e9a56ad5ca
much as possible away from secure/ to make extending easier.
146 lines
3.5 KiB
C
146 lines
3.5 KiB
C
/*
|
|
* ----------------------------------------------------------------------------
|
|
* "THE BEER-WARE LICENSE" (Revision 42):
|
|
* <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
|
|
* can do whatever you want with this stuff. If we meet some day, and you think
|
|
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
|
|
* ----------------------------------------------------------------------------
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
*/
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
static const char rcsid[] = "$FreeBSD$";
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sha.h>
|
|
#include "crypt.h"
|
|
|
|
/*
|
|
* UNIX password
|
|
*/
|
|
|
|
char *
|
|
crypt_sha(pw, salt)
|
|
const char *pw;
|
|
const char *salt;
|
|
{
|
|
static char *magic = "$3$"; /*
|
|
* This string is magic for
|
|
* this algorithm. Having
|
|
* it this way, we can get
|
|
* get better later on
|
|
*/
|
|
static char passwd[120], *p;
|
|
static const char *sp,*ep;
|
|
unsigned char final[SHS_SIZE];
|
|
int sl,pl,i;
|
|
SHA_CTX ctx,ctx1;
|
|
unsigned long l;
|
|
|
|
/* Refine the Salt first */
|
|
sp = salt;
|
|
|
|
/* If it starts with the magic string, then skip that */
|
|
if(!strncmp(sp,magic,strlen(magic)))
|
|
sp += strlen(magic);
|
|
|
|
/* It stops at the first '$', max 8 chars */
|
|
for(ep=sp;*ep && *ep != '$' && ep < (sp+8);ep++)
|
|
continue;
|
|
|
|
/* get the length of the true salt */
|
|
sl = ep - sp;
|
|
|
|
SHA_Init(&ctx);
|
|
|
|
/* The password first, since that is what is most unknown */
|
|
SHA_Update(&ctx,pw,strlen(pw));
|
|
|
|
/* Then our magic string */
|
|
SHA_Update(&ctx,magic,strlen(magic));
|
|
|
|
/* Then the raw salt */
|
|
SHA_Update(&ctx,sp,sl);
|
|
|
|
/* Then just as many characters of the SHA(pw,salt,pw) */
|
|
SHA_Init(&ctx1);
|
|
SHA_Update(&ctx1,pw,strlen(pw));
|
|
SHA_Update(&ctx1,sp,sl);
|
|
SHA_Update(&ctx1,pw,strlen(pw));
|
|
SHA_Final(final,&ctx1);
|
|
for(pl = strlen(pw); pl > 0; pl -= SHS_SIZE)
|
|
SHA_Update(&ctx,final,pl>SHS_SIZE ? SHS_SIZE : pl);
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
memset(final,0,sizeof final);
|
|
|
|
/* Then something really weird... */
|
|
for (i = strlen(pw); i ; i >>= 1)
|
|
if(i&1)
|
|
SHA_Update(&ctx, final, 1);
|
|
else
|
|
SHA_Update(&ctx, pw, 1);
|
|
|
|
/* Now make the output string */
|
|
strcpy(passwd,magic);
|
|
strncat(passwd,sp,sl);
|
|
strcat(passwd,"$");
|
|
|
|
SHA_Final(final,&ctx);
|
|
|
|
/*
|
|
* and now, just to make sure things don't run too fast
|
|
* On a 60 Mhz Pentium this takes 34 msec, so you would
|
|
* need 30 seconds to build a 1000 entry dictionary...
|
|
*/
|
|
for(i=0;i<1000;i++) {
|
|
SHA_Init(&ctx1);
|
|
if(i & 1)
|
|
SHA_Update(&ctx1,pw,strlen(pw));
|
|
else
|
|
SHA_Update(&ctx1,final,SHS_SIZE);
|
|
|
|
if(i % 3)
|
|
SHA_Update(&ctx1,sp,sl);
|
|
|
|
if(i % 7)
|
|
SHA_Update(&ctx1,pw,strlen(pw));
|
|
|
|
if(i & 1)
|
|
SHA_Update(&ctx1,final,SHS_SIZE);
|
|
else
|
|
SHA_Update(&ctx1,pw,strlen(pw));
|
|
SHA_Final(final,&ctx1);
|
|
}
|
|
|
|
p = passwd + strlen(passwd);
|
|
|
|
l = (final[ 0]<<16) | (final[ 6]<<8) | final[12];
|
|
_crypt_to64(p,l,4); p += 4;
|
|
l = (final[ 1]<<16) | (final[ 7]<<8) | final[13];
|
|
_crypt_to64(p,l,4); p += 4;
|
|
l = (final[ 2]<<16) | (final[ 8]<<8) | final[14];
|
|
_crypt_to64(p,l,4); p += 4;
|
|
l = (final[ 3]<<16) | (final[ 9]<<8) | final[15];
|
|
_crypt_to64(p,l,4); p += 4;
|
|
l = (final[ 4]<<16) | (final[10]<<8) | final[16];
|
|
_crypt_to64(p,l,4); p += 4;
|
|
l = (final[ 5]<<16) | (final[11]<<8) | final[17];
|
|
_crypt_to64(p,l,4); p += 4;
|
|
l = (final[18]<<8) | final[19];
|
|
_crypt_to64(p,l,3); p += 3;
|
|
|
|
*p = '\0';
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
memset(final,0,sizeof final);
|
|
|
|
return passwd;
|
|
}
|
|
|