freebsd-dev/sys/netpfil/ipfw/dn_sched.h
Bjoern A. Zeeb 89856f7e2d Get closer to a VIMAGE network stack teardown from top to bottom rather
than removing the network interfaces first. This change is rather larger
and convoluted as the ordering requirements cannot be separated.

Move the pfil(9) framework to SI_SUB_PROTO_PFIL, move Firewalls and
related modules to their own SI_SUB_PROTO_FIREWALL.
Move initialization of "physical" interfaces to SI_SUB_DRIVERS,
move virtual (cloned) interfaces to SI_SUB_PSEUDO.
Move Multicast to SI_SUB_PROTO_MC.

Re-work parts of multicast initialisation and teardown, not taking the
huge amount of memory into account if used as a module yet.

For interface teardown we try to do as many of them as we can on
SI_SUB_INIT_IF, but for some this makes no sense, e.g., when tunnelling
over a higher layer protocol such as IP. In that case the interface
has to go along (or before) the higher layer protocol is shutdown.

Kernel hhooks need to go last on teardown as they may be used at various
higher layers and we cannot remove them before we cleaned up the higher
layers.

For interface teardown there are multiple paths:
(a) a cloned interface is destroyed (inside a VIMAGE or in the base system),
(b) any interface is moved from a virtual network stack to a different
network stack ("vmove"), or (c) a virtual network stack is being shut down.
All code paths go through if_detach_internal() where we, depending on the
vmove flag or the vnet state, make a decision on how much to shut down;
in case we are destroying a VNET the individual protocol layers will
cleanup their own parts thus we cannot do so again for each interface as
we end up with, e.g., double-frees, destroying locks twice or acquiring
already destroyed locks.
When calling into protocol cleanups we equally have to tell them
whether they need to detach upper layer protocols ("ulp") or not
(e.g., in6_ifdetach()).

Provide or enahnce helper functions to do proper cleanup at a protocol
rather than at an interface level.

Approved by:		re (hrs)
Obtained from:		projects/vnet
Reviewed by:		gnn, jhb
Sponsored by:		The FreeBSD Foundation
MFC after:		2 weeks
Differential Revision:	https://reviews.freebsd.org/D6747
2016-06-21 13:48:49 +00:00

202 lines
6.9 KiB
C

/*
* Copyright (c) 2010 Riccardo Panicucci, Luigi Rizzo, Universita` di Pisa
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The API to write a packet scheduling algorithm for dummynet.
*
* $FreeBSD$
*/
#ifndef _DN_SCHED_H
#define _DN_SCHED_H
#define DN_MULTIQUEUE 0x01
/*
* Descriptor for a scheduling algorithm.
* Contains all function pointers for a given scheduler
* This is typically created when a module is loaded, and stored
* in a global list of schedulers.
*/
struct dn_alg {
uint32_t type; /* the scheduler type */
const char *name; /* scheduler name */
uint32_t flags; /* DN_MULTIQUEUE if supports multiple queues */
/*
* The following define the size of 3 optional data structures
* that may need to be allocated at runtime, and are appended
* to each of the base data structures: scheduler, sched.inst,
* and queue. We don't have a per-flowset structure.
*/
/* + parameters attached to the template, e.g.
* default queue sizes, weights, quantum size, and so on;
*/
size_t schk_datalen;
/* + per-instance parameters, such as timestamps,
* containers for queues, etc;
*/
size_t si_datalen;
size_t q_datalen; /* per-queue parameters (e.g. S,F) */
/*
* Methods implemented by the scheduler:
* enqueue enqueue packet 'm' on scheduler 's', queue 'q'.
* q is NULL for !MULTIQUEUE.
* Return 0 on success, 1 on drop (packet consumed anyways).
* Note that q should be interpreted only as a hint
* on the flow that the mbuf belongs to: while a
* scheduler will normally enqueue m into q, it is ok
* to leave q alone and put the mbuf elsewhere.
* This function is called in two cases:
* - when a new packet arrives to the scheduler;
* - when a scheduler is reconfigured. In this case the
* call is issued by the new_queue callback, with a
* non empty queue (q) and m pointing to the first
* mbuf in the queue. For this reason, the function
* should internally check for (m != q->mq.head)
* before calling dn_enqueue().
*
* dequeue Called when scheduler instance 's' can
* dequeue a packet. Return NULL if none are available.
* XXX what about non work-conserving ?
*
* config called on 'sched X config ...', normally writes
* in the area of size sch_arg
*
* destroy called on 'sched delete', frees everything
* in sch_arg (other parts are handled by more specific
* functions)
*
* new_sched called when a new instance is created, e.g.
* to create the local queue for !MULTIQUEUE, set V or
* copy parameters for WFQ, and so on.
*
* free_sched called when deleting an instance, cleans
* extra data in the per-instance area.
*
* new_fsk called when a flowset is linked to a scheduler,
* e.g. to validate parameters such as weights etc.
* free_fsk when a flowset is unlinked from a scheduler.
* (probably unnecessary)
*
* new_queue called to set the per-queue parameters,
* e.g. S and F, adjust sum of weights in the parent, etc.
*
* The new_queue callback is normally called from when
* creating a new queue. In some cases (such as a
* scheduler change or reconfiguration) it can be called
* with a non empty queue. In this case, the queue
* In case of non empty queue, the new_queue callback could
* need to call the enqueue function. In this case,
* the callback should eventually call enqueue() passing
* as m the first element in the queue.
*
* free_queue actions related to a queue removal, e.g. undo
* all the above. If the queue has data in it, also remove
* from the scheduler. This can e.g. happen during a reconfigure.
*/
int (*enqueue)(struct dn_sch_inst *, struct dn_queue *,
struct mbuf *);
struct mbuf * (*dequeue)(struct dn_sch_inst *);
int (*config)(struct dn_schk *);
int (*destroy)(struct dn_schk*);
int (*new_sched)(struct dn_sch_inst *);
int (*free_sched)(struct dn_sch_inst *);
int (*new_fsk)(struct dn_fsk *f);
int (*free_fsk)(struct dn_fsk *f);
int (*new_queue)(struct dn_queue *q);
int (*free_queue)(struct dn_queue *q);
#ifdef NEW_AQM
/* Getting scheduler extra parameters */
int (*getconfig)(struct dn_schk *, struct dn_extra_parms *);
#endif
/* run-time fields */
int ref_count; /* XXX number of instances in the system */
SLIST_ENTRY(dn_alg) next; /* Next scheduler in the list */
};
/* MSVC does not support initializers so we need this ugly macro */
#ifdef _WIN32
#define _SI(fld)
#else
#define _SI(fld) fld
#endif
/*
* Additionally, dummynet exports some functions and macros
* to be used by schedulers:
*/
void dn_free_pkts(struct mbuf *mnext);
int dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop);
/* bound a variable between min and max */
int ipdn_bound_var(int *v, int dflt, int lo, int hi, const char *msg);
/*
* Extract the head of a queue, update stats. Must be the very last
* thing done on a dequeue as the queue itself may go away.
*/
static __inline struct mbuf*
dn_dequeue(struct dn_queue *q)
{
struct mbuf *m = q->mq.head;
if (m == NULL)
return NULL;
#ifdef NEW_AQM
/* Call AQM dequeue function */
if (q->fs->aqmfp && q->fs->aqmfp->dequeue )
return q->fs->aqmfp->dequeue(q);
#endif
q->mq.head = m->m_nextpkt;
q->mq.count--;
/* Update stats for the queue */
q->ni.length--;
q->ni.len_bytes -= m->m_pkthdr.len;
if (q->_si) {
q->_si->ni.length--;
q->_si->ni.len_bytes -= m->m_pkthdr.len;
}
if (q->ni.length == 0) /* queue is now idle */
q->q_time = dn_cfg.curr_time;
return m;
}
int dn_sched_modevent(module_t mod, int cmd, void *arg);
#define DECLARE_DNSCHED_MODULE(name, dnsched) \
static moduledata_t name##_mod = { \
#name, dn_sched_modevent, dnsched \
}; \
DECLARE_MODULE(name, name##_mod, \
SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY); \
MODULE_DEPEND(name, dummynet, 3, 3, 3)
#endif /* _DN_SCHED_H */