pool_offset 0x%llx\n",
(unsigned long long)req.nr_if_pool_offset);
printf("nr_ring_pool_objtotal %u\n", req.nr_ring_pool_objtotal);
printf("nr_ring_pool_objsize %u\n", req.nr_ring_pool_objsize);
printf("nr_buf_pool_offset 0x%llx\n",
(unsigned long long)req.nr_buf_pool_offset);
printf("nr_buf_pool_objtotal %u\n", req.nr_buf_pool_objtotal);
printf("nr_buf_pool_objsize %u\n", req.nr_buf_pool_objsize);
return req.nr_memsize && req.nr_if_pool_objtotal &&
req.nr_if_pool_objsize &&
req.nr_ring_pool_objtotal &&
req.nr_ring_pool_objsize &&
req.nr_buf_pool_objtotal &&
req.nr_buf_pool_objsize
? 0
: -1;
}
static int
pools_info_get_and_register(struct TestContext *ctx)
{
int ret;
/* Check that we can get pools info before we register
* a netmap interface. */
ret = pools_info_get(ctx);
if (ret != 0) {
return ret;
}
ctx->nr_mode = NR_REG_ONE_NIC;
ret = port_register(ctx);
if (ret != 0) {
return ret;
}
ctx->nr_mem_id = 1;
/* Check that we can get pools info also after we register. */
return pools_info_get(ctx);
}
static int
pools_info_get_empty_ifname(struct TestContext *ctx)
{
strncpy(ctx->ifname_ext, "", sizeof(ctx->ifname_ext));
return pools_info_get(ctx) != 0 ? 0 : -1;
}
static int
pipe_master(struct TestContext *ctx)
{
strncat(ctx->ifname_ext, "{pipeid1", sizeof(ctx->ifname_ext));
ctx->nr_mode = NR_REG_NIC_SW;
if (port_register(ctx) == 0) {
printf("pipes should not accept NR_REG_NIC_SW\n");
return -1;
}
ctx->nr_mode = NR_REG_ALL_NIC;
return port_register(ctx);
}
static int
pipe_slave(struct TestContext *ctx)
{
strncat(ctx->ifname_ext, "}pipeid2", sizeof(ctx->ifname_ext));
ctx->nr_mode = NR_REG_ALL_NIC;
return port_register(ctx);
}
/* Test PORT_INFO_GET and POOLS_INFO_GET on a pipe. This is useful to test the
* registration request used internall by netmap. */
static int
pipe_port_info_get(struct TestContext *ctx)
{
strncat(ctx->ifname_ext, "}pipeid3", sizeof(ctx->ifname_ext));
return port_info_get(ctx);
}
static int
pipe_pools_info_get(struct TestContext *ctx)
{
strncat(ctx->ifname_ext, "{xid", sizeof(ctx->ifname_ext));
return pools_info_get(ctx);
}
/* NETMAP_REQ_VALE_POLLING_ENABLE */
static int
vale_polling_enable(struct TestContext *ctx)
{
struct nmreq_vale_polling req;
struct nmreq_header hdr;
char vpname[256];
int ret;
snprintf(vpname, sizeof(vpname), "%s:%s", ctx->bdgname, ctx->ifname_ext);
printf("Testing NETMAP_REQ_VALE_POLLING_ENABLE on '%s'\n", vpname);
nmreq_hdr_init(&hdr, vpname);
hdr.nr_reqtype = NETMAP_REQ_VALE_POLLING_ENABLE;
hdr.nr_body = (uintptr_t)&req;
memset(&req, 0, sizeof(req));
req.nr_mode = ctx->nr_mode;
req.nr_first_cpu_id = ctx->nr_first_cpu_id;
req.nr_num_polling_cpus = ctx->nr_num_polling_cpus;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, VALE_POLLING_ENABLE)");
return ret;
}
return (req.nr_mode == ctx->nr_mode &&
req.nr_first_cpu_id == ctx->nr_first_cpu_id &&
req.nr_num_polling_cpus == ctx->nr_num_polling_cpus)
? 0
: -1;
}
/* NETMAP_REQ_VALE_POLLING_DISABLE */
static int
vale_polling_disable(struct TestContext *ctx)
{
struct nmreq_vale_polling req;
struct nmreq_header hdr;
char vpname[256];
int ret;
snprintf(vpname, sizeof(vpname), "%s:%s", ctx->bdgname, ctx->ifname_ext);
printf("Testing NETMAP_REQ_VALE_POLLING_DISABLE on '%s'\n", vpname);
nmreq_hdr_init(&hdr, vpname);
hdr.nr_reqtype = NETMAP_REQ_VALE_POLLING_DISABLE;
hdr.nr_body = (uintptr_t)&req;
memset(&req, 0, sizeof(req));
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, VALE_POLLING_DISABLE)");
return ret;
}
return 0;
}
static int
vale_polling_enable_disable(struct TestContext *ctx)
{
int ret = 0;
if ((ret = vale_attach(ctx)) != 0) {
return ret;
}
ctx->nr_mode = NETMAP_POLLING_MODE_SINGLE_CPU;
ctx->nr_num_polling_cpus = 1;
ctx->nr_first_cpu_id = 0;
if ((ret = vale_polling_enable(ctx))) {
vale_detach(ctx);
#ifdef __FreeBSD__
/* NETMAP_REQ_VALE_POLLING_DISABLE is disabled on FreeBSD,
* because it is currently broken. We are happy to see that
* it fails. */
return 0;
#else
return ret;
#endif
}
if ((ret = vale_polling_disable(ctx))) {
vale_detach(ctx);
return ret;
}
return vale_detach(ctx);
}
static void
push_option(struct nmreq_option *opt, struct TestContext *ctx)
{
opt->nro_next = (uintptr_t)ctx->nr_opt;
ctx->nr_opt = opt;
}
static void
clear_options(struct TestContext *ctx)
{
ctx->nr_opt = NULL;
}
static int
checkoption(struct nmreq_option *opt, struct nmreq_option *exp)
{
if (opt->nro_next != exp->nro_next) {
printf("nro_next %p expected %p\n",
(void *)(uintptr_t)opt->nro_next,
(void *)(uintptr_t)exp->nro_next);
return -1;
}
if (opt->nro_reqtype != exp->nro_reqtype) {
printf("nro_reqtype %u expected %u\n", opt->nro_reqtype,
exp->nro_reqtype);
return -1;
}
if (opt->nro_status != exp->nro_status) {
printf("nro_status %u expected %u\n", opt->nro_status,
exp->nro_status);
return -1;
}
return 0;
}
static int
unsupported_option(struct TestContext *ctx)
{
struct nmreq_option opt, save;
printf("Testing unsupported option on %s\n", ctx->ifname_ext);
memset(&opt, 0, sizeof(opt));
opt.nro_reqtype = 1234;
push_option(&opt, ctx);
save = opt;
if (port_register_hwall(ctx) >= 0)
return -1;
clear_options(ctx);
save.nro_status = EOPNOTSUPP;
return checkoption(&opt, &save);
}
static int
infinite_options(struct TestContext *ctx)
{
struct nmreq_option opt;
printf("Testing infinite list of options on %s\n", ctx->ifname_ext);
opt.nro_reqtype = 1234;
push_option(&opt, ctx);
opt.nro_next = (uintptr_t)&opt;
if (port_register_hwall(ctx) >= 0)
return -1;
clear_options(ctx);
return (errno == EMSGSIZE ? 0 : -1);
}
#ifdef CONFIG_NETMAP_EXTMEM
int
change_param(const char *pname, unsigned long newv, unsigned long *poldv)
{
#ifdef __linux__
char param[256] = "/sys/module/netmap/parameters/";
unsigned long oldv;
FILE *f;
strncat(param, pname, sizeof(param) - 1);
f = fopen(param, "r+");
if (f == NULL) {
perror(param);
return -1;
}
if (fscanf(f, "%ld", &oldv) != 1) {
perror(param);
fclose(f);
return -1;
}
if (poldv)
*poldv = oldv;
rewind(f);
if (fprintf(f, "%ld\n", newv) < 0) {
perror(param);
fclose(f);
return -1;
}
fclose(f);
printf("change_param: %s: %ld -> %ld\n", pname, oldv, newv);
#endif /* __linux__ */
return 0;
}
static int
push_extmem_option(struct TestContext *ctx, const struct nmreq_pools_info *pi,
struct nmreq_opt_extmem *e)
{
void *addr;
addr = mmap(NULL, pi->nr_memsize, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
return -1;
}
memset(e, 0, sizeof(*e));
e->nro_opt.nro_reqtype = NETMAP_REQ_OPT_EXTMEM;
e->nro_info = *pi;
e->nro_usrptr = (uintptr_t)addr;
push_option(&e->nro_opt, ctx);
return 0;
}
static int
pop_extmem_option(struct TestContext *ctx, struct nmreq_opt_extmem *exp)
{
struct nmreq_opt_extmem *e;
int ret;
e = (struct nmreq_opt_extmem *)(uintptr_t)ctx->nr_opt;
ctx->nr_opt = (struct nmreq_option *)(uintptr_t)ctx->nr_opt->nro_next;
if ((ret = checkoption(&e->nro_opt, &exp->nro_opt))) {
return ret;
}
if (e->nro_usrptr != exp->nro_usrptr) {
printf("usrptr %" PRIu64 " expected %" PRIu64 "\n",
e->nro_usrptr, exp->nro_usrptr);
return -1;
}
if (e->nro_info.nr_memsize != exp->nro_info.nr_memsize) {
printf("memsize %" PRIu64 " expected %" PRIu64 "\n",
e->nro_info.nr_memsize, exp->nro_info.nr_memsize);
return -1;
}
if ((ret = munmap((void *)(uintptr_t)e->nro_usrptr,
e->nro_info.nr_memsize)))
return ret;
return 0;
}
static int
_extmem_option(struct TestContext *ctx,
const struct nmreq_pools_info *pi)
{
struct nmreq_opt_extmem e, save;
int ret;
if ((ret = push_extmem_option(ctx, pi, &e)) < 0)
return ret;
save = e;
strncpy(ctx->ifname_ext, "vale0:0", sizeof(ctx->ifname_ext));
ctx->nr_tx_slots = 16;
ctx->nr_rx_slots = 16;
if ((ret = port_register_hwall(ctx)))
return ret;
ret = pop_extmem_option(ctx, &save);
return ret;
}
static size_t
pools_info_min_memsize(const struct nmreq_pools_info *pi)
{
size_t tot = 0;
tot += pi->nr_if_pool_objtotal * pi->nr_if_pool_objsize;
tot += pi->nr_ring_pool_objtotal * pi->nr_ring_pool_objsize;
tot += pi->nr_buf_pool_objtotal * pi->nr_buf_pool_objsize;
return tot;
}
/*
* Fill the specification of a netmap memory allocator to be
* used with the 'struct nmreq_opt_extmem' option. Arbitrary
* values are used for the parameters, but with enough netmap
* rings, netmap ifs, and buffers to support a VALE port.
*/
static void
pools_info_fill(struct nmreq_pools_info *pi)
{
pi->nr_if_pool_objtotal = 2;
pi->nr_if_pool_objsize = 1024;
pi->nr_ring_pool_objtotal = 64;
pi->nr_ring_pool_objsize = 512;
pi->nr_buf_pool_objtotal = 4096;
pi->nr_buf_pool_objsize = 2048;
pi->nr_memsize = pools_info_min_memsize(pi);
}
static int
extmem_option(struct TestContext *ctx)
{
struct nmreq_pools_info pools_info;
pools_info_fill(&pools_info);
printf("Testing extmem option on vale0:0\n");
return _extmem_option(ctx, &pools_info);
}
static int
bad_extmem_option(struct TestContext *ctx)
{
struct nmreq_pools_info pools_info;
printf("Testing bad extmem option on vale0:0\n");
pools_info_fill(&pools_info);
/* Request a large ring size, to make sure that the kernel
* rejects our request. */
pools_info.nr_ring_pool_objsize = (1 << 20);
return _extmem_option(ctx, &pools_info) < 0 ? 0 : -1;
}
static int
duplicate_extmem_options(struct TestContext *ctx)
{
struct nmreq_opt_extmem e1, save1, e2, save2;
struct nmreq_pools_info pools_info;
int ret;
printf("Testing duplicate extmem option on vale0:0\n");
pools_info_fill(&pools_info);
if ((ret = push_extmem_option(ctx, &pools_info, &e1)) < 0)
return ret;
if ((ret = push_extmem_option(ctx, &pools_info, &e2)) < 0) {
clear_options(ctx);
return ret;
}
save1 = e1;
save2 = e2;
strncpy(ctx->ifname_ext, "vale0:0", sizeof(ctx->ifname_ext));
ctx->nr_tx_slots = 16;
ctx->nr_rx_slots = 16;
ret = port_register_hwall(ctx);
if (ret >= 0) {
printf("duplicate option not detected\n");
return -1;
}
save2.nro_opt.nro_status = EINVAL;
if ((ret = pop_extmem_option(ctx, &save2)))
return ret;
save1.nro_opt.nro_status = EINVAL;
if ((ret = pop_extmem_option(ctx, &save1)))
return ret;
return 0;
}
#endif /* CONFIG_NETMAP_EXTMEM */
static int
push_csb_option(struct TestContext *ctx, struct nmreq_opt_csb *opt)
{
size_t csb_size;
int num_entries;
int ret;
ctx->nr_flags |= NR_EXCLUSIVE;
/* Get port info in order to use num_registered_rings(). */
ret = port_info_get(ctx);
if (ret != 0) {
return ret;
}
num_entries = num_registered_rings(ctx);
csb_size = (sizeof(struct nm_csb_atok) + sizeof(struct nm_csb_ktoa)) *
num_entries;
assert(csb_size > 0);
if (ctx->csb) {
free(ctx->csb);
}
ret = posix_memalign(&ctx->csb, sizeof(struct nm_csb_atok), csb_size);
if (ret != 0) {
printf("Failed to allocate CSB memory\n");
exit(EXIT_FAILURE);
}
memset(opt, 0, sizeof(*opt));
opt->nro_opt.nro_reqtype = NETMAP_REQ_OPT_CSB;
opt->csb_atok = (uintptr_t)ctx->csb;
opt->csb_ktoa = (uintptr_t)(((uint8_t *)ctx->csb) +
sizeof(struct nm_csb_atok) * num_entries);
printf("Pushing option NETMAP_REQ_OPT_CSB\n");
push_option(&opt->nro_opt, ctx);
return 0;
}
static int
csb_mode(struct TestContext *ctx)
{
struct nmreq_opt_csb opt;
int ret;
ret = push_csb_option(ctx, &opt);
if (ret != 0) {
return ret;
}
ret = port_register_hwall(ctx);
clear_options(ctx);
return ret;
}
static int
csb_mode_invalid_memory(struct TestContext *ctx)
{
struct nmreq_opt_csb opt;
int ret;
memset(&opt, 0, sizeof(opt));
opt.nro_opt.nro_reqtype = NETMAP_REQ_OPT_CSB;
opt.csb_atok = (uintptr_t)0x10;
opt.csb_ktoa = (uintptr_t)0x800;
push_option(&opt.nro_opt, ctx);
ctx->nr_flags = NR_EXCLUSIVE;
ret = port_register_hwall(ctx);
clear_options(ctx);
return (ret < 0) ? 0 : -1;
}
static int
sync_kloop_stop(struct TestContext *ctx)
{
struct nmreq_header hdr;
int ret;
printf("Testing NETMAP_REQ_SYNC_KLOOP_STOP on '%s'\n", ctx->ifname_ext);
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_SYNC_KLOOP_STOP;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, SYNC_KLOOP_STOP)");
}
return ret;
}
static void *
sync_kloop_worker(void *opaque)
{
struct TestContext *ctx = opaque;
struct nmreq_sync_kloop_start req;
struct nmreq_header hdr;
int ret;
printf("Testing NETMAP_REQ_SYNC_KLOOP_START on '%s'\n", ctx->ifname_ext);
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_SYNC_KLOOP_START;
hdr.nr_body = (uintptr_t)&req;
hdr.nr_options = (uintptr_t)ctx->nr_opt;
memset(&req, 0, sizeof(req));
req.sleep_us = 500;
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, SYNC_KLOOP_START)");
}
if (ctx->sem) {
sem_post(ctx->sem);
}
pthread_exit(ret ? (void *)THRET_FAILURE : (void *)THRET_SUCCESS);
}
static int
sync_kloop_start_stop(struct TestContext *ctx)
{
pthread_t th;
void *thret = THRET_FAILURE;
int ret;
ret = pthread_create(&th, NULL, sync_kloop_worker, ctx);
if (ret != 0) {
printf("pthread_create(kloop): %s\n", strerror(ret));
return -1;
}
ret = sync_kloop_stop(ctx);
if (ret != 0) {
return ret;
}
ret = pthread_join(th, &thret);
if (ret != 0) {
printf("pthread_join(kloop): %s\n", strerror(ret));
}
return thret == THRET_SUCCESS ? 0 : -1;
}
static int
sync_kloop(struct TestContext *ctx)
{
int ret;
ret = csb_mode(ctx);
if (ret != 0) {
return ret;
}
return sync_kloop_start_stop(ctx);
}
static int
sync_kloop_eventfds(struct TestContext *ctx)
{
struct nmreq_opt_sync_kloop_eventfds *evopt = NULL;
struct nmreq_opt_sync_kloop_mode modeopt;
struct nmreq_option evsave;
int num_entries;
size_t opt_size;
int ret, i;
memset(&modeopt, 0, sizeof(modeopt));
modeopt.nro_opt.nro_reqtype = NETMAP_REQ_OPT_SYNC_KLOOP_MODE;
modeopt.mode = ctx->sync_kloop_mode;
push_option(&modeopt.nro_opt, ctx);
num_entries = num_registered_rings(ctx);
opt_size = sizeof(*evopt) + num_entries * sizeof(evopt->eventfds[0]);
evopt = calloc(1, opt_size);
evopt->nro_opt.nro_next = 0;
evopt->nro_opt.nro_reqtype = NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS;
evopt->nro_opt.nro_status = 0;
evopt->nro_opt.nro_size = opt_size;
for (i = 0; i < num_entries; i++) {
int efd = eventfd(0, 0);
evopt->eventfds[i].ioeventfd = efd;
efd = eventfd(0, 0);
evopt->eventfds[i].irqfd = efd;
}
push_option(&evopt->nro_opt, ctx);
evsave = evopt->nro_opt;
ret = sync_kloop_start_stop(ctx);
if (ret != 0) {
free(evopt);
clear_options(ctx);
return ret;
}
#ifdef __linux__
evsave.nro_status = 0;
#else /* !__linux__ */
evsave.nro_status = EOPNOTSUPP;
#endif /* !__linux__ */
ret = checkoption(&evopt->nro_opt, &evsave);
free(evopt);
clear_options(ctx);
return ret;
}
static int
sync_kloop_eventfds_all_mode(struct TestContext *ctx,
uint32_t sync_kloop_mode)
{
int ret;
ret = csb_mode(ctx);
if (ret != 0) {
return ret;
}
ctx->sync_kloop_mode = sync_kloop_mode;
return sync_kloop_eventfds(ctx);
}
static int
sync_kloop_eventfds_all(struct TestContext *ctx)
{
return sync_kloop_eventfds_all_mode(ctx, 0);
}
static int
sync_kloop_eventfds_all_tx(struct TestContext *ctx)
{
struct nmreq_opt_csb opt;
int ret;
ret = push_csb_option(ctx, &opt);
if (ret != 0) {
return ret;
}
ret = port_register_hwall_tx(ctx);
if (ret != 0) {
return ret;
}
clear_options(ctx);
return sync_kloop_eventfds(ctx);
}
static int
sync_kloop_eventfds_all_direct(struct TestContext *ctx)
{
return sync_kloop_eventfds_all_mode(ctx,
NM_OPT_SYNC_KLOOP_DIRECT_TX | NM_OPT_SYNC_KLOOP_DIRECT_RX);
}
static int
sync_kloop_eventfds_all_direct_tx(struct TestContext *ctx)
{
return sync_kloop_eventfds_all_mode(ctx,
NM_OPT_SYNC_KLOOP_DIRECT_TX);
}
static int
sync_kloop_eventfds_all_direct_rx(struct TestContext *ctx)
{
return sync_kloop_eventfds_all_mode(ctx,
NM_OPT_SYNC_KLOOP_DIRECT_RX);
}
static int
sync_kloop_nocsb(struct TestContext *ctx)
{
int ret;
ret = port_register_hwall(ctx);
if (ret != 0) {
return ret;
}
/* Sync kloop must fail because we did not use
* NETMAP_REQ_CSB_ENABLE. */
return sync_kloop_start_stop(ctx) != 0 ? 0 : -1;
}
static int
csb_enable(struct TestContext *ctx)
{
struct nmreq_option saveopt;
struct nmreq_opt_csb opt;
struct nmreq_header hdr;
int ret;
ret = push_csb_option(ctx, &opt);
if (ret != 0) {
return ret;
}
saveopt = opt.nro_opt;
saveopt.nro_status = 0;
nmreq_hdr_init(&hdr, ctx->ifname_ext);
hdr.nr_reqtype = NETMAP_REQ_CSB_ENABLE;
hdr.nr_options = (uintptr_t)ctx->nr_opt;
hdr.nr_body = (uintptr_t)NULL;
printf("Testing NETMAP_REQ_CSB_ENABLE on '%s'\n", ctx->ifname_ext);
ret = ioctl(ctx->fd, NIOCCTRL, &hdr);
if (ret != 0) {
perror("ioctl(/dev/netmap, NIOCCTRL, CSB_ENABLE)");
return ret;
}
ret = checkoption(&opt.nro_opt, &saveopt);
clear_options(ctx);
return ret;
}
static int
sync_kloop_csb_enable(struct TestContext *ctx)
{
int ret;
ctx->nr_flags |= NR_EXCLUSIVE;
ret = port_register_hwall(ctx);
if (ret != 0) {
return ret;
}
ret = csb_enable(ctx);
if (ret != 0) {
return ret;
}
return sync_kloop_start_stop(ctx);
}
static int
sync_kloop_conflict(struct TestContext *ctx)
{
struct nmreq_opt_csb opt;
pthread_t th1, th2;
void *thret1 = THRET_FAILURE, *thret2 = THRET_FAILURE;
struct timespec to;
sem_t sem;
int err = 0;
int ret;
ret = push_csb_option(ctx, &opt);
if (ret != 0) {
return ret;
}
ret = port_register_hwall(ctx);
if (ret != 0) {
return ret;
}
clear_options(ctx);
ret = sem_init(&sem, 0, 0);
if (ret != 0) {
printf("sem_init() failed: %s\n", strerror(ret));
return ret;
}
ctx->sem = &sem;
ret = pthread_create(&th1, NULL, sync_kloop_worker, ctx);
err |= ret;
if (ret != 0) {
printf("pthread_create(kloop1): %s\n", strerror(ret));
}
ret = pthread_create(&th2, NULL, sync_kloop_worker, ctx);
err |= ret;
if (ret != 0) {
printf("pthread_create(kloop2): %s\n", strerror(ret));
}
/* Wait for one of the two threads to fail to start the kloop, to
* avoid a race condition where th1 starts the loop and stops,
* and after that th2 starts the loop successfully. */
clock_gettime(CLOCK_REALTIME, &to);
to.tv_sec += 2;
ret = sem_timedwait(&sem, &to);
err |= ret;
if (ret != 0) {
printf("sem_timedwait() failed: %s\n", strerror(errno));
}
err |= sync_kloop_stop(ctx);
ret = pthread_join(th1, &thret1);
err |= ret;
if (ret != 0) {
printf("pthread_join(kloop1): %s\n", strerror(ret));
}
ret = pthread_join(th2, &thret2);
err |= ret;
if (ret != 0) {
printf("pthread_join(kloop2): %s %d\n", strerror(ret), ret);
}
sem_destroy(&sem);
ctx->sem = NULL;
if (err) {
return err;
}
/* Check that one of the two failed, while the other one succeeded. */
return ((thret1 == THRET_SUCCESS && thret2 == THRET_FAILURE) ||
(thret1 == THRET_FAILURE && thret2 == THRET_SUCCESS))
? 0
: -1;
}
static int
sync_kloop_eventfds_mismatch(struct TestContext *ctx)
{
struct nmreq_opt_csb opt;
int ret;
ret = push_csb_option(ctx, &opt);
if (ret != 0) {
return ret;
}
ret = port_register_hwall_rx(ctx);
if (ret != 0) {
return ret;
}
clear_options(ctx);
/* Deceive num_registered_rings() to trigger a failure of
* sync_kloop_eventfds(). The latter will think that all the
* rings were registered, and allocate the wrong number of
* eventfds. */
ctx->nr_flags &= ~NR_RX_RINGS_ONLY;
return (sync_kloop_eventfds(ctx) != 0) ? 0 : -1;
}
static int
null_port(struct TestContext *ctx)
{
int ret;
ctx->nr_mem_id = 1;
ctx->nr_mode = NR_REG_NULL;
ctx->nr_tx_rings = 10;
ctx->nr_rx_rings = 5;
ctx->nr_tx_slots = 256;
ctx->nr_rx_slots = 100;
ret = port_register(ctx);
if (ret != 0) {
return ret;
}
return 0;
}
static int
null_port_all_zero(struct TestContext *ctx)
{
int ret;
ctx->nr_mem_id = 1;
ctx->nr_mode = NR_REG_NULL;
ctx->nr_tx_rings = 0;
ctx->nr_rx_rings = 0;
ctx->nr_tx_slots = 0;
ctx->nr_rx_slots = 0;
ret = port_register(ctx);
if (ret != 0) {
return ret;
}
return 0;
}
static int
null_port_sync(struct TestContext *ctx)
{
int ret;
ctx->nr_mem_id = 1;
ctx->nr_mode = NR_REG_NULL;
ctx->nr_tx_rings = 10;
ctx->nr_rx_rings = 5;
ctx->nr_tx_slots = 256;
ctx->nr_rx_slots = 100;
ret = port_register(ctx);
if (ret != 0) {
return ret;
}
ret = ioctl(ctx->fd, NIOCTXSYNC, 0);
if (ret != 0) {
return ret;
}
return 0;
}
static void
usage(const char *prog)
{
printf("%s -i IFNAME\n"
"[-j TEST_NUM1[-[TEST_NUM2]] | -[TEST_NUM_2]]\n"
"[-l (list test cases)]\n",
prog);
}
struct mytest {
testfunc_t test;
const char *name;
};
#define decltest(f) \
{ \
.test = f, .name = #f \
}
static struct mytest tests[] = {
decltest(port_info_get),
decltest(port_register_hwall_host),
decltest(port_register_hwall),
decltest(port_register_hostall),
decltest(port_register_single_hw_pair),
decltest(port_register_single_host_pair),
decltest(port_register_hostall_many),
decltest(vale_attach_detach),
decltest(vale_attach_detach_host_rings),
decltest(vale_ephemeral_port_hdr_manipulation),
decltest(vale_persistent_port),
decltest(pools_info_get_and_register),
decltest(pools_info_get_empty_ifname),
decltest(pipe_master),
decltest(pipe_slave),
decltest(pipe_port_info_get),
decltest(pipe_pools_info_get),
decltest(vale_polling_enable_disable),
decltest(unsupported_option),
decltest(infinite_options),
#ifdef CONFIG_NETMAP_EXTMEM
decltest(extmem_option),
decltest(bad_extmem_option),
decltest(duplicate_extmem_options),
#endif /* CONFIG_NETMAP_EXTMEM */
decltest(csb_mode),
decltest(csb_mode_invalid_memory),
decltest(sync_kloop),
decltest(sync_kloop_eventfds_all),
decltest(sync_kloop_eventfds_all_tx),
decltest(sync_kloop_eventfds_all_direct),
decltest(sync_kloop_eventfds_all_direct_tx),
decltest(sync_kloop_eventfds_all_direct_rx),
decltest(sync_kloop_nocsb),
decltest(sync_kloop_csb_enable),
decltest(sync_kloop_conflict),
decltest(sync_kloop_eventfds_mismatch),
decltest(null_port),
decltest(null_port_all_zero),
decltest(null_port_sync),
decltest(legacy_regif_default),
decltest(legacy_regif_all_nic),
decltest(legacy_regif_12),
decltest(legacy_regif_sw),
decltest(legacy_regif_future),
decltest(legacy_regif_extra_bufs),
decltest(legacy_regif_extra_bufs_pipe),
decltest(legacy_regif_extra_bufs_pipe_vale),
};
static void
context_cleanup(struct TestContext *ctx)
{
if (ctx->csb) {
free(ctx->csb);
ctx->csb = NULL;
}
close(ctx->fd);
ctx->fd = -1;
}
static int
parse_interval(const char *arg, int *j, int *k)
{
const char *scan = arg;
char *rest;
*j = 0;
*k = -1;
if (*scan == '-') {
scan++;
goto get_k;
}
if (!isdigit(*scan))
goto err;
*k = strtol(scan, &rest, 10);
*j = *k - 1;
scan = rest;
if (*scan == '-') {
*k = -1;
scan++;
}
get_k:
if (*scan == '\0')
return 0;
if (!isdigit(*scan))
goto err;
*k = strtol(scan, &rest, 10);
scan = rest;
if (!(*scan == '\0'))
goto err;
return 0;
err:
fprintf(stderr, "syntax error in '%s', must be num[-[num]] or -[num]\n", arg);
return -1;
}
#define ARGV_APPEND(_av, _ac, _x)\
do {\
assert((int)(_ac) < (int)(sizeof(_av)/sizeof((_av)[0])));\
(_av)[(_ac)++] = _x;\
} while (0)
static void
tap_cleanup(int signo)
{
const char *av[8];
int ac = 0;
(void)signo;
#ifdef __FreeBSD__
ARGV_APPEND(av, ac, "ifconfig");
ARGV_APPEND(av, ac, ctx_.ifname);
ARGV_APPEND(av, ac, "destroy");
#else
ARGV_APPEND(av, ac, "ip");
ARGV_APPEND(av, ac, "link");
ARGV_APPEND(av, ac, "del");
ARGV_APPEND(av, ac, ctx_.ifname);
#endif
ARGV_APPEND(av, ac, NULL);
if (exec_command(ac, av)) {
printf("Failed to destroy tap interface\n");
}
}
int
main(int argc, char **argv)
{
int create_tap = 1;
int num_tests;
int ret = 0;
int j = 0;
int k = -1;
int list = 0;
int opt;
int i;
#ifdef __FreeBSD__
PLAIN_REQUIRE_KERNEL_MODULE("if_tap", 0);
PLAIN_REQUIRE_KERNEL_MODULE("netmap", 0);
#endif
memset(&ctx_, 0, sizeof(ctx_));
{
struct timespec t;
int idx;
clock_gettime(CLOCK_REALTIME, &t);
srand((unsigned int)t.tv_nsec);
idx = rand() % 8000 + 100;
snprintf(ctx_.ifname, sizeof(ctx_.ifname), "tap%d", idx);
idx = rand() % 800 + 100;
snprintf(ctx_.bdgname, sizeof(ctx_.bdgname), "vale%d", idx);
}
while ((opt = getopt(argc, argv, "hi:j:l")) != -1) {
switch (opt) {
case 'h':
usage(argv[0]);
return 0;
case 'i':
strncpy(ctx_.ifname, optarg, sizeof(ctx_.ifname) - 1);
create_tap = 0;
break;
case 'j':
if (parse_interval(optarg, &j, &k) < 0) {
usage(argv[0]);
return -1;
}
break;
case 'l':
list = 1;
create_tap = 0;
break;
default:
printf(" Unrecognized option %c\n", opt);
usage(argv[0]);
return -1;
}
}
num_tests = sizeof(tests) / sizeof(tests[0]);
if (j < 0 || j >= num_tests || k > num_tests) {
fprintf(stderr, "Test interval %d-%d out of range (%d-%d)\n",
j + 1, k, 1, num_tests + 1);
return -1;
}
if (k < 0)
k = num_tests;
if (list) {
printf("Available tests:\n");
for (i = 0; i < num_tests; i++) {
printf("#%03d: %s\n", i + 1, tests[i].name);
}
return 0;
}
if (create_tap) {
struct sigaction sa;
const char *av[8];
int ac = 0;
#ifdef __FreeBSD__
ARGV_APPEND(av, ac, "ifconfig");
ARGV_APPEND(av, ac, ctx_.ifname);
ARGV_APPEND(av, ac, "create");
ARGV_APPEND(av, ac, "up");
#else
ARGV_APPEND(av, ac, "ip");
ARGV_APPEND(av, ac, "tuntap");
ARGV_APPEND(av, ac, "add");
ARGV_APPEND(av, ac, "mode");
ARGV_APPEND(av, ac, "tap");
ARGV_APPEND(av, ac, "name");
ARGV_APPEND(av, ac, ctx_.ifname);
#endif
ARGV_APPEND(av, ac, NULL);
if (exec_command(ac, av)) {
printf("Failed to create tap interface\n");
return -1;
}
sa.sa_handler = tap_cleanup;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
ret = sigaction(SIGINT, &sa, NULL);
if (ret) {
perror("sigaction(SIGINT)");
goto out;
}
ret = sigaction(SIGTERM, &sa, NULL);
if (ret) {
perror("sigaction(SIGTERM)");
goto out;
}
}
for (i = j; i < k; i++) {
struct TestContext ctxcopy;
int fd;
printf("==> Start of Test #%d [%s]\n", i + 1, tests[i].name);
fd = open("/dev/netmap", O_RDWR);
if (fd < 0) {
perror("open(/dev/netmap)");
ret = fd;
goto out;
}
memcpy(&ctxcopy, &ctx_, sizeof(ctxcopy));
ctxcopy.fd = fd;
memcpy(ctxcopy.ifname_ext, ctxcopy.ifname,
sizeof(ctxcopy.ifname));
ret = tests[i].test(&ctxcopy);
if (ret != 0) {
printf("Test #%d [%s] failed\n", i + 1, tests[i].name);
goto out;
}
printf("==> Test #%d [%s] successful\n", i + 1, tests[i].name);
context_cleanup(&ctxcopy);
}
out:
tap_cleanup(0);
return ret;
}