freebsd-dev/sys/netinet/tcp_usrreq.c
Michael Tuexen c2399dd2e2 tcp: improve BBLoging for PRUs
Log all errors for PRUs, except when INP_DROPPED is set. In that case,
don't log it.

Reviewed by:		glebius, rrs
Sponsored by:		Netflix, Inc.
Differential Revision:	https://reviews.freebsd.org/D39591
2023-05-06 11:12:06 +02:00

3148 lines
74 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California.
* Copyright (c) 2006-2007 Robert N. M. Watson
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_kern_tls.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/arb.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/refcount.h>
#include <sys/kernel.h>
#include <sys/ktls.h>
#include <sys/qmath.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#ifdef INET6
#include <sys/domain.h>
#endif /* INET6 */
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/proc.h>
#include <sys/jail.h>
#include <sys/stats.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#endif
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_log_buf.h>
#include <netinet/tcpip.h>
#include <netinet/cc/cc.h>
#include <netinet/tcp_fastopen.h>
#include <netinet/tcp_hpts.h>
#ifdef TCPPCAP
#include <netinet/tcp_pcap.h>
#endif
#ifdef TCP_OFFLOAD
#include <netinet/tcp_offload.h>
#endif
#include <netipsec/ipsec_support.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
/*
* TCP protocol interface to socket abstraction.
*/
#ifdef INET
static int tcp_connect(struct tcpcb *, struct sockaddr_in *,
struct thread *td);
#endif /* INET */
#ifdef INET6
static int tcp6_connect(struct tcpcb *, struct sockaddr_in6 *,
struct thread *td);
#endif /* INET6 */
static void tcp_disconnect(struct tcpcb *);
static void tcp_usrclosed(struct tcpcb *);
static void tcp_fill_info(struct tcpcb *, struct tcp_info *);
static int tcp_pru_options_support(struct tcpcb *tp, int flags);
static void
tcp_bblog_pru(struct tcpcb *tp, uint32_t pru, int error)
{
struct tcp_log_buffer *lgb;
KASSERT(tp != NULL, ("tcp_bblog_pru: tp == NULL"));
INP_WLOCK_ASSERT(tptoinpcb(tp));
if (tcp_bblogging_on(tp)) {
lgb = tcp_log_event(tp, NULL, NULL, NULL, TCP_LOG_PRU, error,
0, NULL, false, NULL, NULL, 0, NULL);
} else {
lgb = NULL;
}
if (lgb != NULL) {
if (error >= 0) {
lgb->tlb_errno = (uint32_t)error;
}
lgb->tlb_flex1 = pru;
}
}
/*
* TCP attaches to socket via pru_attach(), reserving space,
* and an internet control block.
*/
static int
tcp_usr_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
struct tcpcb *tp = NULL;
int error;
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("tcp_usr_attach: inp != NULL"));
error = soreserve(so, V_tcp_sendspace, V_tcp_recvspace);
if (error)
goto out;
so->so_rcv.sb_flags |= SB_AUTOSIZE;
so->so_snd.sb_flags |= SB_AUTOSIZE;
error = in_pcballoc(so, &V_tcbinfo);
if (error)
goto out;
inp = sotoinpcb(so);
tp = tcp_newtcpcb(inp);
if (tp == NULL) {
error = ENOBUFS;
in_pcbdetach(inp);
in_pcbfree(inp);
goto out;
}
tp->t_state = TCPS_CLOSED;
tcp_bblog_pru(tp, PRU_ATTACH, error);
INP_WUNLOCK(inp);
TCPSTATES_INC(TCPS_CLOSED);
out:
TCP_PROBE2(debug__user, tp, PRU_ATTACH);
return (error);
}
/*
* tcp_usr_detach is called when the socket layer loses its final reference
* to the socket, be it a file descriptor reference, a reference from TCP,
* etc. At this point, there is only one case in which we will keep around
* inpcb state: time wait.
*/
static void
tcp_usr_detach(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
KASSERT(so->so_pcb == inp && inp->inp_socket == so,
("%s: socket %p inp %p mismatch", __func__, so, inp));
tp = intotcpcb(inp);
KASSERT(inp->inp_flags & INP_DROPPED ||
tp->t_state < TCPS_SYN_SENT,
("%s: inp %p not dropped or embryonic", __func__, inp));
tcp_discardcb(tp);
in_pcbdetach(inp);
in_pcbfree(inp);
}
#ifdef INET
/*
* Give the socket an address.
*/
static int
tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
struct sockaddr_in *sinp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_bind: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (EINVAL);
}
tp = intotcpcb(inp);
sinp = (struct sockaddr_in *)nam;
if (nam->sa_family != AF_INET) {
/*
* Preserve compatibility with old programs.
*/
if (nam->sa_family != AF_UNSPEC ||
nam->sa_len < offsetof(struct sockaddr_in, sin_zero) ||
sinp->sin_addr.s_addr != INADDR_ANY) {
error = EAFNOSUPPORT;
goto out;
}
nam->sa_family = AF_INET;
}
if (nam->sa_len != sizeof(*sinp)) {
error = EINVAL;
goto out;
}
/*
* Must check for multicast addresses and disallow binding
* to them.
*/
if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
error = EAFNOSUPPORT;
goto out;
}
INP_HASH_WLOCK(&V_tcbinfo);
error = in_pcbbind(inp, sinp, td->td_ucred);
INP_HASH_WUNLOCK(&V_tcbinfo);
out:
tcp_bblog_pru(tp, PRU_BIND, error);
TCP_PROBE2(debug__user, tp, PRU_BIND);
INP_WUNLOCK(inp);
return (error);
}
#endif /* INET */
#ifdef INET6
static int
tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
struct sockaddr_in6 *sin6;
u_char vflagsav;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_bind: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (EINVAL);
}
tp = intotcpcb(inp);
vflagsav = inp->inp_vflag;
sin6 = (struct sockaddr_in6 *)nam;
if (nam->sa_family != AF_INET6) {
error = EAFNOSUPPORT;
goto out;
}
if (nam->sa_len != sizeof(*sin6)) {
error = EINVAL;
goto out;
}
/*
* Must check for multicast addresses and disallow binding
* to them.
*/
if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
error = EAFNOSUPPORT;
goto out;
}
INP_HASH_WLOCK(&V_tcbinfo);
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
#ifdef INET
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
inp->inp_vflag |= INP_IPV4;
else if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
struct sockaddr_in sin;
in6_sin6_2_sin(&sin, sin6);
if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) {
error = EAFNOSUPPORT;
INP_HASH_WUNLOCK(&V_tcbinfo);
goto out;
}
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
error = in_pcbbind(inp, &sin, td->td_ucred);
INP_HASH_WUNLOCK(&V_tcbinfo);
goto out;
}
}
#endif
error = in6_pcbbind(inp, sin6, td->td_ucred);
INP_HASH_WUNLOCK(&V_tcbinfo);
out:
if (error != 0)
inp->inp_vflag = vflagsav;
tcp_bblog_pru(tp, PRU_BIND, error);
TCP_PROBE2(debug__user, tp, PRU_BIND);
INP_WUNLOCK(inp);
return (error);
}
#endif /* INET6 */
#ifdef INET
/*
* Prepare to accept connections.
*/
static int
tcp_usr_listen(struct socket *so, int backlog, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_listen: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (EINVAL);
}
tp = intotcpcb(inp);
SOCK_LOCK(so);
error = solisten_proto_check(so);
if (error != 0) {
SOCK_UNLOCK(so);
goto out;
}
if (inp->inp_lport == 0) {
INP_HASH_WLOCK(&V_tcbinfo);
error = in_pcbbind(inp, NULL, td->td_ucred);
INP_HASH_WUNLOCK(&V_tcbinfo);
}
if (error == 0) {
tcp_state_change(tp, TCPS_LISTEN);
solisten_proto(so, backlog);
#ifdef TCP_OFFLOAD
if ((so->so_options & SO_NO_OFFLOAD) == 0)
tcp_offload_listen_start(tp);
#endif
} else {
solisten_proto_abort(so);
}
SOCK_UNLOCK(so);
if (IS_FASTOPEN(tp->t_flags))
tp->t_tfo_pending = tcp_fastopen_alloc_counter();
out:
tcp_bblog_pru(tp, PRU_LISTEN, error);
TCP_PROBE2(debug__user, tp, PRU_LISTEN);
INP_WUNLOCK(inp);
return (error);
}
#endif /* INET */
#ifdef INET6
static int
tcp6_usr_listen(struct socket *so, int backlog, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
u_char vflagsav;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_listen: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (EINVAL);
}
tp = intotcpcb(inp);
vflagsav = inp->inp_vflag;
SOCK_LOCK(so);
error = solisten_proto_check(so);
if (error != 0) {
SOCK_UNLOCK(so);
goto out;
}
INP_HASH_WLOCK(&V_tcbinfo);
if (inp->inp_lport == 0) {
inp->inp_vflag &= ~INP_IPV4;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0)
inp->inp_vflag |= INP_IPV4;
error = in6_pcbbind(inp, NULL, td->td_ucred);
}
INP_HASH_WUNLOCK(&V_tcbinfo);
if (error == 0) {
tcp_state_change(tp, TCPS_LISTEN);
solisten_proto(so, backlog);
#ifdef TCP_OFFLOAD
if ((so->so_options & SO_NO_OFFLOAD) == 0)
tcp_offload_listen_start(tp);
#endif
} else {
solisten_proto_abort(so);
}
SOCK_UNLOCK(so);
if (IS_FASTOPEN(tp->t_flags))
tp->t_tfo_pending = tcp_fastopen_alloc_counter();
if (error != 0)
inp->inp_vflag = vflagsav;
out:
tcp_bblog_pru(tp, PRU_LISTEN, error);
TCP_PROBE2(debug__user, tp, PRU_LISTEN);
INP_WUNLOCK(inp);
return (error);
}
#endif /* INET6 */
#ifdef INET
/*
* Initiate connection to peer.
* Create a template for use in transmissions on this connection.
* Enter SYN_SENT state, and mark socket as connecting.
* Start keep-alive timer, and seed output sequence space.
* Send initial segment on connection.
*/
static int
tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct epoch_tracker et;
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
struct sockaddr_in *sinp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_connect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNREFUSED);
}
tp = intotcpcb(inp);
sinp = (struct sockaddr_in *)nam;
if (nam->sa_family != AF_INET) {
error = EAFNOSUPPORT;
goto out;
}
if (nam->sa_len != sizeof (*sinp)) {
error = EINVAL;
goto out;
}
/*
* Must disallow TCP ``connections'' to multicast addresses.
*/
if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
error = EAFNOSUPPORT;
goto out;
}
if (ntohl(sinp->sin_addr.s_addr) == INADDR_BROADCAST) {
error = EACCES;
goto out;
}
if ((error = prison_remote_ip4(td->td_ucred, &sinp->sin_addr)) != 0)
goto out;
if (SOLISTENING(so)) {
error = EOPNOTSUPP;
goto out;
}
NET_EPOCH_ENTER(et);
if ((error = tcp_connect(tp, sinp, td)) != 0)
goto out_in_epoch;
#ifdef TCP_OFFLOAD
if (registered_toedevs > 0 &&
(so->so_options & SO_NO_OFFLOAD) == 0 &&
(error = tcp_offload_connect(so, nam)) == 0)
goto out_in_epoch;
#endif
tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
error = tcp_output(tp);
KASSERT(error >= 0, ("TCP stack %s requested tcp_drop(%p) at connect()"
", error code %d", tp->t_fb->tfb_tcp_block_name, tp, -error));
out_in_epoch:
NET_EPOCH_EXIT(et);
out:
tcp_bblog_pru(tp, PRU_CONNECT, error);
TCP_PROBE2(debug__user, tp, PRU_CONNECT);
INP_WUNLOCK(inp);
return (error);
}
#endif /* INET */
#ifdef INET6
static int
tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct epoch_tracker et;
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
struct sockaddr_in6 *sin6;
u_int8_t incflagsav;
u_char vflagsav;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_connect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNREFUSED);
}
tp = intotcpcb(inp);
vflagsav = inp->inp_vflag;
incflagsav = inp->inp_inc.inc_flags;
sin6 = (struct sockaddr_in6 *)nam;
if (nam->sa_family != AF_INET6) {
error = EAFNOSUPPORT;
goto out;
}
if (nam->sa_len != sizeof (*sin6)) {
error = EINVAL;
goto out;
}
/*
* Must disallow TCP ``connections'' to multicast addresses.
*/
if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
error = EAFNOSUPPORT;
goto out;
}
if (SOLISTENING(so)) {
error = EINVAL;
goto out;
}
#ifdef INET
/*
* XXXRW: Some confusion: V4/V6 flags relate to binding, and
* therefore probably require the hash lock, which isn't held here.
* Is this a significant problem?
*/
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
struct sockaddr_in sin;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) {
error = EINVAL;
goto out;
}
if ((inp->inp_vflag & INP_IPV4) == 0) {
error = EAFNOSUPPORT;
goto out;
}
in6_sin6_2_sin(&sin, sin6);
if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) {
error = EAFNOSUPPORT;
goto out;
}
if (ntohl(sin.sin_addr.s_addr) == INADDR_BROADCAST) {
error = EACCES;
goto out;
}
if ((error = prison_remote_ip4(td->td_ucred,
&sin.sin_addr)) != 0)
goto out;
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
NET_EPOCH_ENTER(et);
if ((error = tcp_connect(tp, &sin, td)) != 0)
goto out_in_epoch;
#ifdef TCP_OFFLOAD
if (registered_toedevs > 0 &&
(so->so_options & SO_NO_OFFLOAD) == 0 &&
(error = tcp_offload_connect(so, nam)) == 0)
goto out_in_epoch;
#endif
error = tcp_output(tp);
goto out_in_epoch;
} else {
if ((inp->inp_vflag & INP_IPV6) == 0) {
error = EAFNOSUPPORT;
goto out;
}
}
#endif
if ((error = prison_remote_ip6(td->td_ucred, &sin6->sin6_addr)) != 0)
goto out;
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
inp->inp_inc.inc_flags |= INC_ISIPV6;
NET_EPOCH_ENTER(et);
if ((error = tcp6_connect(tp, sin6, td)) != 0)
goto out_in_epoch;
#ifdef TCP_OFFLOAD
if (registered_toedevs > 0 &&
(so->so_options & SO_NO_OFFLOAD) == 0 &&
(error = tcp_offload_connect(so, nam)) == 0)
goto out_in_epoch;
#endif
tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
error = tcp_output(tp);
out_in_epoch:
NET_EPOCH_EXIT(et);
out:
KASSERT(error >= 0, ("TCP stack %s requested tcp_drop(%p) at connect()"
", error code %d", tp->t_fb->tfb_tcp_block_name, tp, -error));
/*
* If the implicit bind in the connect call fails, restore
* the flags we modified.
*/
if (error != 0 && inp->inp_lport == 0) {
inp->inp_vflag = vflagsav;
inp->inp_inc.inc_flags = incflagsav;
}
tcp_bblog_pru(tp, PRU_CONNECT, error);
TCP_PROBE2(debug__user, tp, PRU_CONNECT);
INP_WUNLOCK(inp);
return (error);
}
#endif /* INET6 */
/*
* Initiate disconnect from peer.
* If connection never passed embryonic stage, just drop;
* else if don't need to let data drain, then can just drop anyways,
* else have to begin TCP shutdown process: mark socket disconnecting,
* drain unread data, state switch to reflect user close, and
* send segment (e.g. FIN) to peer. Socket will be really disconnected
* when peer sends FIN and acks ours.
*
* SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
*/
static int
tcp_usr_disconnect(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp = NULL;
struct epoch_tracker et;
int error = 0;
NET_EPOCH_ENTER(et);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_disconnect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
NET_EPOCH_EXIT(et);
return (ECONNRESET);
}
tp = intotcpcb(inp);
if (tp->t_state == TCPS_TIME_WAIT)
goto out;
tcp_disconnect(tp);
out:
tcp_bblog_pru(tp, PRU_DISCONNECT, error);
TCP_PROBE2(debug__user, tp, PRU_DISCONNECT);
INP_WUNLOCK(inp);
NET_EPOCH_EXIT(et);
return (error);
}
#ifdef INET
/*
* Accept a connection. Essentially all the work is done at higher levels;
* just return the address of the peer, storing through addr.
*/
static int
tcp_usr_accept(struct socket *so, struct sockaddr **nam)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
struct in_addr addr;
in_port_t port = 0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_accept: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNABORTED);
}
tp = intotcpcb(inp);
if (so->so_state & SS_ISDISCONNECTED) {
error = ECONNABORTED;
goto out;
}
/*
* We inline in_getpeeraddr and COMMON_END here, so that we can
* copy the data of interest and defer the malloc until after we
* release the lock.
*/
port = inp->inp_fport;
addr = inp->inp_faddr;
out:
tcp_bblog_pru(tp, PRU_ACCEPT, error);
TCP_PROBE2(debug__user, tp, PRU_ACCEPT);
INP_WUNLOCK(inp);
if (error == 0)
*nam = in_sockaddr(port, &addr);
return error;
}
#endif /* INET */
#ifdef INET6
static int
tcp6_usr_accept(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
int error = 0;
struct tcpcb *tp;
struct in_addr addr;
struct in6_addr addr6;
struct epoch_tracker et;
in_port_t port = 0;
int v4 = 0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_accept: inp == NULL"));
NET_EPOCH_ENTER(et); /* XXXMT Why is this needed? */
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
NET_EPOCH_EXIT(et);
return (ECONNABORTED);
}
tp = intotcpcb(inp);
if (so->so_state & SS_ISDISCONNECTED) {
error = ECONNABORTED;
goto out;
}
/*
* We inline in6_mapped_peeraddr and COMMON_END here, so that we can
* copy the data of interest and defer the malloc until after we
* release the lock.
*/
if (inp->inp_vflag & INP_IPV4) {
v4 = 1;
port = inp->inp_fport;
addr = inp->inp_faddr;
} else {
port = inp->inp_fport;
addr6 = inp->in6p_faddr;
}
out:
tcp_bblog_pru(tp, PRU_ACCEPT, error);
TCP_PROBE2(debug__user, tp, PRU_ACCEPT);
INP_WUNLOCK(inp);
NET_EPOCH_EXIT(et);
if (error == 0) {
if (v4)
*nam = in6_v4mapsin6_sockaddr(port, &addr);
else
*nam = in6_sockaddr(port, &addr6);
}
return error;
}
#endif /* INET6 */
/*
* Mark the connection as being incapable of further output.
*/
static int
tcp_usr_shutdown(struct socket *so)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
struct epoch_tracker et;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
NET_EPOCH_ENTER(et);
socantsendmore(so);
tcp_usrclosed(tp);
if (!(inp->inp_flags & INP_DROPPED))
error = tcp_output_nodrop(tp);
tcp_bblog_pru(tp, PRU_SHUTDOWN, error);
TCP_PROBE2(debug__user, tp, PRU_SHUTDOWN);
error = tcp_unlock_or_drop(tp, error);
NET_EPOCH_EXIT(et);
return (error);
}
/*
* After a receive, possibly send window update to peer.
*/
static int
tcp_usr_rcvd(struct socket *so, int flags)
{
struct epoch_tracker et;
struct inpcb *inp;
struct tcpcb *tp;
int outrv = 0, error = 0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_rcvd: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
NET_EPOCH_ENTER(et);
/*
* For passively-created TFO connections, don't attempt a window
* update while still in SYN_RECEIVED as this may trigger an early
* SYN|ACK. It is preferable to have the SYN|ACK be sent along with
* application response data, or failing that, when the DELACK timer
* expires.
*/
if (IS_FASTOPEN(tp->t_flags) &&
(tp->t_state == TCPS_SYN_RECEIVED))
goto out;
#ifdef TCP_OFFLOAD
if (tp->t_flags & TF_TOE)
tcp_offload_rcvd(tp);
else
#endif
outrv = tcp_output_nodrop(tp);
out:
tcp_bblog_pru(tp, PRU_RCVD, error);
TCP_PROBE2(debug__user, tp, PRU_RCVD);
(void) tcp_unlock_or_drop(tp, outrv);
NET_EPOCH_EXIT(et);
return (error);
}
/*
* Do a send by putting data in output queue and updating urgent
* marker if URG set. Possibly send more data. Unlike the other
* pru_*() routines, the mbuf chains are our responsibility. We
* must either enqueue them or free them. The other pru_* routines
* generally are caller-frees.
*/
static int
tcp_usr_send(struct socket *so, int flags, struct mbuf *m,
struct sockaddr *nam, struct mbuf *control, struct thread *td)
{
struct epoch_tracker et;
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
#ifdef INET
#ifdef INET6
struct sockaddr_in sin;
#endif
struct sockaddr_in *sinp;
#endif
#ifdef INET6
struct sockaddr_in6 *sin6;
int isipv6;
#endif
u_int8_t incflagsav;
u_char vflagsav;
bool restoreflags;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_send: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
if (m != NULL && (flags & PRUS_NOTREADY) == 0)
m_freem(m);
INP_WUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
vflagsav = inp->inp_vflag;
incflagsav = inp->inp_inc.inc_flags;
restoreflags = false;
NET_EPOCH_ENTER(et);
if (control != NULL) {
/* TCP doesn't do control messages (rights, creds, etc) */
if (control->m_len > 0) {
m_freem(control);
error = EINVAL;
goto out;
}
m_freem(control); /* empty control, just free it */
}
if ((flags & PRUS_OOB) != 0 &&
(error = tcp_pru_options_support(tp, PRUS_OOB)) != 0)
goto out;
if (nam != NULL && tp->t_state < TCPS_SYN_SENT) {
if (tp->t_state == TCPS_LISTEN) {
error = EINVAL;
goto out;
}
switch (nam->sa_family) {
#ifdef INET
case AF_INET:
sinp = (struct sockaddr_in *)nam;
if (sinp->sin_len != sizeof(struct sockaddr_in)) {
error = EINVAL;
goto out;
}
if ((inp->inp_vflag & INP_IPV6) != 0) {
error = EAFNOSUPPORT;
goto out;
}
if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
error = EAFNOSUPPORT;
goto out;
}
if (ntohl(sinp->sin_addr.s_addr) == INADDR_BROADCAST) {
error = EACCES;
goto out;
}
if ((error = prison_remote_ip4(td->td_ucred,
&sinp->sin_addr)))
goto out;
#ifdef INET6
isipv6 = 0;
#endif
break;
#endif /* INET */
#ifdef INET6
case AF_INET6:
sin6 = (struct sockaddr_in6 *)nam;
if (sin6->sin6_len != sizeof(*sin6)) {
error = EINVAL;
goto out;
}
if ((inp->inp_vflag & INP_IPV6PROTO) == 0) {
error = EAFNOSUPPORT;
goto out;
}
if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
error = EAFNOSUPPORT;
goto out;
}
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
#ifdef INET
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) {
error = EINVAL;
goto out;
}
if ((inp->inp_vflag & INP_IPV4) == 0) {
error = EAFNOSUPPORT;
goto out;
}
restoreflags = true;
inp->inp_vflag &= ~INP_IPV6;
sinp = &sin;
in6_sin6_2_sin(sinp, sin6);
if (IN_MULTICAST(
ntohl(sinp->sin_addr.s_addr))) {
error = EAFNOSUPPORT;
goto out;
}
if ((error = prison_remote_ip4(td->td_ucred,
&sinp->sin_addr)))
goto out;
isipv6 = 0;
#else /* !INET */
error = EAFNOSUPPORT;
goto out;
#endif /* INET */
} else {
if ((inp->inp_vflag & INP_IPV6) == 0) {
error = EAFNOSUPPORT;
goto out;
}
restoreflags = true;
inp->inp_vflag &= ~INP_IPV4;
inp->inp_inc.inc_flags |= INC_ISIPV6;
if ((error = prison_remote_ip6(td->td_ucred,
&sin6->sin6_addr)))
goto out;
isipv6 = 1;
}
break;
#endif /* INET6 */
default:
error = EAFNOSUPPORT;
goto out;
}
}
if (!(flags & PRUS_OOB)) {
if (tp->t_acktime == 0)
tp->t_acktime = ticks;
sbappendstream(&so->so_snd, m, flags);
m = NULL;
if (nam && tp->t_state < TCPS_SYN_SENT) {
KASSERT(tp->t_state == TCPS_CLOSED,
("%s: tp %p is listening", __func__, tp));
/*
* Do implied connect if not yet connected,
* initialize window to default value, and
* initialize maxseg using peer's cached MSS.
*/
#ifdef INET6
if (isipv6)
error = tcp6_connect(tp, sin6, td);
#endif /* INET6 */
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET
error = tcp_connect(tp, sinp, td);
#endif
/*
* The bind operation in tcp_connect succeeded. We
* no longer want to restore the flags if later
* operations fail.
*/
if (error == 0 || inp->inp_lport != 0)
restoreflags = false;
if (error) {
/* m is freed if PRUS_NOTREADY is unset. */
sbflush(&so->so_snd);
goto out;
}
if (IS_FASTOPEN(tp->t_flags))
tcp_fastopen_connect(tp);
else {
tp->snd_wnd = TTCP_CLIENT_SND_WND;
tcp_mss(tp, -1);
}
}
if (flags & PRUS_EOF) {
/*
* Close the send side of the connection after
* the data is sent.
*/
socantsendmore(so);
tcp_usrclosed(tp);
}
if (TCPS_HAVEESTABLISHED(tp->t_state) &&
((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
(tp->t_fbyte_out == 0) &&
(so->so_snd.sb_ccc > 0)) {
tp->t_fbyte_out = ticks;
if (tp->t_fbyte_out == 0)
tp->t_fbyte_out = 1;
if (tp->t_fbyte_out && tp->t_fbyte_in)
tp->t_flags2 |= TF2_FBYTES_COMPLETE;
}
if (!(inp->inp_flags & INP_DROPPED) &&
!(flags & PRUS_NOTREADY)) {
if (flags & PRUS_MORETOCOME)
tp->t_flags |= TF_MORETOCOME;
error = tcp_output_nodrop(tp);
if (flags & PRUS_MORETOCOME)
tp->t_flags &= ~TF_MORETOCOME;
}
} else {
/*
* XXXRW: PRUS_EOF not implemented with PRUS_OOB?
*/
SOCKBUF_LOCK(&so->so_snd);
if (sbspace(&so->so_snd) < -512) {
SOCKBUF_UNLOCK(&so->so_snd);
error = ENOBUFS;
goto out;
}
/*
* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section.
* Otherwise, snd_up should be one lower.
*/
if (tp->t_acktime == 0)
tp->t_acktime = ticks;
sbappendstream_locked(&so->so_snd, m, flags);
SOCKBUF_UNLOCK(&so->so_snd);
m = NULL;
if (nam && tp->t_state < TCPS_SYN_SENT) {
/*
* Do implied connect if not yet connected,
* initialize window to default value, and
* initialize maxseg using peer's cached MSS.
*/
/*
* Not going to contemplate SYN|URG
*/
if (IS_FASTOPEN(tp->t_flags))
tp->t_flags &= ~TF_FASTOPEN;
#ifdef INET6
if (isipv6)
error = tcp6_connect(tp, sin6, td);
#endif /* INET6 */
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET
error = tcp_connect(tp, sinp, td);
#endif
/*
* The bind operation in tcp_connect succeeded. We
* no longer want to restore the flags if later
* operations fail.
*/
if (error == 0 || inp->inp_lport != 0)
restoreflags = false;
if (error != 0) {
/* m is freed if PRUS_NOTREADY is unset. */
sbflush(&so->so_snd);
goto out;
}
tp->snd_wnd = TTCP_CLIENT_SND_WND;
tcp_mss(tp, -1);
}
tp->snd_up = tp->snd_una + sbavail(&so->so_snd);
if ((flags & PRUS_NOTREADY) == 0) {
tp->t_flags |= TF_FORCEDATA;
error = tcp_output_nodrop(tp);
tp->t_flags &= ~TF_FORCEDATA;
}
}
TCP_LOG_EVENT(tp, NULL,
&inp->inp_socket->so_rcv,
&inp->inp_socket->so_snd,
TCP_LOG_USERSEND, error,
0, NULL, false);
out:
/*
* In case of PRUS_NOTREADY, the caller or tcp_usr_ready() is
* responsible for freeing memory.
*/
if (m != NULL && (flags & PRUS_NOTREADY) == 0)
m_freem(m);
/*
* If the request was unsuccessful and we changed flags,
* restore the original flags.
*/
if (error != 0 && restoreflags) {
inp->inp_vflag = vflagsav;
inp->inp_inc.inc_flags = incflagsav;
}
tcp_bblog_pru(tp, (flags & PRUS_OOB) ? PRU_SENDOOB :
((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND), error);
TCP_PROBE2(debug__user, tp, (flags & PRUS_OOB) ? PRU_SENDOOB :
((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND));
error = tcp_unlock_or_drop(tp, error);
NET_EPOCH_EXIT(et);
return (error);
}
static int
tcp_usr_ready(struct socket *so, struct mbuf *m, int count)
{
struct epoch_tracker et;
struct inpcb *inp;
struct tcpcb *tp;
int error;
inp = sotoinpcb(so);
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
mb_free_notready(m, count);
return (ECONNRESET);
}
tp = intotcpcb(inp);
SOCKBUF_LOCK(&so->so_snd);
error = sbready(&so->so_snd, m, count);
SOCKBUF_UNLOCK(&so->so_snd);
if (error) {
INP_WUNLOCK(inp);
return (error);
}
NET_EPOCH_ENTER(et);
error = tcp_output_unlock(tp);
NET_EPOCH_EXIT(et);
return (error);
}
/*
* Abort the TCP. Drop the connection abruptly.
*/
static void
tcp_usr_abort(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp;
struct epoch_tracker et;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_abort: inp == NULL"));
NET_EPOCH_ENTER(et);
INP_WLOCK(inp);
KASSERT(inp->inp_socket != NULL,
("tcp_usr_abort: inp_socket == NULL"));
/*
* If we still have full TCP state, and we're not dropped, drop.
*/
if (!(inp->inp_flags & INP_DROPPED)) {
tp = intotcpcb(inp);
tp = tcp_drop(tp, ECONNABORTED);
if (tp == NULL)
goto dropped;
tcp_bblog_pru(tp, PRU_ABORT, 0);
TCP_PROBE2(debug__user, tp, PRU_ABORT);
}
if (!(inp->inp_flags & INP_DROPPED)) {
soref(so);
inp->inp_flags |= INP_SOCKREF;
}
INP_WUNLOCK(inp);
dropped:
NET_EPOCH_EXIT(et);
}
/*
* TCP socket is closed. Start friendly disconnect.
*/
static void
tcp_usr_close(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp;
struct epoch_tracker et;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_close: inp == NULL"));
NET_EPOCH_ENTER(et);
INP_WLOCK(inp);
KASSERT(inp->inp_socket != NULL,
("tcp_usr_close: inp_socket == NULL"));
/*
* If we are still connected and we're not dropped, initiate
* a disconnect.
*/
if (!(inp->inp_flags & INP_DROPPED)) {
tp = intotcpcb(inp);
if (tp->t_state != TCPS_TIME_WAIT) {
tp->t_flags |= TF_CLOSED;
tcp_disconnect(tp);
tcp_bblog_pru(tp, PRU_CLOSE, 0);
TCP_PROBE2(debug__user, tp, PRU_CLOSE);
}
}
if (!(inp->inp_flags & INP_DROPPED)) {
soref(so);
inp->inp_flags |= INP_SOCKREF;
}
INP_WUNLOCK(inp);
NET_EPOCH_EXIT(et);
}
static int
tcp_pru_options_support(struct tcpcb *tp, int flags)
{
/*
* If the specific TCP stack has a pru_options
* specified then it does not always support
* all the PRU_XX options and we must ask it.
* If the function is not specified then all
* of the PRU_XX options are supported.
*/
int ret = 0;
if (tp->t_fb->tfb_pru_options) {
ret = (*tp->t_fb->tfb_pru_options)(tp, flags);
}
return (ret);
}
/*
* Receive out-of-band data.
*/
static int
tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_rcvoob: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
error = tcp_pru_options_support(tp, PRUS_OOB);
if (error) {
goto out;
}
if ((so->so_oobmark == 0 &&
(so->so_rcv.sb_state & SBS_RCVATMARK) == 0) ||
so->so_options & SO_OOBINLINE ||
tp->t_oobflags & TCPOOB_HADDATA) {
error = EINVAL;
goto out;
}
if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
error = EWOULDBLOCK;
goto out;
}
m->m_len = 1;
*mtod(m, caddr_t) = tp->t_iobc;
if ((flags & MSG_PEEK) == 0)
tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
out:
tcp_bblog_pru(tp, PRU_RCVOOB, error);
TCP_PROBE2(debug__user, tp, PRU_RCVOOB);
INP_WUNLOCK(inp);
return (error);
}
#ifdef INET
struct protosw tcp_protosw = {
.pr_type = SOCK_STREAM,
.pr_protocol = IPPROTO_TCP,
.pr_flags = PR_CONNREQUIRED | PR_IMPLOPCL | PR_WANTRCVD |
PR_CAPATTACH,
.pr_ctloutput = tcp_ctloutput,
.pr_abort = tcp_usr_abort,
.pr_accept = tcp_usr_accept,
.pr_attach = tcp_usr_attach,
.pr_bind = tcp_usr_bind,
.pr_connect = tcp_usr_connect,
.pr_control = in_control,
.pr_detach = tcp_usr_detach,
.pr_disconnect = tcp_usr_disconnect,
.pr_listen = tcp_usr_listen,
.pr_peeraddr = in_getpeeraddr,
.pr_rcvd = tcp_usr_rcvd,
.pr_rcvoob = tcp_usr_rcvoob,
.pr_send = tcp_usr_send,
.pr_ready = tcp_usr_ready,
.pr_shutdown = tcp_usr_shutdown,
.pr_sockaddr = in_getsockaddr,
.pr_sosetlabel = in_pcbsosetlabel,
.pr_close = tcp_usr_close,
};
#endif /* INET */
#ifdef INET6
struct protosw tcp6_protosw = {
.pr_type = SOCK_STREAM,
.pr_protocol = IPPROTO_TCP,
.pr_flags = PR_CONNREQUIRED | PR_IMPLOPCL |PR_WANTRCVD |
PR_CAPATTACH,
.pr_ctloutput = tcp_ctloutput,
.pr_abort = tcp_usr_abort,
.pr_accept = tcp6_usr_accept,
.pr_attach = tcp_usr_attach,
.pr_bind = tcp6_usr_bind,
.pr_connect = tcp6_usr_connect,
.pr_control = in6_control,
.pr_detach = tcp_usr_detach,
.pr_disconnect = tcp_usr_disconnect,
.pr_listen = tcp6_usr_listen,
.pr_peeraddr = in6_mapped_peeraddr,
.pr_rcvd = tcp_usr_rcvd,
.pr_rcvoob = tcp_usr_rcvoob,
.pr_send = tcp_usr_send,
.pr_ready = tcp_usr_ready,
.pr_shutdown = tcp_usr_shutdown,
.pr_sockaddr = in6_mapped_sockaddr,
.pr_sosetlabel = in_pcbsosetlabel,
.pr_close = tcp_usr_close,
};
#endif /* INET6 */
#ifdef INET
/*
* Common subroutine to open a TCP connection to remote host specified
* by struct sockaddr_in. Call in_pcbconnect() to choose local host address
* and assign a local port number and install the inpcb into the hash.
* Initialize connection parameters and enter SYN-SENT state.
*/
static int
tcp_connect(struct tcpcb *tp, struct sockaddr_in *sin, struct thread *td)
{
struct inpcb *inp = tptoinpcb(tp);
struct socket *so = tptosocket(tp);
int error;
NET_EPOCH_ASSERT();
INP_WLOCK_ASSERT(inp);
if (__predict_false((so->so_state &
(SS_ISCONNECTING | SS_ISCONNECTED)) != 0))
return (EISCONN);
INP_HASH_WLOCK(&V_tcbinfo);
error = in_pcbconnect(inp, sin, td->td_ucred, true);
INP_HASH_WUNLOCK(&V_tcbinfo);
if (error != 0)
return (error);
/*
* Compute window scaling to request:
* Scale to fit into sweet spot. See tcp_syncache.c.
* XXX: This should move to tcp_output().
*/
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
(TCP_MAXWIN << tp->request_r_scale) < sb_max)
tp->request_r_scale++;
soisconnecting(so);
TCPSTAT_INC(tcps_connattempt);
tcp_state_change(tp, TCPS_SYN_SENT);
tp->iss = tcp_new_isn(&inp->inp_inc);
if (tp->t_flags & TF_REQ_TSTMP)
tp->ts_offset = tcp_new_ts_offset(&inp->inp_inc);
tcp_sendseqinit(tp);
return (0);
}
#endif /* INET */
#ifdef INET6
static int
tcp6_connect(struct tcpcb *tp, struct sockaddr_in6 *sin6, struct thread *td)
{
struct inpcb *inp = tptoinpcb(tp);
struct socket *so = tptosocket(tp);
int error;
NET_EPOCH_ASSERT();
INP_WLOCK_ASSERT(inp);
if (__predict_false((so->so_state &
(SS_ISCONNECTING | SS_ISCONNECTED)) != 0))
return (EISCONN);
INP_HASH_WLOCK(&V_tcbinfo);
error = in6_pcbconnect(inp, sin6, td->td_ucred, true);
INP_HASH_WUNLOCK(&V_tcbinfo);
if (error != 0)
return (error);
/* Compute window scaling to request. */
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
(TCP_MAXWIN << tp->request_r_scale) < sb_max)
tp->request_r_scale++;
soisconnecting(so);
TCPSTAT_INC(tcps_connattempt);
tcp_state_change(tp, TCPS_SYN_SENT);
tp->iss = tcp_new_isn(&inp->inp_inc);
if (tp->t_flags & TF_REQ_TSTMP)
tp->ts_offset = tcp_new_ts_offset(&inp->inp_inc);
tcp_sendseqinit(tp);
return (0);
}
#endif /* INET6 */
/*
* Export TCP internal state information via a struct tcp_info, based on the
* Linux 2.6 API. Not ABI compatible as our constants are mapped differently
* (TCP state machine, etc). We export all information using FreeBSD-native
* constants -- for example, the numeric values for tcpi_state will differ
* from Linux.
*/
static void
tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti)
{
INP_WLOCK_ASSERT(tptoinpcb(tp));
bzero(ti, sizeof(*ti));
ti->tcpi_state = tp->t_state;
if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
if (tp->t_flags & TF_SACK_PERMIT)
ti->tcpi_options |= TCPI_OPT_SACK;
if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
ti->tcpi_options |= TCPI_OPT_WSCALE;
ti->tcpi_snd_wscale = tp->snd_scale;
ti->tcpi_rcv_wscale = tp->rcv_scale;
}
if (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))
ti->tcpi_options |= TCPI_OPT_ECN;
ti->tcpi_rto = tp->t_rxtcur * tick;
ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick;
ti->tcpi_rtt = ((u_int64_t)tp->t_srtt * tick) >> TCP_RTT_SHIFT;
ti->tcpi_rttvar = ((u_int64_t)tp->t_rttvar * tick) >> TCP_RTTVAR_SHIFT;
ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
ti->tcpi_snd_cwnd = tp->snd_cwnd;
/*
* FreeBSD-specific extension fields for tcp_info.
*/
ti->tcpi_rcv_space = tp->rcv_wnd;
ti->tcpi_rcv_nxt = tp->rcv_nxt;
ti->tcpi_snd_wnd = tp->snd_wnd;
ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */
ti->tcpi_snd_nxt = tp->snd_nxt;
ti->tcpi_snd_mss = tp->t_maxseg;
ti->tcpi_rcv_mss = tp->t_maxseg;
ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack;
ti->tcpi_rcv_ooopack = tp->t_rcvoopack;
ti->tcpi_snd_zerowin = tp->t_sndzerowin;
#ifdef TCP_OFFLOAD
if (tp->t_flags & TF_TOE) {
ti->tcpi_options |= TCPI_OPT_TOE;
tcp_offload_tcp_info(tp, ti);
}
#endif
/*
* AccECN related counters.
*/
if ((tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT)) ==
(TF2_ECN_PERMIT | TF2_ACE_PERMIT))
/*
* Internal counter starts at 5 for AccECN
* but 0 for RFC3168 ECN.
*/
ti->tcpi_delivered_ce = tp->t_scep - 5;
else
ti->tcpi_delivered_ce = tp->t_scep;
ti->tcpi_received_ce = tp->t_rcep;
}
/*
* tcp_ctloutput() must drop the inpcb lock before performing copyin on
* socket option arguments. When it re-acquires the lock after the copy, it
* has to revalidate that the connection is still valid for the socket
* option.
*/
#define INP_WLOCK_RECHECK_CLEANUP(inp, cleanup) do { \
INP_WLOCK(inp); \
if (inp->inp_flags & INP_DROPPED) { \
INP_WUNLOCK(inp); \
cleanup; \
return (ECONNRESET); \
} \
tp = intotcpcb(inp); \
} while(0)
#define INP_WLOCK_RECHECK(inp) INP_WLOCK_RECHECK_CLEANUP((inp), /* noop */)
int
tcp_ctloutput_set(struct inpcb *inp, struct sockopt *sopt)
{
struct socket *so = inp->inp_socket;
struct tcpcb *tp = intotcpcb(inp);
int error = 0;
MPASS(sopt->sopt_dir == SOPT_SET);
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("inp_flags == %x", inp->inp_flags));
KASSERT(so != NULL, ("inp_socket == NULL"));
if (sopt->sopt_level != IPPROTO_TCP) {
INP_WUNLOCK(inp);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6PROTO)
error = ip6_ctloutput(so, sopt);
#endif
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET
error = ip_ctloutput(so, sopt);
#endif
/*
* When an IP-level socket option affects TCP, pass control
* down to stack tfb_tcp_ctloutput, otherwise return what
* IP level returned.
*/
switch (sopt->sopt_level) {
#ifdef INET6
case IPPROTO_IPV6:
if ((inp->inp_vflag & INP_IPV6PROTO) == 0)
return (error);
switch (sopt->sopt_name) {
case IPV6_TCLASS:
/* Notify tcp stacks that care (e.g. RACK). */
break;
case IPV6_USE_MIN_MTU:
/* Update t_maxseg accordingly. */
break;
default:
return (error);
}
break;
#endif
#ifdef INET
case IPPROTO_IP:
switch (sopt->sopt_name) {
case IP_TOS:
inp->inp_ip_tos &= ~IPTOS_ECN_MASK;
break;
case IP_TTL:
/* Notify tcp stacks that care (e.g. RACK). */
break;
default:
return (error);
}
break;
#endif
default:
return (error);
}
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
} else if (sopt->sopt_name == TCP_FUNCTION_BLK) {
/*
* Protect the TCP option TCP_FUNCTION_BLK so
* that a sub-function can *never* overwrite this.
*/
struct tcp_function_set fsn;
struct tcp_function_block *blk;
void *ptr = NULL;
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &fsn, sizeof fsn, sizeof fsn);
if (error)
return (error);
INP_WLOCK(inp);
tp = intotcpcb(inp);
blk = find_and_ref_tcp_functions(&fsn);
if (blk == NULL) {
INP_WUNLOCK(inp);
return (ENOENT);
}
if (tp->t_fb == blk) {
/* You already have this */
refcount_release(&blk->tfb_refcnt);
INP_WUNLOCK(inp);
return (0);
}
if (tp->t_state != TCPS_CLOSED) {
/*
* The user has advanced the state
* past the initial point, we may not
* be able to switch.
*/
if (blk->tfb_tcp_handoff_ok != NULL) {
/*
* Does the stack provide a
* query mechanism, if so it may
* still be possible?
*/
error = (*blk->tfb_tcp_handoff_ok)(tp);
} else
error = EINVAL;
if (error) {
refcount_release(&blk->tfb_refcnt);
INP_WUNLOCK(inp);
return(error);
}
}
if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) {
refcount_release(&blk->tfb_refcnt);
INP_WUNLOCK(inp);
return (ENOENT);
}
/*
* Ensure the new stack takes ownership with a
* clean slate on peak rate threshold.
*/
#ifdef TCPHPTS
/* Assure that we are not on any hpts */
tcp_hpts_remove(tp);
#endif
if (blk->tfb_tcp_fb_init) {
error = (*blk->tfb_tcp_fb_init)(tp, &ptr);
if (error) {
/*
* Release the ref count the lookup
* acquired.
*/
refcount_release(&blk->tfb_refcnt);
/*
* Now there is a chance that the
* init() function mucked with some
* things before it failed, such as
* hpts or inp_flags2 or timer granularity.
* It should not of, but lets give the old
* stack a chance to reset to a known good state.
*/
if (tp->t_fb->tfb_switch_failed) {
(*tp->t_fb->tfb_switch_failed)(tp);
}
goto err_out;
}
}
if (tp->t_fb->tfb_tcp_fb_fini) {
struct epoch_tracker et;
/*
* Tell the stack to cleanup with 0 i.e.
* the tcb is not going away.
*/
NET_EPOCH_ENTER(et);
(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
NET_EPOCH_EXIT(et);
}
/*
* Release the old refcnt, the
* lookup acquired a ref on the
* new one already.
*/
refcount_release(&tp->t_fb->tfb_refcnt);
/*
* Set in the new stack.
*/
tp->t_fb = blk;
tp->t_fb_ptr = ptr;
#ifdef TCP_OFFLOAD
if (tp->t_flags & TF_TOE) {
tcp_offload_ctloutput(tp, sopt->sopt_dir,
sopt->sopt_name);
}
#endif
err_out:
INP_WUNLOCK(inp);
return (error);
}
/* Pass in the INP locked, callee must unlock it. */
return (tp->t_fb->tfb_tcp_ctloutput(tp, sopt));
}
static int
tcp_ctloutput_get(struct inpcb *inp, struct sockopt *sopt)
{
struct socket *so = inp->inp_socket;
struct tcpcb *tp = intotcpcb(inp);
int error = 0;
MPASS(sopt->sopt_dir == SOPT_GET);
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("inp_flags == %x", inp->inp_flags));
KASSERT(so != NULL, ("inp_socket == NULL"));
if (sopt->sopt_level != IPPROTO_TCP) {
INP_WUNLOCK(inp);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6PROTO)
error = ip6_ctloutput(so, sopt);
#endif /* INET6 */
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET
error = ip_ctloutput(so, sopt);
#endif
return (error);
}
if (((sopt->sopt_name == TCP_FUNCTION_BLK) ||
(sopt->sopt_name == TCP_FUNCTION_ALIAS))) {
struct tcp_function_set fsn;
if (sopt->sopt_name == TCP_FUNCTION_ALIAS) {
memset(&fsn, 0, sizeof(fsn));
find_tcp_function_alias(tp->t_fb, &fsn);
} else {
strncpy(fsn.function_set_name,
tp->t_fb->tfb_tcp_block_name,
TCP_FUNCTION_NAME_LEN_MAX);
fsn.function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0';
}
fsn.pcbcnt = tp->t_fb->tfb_refcnt;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &fsn, sizeof fsn);
return (error);
}
/* Pass in the INP locked, callee must unlock it. */
return (tp->t_fb->tfb_tcp_ctloutput(tp, sopt));
}
int
tcp_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
if (sopt->sopt_dir == SOPT_SET)
return (tcp_ctloutput_set(inp, sopt));
else if (sopt->sopt_dir == SOPT_GET)
return (tcp_ctloutput_get(inp, sopt));
else
panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir);
}
/*
* If this assert becomes untrue, we need to change the size of the buf
* variable in tcp_default_ctloutput().
*/
#ifdef CTASSERT
CTASSERT(TCP_CA_NAME_MAX <= TCP_LOG_ID_LEN);
CTASSERT(TCP_LOG_REASON_LEN <= TCP_LOG_ID_LEN);
#endif
#ifdef KERN_TLS
static int
copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls)
{
struct tls_enable_v0 tls_v0;
int error;
if (sopt->sopt_valsize == sizeof(tls_v0)) {
error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0),
sizeof(tls_v0));
if (error)
return (error);
memset(tls, 0, sizeof(*tls));
tls->cipher_key = tls_v0.cipher_key;
tls->iv = tls_v0.iv;
tls->auth_key = tls_v0.auth_key;
tls->cipher_algorithm = tls_v0.cipher_algorithm;
tls->cipher_key_len = tls_v0.cipher_key_len;
tls->iv_len = tls_v0.iv_len;
tls->auth_algorithm = tls_v0.auth_algorithm;
tls->auth_key_len = tls_v0.auth_key_len;
tls->flags = tls_v0.flags;
tls->tls_vmajor = tls_v0.tls_vmajor;
tls->tls_vminor = tls_v0.tls_vminor;
return (0);
}
return (sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls)));
}
#endif
extern struct cc_algo newreno_cc_algo;
static int
tcp_set_cc_mod(struct inpcb *inp, struct sockopt *sopt)
{
struct cc_algo *algo;
void *ptr = NULL;
struct tcpcb *tp;
struct cc_var cc_mem;
char buf[TCP_CA_NAME_MAX];
size_t mem_sz;
int error;
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, buf, TCP_CA_NAME_MAX - 1, 1);
if (error)
return(error);
buf[sopt->sopt_valsize] = '\0';
CC_LIST_RLOCK();
STAILQ_FOREACH(algo, &cc_list, entries) {
if (strncmp(buf, algo->name,
TCP_CA_NAME_MAX) == 0) {
if (algo->flags & CC_MODULE_BEING_REMOVED) {
/* We can't "see" modules being unloaded */
continue;
}
break;
}
}
if (algo == NULL) {
CC_LIST_RUNLOCK();
return(ESRCH);
}
/*
* With a reference the algorithm cannot be removed
* so we hold a reference through the change process.
*/
cc_refer(algo);
CC_LIST_RUNLOCK();
if (algo->cb_init != NULL) {
/* We can now pre-get the memory for the CC */
mem_sz = (*algo->cc_data_sz)();
if (mem_sz == 0) {
goto no_mem_needed;
}
ptr = malloc(mem_sz, M_CC_MEM, M_WAITOK);
} else {
no_mem_needed:
mem_sz = 0;
ptr = NULL;
}
/*
* Make sure its all clean and zero and also get
* back the inplock.
*/
memset(&cc_mem, 0, sizeof(cc_mem));
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
if (ptr)
free(ptr, M_CC_MEM);
/* Release our temp reference */
CC_LIST_RLOCK();
cc_release(algo);
CC_LIST_RUNLOCK();
return (ECONNRESET);
}
tp = intotcpcb(inp);
if (ptr != NULL)
memset(ptr, 0, mem_sz);
cc_mem.ccvc.tcp = tp;
/*
* We once again hold a write lock over the tcb so it's
* safe to do these things without ordering concerns.
* Note here we init into stack memory.
*/
if (algo->cb_init != NULL)
error = algo->cb_init(&cc_mem, ptr);
else
error = 0;
/*
* The CC algorithms, when given their memory
* should not fail we could in theory have a
* KASSERT here.
*/
if (error == 0) {
/*
* Touchdown, lets go ahead and move the
* connection to the new CC module by
* copying in the cc_mem after we call
* the old ones cleanup (if any).
*/
if (CC_ALGO(tp)->cb_destroy != NULL)
CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
/* Detach the old CC from the tcpcb */
cc_detach(tp);
/* Copy in our temp memory that was inited */
memcpy(&tp->t_ccv, &cc_mem, sizeof(struct cc_var));
/* Now attach the new, which takes a reference */
cc_attach(tp, algo);
/* Ok now are we where we have gotten past any conn_init? */
if (TCPS_HAVEESTABLISHED(tp->t_state) && (CC_ALGO(tp)->conn_init != NULL)) {
/* Yep run the connection init for the new CC */
CC_ALGO(tp)->conn_init(&tp->t_ccv);
}
} else if (ptr)
free(ptr, M_CC_MEM);
INP_WUNLOCK(inp);
/* Now lets release our temp reference */
CC_LIST_RLOCK();
cc_release(algo);
CC_LIST_RUNLOCK();
return (error);
}
int
tcp_default_ctloutput(struct tcpcb *tp, struct sockopt *sopt)
{
struct inpcb *inp = tptoinpcb(tp);
int error, opt, optval;
u_int ui;
struct tcp_info ti;
#ifdef KERN_TLS
struct tls_enable tls;
struct socket *so = inp->inp_socket;
#endif
char *pbuf, buf[TCP_LOG_ID_LEN];
#ifdef STATS
struct statsblob *sbp;
#endif
size_t len;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("inp_flags == %x", inp->inp_flags));
KASSERT(inp->inp_socket != NULL, ("inp_socket == NULL"));
switch (sopt->sopt_level) {
#ifdef INET6
case IPPROTO_IPV6:
MPASS(inp->inp_vflag & INP_IPV6PROTO);
switch (sopt->sopt_name) {
case IPV6_USE_MIN_MTU:
tcp6_use_min_mtu(tp);
/* FALLTHROUGH */
}
INP_WUNLOCK(inp);
return (0);
#endif
#ifdef INET
case IPPROTO_IP:
INP_WUNLOCK(inp);
return (0);
#endif
}
/*
* For TCP_CCALGOOPT forward the control to CC module, for both
* SOPT_SET and SOPT_GET.
*/
switch (sopt->sopt_name) {
case TCP_CCALGOOPT:
INP_WUNLOCK(inp);
if (sopt->sopt_valsize > CC_ALGOOPT_LIMIT)
return (EINVAL);
pbuf = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK | M_ZERO);
error = sooptcopyin(sopt, pbuf, sopt->sopt_valsize,
sopt->sopt_valsize);
if (error) {
free(pbuf, M_TEMP);
return (error);
}
INP_WLOCK_RECHECK_CLEANUP(inp, free(pbuf, M_TEMP));
if (CC_ALGO(tp)->ctl_output != NULL)
error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, sopt, pbuf);
else
error = ENOENT;
INP_WUNLOCK(inp);
if (error == 0 && sopt->sopt_dir == SOPT_GET)
error = sooptcopyout(sopt, pbuf, sopt->sopt_valsize);
free(pbuf, M_TEMP);
return (error);
}
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
case TCP_MD5SIG:
INP_WUNLOCK(inp);
if (!TCPMD5_ENABLED())
return (ENOPROTOOPT);
error = TCPMD5_PCBCTL(inp, sopt);
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
goto unlock_and_done;
#endif /* IPSEC */
case TCP_NODELAY:
case TCP_NOOPT:
case TCP_LRD:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
switch (sopt->sopt_name) {
case TCP_NODELAY:
opt = TF_NODELAY;
break;
case TCP_NOOPT:
opt = TF_NOOPT;
break;
case TCP_LRD:
opt = TF_LRD;
break;
default:
opt = 0; /* dead code to fool gcc */
break;
}
if (optval)
tp->t_flags |= opt;
else
tp->t_flags &= ~opt;
unlock_and_done:
#ifdef TCP_OFFLOAD
if (tp->t_flags & TF_TOE) {
tcp_offload_ctloutput(tp, sopt->sopt_dir,
sopt->sopt_name);
}
#endif
INP_WUNLOCK(inp);
break;
case TCP_NOPUSH:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
if (optval)
tp->t_flags |= TF_NOPUSH;
else if (tp->t_flags & TF_NOPUSH) {
tp->t_flags &= ~TF_NOPUSH;
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
error = tcp_output_nodrop(tp);
NET_EPOCH_EXIT(et);
}
}
goto unlock_and_done;
case TCP_REMOTE_UDP_ENCAPS_PORT:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
return (error);
if ((optval < TCP_TUNNELING_PORT_MIN) ||
(optval > TCP_TUNNELING_PORT_MAX)) {
/* Its got to be in range */
return (EINVAL);
}
if ((V_tcp_udp_tunneling_port == 0) && (optval != 0)) {
/* You have to have enabled a UDP tunneling port first */
return (EINVAL);
}
INP_WLOCK_RECHECK(inp);
if (tp->t_state != TCPS_CLOSED) {
/* You can't change after you are connected */
error = EINVAL;
} else {
/* Ok we are all good set the port */
tp->t_port = htons(optval);
}
goto unlock_and_done;
case TCP_MAXSEG:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
if (optval > 0 && optval <= tp->t_maxseg &&
optval + 40 >= V_tcp_minmss)
tp->t_maxseg = optval;
else
error = EINVAL;
goto unlock_and_done;
case TCP_INFO:
INP_WUNLOCK(inp);
error = EINVAL;
break;
case TCP_STATS:
INP_WUNLOCK(inp);
#ifdef STATS
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
return (error);
if (optval > 0)
sbp = stats_blob_alloc(
V_tcp_perconn_stats_dflt_tpl, 0);
else
sbp = NULL;
INP_WLOCK_RECHECK(inp);
if ((tp->t_stats != NULL && sbp == NULL) ||
(tp->t_stats == NULL && sbp != NULL)) {
struct statsblob *t = tp->t_stats;
tp->t_stats = sbp;
sbp = t;
}
INP_WUNLOCK(inp);
stats_blob_destroy(sbp);
#else
return (EOPNOTSUPP);
#endif /* !STATS */
break;
case TCP_CONGESTION:
error = tcp_set_cc_mod(inp, sopt);
break;
case TCP_REUSPORT_LB_NUMA:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
INP_WLOCK_RECHECK(inp);
if (!error)
error = in_pcblbgroup_numa(inp, optval);
INP_WUNLOCK(inp);
break;
#ifdef KERN_TLS
case TCP_TXTLS_ENABLE:
INP_WUNLOCK(inp);
error = copyin_tls_enable(sopt, &tls);
if (error)
break;
error = ktls_enable_tx(so, &tls);
break;
case TCP_TXTLS_MODE:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui));
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
error = ktls_set_tx_mode(so, ui);
INP_WUNLOCK(inp);
break;
case TCP_RXTLS_ENABLE:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &tls, sizeof(tls),
sizeof(tls));
if (error)
break;
error = ktls_enable_rx(so, &tls);
break;
#endif
case TCP_MAXUNACKTIME:
case TCP_KEEPIDLE:
case TCP_KEEPINTVL:
case TCP_KEEPINIT:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui));
if (error)
return (error);
if (ui > (UINT_MAX / hz)) {
error = EINVAL;
break;
}
ui *= hz;
INP_WLOCK_RECHECK(inp);
switch (sopt->sopt_name) {
case TCP_MAXUNACKTIME:
tp->t_maxunacktime = ui;
break;
case TCP_KEEPIDLE:
tp->t_keepidle = ui;
/*
* XXX: better check current remaining
* timeout and "merge" it with new value.
*/
if ((tp->t_state > TCPS_LISTEN) &&
(tp->t_state <= TCPS_CLOSING))
tcp_timer_activate(tp, TT_KEEP,
TP_KEEPIDLE(tp));
break;
case TCP_KEEPINTVL:
tp->t_keepintvl = ui;
if ((tp->t_state == TCPS_FIN_WAIT_2) &&
(TP_MAXIDLE(tp) > 0))
tcp_timer_activate(tp, TT_2MSL,
TP_MAXIDLE(tp));
break;
case TCP_KEEPINIT:
tp->t_keepinit = ui;
if (tp->t_state == TCPS_SYN_RECEIVED ||
tp->t_state == TCPS_SYN_SENT)
tcp_timer_activate(tp, TT_KEEP,
TP_KEEPINIT(tp));
break;
}
goto unlock_and_done;
case TCP_KEEPCNT:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui));
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
tp->t_keepcnt = ui;
if ((tp->t_state == TCPS_FIN_WAIT_2) &&
(TP_MAXIDLE(tp) > 0))
tcp_timer_activate(tp, TT_2MSL,
TP_MAXIDLE(tp));
goto unlock_and_done;
#ifdef TCPPCAP
case TCP_PCAP_OUT:
case TCP_PCAP_IN:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
if (optval >= 0)
tcp_pcap_set_sock_max(
(sopt->sopt_name == TCP_PCAP_OUT) ?
&(tp->t_outpkts) : &(tp->t_inpkts),
optval);
else
error = EINVAL;
goto unlock_and_done;
#endif
case TCP_FASTOPEN: {
struct tcp_fastopen tfo_optval;
INP_WUNLOCK(inp);
if (!V_tcp_fastopen_client_enable &&
!V_tcp_fastopen_server_enable)
return (EPERM);
error = sooptcopyin(sopt, &tfo_optval,
sizeof(tfo_optval), sizeof(int));
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
if ((tp->t_state != TCPS_CLOSED) &&
(tp->t_state != TCPS_LISTEN)) {
error = EINVAL;
goto unlock_and_done;
}
if (tfo_optval.enable) {
if (tp->t_state == TCPS_LISTEN) {
if (!V_tcp_fastopen_server_enable) {
error = EPERM;
goto unlock_and_done;
}
if (tp->t_tfo_pending == NULL)
tp->t_tfo_pending =
tcp_fastopen_alloc_counter();
} else {
/*
* If a pre-shared key was provided,
* stash it in the client cookie
* field of the tcpcb for use during
* connect.
*/
if (sopt->sopt_valsize ==
sizeof(tfo_optval)) {
memcpy(tp->t_tfo_cookie.client,
tfo_optval.psk,
TCP_FASTOPEN_PSK_LEN);
tp->t_tfo_client_cookie_len =
TCP_FASTOPEN_PSK_LEN;
}
}
tp->t_flags |= TF_FASTOPEN;
} else
tp->t_flags &= ~TF_FASTOPEN;
goto unlock_and_done;
}
#ifdef TCP_BLACKBOX
case TCP_LOG:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
return (error);
INP_WLOCK_RECHECK(inp);
error = tcp_log_state_change(tp, optval);
goto unlock_and_done;
case TCP_LOGBUF:
INP_WUNLOCK(inp);
error = EINVAL;
break;
case TCP_LOGID:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, buf, TCP_LOG_ID_LEN - 1, 0);
if (error)
break;
buf[sopt->sopt_valsize] = '\0';
INP_WLOCK_RECHECK(inp);
error = tcp_log_set_id(tp, buf);
/* tcp_log_set_id() unlocks the INP. */
break;
case TCP_LOGDUMP:
case TCP_LOGDUMPID:
INP_WUNLOCK(inp);
error =
sooptcopyin(sopt, buf, TCP_LOG_REASON_LEN - 1, 0);
if (error)
break;
buf[sopt->sopt_valsize] = '\0';
INP_WLOCK_RECHECK(inp);
if (sopt->sopt_name == TCP_LOGDUMP) {
error = tcp_log_dump_tp_logbuf(tp, buf,
M_WAITOK, true);
INP_WUNLOCK(inp);
} else {
tcp_log_dump_tp_bucket_logbufs(tp, buf);
/*
* tcp_log_dump_tp_bucket_logbufs() drops the
* INP lock.
*/
}
break;
#endif
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
tp = intotcpcb(inp);
switch (sopt->sopt_name) {
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
case TCP_MD5SIG:
INP_WUNLOCK(inp);
if (!TCPMD5_ENABLED())
return (ENOPROTOOPT);
error = TCPMD5_PCBCTL(inp, sopt);
break;
#endif
case TCP_NODELAY:
optval = tp->t_flags & TF_NODELAY;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_MAXSEG:
optval = tp->t_maxseg;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_REMOTE_UDP_ENCAPS_PORT:
optval = ntohs(tp->t_port);
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_NOOPT:
optval = tp->t_flags & TF_NOOPT;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_NOPUSH:
optval = tp->t_flags & TF_NOPUSH;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_INFO:
tcp_fill_info(tp, &ti);
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &ti, sizeof ti);
break;
case TCP_STATS:
{
#ifdef STATS
int nheld;
TYPEOF_MEMBER(struct statsblob, flags) sbflags = 0;
error = 0;
socklen_t outsbsz = sopt->sopt_valsize;
if (tp->t_stats == NULL)
error = ENOENT;
else if (outsbsz >= tp->t_stats->cursz)
outsbsz = tp->t_stats->cursz;
else if (outsbsz >= sizeof(struct statsblob))
outsbsz = sizeof(struct statsblob);
else
error = EINVAL;
INP_WUNLOCK(inp);
if (error)
break;
sbp = sopt->sopt_val;
nheld = atop(round_page(((vm_offset_t)sbp) +
(vm_size_t)outsbsz) - trunc_page((vm_offset_t)sbp));
vm_page_t ma[nheld];
if (vm_fault_quick_hold_pages(
&curproc->p_vmspace->vm_map, (vm_offset_t)sbp,
outsbsz, VM_PROT_READ | VM_PROT_WRITE, ma,
nheld) < 0) {
error = EFAULT;
break;
}
if ((error = copyin_nofault(&(sbp->flags), &sbflags,
SIZEOF_MEMBER(struct statsblob, flags))))
goto unhold;
INP_WLOCK_RECHECK(inp);
error = stats_blob_snapshot(&sbp, outsbsz, tp->t_stats,
sbflags | SB_CLONE_USRDSTNOFAULT);
INP_WUNLOCK(inp);
sopt->sopt_valsize = outsbsz;
unhold:
vm_page_unhold_pages(ma, nheld);
#else
INP_WUNLOCK(inp);
error = EOPNOTSUPP;
#endif /* !STATS */
break;
}
case TCP_CONGESTION:
len = strlcpy(buf, CC_ALGO(tp)->name, TCP_CA_NAME_MAX);
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, buf, len + 1);
break;
case TCP_MAXUNACKTIME:
case TCP_KEEPIDLE:
case TCP_KEEPINTVL:
case TCP_KEEPINIT:
case TCP_KEEPCNT:
switch (sopt->sopt_name) {
case TCP_MAXUNACKTIME:
ui = TP_MAXUNACKTIME(tp) / hz;
break;
case TCP_KEEPIDLE:
ui = TP_KEEPIDLE(tp) / hz;
break;
case TCP_KEEPINTVL:
ui = TP_KEEPINTVL(tp) / hz;
break;
case TCP_KEEPINIT:
ui = TP_KEEPINIT(tp) / hz;
break;
case TCP_KEEPCNT:
ui = TP_KEEPCNT(tp);
break;
}
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &ui, sizeof(ui));
break;
#ifdef TCPPCAP
case TCP_PCAP_OUT:
case TCP_PCAP_IN:
optval = tcp_pcap_get_sock_max(
(sopt->sopt_name == TCP_PCAP_OUT) ?
&(tp->t_outpkts) : &(tp->t_inpkts));
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
#endif
case TCP_FASTOPEN:
optval = tp->t_flags & TF_FASTOPEN;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
#ifdef TCP_BLACKBOX
case TCP_LOG:
optval = tcp_get_bblog_state(tp);
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
case TCP_LOGBUF:
/* tcp_log_getlogbuf() does INP_WUNLOCK(inp) */
error = tcp_log_getlogbuf(sopt, tp);
break;
case TCP_LOGID:
len = tcp_log_get_id(tp, buf);
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, buf, len + 1);
break;
case TCP_LOGDUMP:
case TCP_LOGDUMPID:
INP_WUNLOCK(inp);
error = EINVAL;
break;
#endif
#ifdef KERN_TLS
case TCP_TXTLS_MODE:
error = ktls_get_tx_mode(so, &optval);
INP_WUNLOCK(inp);
if (error == 0)
error = sooptcopyout(sopt, &optval,
sizeof(optval));
break;
case TCP_RXTLS_MODE:
error = ktls_get_rx_mode(so, &optval);
INP_WUNLOCK(inp);
if (error == 0)
error = sooptcopyout(sopt, &optval,
sizeof(optval));
break;
#endif
case TCP_LRD:
optval = tp->t_flags & TF_LRD;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
}
return (error);
}
#undef INP_WLOCK_RECHECK
#undef INP_WLOCK_RECHECK_CLEANUP
/*
* Initiate (or continue) disconnect.
* If embryonic state, just send reset (once).
* If in ``let data drain'' option and linger null, just drop.
* Otherwise (hard), mark socket disconnecting and drop
* current input data; switch states based on user close, and
* send segment to peer (with FIN).
*/
static void
tcp_disconnect(struct tcpcb *tp)
{
struct inpcb *inp = tptoinpcb(tp);
struct socket *so = tptosocket(tp);
NET_EPOCH_ASSERT();
INP_WLOCK_ASSERT(inp);
/*
* Neither tcp_close() nor tcp_drop() should return NULL, as the
* socket is still open.
*/
if (tp->t_state < TCPS_ESTABLISHED &&
!(tp->t_state > TCPS_LISTEN && IS_FASTOPEN(tp->t_flags))) {
tp = tcp_close(tp);
KASSERT(tp != NULL,
("tcp_disconnect: tcp_close() returned NULL"));
} else if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
tp = tcp_drop(tp, 0);
KASSERT(tp != NULL,
("tcp_disconnect: tcp_drop() returned NULL"));
} else {
soisdisconnecting(so);
sbflush(&so->so_rcv);
tcp_usrclosed(tp);
if (!(inp->inp_flags & INP_DROPPED))
/* Ignore stack's drop request, we already at it. */
(void)tcp_output_nodrop(tp);
}
}
/*
* User issued close, and wish to trail through shutdown states:
* if never received SYN, just forget it. If got a SYN from peer,
* but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
* If already got a FIN from peer, then almost done; go to LAST_ACK
* state. In all other cases, have already sent FIN to peer (e.g.
* after PRU_SHUTDOWN), and just have to play tedious game waiting
* for peer to send FIN or not respond to keep-alives, etc.
* We can let the user exit from the close as soon as the FIN is acked.
*/
static void
tcp_usrclosed(struct tcpcb *tp)
{
NET_EPOCH_ASSERT();
INP_WLOCK_ASSERT(tptoinpcb(tp));
switch (tp->t_state) {
case TCPS_LISTEN:
#ifdef TCP_OFFLOAD
tcp_offload_listen_stop(tp);
#endif
tcp_state_change(tp, TCPS_CLOSED);
/* FALLTHROUGH */
case TCPS_CLOSED:
tp = tcp_close(tp);
/*
* tcp_close() should never return NULL here as the socket is
* still open.
*/
KASSERT(tp != NULL,
("tcp_usrclosed: tcp_close() returned NULL"));
break;
case TCPS_SYN_SENT:
case TCPS_SYN_RECEIVED:
tp->t_flags |= TF_NEEDFIN;
break;
case TCPS_ESTABLISHED:
tcp_state_change(tp, TCPS_FIN_WAIT_1);
break;
case TCPS_CLOSE_WAIT:
tcp_state_change(tp, TCPS_LAST_ACK);
break;
}
if (tp->t_acktime == 0)
tp->t_acktime = ticks;
if (tp->t_state >= TCPS_FIN_WAIT_2) {
soisdisconnected(tptosocket(tp));
/* Prevent the connection hanging in FIN_WAIT_2 forever. */
if (tp->t_state == TCPS_FIN_WAIT_2) {
int timeout;
timeout = (tcp_fast_finwait2_recycle) ?
tcp_finwait2_timeout : TP_MAXIDLE(tp);
tcp_timer_activate(tp, TT_2MSL, timeout);
}
}
}
#ifdef DDB
static void
db_print_indent(int indent)
{
int i;
for (i = 0; i < indent; i++)
db_printf(" ");
}
static void
db_print_tstate(int t_state)
{
switch (t_state) {
case TCPS_CLOSED:
db_printf("TCPS_CLOSED");
return;
case TCPS_LISTEN:
db_printf("TCPS_LISTEN");
return;
case TCPS_SYN_SENT:
db_printf("TCPS_SYN_SENT");
return;
case TCPS_SYN_RECEIVED:
db_printf("TCPS_SYN_RECEIVED");
return;
case TCPS_ESTABLISHED:
db_printf("TCPS_ESTABLISHED");
return;
case TCPS_CLOSE_WAIT:
db_printf("TCPS_CLOSE_WAIT");
return;
case TCPS_FIN_WAIT_1:
db_printf("TCPS_FIN_WAIT_1");
return;
case TCPS_CLOSING:
db_printf("TCPS_CLOSING");
return;
case TCPS_LAST_ACK:
db_printf("TCPS_LAST_ACK");
return;
case TCPS_FIN_WAIT_2:
db_printf("TCPS_FIN_WAIT_2");
return;
case TCPS_TIME_WAIT:
db_printf("TCPS_TIME_WAIT");
return;
default:
db_printf("unknown");
return;
}
}
static void
db_print_tflags(u_int t_flags)
{
int comma;
comma = 0;
if (t_flags & TF_ACKNOW) {
db_printf("%sTF_ACKNOW", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_DELACK) {
db_printf("%sTF_DELACK", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NODELAY) {
db_printf("%sTF_NODELAY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NOOPT) {
db_printf("%sTF_NOOPT", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_SENTFIN) {
db_printf("%sTF_SENTFIN", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_REQ_SCALE) {
db_printf("%sTF_REQ_SCALE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_RCVD_SCALE) {
db_printf("%sTF_RECVD_SCALE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_REQ_TSTMP) {
db_printf("%sTF_REQ_TSTMP", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_RCVD_TSTMP) {
db_printf("%sTF_RCVD_TSTMP", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_SACK_PERMIT) {
db_printf("%sTF_SACK_PERMIT", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NEEDSYN) {
db_printf("%sTF_NEEDSYN", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NEEDFIN) {
db_printf("%sTF_NEEDFIN", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NOPUSH) {
db_printf("%sTF_NOPUSH", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_PREVVALID) {
db_printf("%sTF_PREVVALID", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_MORETOCOME) {
db_printf("%sTF_MORETOCOME", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_SONOTCONN) {
db_printf("%sTF_SONOTCONN", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_LASTIDLE) {
db_printf("%sTF_LASTIDLE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_RXWIN0SENT) {
db_printf("%sTF_RXWIN0SENT", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_FASTRECOVERY) {
db_printf("%sTF_FASTRECOVERY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_CONGRECOVERY) {
db_printf("%sTF_CONGRECOVERY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_WASFRECOVERY) {
db_printf("%sTF_WASFRECOVERY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_WASCRECOVERY) {
db_printf("%sTF_WASCRECOVERY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_SIGNATURE) {
db_printf("%sTF_SIGNATURE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_FORCEDATA) {
db_printf("%sTF_FORCEDATA", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_TSO) {
db_printf("%sTF_TSO", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_FASTOPEN) {
db_printf("%sTF_FASTOPEN", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_tflags2(u_int t_flags2)
{
int comma;
comma = 0;
if (t_flags2 & TF2_PLPMTU_BLACKHOLE) {
db_printf("%sTF2_PLPMTU_BLACKHOLE", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_PLPMTU_PMTUD) {
db_printf("%sTF2_PLPMTU_PMTUD", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_PLPMTU_MAXSEGSNT) {
db_printf("%sTF2_PLPMTU_MAXSEGSNT", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_LOG_AUTO) {
db_printf("%sTF2_LOG_AUTO", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_DROP_AF_DATA) {
db_printf("%sTF2_DROP_AF_DATA", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_ECN_PERMIT) {
db_printf("%sTF2_ECN_PERMIT", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_ECN_SND_CWR) {
db_printf("%sTF2_ECN_SND_CWR", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_ECN_SND_ECE) {
db_printf("%sTF2_ECN_SND_ECE", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_ACE_PERMIT) {
db_printf("%sTF2_ACE_PERMIT", comma ? ", " : "");
comma = 1;
}
if (t_flags2 & TF2_FBYTES_COMPLETE) {
db_printf("%sTF2_FBYTES_COMPLETE", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_toobflags(char t_oobflags)
{
int comma;
comma = 0;
if (t_oobflags & TCPOOB_HAVEDATA) {
db_printf("%sTCPOOB_HAVEDATA", comma ? ", " : "");
comma = 1;
}
if (t_oobflags & TCPOOB_HADDATA) {
db_printf("%sTCPOOB_HADDATA", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_tcpcb(struct tcpcb *tp, const char *name, int indent)
{
db_print_indent(indent);
db_printf("%s at %p\n", name, tp);
indent += 2;
db_print_indent(indent);
db_printf("t_segq first: %p t_segqlen: %d t_dupacks: %d\n",
TAILQ_FIRST(&tp->t_segq), tp->t_segqlen, tp->t_dupacks);
db_print_indent(indent);
db_printf("t_callout: %p t_timers: %p\n",
&tp->t_callout, &tp->t_timers);
db_print_indent(indent);
db_printf("t_state: %d (", tp->t_state);
db_print_tstate(tp->t_state);
db_printf(")\n");
db_print_indent(indent);
db_printf("t_flags: 0x%x (", tp->t_flags);
db_print_tflags(tp->t_flags);
db_printf(")\n");
db_print_indent(indent);
db_printf("t_flags2: 0x%x (", tp->t_flags2);
db_print_tflags2(tp->t_flags2);
db_printf(")\n");
db_print_indent(indent);
db_printf("snd_una: 0x%08x snd_max: 0x%08x snd_nxt: 0x%08x\n",
tp->snd_una, tp->snd_max, tp->snd_nxt);
db_print_indent(indent);
db_printf("snd_up: 0x%08x snd_wl1: 0x%08x snd_wl2: 0x%08x\n",
tp->snd_up, tp->snd_wl1, tp->snd_wl2);
db_print_indent(indent);
db_printf("iss: 0x%08x irs: 0x%08x rcv_nxt: 0x%08x\n",
tp->iss, tp->irs, tp->rcv_nxt);
db_print_indent(indent);
db_printf("rcv_adv: 0x%08x rcv_wnd: %u rcv_up: 0x%08x\n",
tp->rcv_adv, tp->rcv_wnd, tp->rcv_up);
db_print_indent(indent);
db_printf("snd_wnd: %u snd_cwnd: %u\n",
tp->snd_wnd, tp->snd_cwnd);
db_print_indent(indent);
db_printf("snd_ssthresh: %u snd_recover: "
"0x%08x\n", tp->snd_ssthresh, tp->snd_recover);
db_print_indent(indent);
db_printf("t_rcvtime: %u t_startime: %u\n",
tp->t_rcvtime, tp->t_starttime);
db_print_indent(indent);
db_printf("t_rttime: %u t_rtsq: 0x%08x\n",
tp->t_rtttime, tp->t_rtseq);
db_print_indent(indent);
db_printf("t_rxtcur: %d t_maxseg: %u t_srtt: %d\n",
tp->t_rxtcur, tp->t_maxseg, tp->t_srtt);
db_print_indent(indent);
db_printf("t_rttvar: %d t_rxtshift: %d t_rttmin: %u\n",
tp->t_rttvar, tp->t_rxtshift, tp->t_rttmin);
db_print_indent(indent);
db_printf("t_rttupdated: %u max_sndwnd: %u t_softerror: %d\n",
tp->t_rttupdated, tp->max_sndwnd, tp->t_softerror);
db_print_indent(indent);
db_printf("t_oobflags: 0x%x (", tp->t_oobflags);
db_print_toobflags(tp->t_oobflags);
db_printf(") t_iobc: 0x%02x\n", tp->t_iobc);
db_print_indent(indent);
db_printf("snd_scale: %u rcv_scale: %u request_r_scale: %u\n",
tp->snd_scale, tp->rcv_scale, tp->request_r_scale);
db_print_indent(indent);
db_printf("ts_recent: %u ts_recent_age: %u\n",
tp->ts_recent, tp->ts_recent_age);
db_print_indent(indent);
db_printf("ts_offset: %u last_ack_sent: 0x%08x snd_cwnd_prev: "
"%u\n", tp->ts_offset, tp->last_ack_sent, tp->snd_cwnd_prev);
db_print_indent(indent);
db_printf("snd_ssthresh_prev: %u snd_recover_prev: 0x%08x "
"t_badrxtwin: %u\n", tp->snd_ssthresh_prev,
tp->snd_recover_prev, tp->t_badrxtwin);
db_print_indent(indent);
db_printf("snd_numholes: %d snd_holes first: %p\n",
tp->snd_numholes, TAILQ_FIRST(&tp->snd_holes));
db_print_indent(indent);
db_printf("snd_fack: 0x%08x rcv_numsacks: %d\n",
tp->snd_fack, tp->rcv_numsacks);
/* Skip sackblks, sackhint. */
db_print_indent(indent);
db_printf("t_rttlow: %d rfbuf_ts: %u rfbuf_cnt: %d\n",
tp->t_rttlow, tp->rfbuf_ts, tp->rfbuf_cnt);
}
DB_SHOW_COMMAND(tcpcb, db_show_tcpcb)
{
struct tcpcb *tp;
if (!have_addr) {
db_printf("usage: show tcpcb <addr>\n");
return;
}
tp = (struct tcpcb *)addr;
db_print_tcpcb(tp, "tcpcb", 0);
}
#endif