freebsd-dev/sys/dev/hwpmc/hwpmc_cmn600.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

798 lines
21 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2003-2008 Joseph Koshy
* Copyright (c) 2007 The FreeBSD Foundation
* Copyright (c) 2021 ARM Ltd
*
* Portions of this software were developed by A. Joseph Koshy under
* sponsorship from the FreeBSD Foundation and Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Arm CoreLink CMN-600 Coherent Mesh Network PMU Driver */
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <sys/systm.h>
#include <machine/cmn600_reg.h>
struct cmn600_descr {
struct pmc_descr pd_descr; /* "base class" */
void *pd_rw_arg; /* Argument to use with read/write */
struct pmc *pd_pmc;
struct pmc_hw *pd_phw;
uint32_t pd_nodeid;
int32_t pd_node_type;
int pd_local_counter;
};
static struct cmn600_descr **cmn600_pmcdesc;
static struct cmn600_pmc cmn600_pmcs[CMN600_UNIT_MAX];
static int cmn600_units = 0;
static inline struct cmn600_descr *
cmn600desc(int ri)
{
return (cmn600_pmcdesc[ri]);
}
static inline int
class_ri2unit(int ri)
{
return (ri / CMN600_COUNTERS_N);
}
#define EVENCNTR(x) (((x) >> POR_DT_PMEVCNT_EVENCNT_SHIFT) << \
POR_DTM_PMEVCNT_CNTR_WIDTH)
#define ODDCNTR(x) (((x) >> POR_DT_PMEVCNT_ODDCNT_SHIFT) << \
POR_DTM_PMEVCNT_CNTR_WIDTH)
static uint64_t
cmn600_pmu_readcntr(void *arg, u_int nodeid, u_int xpcntr, u_int dtccntr,
u_int width)
{
uint64_t dtcval, xpval;
KASSERT(xpcntr < 4, ("[cmn600,%d] XP counter number %d is too big."
" Max: 3", __LINE__, xpcntr));
KASSERT(dtccntr < 8, ("[cmn600,%d] Global counter number %d is too"
" big. Max: 7", __LINE__, dtccntr));
dtcval = pmu_cmn600_rd8(arg, nodeid, NODE_TYPE_DTC,
POR_DT_PMEVCNT(dtccntr >> 1));
if (width == 4) {
dtcval = (dtccntr & 1) ? ODDCNTR(dtcval) : EVENCNTR(dtcval);
dtcval &= 0xffffffff0000UL;
} else
dtcval <<= POR_DTM_PMEVCNT_CNTR_WIDTH;
xpval = pmu_cmn600_rd8(arg, nodeid, NODE_TYPE_XP, POR_DTM_PMEVCNT);
xpval >>= xpcntr * POR_DTM_PMEVCNT_CNTR_WIDTH;
xpval &= 0xffffUL;
return (dtcval | xpval);
}
static void
cmn600_pmu_writecntr(void *arg, u_int nodeid, u_int xpcntr, u_int dtccntr,
u_int width, uint64_t val)
{
int shift;
KASSERT(xpcntr < 4, ("[cmn600,%d] XP counter number %d is too big."
" Max: 3", __LINE__, xpcntr));
KASSERT(dtccntr < 8, ("[cmn600,%d] Global counter number %d is too"
" big. Max: 7", __LINE__, dtccntr));
if (width == 4) {
shift = (dtccntr & 1) ? POR_DT_PMEVCNT_ODDCNT_SHIFT :
POR_DT_PMEVCNT_EVENCNT_SHIFT;
pmu_cmn600_md8(arg, nodeid, NODE_TYPE_DTC,
POR_DT_PMEVCNT(dtccntr >> 1), 0xffffffffUL << shift,
((val >> POR_DTM_PMEVCNT_CNTR_WIDTH) & 0xffffffff) << shift);
} else
pmu_cmn600_wr8(arg, nodeid, NODE_TYPE_DTC,
POR_DT_PMEVCNT(dtccntr & ~0x1), val >>
POR_DTM_PMEVCNT_CNTR_WIDTH);
shift = xpcntr * POR_DTM_PMEVCNT_CNTR_WIDTH;
val &= 0xffffUL;
pmu_cmn600_md8(arg, nodeid, NODE_TYPE_XP, POR_DTM_PMEVCNT,
0xffffUL << shift, val << shift);
}
#undef EVENCNTR
#undef ODDCNTR
/*
* read a pmc register
*/
static int
cmn600_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
{
int counter, local_counter, nodeid;
struct cmn600_descr *desc;
void *arg;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
counter = ri % CMN600_COUNTERS_N;
desc = cmn600desc(ri);
arg = desc->pd_rw_arg;
nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid;
local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
*v = cmn600_pmu_readcntr(arg, nodeid, local_counter, counter, 4);
PMCDBG3(MDP, REA, 2, "%s id=%d -> %jd", __func__, ri, *v);
return (0);
}
/*
* Write a pmc register.
*/
static int
cmn600_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
{
int counter, local_counter, nodeid;
struct cmn600_descr *desc;
void *arg;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
counter = ri % CMN600_COUNTERS_N;
desc = cmn600desc(ri);
arg = desc->pd_rw_arg;
nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid;
local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
KASSERT(pm != NULL,
("[cmn600,%d] PMC not owned (cpu%d,pmc%d)", __LINE__,
cpu, ri));
PMCDBG4(MDP, WRI, 1, "%s cpu=%d ri=%d v=%jx", __func__, cpu, ri, v);
cmn600_pmu_writecntr(arg, nodeid, local_counter, counter, 4, v);
return (0);
}
/*
* configure hardware pmc according to the configuration recorded in
* pmc 'pm'.
*/
static int
cmn600_config_pmc(int cpu, int ri, struct pmc *pm)
{
struct pmc_hw *phw;
PMCDBG4(MDP, CFG, 1, "%s cpu=%d ri=%d pm=%p", __func__, cpu, ri, pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
phw = cmn600desc(ri)->pd_phw;
KASSERT(pm == NULL || phw->phw_pmc == NULL,
("[cmn600,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
__LINE__, pm, phw->phw_pmc));
phw->phw_pmc = pm;
return (0);
}
/*
* Retrieve a configured PMC pointer from hardware state.
*/
static int
cmn600_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = cmn600desc(ri)->pd_phw->phw_pmc;
return (0);
}
#define CASE_DN_VER_EVT(n, id) case PMC_EV_CMN600_PMU_ ## n: { *event = id; \
return (0); }
static int
cmn600_map_ev2event(int ev, int rev, int *node_type, uint8_t *event)
{
if (ev < PMC_EV_CMN600_PMU_dn_rxreq_dvmop ||
ev > PMC_EV_CMN600_PMU_rni_rdb_ord)
return (EINVAL);
if (ev <= PMC_EV_CMN600_PMU_dn_rxreq_trk_full) {
*node_type = NODE_TYPE_DVM;
if (rev < 0x200) {
switch (ev) {
CASE_DN_VER_EVT(dn_rxreq_dvmop, 1);
CASE_DN_VER_EVT(dn_rxreq_dvmsync, 2);
CASE_DN_VER_EVT(dn_rxreq_dvmop_vmid_filtered, 3);
CASE_DN_VER_EVT(dn_rxreq_retried, 4);
CASE_DN_VER_EVT(dn_rxreq_trk_occupancy, 5);
}
} else {
switch (ev) {
CASE_DN_VER_EVT(dn_rxreq_tlbi_dvmop, 0x01);
CASE_DN_VER_EVT(dn_rxreq_bpi_dvmop, 0x02);
CASE_DN_VER_EVT(dn_rxreq_pici_dvmop, 0x03);
CASE_DN_VER_EVT(dn_rxreq_vivi_dvmop, 0x04);
CASE_DN_VER_EVT(dn_rxreq_dvmsync, 0x05);
CASE_DN_VER_EVT(dn_rxreq_dvmop_vmid_filtered, 0x06);
CASE_DN_VER_EVT(dn_rxreq_dvmop_other_filtered, 0x07);
CASE_DN_VER_EVT(dn_rxreq_retried, 0x08);
CASE_DN_VER_EVT(dn_rxreq_snp_sent, 0x09);
CASE_DN_VER_EVT(dn_rxreq_snp_stalled, 0x0a);
CASE_DN_VER_EVT(dn_rxreq_trk_full, 0x0b);
CASE_DN_VER_EVT(dn_rxreq_trk_occupancy, 0x0c);
}
}
return (EINVAL);
} else if (ev <= PMC_EV_CMN600_PMU_hnf_snp_fwded) {
*node_type = NODE_TYPE_HN_F;
*event = ev - PMC_EV_CMN600_PMU_hnf_cache_miss;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_hni_pcie_serialization) {
*node_type = NODE_TYPE_HN_I;
*event = ev - PMC_EV_CMN600_PMU_hni_rrt_rd_occ_cnt_ovfl;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_xp_partial_dat_flit) {
*node_type = NODE_TYPE_XP;
*event = ev - PMC_EV_CMN600_PMU_xp_txflit_valid;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_sbsx_txrsp_stall) {
*node_type = NODE_TYPE_SBSX;
*event = ev - PMC_EV_CMN600_PMU_sbsx_rd_req;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_rnd_rdb_ord) {
*node_type = NODE_TYPE_RN_D;
*event = ev - PMC_EV_CMN600_PMU_rnd_s0_rdata_beats;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_rni_rdb_ord) {
*node_type = NODE_TYPE_RN_I;
*event = ev - PMC_EV_CMN600_PMU_rni_s0_rdata_beats;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_cxha_snphaz_occ) {
*node_type = NODE_TYPE_CXHA;
*event = ev - PMC_EV_CMN600_PMU_cxha_rddatbyp;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_cxra_ext_dat_stall) {
*node_type = NODE_TYPE_CXRA;
*event = ev - PMC_EV_CMN600_PMU_cxra_req_trk_occ;
return (0);
} else if (ev <= PMC_EV_CMN600_PMU_cxla_avg_latency_form_tx_tlp) {
*node_type = NODE_TYPE_CXLA;
*event = ev - PMC_EV_CMN600_PMU_cxla_rx_tlp_link0;
return (0);
}
return (EINVAL);
}
/*
* Check if a given allocation is feasible.
*/
static int
cmn600_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
struct cmn600_descr *desc;
const struct pmc_descr *pd;
uint64_t caps __unused;
int local_counter, node_type;
enum pmc_event pe;
void *arg;
uint8_t e;
int err;
(void) cpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
desc = cmn600desc(ri);
arg = desc->pd_rw_arg;
pd = &desc->pd_descr;
if (cmn600_pmcs[class_ri2unit(ri)].domain != pcpu_find(cpu)->pc_domain)
return (EINVAL);
/* check class match */
if (pd->pd_class != a->pm_class)
return (EINVAL);
caps = pm->pm_caps;
PMCDBG3(MDP, ALL, 1, "%s ri=%d caps=0x%x", __func__, ri, caps);
pe = a->pm_ev;
err = cmn600_map_ev2event(pe, pmu_cmn600_rev(arg), &node_type, &e);
if (err != 0)
return (err);
err = pmu_cmn600_alloc_localpmc(arg,
a->pm_md.pm_cmn600.pma_cmn600_nodeid, node_type, &local_counter);
if (err != 0)
return (err);
pm->pm_md.pm_cmn600.pm_cmn600_config =
a->pm_md.pm_cmn600.pma_cmn600_config;
pm->pm_md.pm_cmn600.pm_cmn600_occupancy =
a->pm_md.pm_cmn600.pma_cmn600_occupancy;
desc->pd_nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid =
a->pm_md.pm_cmn600.pma_cmn600_nodeid;
desc->pd_node_type = pm->pm_md.pm_cmn600.pm_cmn600_node_type =
node_type;
pm->pm_md.pm_cmn600.pm_cmn600_event = e;
desc->pd_local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter =
local_counter;
return (0);
}
/* Release machine dependent state associated with a PMC. */
static int
cmn600_release_pmc(int cpu, int ri, struct pmc *pmc)
{
struct cmn600_descr *desc;
struct pmc_hw *phw;
struct pmc *pm __diagused;
int err;
(void) pmc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
desc = cmn600desc(ri);
phw = desc->pd_phw;
pm = phw->phw_pmc;
err = pmu_cmn600_free_localpmc(desc->pd_rw_arg, desc->pd_nodeid,
desc->pd_node_type, desc->pd_local_counter);
if (err != 0)
return (err);
KASSERT(pm == NULL, ("[cmn600,%d] PHW pmc %p non-NULL", __LINE__, pm));
return (0);
}
static inline uint64_t
cmn600_encode_source(int node_type, int counter, int port, int sub)
{
/* Calculate pmevcnt0_input_sel based on list in Table 3-794. */
if (node_type == NODE_TYPE_XP)
return (0x4 | counter);
return (((port + 1) << 4) | (sub << 2) | counter);
}
/*
* start a PMC.
*/
static int
cmn600_start_pmc(int cpu, int ri, struct pmc *pm)
{
int counter, local_counter, node_type, shift;
uint64_t config, occupancy, source, xp_pmucfg;
struct cmn600_descr *desc;
uint8_t event, port, sub;
uint16_t nodeid;
void *arg;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
counter = ri % CMN600_COUNTERS_N;
desc = cmn600desc(ri);
arg = desc->pd_rw_arg;
PMCDBG3(MDP, STA, 1, "%s cpu=%d ri=%d", __func__, cpu, ri);
config = pm->pm_md.pm_cmn600.pm_cmn600_config;
occupancy = pm->pm_md.pm_cmn600.pm_cmn600_occupancy;
node_type = pm->pm_md.pm_cmn600.pm_cmn600_node_type;
event = pm->pm_md.pm_cmn600.pm_cmn600_event;
nodeid = pm->pm_md.pm_cmn600.pm_cmn600_nodeid;
local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
port = (nodeid >> 2) & 1;
sub = nodeid & 3;
switch (node_type) {
case NODE_TYPE_DVM:
case NODE_TYPE_HN_F:
case NODE_TYPE_CXHA:
case NODE_TYPE_CXRA:
pmu_cmn600_md8(arg, nodeid, node_type,
CMN600_COMMON_PMU_EVENT_SEL,
CMN600_COMMON_PMU_EVENT_SEL_OCC_MASK,
occupancy << CMN600_COMMON_PMU_EVENT_SEL_OCC_SHIFT);
break;
case NODE_TYPE_XP:
/* Set PC and Interface.*/
event |= config;
}
/*
* 5.5.1 Set up PMU counters
* 1. Ensure that the NIDEN input is asserted. HW side. */
/* 2. Select event of target node for one of four outputs. */
pmu_cmn600_md8(arg, nodeid, node_type, CMN600_COMMON_PMU_EVENT_SEL,
0xff << (local_counter * 8),
event << (local_counter * 8));
xp_pmucfg = pmu_cmn600_rd8(arg, nodeid, NODE_TYPE_XP,
POR_DTM_PMU_CONFIG);
/*
* 3. configure XP to connect one of four target node outputs to local
* counter.
*/
source = cmn600_encode_source(node_type, local_counter, port, sub);
shift = (local_counter * POR_DTM_PMU_CONFIG_VCNT_INPUT_SEL_WIDTH) +
POR_DTM_PMU_CONFIG_VCNT_INPUT_SEL_SHIFT;
xp_pmucfg &= ~(0xffUL << shift);
xp_pmucfg |= source << shift;
/* 4. Pair with global counters A, B, C, ..., H. */
shift = (local_counter * 4) + 16;
xp_pmucfg &= ~(0xfUL << shift);
xp_pmucfg |= counter << shift;
/* Enable pairing.*/
xp_pmucfg |= 1 << (local_counter + 4);
/* 5. Combine local counters 0 with 1, 2 with 3 or all four. */
xp_pmucfg &= ~0xeUL;
/* 6. Enable XP's PMU function. */
xp_pmucfg |= POR_DTM_PMU_CONFIG_PMU_EN;
pmu_cmn600_wr8(arg, nodeid, NODE_TYPE_XP, POR_DTM_PMU_CONFIG, xp_pmucfg);
if (node_type == NODE_TYPE_CXLA)
pmu_cmn600_set8(arg, nodeid, NODE_TYPE_CXLA,
POR_CXG_RA_CFG_CTL, EN_CXLA_PMUCMD_PROP);
/* 7. Enable DTM. */
pmu_cmn600_set8(arg, nodeid, NODE_TYPE_XP, POR_DTM_CONTROL,
POR_DTM_CONTROL_DTM_ENABLE);
/* 8. Reset grouping of global counters. Use 32 bits. */
pmu_cmn600_clr8(arg, nodeid, NODE_TYPE_DTC, POR_DT_PMCR,
POR_DT_PMCR_CNTCFG_MASK);
/* 9. Enable DTC. */
pmu_cmn600_set8(arg, nodeid, NODE_TYPE_DTC, POR_DT_DTC_CTL,
POR_DT_DTC_CTL_DT_EN);
/* 10. Enable Overflow Interrupt. */
pmu_cmn600_set8(arg, nodeid, NODE_TYPE_DTC, POR_DT_PMCR,
POR_DT_PMCR_OVFL_INTR_EN);
/* 11. Run PMC. */
pmu_cmn600_set8(arg, nodeid, NODE_TYPE_DTC, POR_DT_PMCR,
POR_DT_PMCR_PMU_EN);
return (0);
}
/*
* Stop a PMC.
*/
static int
cmn600_stop_pmc(int cpu, int ri, struct pmc *pm)
{
struct cmn600_descr *desc;
int local_counter;
uint64_t val;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
desc = cmn600desc(ri);
PMCDBG2(MDP, STO, 1, "%s ri=%d", __func__, ri);
/* Disable pairing. */
local_counter = pm->pm_md.pm_cmn600.pm_cmn600_local_counter;
pmu_cmn600_clr8(desc->pd_rw_arg, pm->pm_md.pm_cmn600.pm_cmn600_nodeid,
NODE_TYPE_XP, POR_DTM_PMU_CONFIG, (1 << (local_counter + 4)));
/* Shutdown XP's DTM function if no paired counters. */
val = pmu_cmn600_rd8(desc->pd_rw_arg,
pm->pm_md.pm_cmn600.pm_cmn600_nodeid, NODE_TYPE_XP,
POR_DTM_PMU_CONFIG);
if ((val & 0xf0) == 0)
pmu_cmn600_clr8(desc->pd_rw_arg,
pm->pm_md.pm_cmn600.pm_cmn600_nodeid, NODE_TYPE_XP,
POR_DTM_PMU_CONFIG, POR_DTM_CONTROL_DTM_ENABLE);
return (0);
}
/*
* describe a PMC
*/
static int
cmn600_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
struct pmc_descr *pd;
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0, ("[cmn600,%d] row-index %d out of range", __LINE__,
ri));
phw = cmn600desc(ri)->pd_phw;
pd = &cmn600desc(ri)->pd_descr;
strlcpy(pi->pm_name, pd->pd_name, sizeof(pi->pm_name));
pi->pm_class = pd->pd_class;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
/*
* processor dependent initialization.
*/
static int
cmn600_pcpu_init(struct pmc_mdep *md, int cpu)
{
int first_ri, n, npmc;
struct pmc_hw *phw;
struct pmc_cpu *pc;
int mdep_class;
mdep_class = PMC_MDEP_CLASS_INDEX_CMN600;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] insane cpu number %d", __LINE__, cpu));
PMCDBG1(MDP, INI, 1, "cmn600-init cpu=%d", cpu);
/*
* Set the content of the hardware descriptors to a known
* state and initialize pointers in the MI per-cpu descriptor.
*/
pc = pmc_pcpu[cpu];
first_ri = md->pmd_classdep[mdep_class].pcd_ri;
npmc = md->pmd_classdep[mdep_class].pcd_num;
for (n = 0; n < npmc; n++, phw++) {
phw = cmn600desc(n)->pd_phw;
phw->phw_state = PMC_PHW_CPU_TO_STATE(cpu) |
PMC_PHW_INDEX_TO_STATE(n);
/* Set enabled only if unit present. */
if (cmn600_pmcs[class_ri2unit(n)].arg != NULL)
phw->phw_state |= PMC_PHW_FLAG_IS_ENABLED;
phw->phw_pmc = NULL;
pc->pc_hwpmcs[n + first_ri] = phw;
}
return (0);
}
/*
* processor dependent cleanup prior to the KLD
* being unloaded
*/
static int
cmn600_pcpu_fini(struct pmc_mdep *md, int cpu)
{
return (0);
}
static int
cmn600_pmu_intr(struct trapframe *tf, int unit, int i)
{
struct pmc_cpu *pc __diagused;
struct pmc_hw *phw;
struct pmc *pm;
int error, cpu, ri;
ri = i + unit * CMN600_COUNTERS_N;
cpu = curcpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[cmn600,%d] CPU %d out of range", __LINE__, cpu));
pc = pmc_pcpu[cpu];
KASSERT(pc != NULL, ("pc != NULL"));
phw = cmn600desc(ri)->pd_phw;
KASSERT(phw != NULL, ("phw != NULL"));
pm = phw->phw_pmc;
if (pm == NULL)
return (0);
if (!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
/* Always CPU0. */
pm->pm_pcpu_state[0].pps_overflowcnt += 1;
return (0);
}
if (pm->pm_state != PMC_STATE_RUNNING)
return (0);
error = pmc_process_interrupt(PMC_HR, pm, tf);
if (error)
cmn600_stop_pmc(cpu, ri, pm);
/* Reload sampling count */
cmn600_write_pmc(cpu, ri, pm, pm->pm_sc.pm_reloadcount);
return (0);
}
/*
* Initialize ourselves.
*/
static int
cmn600_init_pmc_units(void)
{
int i;
if (cmn600_units > 0) { /* Already initialized. */
return (0);
}
cmn600_units = cmn600_pmc_nunits();
if (cmn600_units == 0)
return (ENOENT);
for (i = 0; i < cmn600_units; i++) {
if (cmn600_pmc_getunit(i, &cmn600_pmcs[i].arg,
&cmn600_pmcs[i].domain) != 0)
cmn600_pmcs[i].arg = NULL;
}
return (0);
}
int
pmc_cmn600_nclasses(void)
{
if (cmn600_pmc_nunits() > 0)
return (1);
return (0);
}
int
pmc_cmn600_initialize(struct pmc_mdep *md)
{
struct pmc_classdep *pcd;
int i, npmc, unit;
cmn600_init_pmc_units();
KASSERT(md != NULL, ("[cmn600,%d] md is NULL", __LINE__));
KASSERT(cmn600_units < CMN600_UNIT_MAX,
("[cmn600,%d] cmn600_units too big", __LINE__));
PMCDBG0(MDP,INI,1, "cmn600-initialize");
npmc = CMN600_COUNTERS_N * cmn600_units;
pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_CMN600];
pcd->pcd_caps = PMC_CAP_SYSTEM | PMC_CAP_READ |
PMC_CAP_WRITE | PMC_CAP_QUALIFIER | PMC_CAP_INTERRUPT |
PMC_CAP_DOMWIDE;
pcd->pcd_class = PMC_CLASS_CMN600_PMU;
pcd->pcd_num = npmc;
pcd->pcd_ri = md->pmd_npmc;
pcd->pcd_width = 48;
pcd->pcd_allocate_pmc = cmn600_allocate_pmc;
pcd->pcd_config_pmc = cmn600_config_pmc;
pcd->pcd_describe = cmn600_describe;
pcd->pcd_get_config = cmn600_get_config;
pcd->pcd_get_msr = NULL;
pcd->pcd_pcpu_fini = cmn600_pcpu_fini;
pcd->pcd_pcpu_init = cmn600_pcpu_init;
pcd->pcd_read_pmc = cmn600_read_pmc;
pcd->pcd_release_pmc = cmn600_release_pmc;
pcd->pcd_start_pmc = cmn600_start_pmc;
pcd->pcd_stop_pmc = cmn600_stop_pmc;
pcd->pcd_write_pmc = cmn600_write_pmc;
md->pmd_npmc += npmc;
cmn600_pmcdesc = malloc(sizeof(struct cmn600_descr *) * npmc *
CMN600_PMU_DEFAULT_UNITS_N, M_PMC, M_WAITOK|M_ZERO);
for (i = 0; i < npmc; i++) {
cmn600_pmcdesc[i] = malloc(sizeof(struct cmn600_descr), M_PMC,
M_WAITOK|M_ZERO);
unit = i / CMN600_COUNTERS_N;
KASSERT(unit >= 0, ("unit >= 0"));
KASSERT(cmn600_pmcs[unit].arg != NULL, ("arg != NULL"));
cmn600_pmcdesc[i]->pd_rw_arg = cmn600_pmcs[unit].arg;
cmn600_pmcdesc[i]->pd_descr.pd_class =
PMC_CLASS_CMN600_PMU;
cmn600_pmcdesc[i]->pd_descr.pd_caps = pcd->pcd_caps;
cmn600_pmcdesc[i]->pd_phw = (struct pmc_hw *)malloc(
sizeof(struct pmc_hw), M_PMC, M_WAITOK|M_ZERO);
snprintf(cmn600_pmcdesc[i]->pd_descr.pd_name, 63,
"CMN600_%d", i);
cmn600_pmu_intr_cb(cmn600_pmcs[unit].arg, cmn600_pmu_intr);
}
return (0);
}
void
pmc_cmn600_finalize(struct pmc_mdep *md)
{
struct pmc_classdep *pcd;
int i, npmc;
KASSERT(md->pmd_classdep[PMC_MDEP_CLASS_INDEX_CMN600].pcd_class ==
PMC_CLASS_CMN600_PMU, ("[cmn600,%d] pmc class mismatch",
__LINE__));
pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_CMN600];
npmc = pcd->pcd_num;
for (i = 0; i < npmc; i++) {
free(cmn600_pmcdesc[i]->pd_phw, M_PMC);
free(cmn600_pmcdesc[i], M_PMC);
}
free(cmn600_pmcdesc, M_PMC);
cmn600_pmcdesc = NULL;
}
MODULE_DEPEND(pmc, cmn600, 1, 1, 1);