freebsd-dev/sys/dev/mana/mana_en.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

2882 lines
68 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2021 Microsoft Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/time.h>
#include <sys/eventhandler.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/in_cksum.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#ifdef RSS
#include <net/rss_config.h>
#endif
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include "mana.h"
#include "mana_sysctl.h"
static int mana_up(struct mana_port_context *apc);
static int mana_down(struct mana_port_context *apc);
static void
mana_rss_key_fill(void *k, size_t size)
{
static bool rss_key_generated = false;
static uint8_t rss_key[MANA_HASH_KEY_SIZE];
KASSERT(size <= MANA_HASH_KEY_SIZE,
("Request more buytes than MANA RSS key can hold"));
if (!rss_key_generated) {
arc4random_buf(rss_key, MANA_HASH_KEY_SIZE);
rss_key_generated = true;
}
memcpy(k, rss_key, size);
}
static int
mana_ifmedia_change(if_t ifp __unused)
{
return EOPNOTSUPP;
}
static void
mana_ifmedia_status(if_t ifp, struct ifmediareq *ifmr)
{
struct mana_port_context *apc = if_getsoftc(ifp);
if (!apc) {
if_printf(ifp, "Port not available\n");
return;
}
MANA_APC_LOCK_LOCK(apc);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!apc->port_is_up) {
MANA_APC_LOCK_UNLOCK(apc);
mana_dbg(NULL, "Port %u link is down\n", apc->port_idx);
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_100G_DR | IFM_FDX;
MANA_APC_LOCK_UNLOCK(apc);
}
static uint64_t
mana_get_counter(if_t ifp, ift_counter cnt)
{
struct mana_port_context *apc = if_getsoftc(ifp);
struct mana_port_stats *stats = &apc->port_stats;
switch (cnt) {
case IFCOUNTER_IPACKETS:
return (counter_u64_fetch(stats->rx_packets));
case IFCOUNTER_OPACKETS:
return (counter_u64_fetch(stats->tx_packets));
case IFCOUNTER_IBYTES:
return (counter_u64_fetch(stats->rx_bytes));
case IFCOUNTER_OBYTES:
return (counter_u64_fetch(stats->tx_bytes));
case IFCOUNTER_IQDROPS:
return (counter_u64_fetch(stats->rx_drops));
case IFCOUNTER_OQDROPS:
return (counter_u64_fetch(stats->tx_drops));
default:
return (if_get_counter_default(ifp, cnt));
}
}
static void
mana_qflush(if_t ifp)
{
if_qflush(ifp);
}
int
mana_restart(struct mana_port_context *apc)
{
int rc = 0;
MANA_APC_LOCK_LOCK(apc);
if (apc->port_is_up)
mana_down(apc);
rc = mana_up(apc);
MANA_APC_LOCK_UNLOCK(apc);
return (rc);
}
static int
mana_ioctl(if_t ifp, u_long command, caddr_t data)
{
struct mana_port_context *apc = if_getsoftc(ifp);
struct ifrsskey *ifrk;
struct ifrsshash *ifrh;
struct ifreq *ifr;
uint16_t new_mtu;
int rc = 0;
switch (command) {
case SIOCSIFMTU:
ifr = (struct ifreq *)data;
new_mtu = ifr->ifr_mtu;
if (if_getmtu(ifp) == new_mtu)
break;
if ((new_mtu + 18 > MAX_FRAME_SIZE) ||
(new_mtu + 18 < MIN_FRAME_SIZE)) {
if_printf(ifp, "Invalid MTU. new_mtu: %d, "
"max allowed: %d, min allowed: %d\n",
new_mtu, MAX_FRAME_SIZE - 18, MIN_FRAME_SIZE - 18);
return EINVAL;
}
MANA_APC_LOCK_LOCK(apc);
if (apc->port_is_up)
mana_down(apc);
apc->frame_size = new_mtu + 18;
if_setmtu(ifp, new_mtu);
mana_dbg(NULL, "Set MTU to %d\n", new_mtu);
rc = mana_up(apc);
MANA_APC_LOCK_UNLOCK(apc);
break;
case SIOCSIFFLAGS:
if (if_getflags(ifp) & IFF_UP) {
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
MANA_APC_LOCK_LOCK(apc);
if (!apc->port_is_up)
rc = mana_up(apc);
MANA_APC_LOCK_UNLOCK(apc);
}
} else {
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
MANA_APC_LOCK_LOCK(apc);
if (apc->port_is_up)
mana_down(apc);
MANA_APC_LOCK_UNLOCK(apc);
}
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
case SIOCGIFXMEDIA:
ifr = (struct ifreq *)data;
rc = ifmedia_ioctl(ifp, ifr, &apc->media, command);
break;
case SIOCGIFRSSKEY:
ifrk = (struct ifrsskey *)data;
ifrk->ifrk_func = RSS_FUNC_TOEPLITZ;
ifrk->ifrk_keylen = MANA_HASH_KEY_SIZE;
memcpy(ifrk->ifrk_key, apc->hashkey, MANA_HASH_KEY_SIZE);
break;
case SIOCGIFRSSHASH:
ifrh = (struct ifrsshash *)data;
ifrh->ifrh_func = RSS_FUNC_TOEPLITZ;
ifrh->ifrh_types =
RSS_TYPE_TCP_IPV4 |
RSS_TYPE_UDP_IPV4 |
RSS_TYPE_TCP_IPV6 |
RSS_TYPE_UDP_IPV6;
break;
default:
rc = ether_ioctl(ifp, command, data);
break;
}
return (rc);
}
static inline void
mana_alloc_counters(counter_u64_t *begin, int size)
{
counter_u64_t *end = (counter_u64_t *)((char *)begin + size);
for (; begin < end; ++begin)
*begin = counter_u64_alloc(M_WAITOK);
}
static inline void
mana_free_counters(counter_u64_t *begin, int size)
{
counter_u64_t *end = (counter_u64_t *)((char *)begin + size);
for (; begin < end; ++begin)
counter_u64_free(*begin);
}
static bool
mana_can_tx(struct gdma_queue *wq)
{
return mana_gd_wq_avail_space(wq) >= MAX_TX_WQE_SIZE;
}
static inline int
mana_tx_map_mbuf(struct mana_port_context *apc,
struct mana_send_buf_info *tx_info,
struct mbuf **m_head, struct mana_tx_package *tp,
struct mana_stats *tx_stats)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
bus_dma_segment_t segs[MAX_MBUF_FRAGS];
struct mbuf *m = *m_head;
int err, nsegs, i;
err = bus_dmamap_load_mbuf_sg(apc->tx_buf_tag, tx_info->dma_map,
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (err == EFBIG) {
struct mbuf *m_new;
counter_u64_add(tx_stats->collapse, 1);
m_new = m_collapse(m, M_NOWAIT, MAX_MBUF_FRAGS);
if (unlikely(m_new == NULL)) {
counter_u64_add(tx_stats->collapse_err, 1);
return ENOBUFS;
} else {
*m_head = m = m_new;
}
mana_warn(NULL,
"Too many segs in orig mbuf, m_collapse called\n");
err = bus_dmamap_load_mbuf_sg(apc->tx_buf_tag,
tx_info->dma_map, m, segs, &nsegs, BUS_DMA_NOWAIT);
}
if (!err) {
for (i = 0; i < nsegs; i++) {
tp->wqe_req.sgl[i].address = segs[i].ds_addr;
tp->wqe_req.sgl[i].mem_key = gd->gpa_mkey;
tp->wqe_req.sgl[i].size = segs[i].ds_len;
}
tp->wqe_req.num_sge = nsegs;
tx_info->mbuf = *m_head;
bus_dmamap_sync(apc->tx_buf_tag, tx_info->dma_map,
BUS_DMASYNC_PREWRITE);
}
return err;
}
static inline void
mana_tx_unmap_mbuf(struct mana_port_context *apc,
struct mana_send_buf_info *tx_info)
{
bus_dmamap_sync(apc->tx_buf_tag, tx_info->dma_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(apc->tx_buf_tag, tx_info->dma_map);
if (tx_info->mbuf) {
m_freem(tx_info->mbuf);
tx_info->mbuf = NULL;
}
}
static inline int
mana_load_rx_mbuf(struct mana_port_context *apc, struct mana_rxq *rxq,
struct mana_recv_buf_oob *rx_oob, bool alloc_mbuf)
{
bus_dma_segment_t segs[1];
struct mbuf *mbuf;
int nsegs, err;
uint32_t mlen;
if (alloc_mbuf) {
mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, rxq->datasize);
if (unlikely(mbuf == NULL)) {
mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (unlikely(mbuf == NULL)) {
return ENOMEM;
}
mlen = MCLBYTES;
} else {
mlen = rxq->datasize;
}
mbuf->m_pkthdr.len = mbuf->m_len = mlen;
} else {
if (rx_oob->mbuf) {
mbuf = rx_oob->mbuf;
mlen = rx_oob->mbuf->m_pkthdr.len;
} else {
return ENOMEM;
}
}
err = bus_dmamap_load_mbuf_sg(apc->rx_buf_tag, rx_oob->dma_map,
mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
if (unlikely((err != 0) || (nsegs != 1))) {
mana_warn(NULL, "Failed to map mbuf, error: %d, "
"nsegs: %d\n", err, nsegs);
counter_u64_add(rxq->stats.dma_mapping_err, 1);
goto error;
}
bus_dmamap_sync(apc->rx_buf_tag, rx_oob->dma_map,
BUS_DMASYNC_PREREAD);
rx_oob->mbuf = mbuf;
rx_oob->num_sge = 1;
rx_oob->sgl[0].address = segs[0].ds_addr;
rx_oob->sgl[0].size = mlen;
rx_oob->sgl[0].mem_key = apc->ac->gdma_dev->gpa_mkey;
return 0;
error:
m_freem(mbuf);
return EFAULT;
}
static inline void
mana_unload_rx_mbuf(struct mana_port_context *apc, struct mana_rxq *rxq,
struct mana_recv_buf_oob *rx_oob, bool free_mbuf)
{
bus_dmamap_sync(apc->rx_buf_tag, rx_oob->dma_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(apc->rx_buf_tag, rx_oob->dma_map);
if (free_mbuf && rx_oob->mbuf) {
m_freem(rx_oob->mbuf);
rx_oob->mbuf = NULL;
}
}
/* Use couple mbuf PH_loc spaces for l3 and l4 protocal type */
#define MANA_L3_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0])
#define MANA_L4_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1])
#define MANA_TXQ_FULL (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)
static void
mana_xmit(struct mana_txq *txq)
{
enum mana_tx_pkt_format pkt_fmt = MANA_SHORT_PKT_FMT;
struct mana_send_buf_info *tx_info;
if_t ndev = txq->ndev;
struct mbuf *mbuf;
struct mana_port_context *apc = if_getsoftc(ndev);
struct mana_port_stats *port_stats = &apc->port_stats;
struct gdma_dev *gd = apc->ac->gdma_dev;
uint64_t packets, bytes;
uint16_t next_to_use;
struct mana_tx_package pkg = {};
struct mana_stats *tx_stats;
struct gdma_queue *gdma_sq;
struct mana_cq *cq;
int err, len;
gdma_sq = txq->gdma_sq;
cq = &apc->tx_qp[txq->idx].tx_cq;
tx_stats = &txq->stats;
packets = 0;
bytes = 0;
next_to_use = txq->next_to_use;
while ((mbuf = drbr_peek(ndev, txq->txq_br)) != NULL) {
if (!apc->port_is_up ||
(if_getdrvflags(ndev) & MANA_TXQ_FULL) != IFF_DRV_RUNNING) {
drbr_putback(ndev, txq->txq_br, mbuf);
break;
}
if (!mana_can_tx(gdma_sq)) {
/* SQ is full. Set the IFF_DRV_OACTIVE flag */
if_setdrvflagbits(apc->ndev, IFF_DRV_OACTIVE, 0);
counter_u64_add(tx_stats->stop, 1);
uint64_t stops = counter_u64_fetch(tx_stats->stop);
uint64_t wakeups = counter_u64_fetch(tx_stats->wakeup);
#define MANA_TXQ_STOP_THRESHOLD 50
if (stops > MANA_TXQ_STOP_THRESHOLD && wakeups > 0 &&
stops > wakeups && txq->alt_txq_idx == txq->idx) {
txq->alt_txq_idx =
(txq->idx + (stops / wakeups))
% apc->num_queues;
counter_u64_add(tx_stats->alt_chg, 1);
}
drbr_putback(ndev, txq->txq_br, mbuf);
taskqueue_enqueue(cq->cleanup_tq, &cq->cleanup_task);
break;
}
tx_info = &txq->tx_buf_info[next_to_use];
memset(&pkg, 0, sizeof(struct mana_tx_package));
pkg.wqe_req.sgl = pkg.sgl_array;
err = mana_tx_map_mbuf(apc, tx_info, &mbuf, &pkg, tx_stats);
if (unlikely(err)) {
mana_dbg(NULL,
"Failed to map tx mbuf, err %d\n", err);
counter_u64_add(tx_stats->dma_mapping_err, 1);
/* The mbuf is still there. Free it */
m_freem(mbuf);
/* Advance the drbr queue */
drbr_advance(ndev, txq->txq_br);
continue;
}
pkg.tx_oob.s_oob.vcq_num = cq->gdma_id;
pkg.tx_oob.s_oob.vsq_frame = txq->vsq_frame;
if (txq->vp_offset > MANA_SHORT_VPORT_OFFSET_MAX) {
pkg.tx_oob.l_oob.long_vp_offset = txq->vp_offset;
pkt_fmt = MANA_LONG_PKT_FMT;
} else {
pkg.tx_oob.s_oob.short_vp_offset = txq->vp_offset;
}
pkg.tx_oob.s_oob.pkt_fmt = pkt_fmt;
if (pkt_fmt == MANA_SHORT_PKT_FMT)
pkg.wqe_req.inline_oob_size = sizeof(struct mana_tx_short_oob);
else
pkg.wqe_req.inline_oob_size = sizeof(struct mana_tx_oob);
pkg.wqe_req.inline_oob_data = &pkg.tx_oob;
pkg.wqe_req.flags = 0;
pkg.wqe_req.client_data_unit = 0;
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
if (MANA_L3_PROTO(mbuf) == ETHERTYPE_IP)
pkg.tx_oob.s_oob.is_outer_ipv4 = 1;
else
pkg.tx_oob.s_oob.is_outer_ipv6 = 1;
pkg.tx_oob.s_oob.comp_iphdr_csum = 1;
pkg.tx_oob.s_oob.comp_tcp_csum = 1;
pkg.tx_oob.s_oob.trans_off = mbuf->m_pkthdr.l3hlen;
pkg.wqe_req.client_data_unit = mbuf->m_pkthdr.tso_segsz;
pkg.wqe_req.flags = GDMA_WR_OOB_IN_SGL | GDMA_WR_PAD_BY_SGE0;
} else if (mbuf->m_pkthdr.csum_flags &
(CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP6_UDP | CSUM_IP6_TCP)) {
if (MANA_L3_PROTO(mbuf) == ETHERTYPE_IP) {
pkg.tx_oob.s_oob.is_outer_ipv4 = 1;
pkg.tx_oob.s_oob.comp_iphdr_csum = 1;
} else {
pkg.tx_oob.s_oob.is_outer_ipv6 = 1;
}
if (MANA_L4_PROTO(mbuf) == IPPROTO_TCP) {
pkg.tx_oob.s_oob.comp_tcp_csum = 1;
pkg.tx_oob.s_oob.trans_off =
mbuf->m_pkthdr.l3hlen;
} else {
pkg.tx_oob.s_oob.comp_udp_csum = 1;
}
} else if (mbuf->m_pkthdr.csum_flags & CSUM_IP) {
pkg.tx_oob.s_oob.is_outer_ipv4 = 1;
pkg.tx_oob.s_oob.comp_iphdr_csum = 1;
} else {
if (MANA_L3_PROTO(mbuf) == ETHERTYPE_IP)
pkg.tx_oob.s_oob.is_outer_ipv4 = 1;
else if (MANA_L3_PROTO(mbuf) == ETHERTYPE_IPV6)
pkg.tx_oob.s_oob.is_outer_ipv6 = 1;
}
len = mbuf->m_pkthdr.len;
err = mana_gd_post_work_request(gdma_sq, &pkg.wqe_req,
(struct gdma_posted_wqe_info *)&tx_info->wqe_inf);
if (unlikely(err)) {
/* Should not happen */
if_printf(ndev, "Failed to post TX OOB: %d\n", err);
mana_tx_unmap_mbuf(apc, tx_info);
drbr_advance(ndev, txq->txq_br);
continue;
}
next_to_use =
(next_to_use + 1) % MAX_SEND_BUFFERS_PER_QUEUE;
(void)atomic_inc_return(&txq->pending_sends);
drbr_advance(ndev, txq->txq_br);
mana_gd_wq_ring_doorbell(gd->gdma_context, gdma_sq);
packets++;
bytes += len;
}
counter_enter();
counter_u64_add_protected(tx_stats->packets, packets);
counter_u64_add_protected(port_stats->tx_packets, packets);
counter_u64_add_protected(tx_stats->bytes, bytes);
counter_u64_add_protected(port_stats->tx_bytes, bytes);
counter_exit();
txq->next_to_use = next_to_use;
}
static void
mana_xmit_taskfunc(void *arg, int pending)
{
struct mana_txq *txq = (struct mana_txq *)arg;
if_t ndev = txq->ndev;
struct mana_port_context *apc = if_getsoftc(ndev);
while (!drbr_empty(ndev, txq->txq_br) && apc->port_is_up &&
(if_getdrvflags(ndev) & MANA_TXQ_FULL) == IFF_DRV_RUNNING) {
mtx_lock(&txq->txq_mtx);
mana_xmit(txq);
mtx_unlock(&txq->txq_mtx);
}
}
#define PULLUP_HDR(m, len) \
do { \
if (unlikely((m)->m_len < (len))) { \
(m) = m_pullup((m), (len)); \
if ((m) == NULL) \
return (NULL); \
} \
} while (0)
/*
* If this function failed, the mbuf would be freed.
*/
static inline struct mbuf *
mana_tso_fixup(struct mbuf *mbuf)
{
struct ether_vlan_header *eh = mtod(mbuf, struct ether_vlan_header *);
struct tcphdr *th;
uint16_t etype;
int ehlen;
if (eh->evl_encap_proto == ntohs(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
ehlen = ETHER_HDR_LEN;
}
if (etype == ETHERTYPE_IP) {
struct ip *ip;
int iphlen;
PULLUP_HDR(mbuf, ehlen + sizeof(*ip));
ip = mtodo(mbuf, ehlen);
iphlen = ip->ip_hl << 2;
mbuf->m_pkthdr.l3hlen = ehlen + iphlen;
PULLUP_HDR(mbuf, ehlen + iphlen + sizeof(*th));
th = mtodo(mbuf, ehlen + iphlen);
ip->ip_len = 0;
ip->ip_sum = 0;
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
} else if (etype == ETHERTYPE_IPV6) {
struct ip6_hdr *ip6;
PULLUP_HDR(mbuf, ehlen + sizeof(*ip6) + sizeof(*th));
ip6 = mtodo(mbuf, ehlen);
if (ip6->ip6_nxt != IPPROTO_TCP) {
/* Realy something wrong, just return */
mana_dbg(NULL, "TSO mbuf not TCP, freed.\n");
m_freem(mbuf);
return NULL;
}
mbuf->m_pkthdr.l3hlen = ehlen + sizeof(*ip6);
th = mtodo(mbuf, ehlen + sizeof(*ip6));
ip6->ip6_plen = 0;
th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
} else {
/* CSUM_TSO is set but not IP protocol. */
mana_warn(NULL, "TSO mbuf not right, freed.\n");
m_freem(mbuf);
return NULL;
}
MANA_L3_PROTO(mbuf) = etype;
return (mbuf);
}
/*
* If this function failed, the mbuf would be freed.
*/
static inline struct mbuf *
mana_mbuf_csum_check(struct mbuf *mbuf)
{
struct ether_vlan_header *eh = mtod(mbuf, struct ether_vlan_header *);
struct mbuf *mbuf_next;
uint16_t etype;
int offset;
int ehlen;
if (eh->evl_encap_proto == ntohs(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
ehlen = ETHER_HDR_LEN;
}
mbuf_next = m_getptr(mbuf, ehlen, &offset);
MANA_L4_PROTO(mbuf) = 0;
if (etype == ETHERTYPE_IP) {
const struct ip *ip;
int iphlen;
ip = (struct ip *)(mtodo(mbuf_next, offset));
iphlen = ip->ip_hl << 2;
mbuf->m_pkthdr.l3hlen = ehlen + iphlen;
MANA_L4_PROTO(mbuf) = ip->ip_p;
} else if (etype == ETHERTYPE_IPV6) {
const struct ip6_hdr *ip6;
ip6 = (struct ip6_hdr *)(mtodo(mbuf_next, offset));
mbuf->m_pkthdr.l3hlen = ehlen + sizeof(*ip6);
MANA_L4_PROTO(mbuf) = ip6->ip6_nxt;
} else {
MANA_L4_PROTO(mbuf) = 0;
}
MANA_L3_PROTO(mbuf) = etype;
return (mbuf);
}
static int
mana_start_xmit(if_t ifp, struct mbuf *m)
{
struct mana_port_context *apc = if_getsoftc(ifp);
struct mana_txq *txq;
int is_drbr_empty;
uint16_t txq_id;
int err;
if (unlikely((!apc->port_is_up) ||
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
return ENODEV;
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
m = mana_tso_fixup(m);
if (unlikely(m == NULL)) {
counter_enter();
counter_u64_add_protected(apc->port_stats.tx_drops, 1);
counter_exit();
return EIO;
}
} else {
m = mana_mbuf_csum_check(m);
if (unlikely(m == NULL)) {
counter_enter();
counter_u64_add_protected(apc->port_stats.tx_drops, 1);
counter_exit();
return EIO;
}
}
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
uint32_t hash = m->m_pkthdr.flowid;
txq_id = apc->indir_table[(hash) & MANA_INDIRECT_TABLE_MASK] %
apc->num_queues;
} else {
txq_id = m->m_pkthdr.flowid % apc->num_queues;
}
if (apc->enable_tx_altq)
txq_id = apc->tx_qp[txq_id].txq.alt_txq_idx;
txq = &apc->tx_qp[txq_id].txq;
is_drbr_empty = drbr_empty(ifp, txq->txq_br);
err = drbr_enqueue(ifp, txq->txq_br, m);
if (unlikely(err)) {
mana_warn(NULL, "txq %u failed to enqueue: %d\n",
txq_id, err);
taskqueue_enqueue(txq->enqueue_tq, &txq->enqueue_task);
return err;
}
if (is_drbr_empty && mtx_trylock(&txq->txq_mtx)) {
mana_xmit(txq);
mtx_unlock(&txq->txq_mtx);
} else {
taskqueue_enqueue(txq->enqueue_tq, &txq->enqueue_task);
}
return 0;
}
static void
mana_cleanup_port_context(struct mana_port_context *apc)
{
bus_dma_tag_destroy(apc->tx_buf_tag);
bus_dma_tag_destroy(apc->rx_buf_tag);
apc->rx_buf_tag = NULL;
free(apc->rxqs, M_DEVBUF);
apc->rxqs = NULL;
mana_free_counters((counter_u64_t *)&apc->port_stats,
sizeof(struct mana_port_stats));
}
static int
mana_init_port_context(struct mana_port_context *apc)
{
device_t dev = apc->ac->gdma_dev->gdma_context->dev;
uint32_t tso_maxsize;
int err;
tso_maxsize = MAX_MBUF_FRAGS * MANA_TSO_MAXSEG_SZ -
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
/* Create DMA tag for tx bufs */
err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
tso_maxsize, /* maxsize */
MAX_MBUF_FRAGS, /* nsegments */
tso_maxsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg*/
&apc->tx_buf_tag);
if (unlikely(err)) {
device_printf(dev, "Feiled to create TX DMA tag\n");
return err;
}
/* Create DMA tag for rx bufs */
err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
64, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUMPAGESIZE, /* maxsize */
1, /* nsegments */
MJUMPAGESIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg*/
&apc->rx_buf_tag);
if (unlikely(err)) {
device_printf(dev, "Feiled to create RX DMA tag\n");
return err;
}
apc->rxqs = mallocarray(apc->num_queues, sizeof(struct mana_rxq *),
M_DEVBUF, M_WAITOK | M_ZERO);
if (!apc->rxqs) {
bus_dma_tag_destroy(apc->tx_buf_tag);
bus_dma_tag_destroy(apc->rx_buf_tag);
apc->rx_buf_tag = NULL;
return ENOMEM;
}
return 0;
}
static int
mana_send_request(struct mana_context *ac, void *in_buf,
uint32_t in_len, void *out_buf, uint32_t out_len)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct gdma_resp_hdr *resp = out_buf;
struct gdma_req_hdr *req = in_buf;
device_t dev = gc->dev;
static atomic_t activity_id;
int err;
req->dev_id = gc->mana.dev_id;
req->activity_id = atomic_inc_return(&activity_id);
mana_dbg(NULL, "activity_id = %u\n", activity_id);
err = mana_gd_send_request(gc, in_len, in_buf, out_len,
out_buf);
if (err || resp->status) {
device_printf(dev, "Failed to send mana message: %d, 0x%x\n",
err, resp->status);
return err ? err : EPROTO;
}
if (req->dev_id.as_uint32 != resp->dev_id.as_uint32 ||
req->activity_id != resp->activity_id) {
device_printf(dev,
"Unexpected mana message response: %x,%x,%x,%x\n",
req->dev_id.as_uint32, resp->dev_id.as_uint32,
req->activity_id, resp->activity_id);
return EPROTO;
}
return 0;
}
static int
mana_verify_resp_hdr(const struct gdma_resp_hdr *resp_hdr,
const enum mana_command_code expected_code,
const uint32_t min_size)
{
if (resp_hdr->response.msg_type != expected_code)
return EPROTO;
if (resp_hdr->response.msg_version < GDMA_MESSAGE_V1)
return EPROTO;
if (resp_hdr->response.msg_size < min_size)
return EPROTO;
return 0;
}
static int
mana_query_device_cfg(struct mana_context *ac, uint32_t proto_major_ver,
uint32_t proto_minor_ver, uint32_t proto_micro_ver,
uint16_t *max_num_vports)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct mana_query_device_cfg_resp resp = {};
struct mana_query_device_cfg_req req = {};
device_t dev = gc->dev;
int err = 0;
mana_gd_init_req_hdr(&req.hdr, MANA_QUERY_DEV_CONFIG,
sizeof(req), sizeof(resp));
req.proto_major_ver = proto_major_ver;
req.proto_minor_ver = proto_minor_ver;
req.proto_micro_ver = proto_micro_ver;
err = mana_send_request(ac, &req, sizeof(req), &resp, sizeof(resp));
if (err) {
device_printf(dev, "Failed to query config: %d", err);
return err;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_QUERY_DEV_CONFIG,
sizeof(resp));
if (err || resp.hdr.status) {
device_printf(dev, "Invalid query result: %d, 0x%x\n", err,
resp.hdr.status);
if (!err)
err = EPROTO;
return err;
}
*max_num_vports = resp.max_num_vports;
mana_dbg(NULL, "mana max_num_vports from device = %d\n",
*max_num_vports);
return 0;
}
static int
mana_query_vport_cfg(struct mana_port_context *apc, uint32_t vport_index,
uint32_t *max_sq, uint32_t *max_rq, uint32_t *num_indir_entry)
{
struct mana_query_vport_cfg_resp resp = {};
struct mana_query_vport_cfg_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_QUERY_VPORT_CONFIG,
sizeof(req), sizeof(resp));
req.vport_index = vport_index;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err)
return err;
err = mana_verify_resp_hdr(&resp.hdr, MANA_QUERY_VPORT_CONFIG,
sizeof(resp));
if (err)
return err;
if (resp.hdr.status)
return EPROTO;
*max_sq = resp.max_num_sq;
*max_rq = resp.max_num_rq;
*num_indir_entry = resp.num_indirection_ent;
apc->port_handle = resp.vport;
memcpy(apc->mac_addr, resp.mac_addr, ETHER_ADDR_LEN);
return 0;
}
void
mana_uncfg_vport(struct mana_port_context *apc)
{
apc->vport_use_count--;
if (apc->vport_use_count < 0) {
mana_err(NULL,
"WARNING: vport_use_count less than 0: %u\n",
apc->vport_use_count);
}
}
int
mana_cfg_vport(struct mana_port_context *apc, uint32_t protection_dom_id,
uint32_t doorbell_pg_id)
{
struct mana_config_vport_resp resp = {};
struct mana_config_vport_req req = {};
int err;
/* This function is used to program the Ethernet port in the hardware
* table. It can be called from the Ethernet driver or the RDMA driver.
*
* For Ethernet usage, the hardware supports only one active user on a
* physical port. The driver checks on the port usage before programming
* the hardware when creating the RAW QP (RDMA driver) or exposing the
* device to kernel NET layer (Ethernet driver).
*
* Because the RDMA driver doesn't know in advance which QP type the
* user will create, it exposes the device with all its ports. The user
* may not be able to create RAW QP on a port if this port is already
* in used by the Ethernet driver from the kernel.
*
* This physical port limitation only applies to the RAW QP. For RC QP,
* the hardware doesn't have this limitation. The user can create RC
* QPs on a physical port up to the hardware limits independent of the
* Ethernet usage on the same port.
*/
if (apc->vport_use_count > 0) {
return EBUSY;
}
apc->vport_use_count++;
mana_gd_init_req_hdr(&req.hdr, MANA_CONFIG_VPORT_TX,
sizeof(req), sizeof(resp));
req.vport = apc->port_handle;
req.pdid = protection_dom_id;
req.doorbell_pageid = doorbell_pg_id;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
if_printf(apc->ndev, "Failed to configure vPort: %d\n", err);
goto out;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_CONFIG_VPORT_TX,
sizeof(resp));
if (err || resp.hdr.status) {
if_printf(apc->ndev, "Failed to configure vPort: %d, 0x%x\n",
err, resp.hdr.status);
if (!err)
err = EPROTO;
goto out;
}
apc->tx_shortform_allowed = resp.short_form_allowed;
apc->tx_vp_offset = resp.tx_vport_offset;
if_printf(apc->ndev, "Configured vPort %ju PD %u DB %u\n",
apc->port_handle, protection_dom_id, doorbell_pg_id);
out:
if (err)
mana_uncfg_vport(apc);
return err;
}
static int
mana_cfg_vport_steering(struct mana_port_context *apc,
enum TRI_STATE rx,
bool update_default_rxobj, bool update_key,
bool update_tab)
{
uint16_t num_entries = MANA_INDIRECT_TABLE_SIZE;
struct mana_cfg_rx_steer_req *req = NULL;
struct mana_cfg_rx_steer_resp resp = {};
if_t ndev = apc->ndev;
mana_handle_t *req_indir_tab;
uint32_t req_buf_size;
int err;
req_buf_size = sizeof(*req) + sizeof(mana_handle_t) * num_entries;
req = malloc(req_buf_size, M_DEVBUF, M_WAITOK | M_ZERO);
if (!req)
return ENOMEM;
mana_gd_init_req_hdr(&req->hdr, MANA_CONFIG_VPORT_RX, req_buf_size,
sizeof(resp));
req->vport = apc->port_handle;
req->num_indir_entries = num_entries;
req->indir_tab_offset = sizeof(*req);
req->rx_enable = rx;
req->rss_enable = apc->rss_state;
req->update_default_rxobj = update_default_rxobj;
req->update_hashkey = update_key;
req->update_indir_tab = update_tab;
req->default_rxobj = apc->default_rxobj;
if (update_key)
memcpy(&req->hashkey, apc->hashkey, MANA_HASH_KEY_SIZE);
if (update_tab) {
req_indir_tab = (mana_handle_t *)(req + 1);
memcpy(req_indir_tab, apc->rxobj_table,
req->num_indir_entries * sizeof(mana_handle_t));
}
err = mana_send_request(apc->ac, req, req_buf_size, &resp,
sizeof(resp));
if (err) {
if_printf(ndev, "Failed to configure vPort RX: %d\n", err);
goto out;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_CONFIG_VPORT_RX,
sizeof(resp));
if (err) {
if_printf(ndev, "vPort RX configuration failed: %d\n", err);
goto out;
}
if (resp.hdr.status) {
if_printf(ndev, "vPort RX configuration failed: 0x%x\n",
resp.hdr.status);
err = EPROTO;
}
if_printf(ndev, "Configured steering vPort %ju entries %u\n",
apc->port_handle, num_entries);
out:
free(req, M_DEVBUF);
return err;
}
int
mana_create_wq_obj(struct mana_port_context *apc,
mana_handle_t vport,
uint32_t wq_type, struct mana_obj_spec *wq_spec,
struct mana_obj_spec *cq_spec,
mana_handle_t *wq_obj)
{
struct mana_create_wqobj_resp resp = {};
struct mana_create_wqobj_req req = {};
if_t ndev = apc->ndev;
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_CREATE_WQ_OBJ,
sizeof(req), sizeof(resp));
req.vport = vport;
req.wq_type = wq_type;
req.wq_gdma_region = wq_spec->gdma_region;
req.cq_gdma_region = cq_spec->gdma_region;
req.wq_size = wq_spec->queue_size;
req.cq_size = cq_spec->queue_size;
req.cq_moderation_ctx_id = cq_spec->modr_ctx_id;
req.cq_parent_qid = cq_spec->attached_eq;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
if_printf(ndev, "Failed to create WQ object: %d\n", err);
goto out;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_CREATE_WQ_OBJ,
sizeof(resp));
if (err || resp.hdr.status) {
if_printf(ndev, "Failed to create WQ object: %d, 0x%x\n", err,
resp.hdr.status);
if (!err)
err = EPROTO;
goto out;
}
if (resp.wq_obj == INVALID_MANA_HANDLE) {
if_printf(ndev, "Got an invalid WQ object handle\n");
err = EPROTO;
goto out;
}
*wq_obj = resp.wq_obj;
wq_spec->queue_index = resp.wq_id;
cq_spec->queue_index = resp.cq_id;
return 0;
out:
return err;
}
void
mana_destroy_wq_obj(struct mana_port_context *apc, uint32_t wq_type,
mana_handle_t wq_obj)
{
struct mana_destroy_wqobj_resp resp = {};
struct mana_destroy_wqobj_req req = {};
if_t ndev = apc->ndev;
int err;
mana_gd_init_req_hdr(&req.hdr, MANA_DESTROY_WQ_OBJ,
sizeof(req), sizeof(resp));
req.wq_type = wq_type;
req.wq_obj_handle = wq_obj;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
if_printf(ndev, "Failed to destroy WQ object: %d\n", err);
return;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_DESTROY_WQ_OBJ,
sizeof(resp));
if (err || resp.hdr.status)
if_printf(ndev, "Failed to destroy WQ object: %d, 0x%x\n",
err, resp.hdr.status);
}
static void
mana_destroy_eq(struct mana_context *ac)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct gdma_queue *eq;
int i;
if (!ac->eqs)
return;
for (i = 0; i < gc->max_num_queues; i++) {
eq = ac->eqs[i].eq;
if (!eq)
continue;
mana_gd_destroy_queue(gc, eq);
}
free(ac->eqs, M_DEVBUF);
ac->eqs = NULL;
}
static int
mana_create_eq(struct mana_context *ac)
{
struct gdma_dev *gd = ac->gdma_dev;
struct gdma_context *gc = gd->gdma_context;
struct gdma_queue_spec spec = {};
int err;
int i;
ac->eqs = mallocarray(gc->max_num_queues, sizeof(struct mana_eq),
M_DEVBUF, M_WAITOK | M_ZERO);
if (!ac->eqs)
return ENOMEM;
spec.type = GDMA_EQ;
spec.monitor_avl_buf = false;
spec.queue_size = EQ_SIZE;
spec.eq.callback = NULL;
spec.eq.context = ac->eqs;
spec.eq.log2_throttle_limit = LOG2_EQ_THROTTLE;
for (i = 0; i < gc->max_num_queues; i++) {
err = mana_gd_create_mana_eq(gd, &spec, &ac->eqs[i].eq);
if (err)
goto out;
}
return 0;
out:
mana_destroy_eq(ac);
return err;
}
static int
mana_fence_rq(struct mana_port_context *apc, struct mana_rxq *rxq)
{
struct mana_fence_rq_resp resp = {};
struct mana_fence_rq_req req = {};
int err;
init_completion(&rxq->fence_event);
mana_gd_init_req_hdr(&req.hdr, MANA_FENCE_RQ,
sizeof(req), sizeof(resp));
req.wq_obj_handle = rxq->rxobj;
err = mana_send_request(apc->ac, &req, sizeof(req), &resp,
sizeof(resp));
if (err) {
if_printf(apc->ndev, "Failed to fence RQ %u: %d\n",
rxq->rxq_idx, err);
return err;
}
err = mana_verify_resp_hdr(&resp.hdr, MANA_FENCE_RQ, sizeof(resp));
if (err || resp.hdr.status) {
if_printf(apc->ndev, "Failed to fence RQ %u: %d, 0x%x\n",
rxq->rxq_idx, err, resp.hdr.status);
if (!err)
err = EPROTO;
return err;
}
if (wait_for_completion_timeout(&rxq->fence_event, 10 * hz)) {
if_printf(apc->ndev, "Failed to fence RQ %u: timed out\n",
rxq->rxq_idx);
return ETIMEDOUT;
}
return 0;
}
static void
mana_fence_rqs(struct mana_port_context *apc)
{
unsigned int rxq_idx;
struct mana_rxq *rxq;
int err;
for (rxq_idx = 0; rxq_idx < apc->num_queues; rxq_idx++) {
rxq = apc->rxqs[rxq_idx];
err = mana_fence_rq(apc, rxq);
/* In case of any error, use sleep instead. */
if (err)
gdma_msleep(100);
}
}
static int
mana_move_wq_tail(struct gdma_queue *wq, uint32_t num_units)
{
uint32_t used_space_old;
uint32_t used_space_new;
used_space_old = wq->head - wq->tail;
used_space_new = wq->head - (wq->tail + num_units);
if (used_space_new > used_space_old) {
mana_err(NULL,
"WARNING: new used space %u greater than old one %u\n",
used_space_new, used_space_old);
return ERANGE;
}
wq->tail += num_units;
return 0;
}
static void
mana_poll_tx_cq(struct mana_cq *cq)
{
struct gdma_comp *completions = cq->gdma_comp_buf;
struct gdma_posted_wqe_info *wqe_info;
struct mana_send_buf_info *tx_info;
unsigned int pkt_transmitted = 0;
unsigned int wqe_unit_cnt = 0;
struct mana_txq *txq = cq->txq;
struct mana_port_context *apc;
uint16_t next_to_complete;
if_t ndev;
int comp_read;
int txq_idx = txq->idx;;
int i;
int sa_drop = 0;
struct gdma_queue *gdma_wq;
unsigned int avail_space;
bool txq_full = false;
ndev = txq->ndev;
apc = if_getsoftc(ndev);
comp_read = mana_gd_poll_cq(cq->gdma_cq, completions,
CQE_POLLING_BUFFER);
if (comp_read < 1)
return;
next_to_complete = txq->next_to_complete;
for (i = 0; i < comp_read; i++) {
struct mana_tx_comp_oob *cqe_oob;
if (!completions[i].is_sq) {
mana_err(NULL, "WARNING: Not for SQ\n");
return;
}
cqe_oob = (struct mana_tx_comp_oob *)completions[i].cqe_data;
if (cqe_oob->cqe_hdr.client_type !=
MANA_CQE_COMPLETION) {
mana_err(NULL,
"WARNING: Invalid CQE client type %u\n",
cqe_oob->cqe_hdr.client_type);
return;
}
switch (cqe_oob->cqe_hdr.cqe_type) {
case CQE_TX_OKAY:
break;
case CQE_TX_SA_DROP:
case CQE_TX_MTU_DROP:
case CQE_TX_INVALID_OOB:
case CQE_TX_INVALID_ETH_TYPE:
case CQE_TX_HDR_PROCESSING_ERROR:
case CQE_TX_VF_DISABLED:
case CQE_TX_VPORT_IDX_OUT_OF_RANGE:
case CQE_TX_VPORT_DISABLED:
case CQE_TX_VLAN_TAGGING_VIOLATION:
sa_drop ++;
mana_err(NULL,
"TX: txq %d CQE error %d, ntc = %d, "
"pending sends = %d: err ignored.\n",
txq_idx, cqe_oob->cqe_hdr.cqe_type,
next_to_complete, txq->pending_sends);
break;
default:
/* If the CQE type is unexpected, log an error,
* and go through the error path.
*/
mana_err(NULL,
"ERROR: TX: Unexpected CQE type %d: HW BUG?\n",
cqe_oob->cqe_hdr.cqe_type);
return;
}
if (txq->gdma_txq_id != completions[i].wq_num) {
mana_dbg(NULL,
"txq gdma id not match completion wq num: "
"%d != %d\n",
txq->gdma_txq_id, completions[i].wq_num);
break;
}
tx_info = &txq->tx_buf_info[next_to_complete];
if (!tx_info->mbuf) {
mana_err(NULL,
"WARNING: txq %d Empty mbuf on tx_info: %u, "
"ntu = %u, pending_sends = %d, "
"transmitted = %d, sa_drop = %d, i = %d, comp_read = %d\n",
txq_idx, next_to_complete, txq->next_to_use,
txq->pending_sends, pkt_transmitted, sa_drop,
i, comp_read);
break;
}
wqe_info = &tx_info->wqe_inf;
wqe_unit_cnt += wqe_info->wqe_size_in_bu;
mana_tx_unmap_mbuf(apc, tx_info);
mb();
next_to_complete =
(next_to_complete + 1) % MAX_SEND_BUFFERS_PER_QUEUE;
pkt_transmitted++;
}
txq->next_to_complete = next_to_complete;
if (wqe_unit_cnt == 0) {
mana_err(NULL,
"WARNING: TX ring not proceeding!\n");
return;
}
mana_move_wq_tail(txq->gdma_sq, wqe_unit_cnt);
/* Ensure tail updated before checking q stop */
wmb();
gdma_wq = txq->gdma_sq;
avail_space = mana_gd_wq_avail_space(gdma_wq);
if ((if_getdrvflags(ndev) & MANA_TXQ_FULL) == MANA_TXQ_FULL) {
txq_full = true;
}
/* Ensure checking txq_full before apc->port_is_up. */
rmb();
if (txq_full && apc->port_is_up && avail_space >= MAX_TX_WQE_SIZE) {
/* Grab the txq lock and re-test */
mtx_lock(&txq->txq_mtx);
avail_space = mana_gd_wq_avail_space(gdma_wq);
if ((if_getdrvflags(ndev) & MANA_TXQ_FULL) == MANA_TXQ_FULL &&
apc->port_is_up && avail_space >= MAX_TX_WQE_SIZE) {
/* Clear the Q full flag */
if_setdrvflagbits(apc->ndev, IFF_DRV_RUNNING,
IFF_DRV_OACTIVE);
counter_u64_add(txq->stats.wakeup, 1);
if (txq->alt_txq_idx != txq->idx) {
uint64_t stops = counter_u64_fetch(txq->stats.stop);
uint64_t wakeups = counter_u64_fetch(txq->stats.wakeup);
/* Reset alt_txq_idx back if it is not overloaded */
if (stops < wakeups) {
txq->alt_txq_idx = txq->idx;
counter_u64_add(txq->stats.alt_reset, 1);
}
}
rmb();
/* Schedule a tx enqueue task */
taskqueue_enqueue(txq->enqueue_tq, &txq->enqueue_task);
}
mtx_unlock(&txq->txq_mtx);
}
if (atomic_sub_return(pkt_transmitted, &txq->pending_sends) < 0)
mana_err(NULL,
"WARNING: TX %d pending_sends error: %d\n",
txq->idx, txq->pending_sends);
cq->work_done = pkt_transmitted;
}
static void
mana_post_pkt_rxq(struct mana_rxq *rxq)
{
struct mana_recv_buf_oob *recv_buf_oob;
uint32_t curr_index;
int err;
curr_index = rxq->buf_index++;
if (rxq->buf_index == rxq->num_rx_buf)
rxq->buf_index = 0;
recv_buf_oob = &rxq->rx_oobs[curr_index];
err = mana_gd_post_and_ring(rxq->gdma_rq, &recv_buf_oob->wqe_req,
&recv_buf_oob->wqe_inf);
if (err) {
mana_err(NULL, "WARNING: rxq %u post pkt err %d\n",
rxq->rxq_idx, err);
return;
}
if (recv_buf_oob->wqe_inf.wqe_size_in_bu != 1) {
mana_err(NULL, "WARNING: rxq %u wqe_size_in_bu %u\n",
rxq->rxq_idx, recv_buf_oob->wqe_inf.wqe_size_in_bu);
}
}
static void
mana_rx_mbuf(struct mbuf *mbuf, struct mana_rxcomp_oob *cqe,
struct mana_rxq *rxq)
{
struct mana_stats *rx_stats = &rxq->stats;
if_t ndev = rxq->ndev;
uint32_t pkt_len = cqe->ppi[0].pkt_len;
uint16_t rxq_idx = rxq->rxq_idx;
struct mana_port_context *apc;
bool do_lro = false;
bool do_if_input;
apc = if_getsoftc(ndev);
rxq->rx_cq.work_done++;
if (!mbuf) {
return;
}
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = pkt_len;
mbuf->m_len = pkt_len;
mbuf->m_pkthdr.rcvif = ndev;
if ((if_getcapenable(ndev) & IFCAP_RXCSUM ||
if_getcapenable(ndev) & IFCAP_RXCSUM_IPV6) &&
(cqe->rx_iphdr_csum_succeed)) {
mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (cqe->rx_tcp_csum_succeed || cqe->rx_udp_csum_succeed) {
mbuf->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
mbuf->m_pkthdr.csum_data = 0xffff;
if (cqe->rx_tcp_csum_succeed)
do_lro = true;
}
}
if (cqe->rx_hashtype != 0) {
mbuf->m_pkthdr.flowid = cqe->ppi[0].pkt_hash;
uint16_t hashtype = cqe->rx_hashtype;
if (hashtype & NDIS_HASH_IPV4_MASK) {
hashtype &= NDIS_HASH_IPV4_MASK;
switch (hashtype) {
case NDIS_HASH_TCP_IPV4:
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
break;
case NDIS_HASH_UDP_IPV4:
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
break;
default:
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
}
} else if (hashtype & NDIS_HASH_IPV6_MASK) {
hashtype &= NDIS_HASH_IPV6_MASK;
switch (hashtype) {
case NDIS_HASH_TCP_IPV6:
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
break;
case NDIS_HASH_TCP_IPV6_EX:
M_HASHTYPE_SET(mbuf,
M_HASHTYPE_RSS_TCP_IPV6_EX);
break;
case NDIS_HASH_UDP_IPV6:
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
break;
case NDIS_HASH_UDP_IPV6_EX:
M_HASHTYPE_SET(mbuf,
M_HASHTYPE_RSS_UDP_IPV6_EX);
break;
default:
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
}
} else {
M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
}
} else {
mbuf->m_pkthdr.flowid = rxq_idx;
M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
}
do_if_input = true;
if ((if_getcapenable(ndev) & IFCAP_LRO) && do_lro) {
if (rxq->lro.lro_cnt != 0 &&
tcp_lro_rx(&rxq->lro, mbuf, 0) == 0)
do_if_input = false;
}
if (do_if_input) {
if_input(ndev, mbuf);
}
counter_enter();
counter_u64_add_protected(rx_stats->packets, 1);
counter_u64_add_protected(apc->port_stats.rx_packets, 1);
counter_u64_add_protected(rx_stats->bytes, pkt_len);
counter_u64_add_protected(apc->port_stats.rx_bytes, pkt_len);
counter_exit();
}
static void
mana_process_rx_cqe(struct mana_rxq *rxq, struct mana_cq *cq,
struct gdma_comp *cqe)
{
struct mana_rxcomp_oob *oob = (struct mana_rxcomp_oob *)cqe->cqe_data;
struct mana_recv_buf_oob *rxbuf_oob;
if_t ndev = rxq->ndev;
struct mana_port_context *apc;
struct mbuf *old_mbuf;
uint32_t curr, pktlen;
int err;
switch (oob->cqe_hdr.cqe_type) {
case CQE_RX_OKAY:
break;
case CQE_RX_TRUNCATED:
apc = if_getsoftc(ndev);
counter_u64_add(apc->port_stats.rx_drops, 1);
rxbuf_oob = &rxq->rx_oobs[rxq->buf_index];
if_printf(ndev, "Dropped a truncated packet\n");
goto drop;
case CQE_RX_COALESCED_4:
if_printf(ndev, "RX coalescing is unsupported\n");
return;
case CQE_RX_OBJECT_FENCE:
complete(&rxq->fence_event);
return;
default:
if_printf(ndev, "Unknown RX CQE type = %d\n",
oob->cqe_hdr.cqe_type);
return;
}
if (oob->cqe_hdr.cqe_type != CQE_RX_OKAY)
return;
pktlen = oob->ppi[0].pkt_len;
if (pktlen == 0) {
/* data packets should never have packetlength of zero */
if_printf(ndev, "RX pkt len=0, rq=%u, cq=%u, rxobj=0x%jx\n",
rxq->gdma_id, cq->gdma_id, rxq->rxobj);
return;
}
curr = rxq->buf_index;
rxbuf_oob = &rxq->rx_oobs[curr];
if (rxbuf_oob->wqe_inf.wqe_size_in_bu != 1) {
mana_err(NULL, "WARNING: Rx Incorrect complete "
"WQE size %u\n",
rxbuf_oob->wqe_inf.wqe_size_in_bu);
}
apc = if_getsoftc(ndev);
old_mbuf = rxbuf_oob->mbuf;
/* Unload DMA map for the old mbuf */
mana_unload_rx_mbuf(apc, rxq, rxbuf_oob, false);
/* Load a new mbuf to replace the old one */
err = mana_load_rx_mbuf(apc, rxq, rxbuf_oob, true);
if (err) {
mana_dbg(NULL,
"failed to load rx mbuf, err = %d, packet dropped.\n",
err);
counter_u64_add(rxq->stats.mbuf_alloc_fail, 1);
/*
* Failed to load new mbuf, rxbuf_oob->mbuf is still
* pointing to the old one. Drop the packet.
*/
old_mbuf = NULL;
/* Reload the existing mbuf */
mana_load_rx_mbuf(apc, rxq, rxbuf_oob, false);
}
mana_rx_mbuf(old_mbuf, oob, rxq);
drop:
mana_move_wq_tail(rxq->gdma_rq, rxbuf_oob->wqe_inf.wqe_size_in_bu);
mana_post_pkt_rxq(rxq);
}
static void
mana_poll_rx_cq(struct mana_cq *cq)
{
struct gdma_comp *comp = cq->gdma_comp_buf;
int comp_read, i;
comp_read = mana_gd_poll_cq(cq->gdma_cq, comp, CQE_POLLING_BUFFER);
KASSERT(comp_read <= CQE_POLLING_BUFFER,
("comp_read %d great than buf size %d",
comp_read, CQE_POLLING_BUFFER));
for (i = 0; i < comp_read; i++) {
if (comp[i].is_sq == true) {
mana_err(NULL,
"WARNING: CQE not for receive queue\n");
return;
}
/* verify recv cqe references the right rxq */
if (comp[i].wq_num != cq->rxq->gdma_id) {
mana_err(NULL,
"WARNING: Received CQE %d not for "
"this receive queue %d\n",
comp[i].wq_num, cq->rxq->gdma_id);
return;
}
mana_process_rx_cqe(cq->rxq, cq, &comp[i]);
}
tcp_lro_flush_all(&cq->rxq->lro);
}
static void
mana_cq_handler(void *context, struct gdma_queue *gdma_queue)
{
struct mana_cq *cq = context;
uint8_t arm_bit;
KASSERT(cq->gdma_cq == gdma_queue,
("cq do not match %p, %p", cq->gdma_cq, gdma_queue));
if (cq->type == MANA_CQ_TYPE_RX) {
mana_poll_rx_cq(cq);
} else {
mana_poll_tx_cq(cq);
}
if (cq->work_done < cq->budget && cq->do_not_ring_db == false)
arm_bit = SET_ARM_BIT;
else
arm_bit = 0;
mana_gd_ring_cq(gdma_queue, arm_bit);
}
#define MANA_POLL_BUDGET 8
#define MANA_RX_BUDGET 256
#define MANA_TX_BUDGET MAX_SEND_BUFFERS_PER_QUEUE
static void
mana_poll(void *arg, int pending)
{
struct mana_cq *cq = arg;
int i;
cq->work_done = 0;
if (cq->type == MANA_CQ_TYPE_RX) {
cq->budget = MANA_RX_BUDGET;
} else {
cq->budget = MANA_TX_BUDGET;
}
for (i = 0; i < MANA_POLL_BUDGET; i++) {
/*
* If this is the last loop, set the budget big enough
* so it will arm the CQ any way.
*/
if (i == (MANA_POLL_BUDGET - 1))
cq->budget = CQE_POLLING_BUFFER + 1;
mana_cq_handler(cq, cq->gdma_cq);
if (cq->work_done < cq->budget)
break;
cq->work_done = 0;
}
}
static void
mana_schedule_task(void *arg, struct gdma_queue *gdma_queue)
{
struct mana_cq *cq = arg;
taskqueue_enqueue(cq->cleanup_tq, &cq->cleanup_task);
}
static void
mana_deinit_cq(struct mana_port_context *apc, struct mana_cq *cq)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
if (!cq->gdma_cq)
return;
/* Drain cleanup taskqueue */
if (cq->cleanup_tq) {
while (taskqueue_cancel(cq->cleanup_tq,
&cq->cleanup_task, NULL)) {
taskqueue_drain(cq->cleanup_tq,
&cq->cleanup_task);
}
taskqueue_free(cq->cleanup_tq);
}
mana_gd_destroy_queue(gd->gdma_context, cq->gdma_cq);
}
static void
mana_deinit_txq(struct mana_port_context *apc, struct mana_txq *txq)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
struct mana_send_buf_info *txbuf_info;
uint32_t pending_sends;
int i;
if (!txq->gdma_sq)
return;
if ((pending_sends = atomic_read(&txq->pending_sends)) > 0) {
mana_err(NULL,
"WARNING: txq pending sends not zero: %u\n",
pending_sends);
}
if (txq->next_to_use != txq->next_to_complete) {
mana_err(NULL,
"WARNING: txq buf not completed, "
"next use %u, next complete %u\n",
txq->next_to_use, txq->next_to_complete);
}
/* Flush buf ring. Grab txq mtx lock */
if (txq->txq_br) {
mtx_lock(&txq->txq_mtx);
drbr_flush(apc->ndev, txq->txq_br);
mtx_unlock(&txq->txq_mtx);
buf_ring_free(txq->txq_br, M_DEVBUF);
}
/* Drain taskqueue */
if (txq->enqueue_tq) {
while (taskqueue_cancel(txq->enqueue_tq,
&txq->enqueue_task, NULL)) {
taskqueue_drain(txq->enqueue_tq,
&txq->enqueue_task);
}
taskqueue_free(txq->enqueue_tq);
}
if (txq->tx_buf_info) {
/* Free all mbufs which are still in-flight */
for (i = 0; i < MAX_SEND_BUFFERS_PER_QUEUE; i++) {
txbuf_info = &txq->tx_buf_info[i];
if (txbuf_info->mbuf) {
mana_tx_unmap_mbuf(apc, txbuf_info);
}
}
free(txq->tx_buf_info, M_DEVBUF);
}
mana_free_counters((counter_u64_t *)&txq->stats,
sizeof(txq->stats));
mana_gd_destroy_queue(gd->gdma_context, txq->gdma_sq);
mtx_destroy(&txq->txq_mtx);
}
static void
mana_destroy_txq(struct mana_port_context *apc)
{
int i;
if (!apc->tx_qp)
return;
for (i = 0; i < apc->num_queues; i++) {
mana_destroy_wq_obj(apc, GDMA_SQ, apc->tx_qp[i].tx_object);
mana_deinit_cq(apc, &apc->tx_qp[i].tx_cq);
mana_deinit_txq(apc, &apc->tx_qp[i].txq);
}
free(apc->tx_qp, M_DEVBUF);
apc->tx_qp = NULL;
}
static int
mana_create_txq(struct mana_port_context *apc, if_t net)
{
struct mana_context *ac = apc->ac;
struct gdma_dev *gd = ac->gdma_dev;
struct mana_obj_spec wq_spec;
struct mana_obj_spec cq_spec;
struct gdma_queue_spec spec;
struct gdma_context *gc;
struct mana_txq *txq;
struct mana_cq *cq;
uint32_t txq_size;
uint32_t cq_size;
int err;
int i;
apc->tx_qp = mallocarray(apc->num_queues, sizeof(struct mana_tx_qp),
M_DEVBUF, M_WAITOK | M_ZERO);
if (!apc->tx_qp)
return ENOMEM;
/* The minimum size of the WQE is 32 bytes, hence
* MAX_SEND_BUFFERS_PER_QUEUE represents the maximum number of WQEs
* the SQ can store. This value is then used to size other queues
* to prevent overflow.
*/
txq_size = MAX_SEND_BUFFERS_PER_QUEUE * 32;
KASSERT(IS_ALIGNED(txq_size, PAGE_SIZE),
("txq size not page aligned"));
cq_size = MAX_SEND_BUFFERS_PER_QUEUE * COMP_ENTRY_SIZE;
cq_size = ALIGN(cq_size, PAGE_SIZE);
gc = gd->gdma_context;
for (i = 0; i < apc->num_queues; i++) {
apc->tx_qp[i].tx_object = INVALID_MANA_HANDLE;
/* Create SQ */
txq = &apc->tx_qp[i].txq;
txq->ndev = net;
txq->vp_offset = apc->tx_vp_offset;
txq->idx = i;
txq->alt_txq_idx = i;
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_SQ;
spec.monitor_avl_buf = true;
spec.queue_size = txq_size;
err = mana_gd_create_mana_wq_cq(gd, &spec, &txq->gdma_sq);
if (err)
goto out;
/* Create SQ's CQ */
cq = &apc->tx_qp[i].tx_cq;
cq->type = MANA_CQ_TYPE_TX;
cq->txq = txq;
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_CQ;
spec.monitor_avl_buf = false;
spec.queue_size = cq_size;
spec.cq.callback = mana_schedule_task;
spec.cq.parent_eq = ac->eqs[i].eq;
spec.cq.context = cq;
err = mana_gd_create_mana_wq_cq(gd, &spec, &cq->gdma_cq);
if (err)
goto out;
memset(&wq_spec, 0, sizeof(wq_spec));
memset(&cq_spec, 0, sizeof(cq_spec));
wq_spec.gdma_region = txq->gdma_sq->mem_info.dma_region_handle;
wq_spec.queue_size = txq->gdma_sq->queue_size;
cq_spec.gdma_region = cq->gdma_cq->mem_info.dma_region_handle;
cq_spec.queue_size = cq->gdma_cq->queue_size;
cq_spec.modr_ctx_id = 0;
cq_spec.attached_eq = cq->gdma_cq->cq.parent->id;
err = mana_create_wq_obj(apc, apc->port_handle, GDMA_SQ,
&wq_spec, &cq_spec, &apc->tx_qp[i].tx_object);
if (err)
goto out;
txq->gdma_sq->id = wq_spec.queue_index;
cq->gdma_cq->id = cq_spec.queue_index;
txq->gdma_sq->mem_info.dma_region_handle =
GDMA_INVALID_DMA_REGION;
cq->gdma_cq->mem_info.dma_region_handle =
GDMA_INVALID_DMA_REGION;
txq->gdma_txq_id = txq->gdma_sq->id;
cq->gdma_id = cq->gdma_cq->id;
mana_dbg(NULL,
"txq %d, txq gdma id %d, txq cq gdma id %d\n",
i, txq->gdma_txq_id, cq->gdma_id);;
if (cq->gdma_id >= gc->max_num_cqs) {
if_printf(net, "CQ id %u too large.\n", cq->gdma_id);
err = EINVAL;
goto out;
}
gc->cq_table[cq->gdma_id] = cq->gdma_cq;
/* Initialize tx specific data */
txq->tx_buf_info = malloc(MAX_SEND_BUFFERS_PER_QUEUE *
sizeof(struct mana_send_buf_info),
M_DEVBUF, M_WAITOK | M_ZERO);
if (unlikely(txq->tx_buf_info == NULL)) {
if_printf(net,
"Failed to allocate tx buf info for SQ %u\n",
txq->gdma_sq->id);
err = ENOMEM;
goto out;
}
snprintf(txq->txq_mtx_name, nitems(txq->txq_mtx_name),
"mana:tx(%d)", i);
mtx_init(&txq->txq_mtx, txq->txq_mtx_name, NULL, MTX_DEF);
txq->txq_br = buf_ring_alloc(4 * MAX_SEND_BUFFERS_PER_QUEUE,
M_DEVBUF, M_WAITOK, &txq->txq_mtx);
if (unlikely(txq->txq_br == NULL)) {
if_printf(net,
"Failed to allocate buf ring for SQ %u\n",
txq->gdma_sq->id);
err = ENOMEM;
goto out;
}
/* Allocate taskqueue for deferred send */
TASK_INIT(&txq->enqueue_task, 0, mana_xmit_taskfunc, txq);
txq->enqueue_tq = taskqueue_create_fast("mana_tx_enque",
M_NOWAIT, taskqueue_thread_enqueue, &txq->enqueue_tq);
if (unlikely(txq->enqueue_tq == NULL)) {
if_printf(net,
"Unable to create tx %d enqueue task queue\n", i);
err = ENOMEM;
goto out;
}
taskqueue_start_threads(&txq->enqueue_tq, 1, PI_NET,
"mana txq p%u-tx%d", apc->port_idx, i);
mana_alloc_counters((counter_u64_t *)&txq->stats,
sizeof(txq->stats));
/* Allocate and start the cleanup task on CQ */
cq->do_not_ring_db = false;
NET_TASK_INIT(&cq->cleanup_task, 0, mana_poll, cq);
cq->cleanup_tq =
taskqueue_create_fast("mana tx cq cleanup",
M_WAITOK, taskqueue_thread_enqueue,
&cq->cleanup_tq);
if (apc->last_tx_cq_bind_cpu < 0)
apc->last_tx_cq_bind_cpu = CPU_FIRST();
cq->cpu = apc->last_tx_cq_bind_cpu;
apc->last_tx_cq_bind_cpu = CPU_NEXT(apc->last_tx_cq_bind_cpu);
if (apc->bind_cleanup_thread_cpu) {
cpuset_t cpu_mask;
CPU_SETOF(cq->cpu, &cpu_mask);
taskqueue_start_threads_cpuset(&cq->cleanup_tq,
1, PI_NET, &cpu_mask,
"mana cq p%u-tx%u-cpu%d",
apc->port_idx, txq->idx, cq->cpu);
} else {
taskqueue_start_threads(&cq->cleanup_tq, 1,
PI_NET, "mana cq p%u-tx%u",
apc->port_idx, txq->idx);
}
mana_gd_ring_cq(cq->gdma_cq, SET_ARM_BIT);
}
return 0;
out:
mana_destroy_txq(apc);
return err;
}
static void
mana_destroy_rxq(struct mana_port_context *apc, struct mana_rxq *rxq,
bool validate_state)
{
struct gdma_context *gc = apc->ac->gdma_dev->gdma_context;
struct mana_recv_buf_oob *rx_oob;
int i;
if (!rxq)
return;
if (validate_state) {
/*
* XXX Cancel and drain cleanup task queue here.
*/
;
}
mana_destroy_wq_obj(apc, GDMA_RQ, rxq->rxobj);
mana_deinit_cq(apc, &rxq->rx_cq);
mana_free_counters((counter_u64_t *)&rxq->stats,
sizeof(rxq->stats));
/* Free LRO resources */
tcp_lro_free(&rxq->lro);
for (i = 0; i < rxq->num_rx_buf; i++) {
rx_oob = &rxq->rx_oobs[i];
if (rx_oob->mbuf)
mana_unload_rx_mbuf(apc, rxq, rx_oob, true);
bus_dmamap_destroy(apc->rx_buf_tag, rx_oob->dma_map);
}
if (rxq->gdma_rq)
mana_gd_destroy_queue(gc, rxq->gdma_rq);
free(rxq, M_DEVBUF);
}
#define MANA_WQE_HEADER_SIZE 16
#define MANA_WQE_SGE_SIZE 16
static int
mana_alloc_rx_wqe(struct mana_port_context *apc,
struct mana_rxq *rxq, uint32_t *rxq_size, uint32_t *cq_size)
{
struct mana_recv_buf_oob *rx_oob;
uint32_t buf_idx;
int err;
if (rxq->datasize == 0 || rxq->datasize > PAGE_SIZE) {
mana_err(NULL,
"WARNING: Invalid rxq datasize %u\n", rxq->datasize);
}
*rxq_size = 0;
*cq_size = 0;
for (buf_idx = 0; buf_idx < rxq->num_rx_buf; buf_idx++) {
rx_oob = &rxq->rx_oobs[buf_idx];
memset(rx_oob, 0, sizeof(*rx_oob));
err = bus_dmamap_create(apc->rx_buf_tag, 0,
&rx_oob->dma_map);
if (err) {
mana_err(NULL,
"Failed to create rx DMA map for buf %d\n",
buf_idx);
return err;
}
err = mana_load_rx_mbuf(apc, rxq, rx_oob, true);
if (err) {
mana_err(NULL,
"Failed to create rx DMA map for buf %d\n",
buf_idx);
bus_dmamap_destroy(apc->rx_buf_tag, rx_oob->dma_map);
return err;
}
rx_oob->wqe_req.sgl = rx_oob->sgl;
rx_oob->wqe_req.num_sge = rx_oob->num_sge;
rx_oob->wqe_req.inline_oob_size = 0;
rx_oob->wqe_req.inline_oob_data = NULL;
rx_oob->wqe_req.flags = 0;
rx_oob->wqe_req.client_data_unit = 0;
*rxq_size += ALIGN(MANA_WQE_HEADER_SIZE +
MANA_WQE_SGE_SIZE * rx_oob->num_sge, 32);
*cq_size += COMP_ENTRY_SIZE;
}
return 0;
}
static int
mana_push_wqe(struct mana_rxq *rxq)
{
struct mana_recv_buf_oob *rx_oob;
uint32_t buf_idx;
int err;
for (buf_idx = 0; buf_idx < rxq->num_rx_buf; buf_idx++) {
rx_oob = &rxq->rx_oobs[buf_idx];
err = mana_gd_post_and_ring(rxq->gdma_rq, &rx_oob->wqe_req,
&rx_oob->wqe_inf);
if (err)
return ENOSPC;
}
return 0;
}
static struct mana_rxq *
mana_create_rxq(struct mana_port_context *apc, uint32_t rxq_idx,
struct mana_eq *eq, if_t ndev)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
struct mana_obj_spec wq_spec;
struct mana_obj_spec cq_spec;
struct gdma_queue_spec spec;
struct mana_cq *cq = NULL;
uint32_t cq_size, rq_size;
struct gdma_context *gc;
struct mana_rxq *rxq;
int err;
gc = gd->gdma_context;
rxq = malloc(sizeof(*rxq) +
RX_BUFFERS_PER_QUEUE * sizeof(struct mana_recv_buf_oob),
M_DEVBUF, M_WAITOK | M_ZERO);
if (!rxq)
return NULL;
rxq->ndev = ndev;
rxq->num_rx_buf = RX_BUFFERS_PER_QUEUE;
rxq->rxq_idx = rxq_idx;
/*
* Minimum size is MCLBYTES(2048) bytes for a mbuf cluster.
* Now we just allow maximum size of 4096.
*/
rxq->datasize = ALIGN(apc->frame_size, MCLBYTES);
if (rxq->datasize > MAX_FRAME_SIZE)
rxq->datasize = MAX_FRAME_SIZE;
mana_dbg(NULL, "Setting rxq %d datasize %d\n",
rxq_idx, rxq->datasize);
rxq->rxobj = INVALID_MANA_HANDLE;
err = mana_alloc_rx_wqe(apc, rxq, &rq_size, &cq_size);
if (err)
goto out;
/* Create LRO for the RQ */
if (if_getcapenable(ndev) & IFCAP_LRO) {
err = tcp_lro_init(&rxq->lro);
if (err) {
if_printf(ndev, "Failed to create LRO for rxq %d\n",
rxq_idx);
} else {
rxq->lro.ifp = ndev;
}
}
mana_alloc_counters((counter_u64_t *)&rxq->stats,
sizeof(rxq->stats));
rq_size = ALIGN(rq_size, PAGE_SIZE);
cq_size = ALIGN(cq_size, PAGE_SIZE);
/* Create RQ */
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_RQ;
spec.monitor_avl_buf = true;
spec.queue_size = rq_size;
err = mana_gd_create_mana_wq_cq(gd, &spec, &rxq->gdma_rq);
if (err)
goto out;
/* Create RQ's CQ */
cq = &rxq->rx_cq;
cq->type = MANA_CQ_TYPE_RX;
cq->rxq = rxq;
memset(&spec, 0, sizeof(spec));
spec.type = GDMA_CQ;
spec.monitor_avl_buf = false;
spec.queue_size = cq_size;
spec.cq.callback = mana_schedule_task;
spec.cq.parent_eq = eq->eq;
spec.cq.context = cq;
err = mana_gd_create_mana_wq_cq(gd, &spec, &cq->gdma_cq);
if (err)
goto out;
memset(&wq_spec, 0, sizeof(wq_spec));
memset(&cq_spec, 0, sizeof(cq_spec));
wq_spec.gdma_region = rxq->gdma_rq->mem_info.dma_region_handle;
wq_spec.queue_size = rxq->gdma_rq->queue_size;
cq_spec.gdma_region = cq->gdma_cq->mem_info.dma_region_handle;
cq_spec.queue_size = cq->gdma_cq->queue_size;
cq_spec.modr_ctx_id = 0;
cq_spec.attached_eq = cq->gdma_cq->cq.parent->id;
err = mana_create_wq_obj(apc, apc->port_handle, GDMA_RQ,
&wq_spec, &cq_spec, &rxq->rxobj);
if (err)
goto out;
rxq->gdma_rq->id = wq_spec.queue_index;
cq->gdma_cq->id = cq_spec.queue_index;
rxq->gdma_rq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
cq->gdma_cq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION;
rxq->gdma_id = rxq->gdma_rq->id;
cq->gdma_id = cq->gdma_cq->id;
err = mana_push_wqe(rxq);
if (err)
goto out;
if (cq->gdma_id >= gc->max_num_cqs) {
err = EINVAL;
goto out;
}
gc->cq_table[cq->gdma_id] = cq->gdma_cq;
/* Allocate and start the cleanup task on CQ */
cq->do_not_ring_db = false;
NET_TASK_INIT(&cq->cleanup_task, 0, mana_poll, cq);
cq->cleanup_tq =
taskqueue_create_fast("mana rx cq cleanup",
M_WAITOK, taskqueue_thread_enqueue,
&cq->cleanup_tq);
if (apc->last_rx_cq_bind_cpu < 0)
apc->last_rx_cq_bind_cpu = CPU_FIRST();
cq->cpu = apc->last_rx_cq_bind_cpu;
apc->last_rx_cq_bind_cpu = CPU_NEXT(apc->last_rx_cq_bind_cpu);
if (apc->bind_cleanup_thread_cpu) {
cpuset_t cpu_mask;
CPU_SETOF(cq->cpu, &cpu_mask);
taskqueue_start_threads_cpuset(&cq->cleanup_tq,
1, PI_NET, &cpu_mask,
"mana cq p%u-rx%u-cpu%d",
apc->port_idx, rxq->rxq_idx, cq->cpu);
} else {
taskqueue_start_threads(&cq->cleanup_tq, 1,
PI_NET, "mana cq p%u-rx%u",
apc->port_idx, rxq->rxq_idx);
}
mana_gd_ring_cq(cq->gdma_cq, SET_ARM_BIT);
out:
if (!err)
return rxq;
if_printf(ndev, "Failed to create RXQ: err = %d\n", err);
mana_destroy_rxq(apc, rxq, false);
if (cq)
mana_deinit_cq(apc, cq);
return NULL;
}
static int
mana_add_rx_queues(struct mana_port_context *apc, if_t ndev)
{
struct mana_context *ac = apc->ac;
struct mana_rxq *rxq;
int err = 0;
int i;
for (i = 0; i < apc->num_queues; i++) {
rxq = mana_create_rxq(apc, i, &ac->eqs[i], ndev);
if (!rxq) {
err = ENOMEM;
goto out;
}
apc->rxqs[i] = rxq;
}
apc->default_rxobj = apc->rxqs[0]->rxobj;
out:
return err;
}
static void
mana_destroy_vport(struct mana_port_context *apc)
{
struct mana_rxq *rxq;
uint32_t rxq_idx;
for (rxq_idx = 0; rxq_idx < apc->num_queues; rxq_idx++) {
rxq = apc->rxqs[rxq_idx];
if (!rxq)
continue;
mana_destroy_rxq(apc, rxq, true);
apc->rxqs[rxq_idx] = NULL;
}
mana_destroy_txq(apc);
mana_uncfg_vport(apc);
}
static int
mana_create_vport(struct mana_port_context *apc, if_t net)
{
struct gdma_dev *gd = apc->ac->gdma_dev;
int err;
apc->default_rxobj = INVALID_MANA_HANDLE;
err = mana_cfg_vport(apc, gd->pdid, gd->doorbell);
if (err)
return err;
return mana_create_txq(apc, net);
}
static void mana_rss_table_init(struct mana_port_context *apc)
{
int i;
for (i = 0; i < MANA_INDIRECT_TABLE_SIZE; i++)
apc->indir_table[i] = i % apc->num_queues;
}
int mana_config_rss(struct mana_port_context *apc, enum TRI_STATE rx,
bool update_hash, bool update_tab)
{
uint32_t queue_idx;
int err;
int i;
if (update_tab) {
for (i = 0; i < MANA_INDIRECT_TABLE_SIZE; i++) {
queue_idx = apc->indir_table[i];
apc->rxobj_table[i] = apc->rxqs[queue_idx]->rxobj;
}
}
err = mana_cfg_vport_steering(apc, rx, true, update_hash, update_tab);
if (err)
return err;
mana_fence_rqs(apc);
return 0;
}
static int
mana_init_port(if_t ndev)
{
struct mana_port_context *apc = if_getsoftc(ndev);
uint32_t max_txq, max_rxq, max_queues;
int port_idx = apc->port_idx;
uint32_t num_indirect_entries;
int err;
err = mana_init_port_context(apc);
if (err)
return err;
err = mana_query_vport_cfg(apc, port_idx, &max_txq, &max_rxq,
&num_indirect_entries);
if (err) {
if_printf(ndev, "Failed to query info for vPort %d\n",
port_idx);
goto reset_apc;
}
max_queues = min_t(uint32_t, max_txq, max_rxq);
if (apc->max_queues > max_queues)
apc->max_queues = max_queues;
if (apc->num_queues > apc->max_queues)
apc->num_queues = apc->max_queues;
return 0;
reset_apc:
bus_dma_tag_destroy(apc->rx_buf_tag);
apc->rx_buf_tag = NULL;
free(apc->rxqs, M_DEVBUF);
apc->rxqs = NULL;
return err;
}
int
mana_alloc_queues(if_t ndev)
{
struct mana_port_context *apc = if_getsoftc(ndev);
int err;
err = mana_create_vport(apc, ndev);
if (err)
return err;
err = mana_add_rx_queues(apc, ndev);
if (err)
goto destroy_vport;
apc->rss_state = apc->num_queues > 1 ? TRI_STATE_TRUE : TRI_STATE_FALSE;
mana_rss_table_init(apc);
err = mana_config_rss(apc, TRI_STATE_TRUE, true, true);
if (err)
goto destroy_vport;
return 0;
destroy_vport:
mana_destroy_vport(apc);
return err;
}
static int
mana_up(struct mana_port_context *apc)
{
int err;
mana_dbg(NULL, "mana_up called\n");
err = mana_alloc_queues(apc->ndev);
if (err) {
mana_err(NULL, "Faile alloc mana queues: %d\n", err);
return err;
}
/* Add queue specific sysctl */
mana_sysctl_add_queues(apc);
apc->port_is_up = true;
/* Ensure port state updated before txq state */
wmb();
if_link_state_change(apc->ndev, LINK_STATE_UP);
if_setdrvflagbits(apc->ndev, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
return 0;
}
static void
mana_init(void *arg)
{
struct mana_port_context *apc = (struct mana_port_context *)arg;
MANA_APC_LOCK_LOCK(apc);
if (!apc->port_is_up) {
mana_up(apc);
}
MANA_APC_LOCK_UNLOCK(apc);
}
static int
mana_dealloc_queues(if_t ndev)
{
struct mana_port_context *apc = if_getsoftc(ndev);
struct mana_txq *txq;
int i, err;
if (apc->port_is_up)
return EINVAL;
/* No packet can be transmitted now since apc->port_is_up is false.
* There is still a tiny chance that mana_poll_tx_cq() can re-enable
* a txq because it may not timely see apc->port_is_up being cleared
* to false, but it doesn't matter since mana_start_xmit() drops any
* new packets due to apc->port_is_up being false.
*
* Drain all the in-flight TX packets
*/
for (i = 0; i < apc->num_queues; i++) {
txq = &apc->tx_qp[i].txq;
struct mana_cq *tx_cq = &apc->tx_qp[i].tx_cq;
struct mana_cq *rx_cq = &(apc->rxqs[i]->rx_cq);
tx_cq->do_not_ring_db = true;
rx_cq->do_not_ring_db = true;
/* Schedule a cleanup task */
taskqueue_enqueue(tx_cq->cleanup_tq, &tx_cq->cleanup_task);
while (atomic_read(&txq->pending_sends) > 0)
usleep_range(1000, 2000);
}
/* We're 100% sure the queues can no longer be woken up, because
* we're sure now mana_poll_tx_cq() can't be running.
*/
apc->rss_state = TRI_STATE_FALSE;
err = mana_config_rss(apc, TRI_STATE_FALSE, false, false);
if (err) {
if_printf(ndev, "Failed to disable vPort: %d\n", err);
return err;
}
mana_destroy_vport(apc);
return 0;
}
static int
mana_down(struct mana_port_context *apc)
{
int err = 0;
apc->port_st_save = apc->port_is_up;
apc->port_is_up = false;
/* Ensure port state updated before txq state */
wmb();
if (apc->port_st_save) {
if_setdrvflagbits(apc->ndev, IFF_DRV_OACTIVE,
IFF_DRV_RUNNING);
if_link_state_change(apc->ndev, LINK_STATE_DOWN);
mana_sysctl_free_queues(apc);
err = mana_dealloc_queues(apc->ndev);
if (err) {
if_printf(apc->ndev,
"Failed to bring down mana interface: %d\n", err);
}
}
return err;
}
int
mana_detach(if_t ndev)
{
struct mana_port_context *apc = if_getsoftc(ndev);
int err;
ether_ifdetach(ndev);
if (!apc)
return 0;
MANA_APC_LOCK_LOCK(apc);
err = mana_down(apc);
MANA_APC_LOCK_UNLOCK(apc);
mana_cleanup_port_context(apc);
MANA_APC_LOCK_DESTROY(apc);
free(apc, M_DEVBUF);
return err;
}
static int
mana_probe_port(struct mana_context *ac, int port_idx,
if_t *ndev_storage)
{
struct gdma_context *gc = ac->gdma_dev->gdma_context;
struct mana_port_context *apc;
if_t ndev;
int err;
ndev = if_alloc_dev(IFT_ETHER, gc->dev);
if (!ndev) {
mana_err(NULL, "Failed to allocate ifnet struct\n");
return ENOMEM;
}
*ndev_storage = ndev;
apc = malloc(sizeof(*apc), M_DEVBUF, M_WAITOK | M_ZERO);
if (!apc) {
mana_err(NULL, "Failed to allocate port context\n");
err = ENOMEM;
goto free_net;
}
apc->ac = ac;
apc->ndev = ndev;
apc->max_queues = gc->max_num_queues;
apc->num_queues = min_t(unsigned int,
gc->max_num_queues, MANA_MAX_NUM_QUEUES);
apc->port_handle = INVALID_MANA_HANDLE;
apc->port_idx = port_idx;
apc->frame_size = DEFAULT_FRAME_SIZE;
apc->last_tx_cq_bind_cpu = -1;
apc->last_rx_cq_bind_cpu = -1;
apc->vport_use_count = 0;
MANA_APC_LOCK_INIT(apc);
if_initname(ndev, device_get_name(gc->dev), port_idx);
if_setdev(ndev,gc->dev);
if_setsoftc(ndev, apc);
if_setflags(ndev, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
if_setinitfn(ndev, mana_init);
if_settransmitfn(ndev, mana_start_xmit);
if_setqflushfn(ndev, mana_qflush);
if_setioctlfn(ndev, mana_ioctl);
if_setgetcounterfn(ndev, mana_get_counter);
if_setmtu(ndev, ETHERMTU);
if_setbaudrate(ndev, IF_Gbps(100));
mana_rss_key_fill(apc->hashkey, MANA_HASH_KEY_SIZE);
err = mana_init_port(ndev);
if (err)
goto reset_apc;
if_setcapabilitiesbit(ndev,
IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6 |
IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 |
IFCAP_TSO4 | IFCAP_TSO6 |
IFCAP_LRO | IFCAP_LINKSTATE, 0);
/* Enable all available capabilities by default. */
if_setcapenable(ndev, if_getcapabilities(ndev));
/* TSO parameters */
if_sethwtsomax(ndev, MAX_MBUF_FRAGS * MANA_TSO_MAXSEG_SZ -
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
if_sethwtsomaxsegcount(ndev, MAX_MBUF_FRAGS);
if_sethwtsomaxsegsize(ndev, PAGE_SIZE);
ifmedia_init(&apc->media, IFM_IMASK,
mana_ifmedia_change, mana_ifmedia_status);
ifmedia_add(&apc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&apc->media, IFM_ETHER | IFM_AUTO);
ether_ifattach(ndev, apc->mac_addr);
/* Initialize statistics */
mana_alloc_counters((counter_u64_t *)&apc->port_stats,
sizeof(struct mana_port_stats));
mana_sysctl_add_port(apc);
/* Tell the stack that the interface is not active */
if_setdrvflagbits(ndev, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
return 0;
reset_apc:
free(apc, M_DEVBUF);
free_net:
*ndev_storage = NULL;
if_printf(ndev, "Failed to probe vPort %d: %d\n", port_idx, err);
if_free(ndev);
return err;
}
int mana_probe(struct gdma_dev *gd)
{
struct gdma_context *gc = gd->gdma_context;
device_t dev = gc->dev;
struct mana_context *ac;
int err;
int i;
device_printf(dev, "%s protocol version: %d.%d.%d\n", DEVICE_NAME,
MANA_MAJOR_VERSION, MANA_MINOR_VERSION, MANA_MICRO_VERSION);
err = mana_gd_register_device(gd);
if (err)
return err;
ac = malloc(sizeof(*ac), M_DEVBUF, M_WAITOK | M_ZERO);
if (!ac)
return ENOMEM;
ac->gdma_dev = gd;
ac->num_ports = 1;
gd->driver_data = ac;
err = mana_create_eq(ac);
if (err)
goto out;
err = mana_query_device_cfg(ac, MANA_MAJOR_VERSION, MANA_MINOR_VERSION,
MANA_MICRO_VERSION, &ac->num_ports);
if (err)
goto out;
if (ac->num_ports > MAX_PORTS_IN_MANA_DEV)
ac->num_ports = MAX_PORTS_IN_MANA_DEV;
for (i = 0; i < ac->num_ports; i++) {
err = mana_probe_port(ac, i, &ac->ports[i]);
if (err) {
device_printf(dev,
"Failed to probe mana port %d\n", i);
break;
}
}
out:
if (err)
mana_remove(gd);
return err;
}
void
mana_remove(struct gdma_dev *gd)
{
struct gdma_context *gc = gd->gdma_context;
struct mana_context *ac = gd->driver_data;
device_t dev = gc->dev;
if_t ndev;
int i;
for (i = 0; i < ac->num_ports; i++) {
ndev = ac->ports[i];
if (!ndev) {
if (i == 0)
device_printf(dev, "No net device to remove\n");
goto out;
}
mana_detach(ndev);
if_free(ndev);
}
mana_destroy_eq(ac);
out:
mana_gd_deregister_device(gd);
gd->driver_data = NULL;
gd->gdma_context = NULL;
free(ac, M_DEVBUF);
}