589e38a609
RealTek 8129/8139 chipset like I've been threatening. Update kernel configs, userconfig.c, relnotes and sysinstall. No man page yet; comming soon. I consider this driver stable enough that I want to give it some exposure in -current.
1990 lines
47 KiB
C
1990 lines
47 KiB
C
/*
|
|
* Copyright (c) 1997, 1998
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id: if_rl.c,v 1.13 1998/10/07 22:51:30 wpaul Exp $
|
|
*/
|
|
|
|
/*
|
|
* RealTek 8129/8139 PCI NIC driver
|
|
*
|
|
* Supports several extremely cheap PCI 10/100 adapters based on
|
|
* the RealTek chipset. Datasheets can be obtained from
|
|
* www.realtek.com.tw.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
|
|
* probably the worst PCI ethernet controller ever made, with the possible
|
|
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
|
|
* DMA, but it has a terrible interface that nullifies any performance
|
|
* gains that bus-master DMA usually offers.
|
|
*
|
|
* For transmission, the chip offers a series of four TX descriptor
|
|
* registers. Each transmit frame must be in a contiguous buffer, aligned
|
|
* on a doubleword (32-bit) boundary. This means we almost always have to
|
|
* do mbuf copies in order to transmit a frame, except in the unlikely
|
|
* case where a) the packet fits into a single mbuf, and b) the packet
|
|
* is 32-bit aligned within the mbuf's data area. The presence of only
|
|
* four descriptor registers means that we can never have more than four
|
|
* packets queued for transmission at any one time.
|
|
*
|
|
* Reception is not much better. The driver has to allocate a single large
|
|
* buffer area (up to 64K in size) into which the chip will DMA received
|
|
* frames. Because we don't know where within this region received packets
|
|
* will begin or end, we have no choice but to copy data from the buffer
|
|
* area into mbufs in order to pass the packets up to the higher protocol
|
|
* levels.
|
|
*
|
|
* It's impossible given this rotten design to really achieve decent
|
|
* performance at 100Mbps, unless you happen to have a 400Mhz PII or
|
|
* some equally overmuscled CPU to drive it.
|
|
*
|
|
* On the bright side, the 8139 does have a built-in PHY, although
|
|
* rather than using an MDIO serial interface like most other NICs, the
|
|
* PHY registers are directly accessible through the 8139's register
|
|
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
|
|
* filter.
|
|
*
|
|
* The 8129 chip is an older version of the 8139 that uses an external PHY
|
|
* chip. The 8129 has a serial MDIO interface for accessing the MII where
|
|
* the 8139 lets you directly access the on-board PHY registers. We need
|
|
* to select which interface to use depending on the chip type.
|
|
*
|
|
* Note: beware of trying to use the Linux RealTek driver as a reference
|
|
* for information about the RealTek chip. It contains several bogosities.
|
|
* It contains definitions for several undocumented registers which it
|
|
* claims are 'required for proper operation' yet it does not use these
|
|
* registers anywhere in the code. It also refers to some undocumented
|
|
* 'Twister tuning codes' which it doesn't use anywhere. It also contains
|
|
* bit definitions for several registers which are totally ignored: magic
|
|
* numbers are used instead, making the code hard to read.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/clock.h> /* for DELAY */
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
/*
|
|
* Default to using PIO access for this driver. On SMP systems,
|
|
* there appear to be problems with memory mapped mode: it looks like
|
|
* doing too many memory mapped access back to back in rapid succession
|
|
* can hang the bus. I'm inclined to blame this on crummy design/construction
|
|
* on the part of RealTek. Memory mapped mode does appear to work on
|
|
* uniprocessor systems though.
|
|
*/
|
|
#define RL_USEIOSPACE
|
|
|
|
#include <pci/if_rlreg.h>
|
|
|
|
#ifndef lint
|
|
static char rcsid[] =
|
|
"$Id: if_rl.c,v 1.13 1998/10/07 22:51:30 wpaul Exp $";
|
|
#endif
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct rl_type rl_devs[] = {
|
|
{ RT_VENDORID, RT_DEVICEID_8129,
|
|
"RealTek 8129 10/100BaseTX" },
|
|
{ RT_VENDORID, RT_DEVICEID_8139,
|
|
"RealTek 8139 10/100BaseTX" },
|
|
{ RT_VENDORID_ALT, RT_DEVICEID_8139_ALT,
|
|
"RealTek 8139 10/100BaseTX" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Various supported PHY vendors/types and their names. Note that
|
|
* this driver will work with pretty much any MII-compliant PHY,
|
|
* so failure to positively identify the chip is not a fatal error.
|
|
*/
|
|
|
|
static struct rl_type rl_phys[] = {
|
|
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
|
|
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
|
|
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
|
|
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
|
|
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
|
|
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
|
|
{ 0, 0, "<MII-compliant physical interface>" }
|
|
};
|
|
|
|
static unsigned long rl_count = 0;
|
|
static char *rl_probe __P((pcici_t, pcidi_t));
|
|
static void rl_attach __P((pcici_t, int));
|
|
|
|
static int rl_encap __P((struct rl_softc *, struct rl_chain *,
|
|
struct mbuf * ));
|
|
|
|
static void rl_rxeof __P((struct rl_softc *));
|
|
static void rl_txeof __P((struct rl_softc *));
|
|
static void rl_txeoc __P((struct rl_softc *));
|
|
static void rl_intr __P((void *));
|
|
static void rl_start __P((struct ifnet *));
|
|
static int rl_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void rl_init __P((void *));
|
|
static void rl_stop __P((struct rl_softc *));
|
|
static void rl_watchdog __P((struct ifnet *));
|
|
static void rl_shutdown __P((int, void *));
|
|
static int rl_ifmedia_upd __P((struct ifnet *));
|
|
static void rl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
static void rl_eeprom_putbyte __P((struct rl_softc *, u_int8_t));
|
|
static void rl_eeprom_getword __P((struct rl_softc *, u_int8_t, u_int16_t *));
|
|
static void rl_read_eeprom __P((struct rl_softc *, caddr_t,
|
|
int, int, int));
|
|
static void rl_mii_sync __P((struct rl_softc *));
|
|
static void rl_mii_send __P((struct rl_softc *, u_int32_t, int));
|
|
static int rl_mii_readreg __P((struct rl_softc *, struct rl_mii_frame *));
|
|
static int rl_mii_writereg __P((struct rl_softc *, struct rl_mii_frame *));
|
|
|
|
static u_int16_t rl_phy_readreg __P((struct rl_softc *, int));
|
|
static void rl_phy_writereg __P((struct rl_softc *, u_int16_t, u_int16_t));
|
|
|
|
static void rl_autoneg_xmit __P((struct rl_softc *));
|
|
static void rl_autoneg_mii __P((struct rl_softc *, int, int));
|
|
static void rl_setmode_mii __P((struct rl_softc *, int));
|
|
static void rl_getmode_mii __P((struct rl_softc *));
|
|
static u_int8_t rl_calchash __P((u_int8_t *));
|
|
static void rl_setmulti __P((struct rl_softc *));
|
|
static void rl_reset __P((struct rl_softc *));
|
|
static int rl_list_tx_init __P((struct rl_softc *));
|
|
|
|
#define EE_SET(x) \
|
|
CSR_WRITE_1(sc, RL_EECMD, \
|
|
CSR_READ_1(sc, RL_EECMD) | x)
|
|
|
|
#define EE_CLR(x) \
|
|
CSR_WRITE_1(sc, RL_EECMD, \
|
|
CSR_READ_1(sc, RL_EECMD) & ~x)
|
|
|
|
/*
|
|
* Send a read command and address to the EEPROM, check for ACK.
|
|
*/
|
|
static void rl_eeprom_putbyte(sc, addr)
|
|
struct rl_softc *sc;
|
|
u_int8_t addr;
|
|
{
|
|
register int d, i;
|
|
|
|
d = addr | RL_EECMD_READ;
|
|
|
|
/*
|
|
* Feed in each bit and stobe the clock.
|
|
*/
|
|
for (i = 0x400; i; i >>= 1) {
|
|
if (d & i) {
|
|
EE_SET(RL_EE_DATAIN);
|
|
} else {
|
|
EE_CLR(RL_EE_DATAIN);
|
|
}
|
|
DELAY(100);
|
|
EE_SET(RL_EE_CLK);
|
|
DELAY(150);
|
|
EE_CLR(RL_EE_CLK);
|
|
DELAY(100);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static void rl_eeprom_getword(sc, addr, dest)
|
|
struct rl_softc *sc;
|
|
u_int8_t addr;
|
|
u_int16_t *dest;
|
|
{
|
|
register int i;
|
|
u_int16_t word = 0;
|
|
|
|
/* Enter EEPROM access mode. */
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
|
|
|
|
/*
|
|
* Send address of word we want to read.
|
|
*/
|
|
rl_eeprom_putbyte(sc, addr);
|
|
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
|
|
|
|
/*
|
|
* Start reading bits from EEPROM.
|
|
*/
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
EE_SET(RL_EE_CLK);
|
|
DELAY(100);
|
|
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
|
|
word |= i;
|
|
EE_CLR(RL_EE_CLK);
|
|
DELAY(100);
|
|
}
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
|
|
|
|
*dest = word;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static void rl_read_eeprom(sc, dest, off, cnt, swap)
|
|
struct rl_softc *sc;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
int swap;
|
|
{
|
|
int i;
|
|
u_int16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
rl_eeprom_getword(sc, off + i, &word);
|
|
ptr = (u_int16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* MII access routines are provided for the 8129, which
|
|
* doesn't have a built-in PHY. For the 8139, we fake things
|
|
* up by diverting rl_phy_readreg()/rl_phy_writereg() to the
|
|
* direct access PHY registers.
|
|
*/
|
|
#define MII_SET(x) \
|
|
CSR_WRITE_1(sc, RL_MII, \
|
|
CSR_READ_1(sc, RL_MII) | x)
|
|
|
|
#define MII_CLR(x) \
|
|
CSR_WRITE_1(sc, RL_MII, \
|
|
CSR_READ_1(sc, RL_MII) & ~x)
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void rl_mii_sync(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void rl_mii_send(sc, bits, cnt)
|
|
struct rl_softc *sc;
|
|
u_int32_t bits;
|
|
int cnt;
|
|
{
|
|
int i;
|
|
|
|
MII_CLR(RL_MII_CLK);
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
if (bits & i) {
|
|
MII_SET(RL_MII_DATAOUT);
|
|
} else {
|
|
MII_CLR(RL_MII_DATAOUT);
|
|
}
|
|
DELAY(1);
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int rl_mii_readreg(sc, frame)
|
|
struct rl_softc *sc;
|
|
struct rl_mii_frame *frame;
|
|
|
|
{
|
|
int i, ack, s;
|
|
|
|
s = splimp();
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = RL_MII_STARTDELIM;
|
|
frame->mii_opcode = RL_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
CSR_WRITE_2(sc, RL_MII, 0);
|
|
|
|
/*
|
|
* Turn on data xmit.
|
|
*/
|
|
MII_SET(RL_MII_DIR);
|
|
|
|
rl_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
rl_mii_send(sc, frame->mii_stdelim, 2);
|
|
rl_mii_send(sc, frame->mii_opcode, 2);
|
|
rl_mii_send(sc, frame->mii_phyaddr, 5);
|
|
rl_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
/* Idle bit */
|
|
MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
/* Turn off xmit. */
|
|
MII_CLR(RL_MII_DIR);
|
|
|
|
/* Check for ack */
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
if (!ack) {
|
|
if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
|
|
frame->mii_data |= i;
|
|
DELAY(1);
|
|
}
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
fail:
|
|
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
splx(s);
|
|
|
|
if (ack)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int rl_mii_writereg(sc, frame)
|
|
struct rl_softc *sc;
|
|
struct rl_mii_frame *frame;
|
|
|
|
{
|
|
int s;
|
|
|
|
s = splimp();
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
|
|
frame->mii_stdelim = RL_MII_STARTDELIM;
|
|
frame->mii_opcode = RL_MII_WRITEOP;
|
|
frame->mii_turnaround = RL_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Turn on data output.
|
|
*/
|
|
MII_SET(RL_MII_DIR);
|
|
|
|
rl_mii_sync(sc);
|
|
|
|
rl_mii_send(sc, frame->mii_stdelim, 2);
|
|
rl_mii_send(sc, frame->mii_opcode, 2);
|
|
rl_mii_send(sc, frame->mii_phyaddr, 5);
|
|
rl_mii_send(sc, frame->mii_regaddr, 5);
|
|
rl_mii_send(sc, frame->mii_turnaround, 2);
|
|
rl_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Idle bit. */
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
MII_CLR(RL_MII_DIR);
|
|
|
|
splx(s);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static u_int16_t rl_phy_readreg(sc, reg)
|
|
struct rl_softc *sc;
|
|
int reg;
|
|
{
|
|
struct rl_mii_frame frame;
|
|
u_int16_t rval = 0;
|
|
u_int16_t rl8139_reg = 0;
|
|
|
|
if (sc->rl_type == RL_8139) {
|
|
switch(reg) {
|
|
case PHY_BMCR:
|
|
rl8139_reg = RL_BMCR;
|
|
break;
|
|
case PHY_BMSR:
|
|
rl8139_reg = RL_BMSR;
|
|
break;
|
|
case PHY_ANAR:
|
|
rl8139_reg = RL_ANAR;
|
|
break;
|
|
case PHY_LPAR:
|
|
rl8139_reg = RL_LPAR;
|
|
break;
|
|
default:
|
|
printf("rl%d: bad phy register\n", sc->rl_unit);
|
|
return(0);
|
|
}
|
|
rval = CSR_READ_2(sc, rl8139_reg);
|
|
return(rval);
|
|
}
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = sc->rl_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
rl_mii_readreg(sc, &frame);
|
|
|
|
return(frame.mii_data);
|
|
}
|
|
|
|
static void rl_phy_writereg(sc, reg, data)
|
|
struct rl_softc *sc;
|
|
u_int16_t reg;
|
|
u_int16_t data;
|
|
{
|
|
struct rl_mii_frame frame;
|
|
u_int16_t rl8139_reg = 0;
|
|
|
|
if (sc->rl_type == RL_8139) {
|
|
switch(reg) {
|
|
case PHY_BMCR:
|
|
rl8139_reg = RL_BMCR;
|
|
break;
|
|
case PHY_BMSR:
|
|
rl8139_reg = RL_BMSR;
|
|
break;
|
|
case PHY_ANAR:
|
|
rl8139_reg = RL_ANAR;
|
|
break;
|
|
case PHY_LPAR:
|
|
rl8139_reg = RL_LPAR;
|
|
break;
|
|
default:
|
|
printf("rl%d: bad phy register\n", sc->rl_unit);
|
|
return;
|
|
}
|
|
CSR_WRITE_2(sc, rl8139_reg, data);
|
|
}
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = sc->rl_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
|
|
rl_mii_writereg(sc, &frame);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Calculate CRC of a multicast group address, return the lower 6 bits.
|
|
*/
|
|
static u_int8_t rl_calchash(addr)
|
|
u_int8_t *addr;
|
|
{
|
|
u_int32_t crc, carry;
|
|
int i, j;
|
|
u_int8_t c;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
c = *(addr + i);
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ 0x04c11db6) | carry;
|
|
}
|
|
}
|
|
|
|
/* return the filter bit position */
|
|
return(crc & 0x0000003F);
|
|
}
|
|
|
|
/*
|
|
* Program the 64-bit multicast hash filter.
|
|
*/
|
|
static void rl_setmulti(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int h = 0;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
struct ifmultiaddr *ifma;
|
|
u_int32_t rxfilt;
|
|
int mcnt = 0;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
rxfilt = CSR_READ_4(sc, RL_RXCFG);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI) {
|
|
rxfilt |= RL_RXCFG_RX_MULTI;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
|
|
CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, RL_MAR0, 0);
|
|
CSR_WRITE_4(sc, RL_MAR4, 0);
|
|
|
|
/* now program new ones */
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = rl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
mcnt++;
|
|
}
|
|
|
|
if (mcnt)
|
|
rxfilt |= RL_RXCFG_RX_MULTI;
|
|
else
|
|
rxfilt &= ~RL_RXCFG_RX_MULTI;
|
|
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
|
|
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initiate an autonegotiation session.
|
|
*/
|
|
static void rl_autoneg_xmit(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
u_int16_t phy_sts;
|
|
|
|
rl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(rl_phy_readreg(sc, PHY_BMCR)
|
|
& PHY_BMCR_RESET);
|
|
|
|
phy_sts = rl_phy_readreg(sc, PHY_BMCR);
|
|
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
|
|
rl_phy_writereg(sc, PHY_BMCR, phy_sts);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Invoke autonegotiation on a PHY. Also used with the 8139 internal
|
|
* transceiver.
|
|
*/
|
|
static void rl_autoneg_mii(sc, flag, verbose)
|
|
struct rl_softc *sc;
|
|
int flag;
|
|
int verbose;
|
|
{
|
|
u_int16_t phy_sts = 0, media, advert, ability;
|
|
struct ifnet *ifp;
|
|
struct ifmedia *ifm;
|
|
|
|
ifm = &sc->ifmedia;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/*
|
|
* The 100baseT4 PHY sometimes has the 'autoneg supported'
|
|
* bit cleared in the status register, but has the 'autoneg enabled'
|
|
* bit set in the control register. This is a contradiction, and
|
|
* I'm not sure how to handle it. If you want to force an attempt
|
|
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
|
|
* and see what happens.
|
|
*/
|
|
#ifndef FORCE_AUTONEG_TFOUR
|
|
/*
|
|
* First, see if autoneg is supported. If not, there's
|
|
* no point in continuing.
|
|
*/
|
|
phy_sts = rl_phy_readreg(sc, PHY_BMSR);
|
|
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
|
|
if (verbose)
|
|
printf("rl%d: autonegotiation not supported\n",
|
|
sc->rl_unit);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
switch (flag) {
|
|
case RL_FLAG_FORCEDELAY:
|
|
/*
|
|
* XXX Never use this option anywhere but in the probe
|
|
* routine: making the kernel stop dead in its tracks
|
|
* for three whole seconds after we've gone multi-user
|
|
* is really bad manners.
|
|
*/
|
|
rl_autoneg_xmit(sc);
|
|
DELAY(5000000);
|
|
break;
|
|
case RL_FLAG_SCHEDDELAY:
|
|
/*
|
|
* Wait for the transmitter to go idle before starting
|
|
* an autoneg session, otherwise rl_start() may clobber
|
|
* our timeout, and we don't want to allow transmission
|
|
* during an autoneg session since that can screw it up.
|
|
*/
|
|
if (sc->rl_cdata.rl_tx_cnt) {
|
|
sc->rl_want_auto = 1;
|
|
return;
|
|
}
|
|
rl_autoneg_xmit(sc);
|
|
ifp->if_timer = 5;
|
|
sc->rl_autoneg = 1;
|
|
sc->rl_want_auto = 0;
|
|
return;
|
|
break;
|
|
case RL_FLAG_DELAYTIMEO:
|
|
ifp->if_timer = 0;
|
|
sc->rl_autoneg = 0;
|
|
break;
|
|
default:
|
|
printf("rl%d: invalid autoneg flag: %d\n", sc->rl_unit, flag);
|
|
return;
|
|
}
|
|
|
|
if (rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
|
|
if (verbose)
|
|
printf("rl%d: autoneg complete, ", sc->rl_unit);
|
|
phy_sts = rl_phy_readreg(sc, PHY_BMSR);
|
|
} else {
|
|
if (verbose)
|
|
printf("rl%d: autoneg not complete, ", sc->rl_unit);
|
|
}
|
|
|
|
media = rl_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/* Link is good. Report modes and set duplex mode. */
|
|
if (rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
|
|
if (verbose)
|
|
printf("link status good ");
|
|
advert = rl_phy_readreg(sc, PHY_ANAR);
|
|
ability = rl_phy_readreg(sc, PHY_LPAR);
|
|
|
|
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(100baseT4)\n");
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 10Mbps)\n");
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 10Mbps)\n");
|
|
} else {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(unknown mode! forcing half-duplex, 10Mbps)\n");
|
|
}
|
|
|
|
/* Set ASIC's duplex mode to match the PHY. */
|
|
rl_phy_writereg(sc, PHY_BMCR, media);
|
|
} else {
|
|
if (verbose)
|
|
printf("no carrier\n");
|
|
}
|
|
|
|
rl_init(sc);
|
|
|
|
if (sc->rl_tx_pend) {
|
|
sc->rl_autoneg = 0;
|
|
sc->rl_tx_pend = 0;
|
|
rl_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void rl_getmode_mii(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
u_int16_t bmsr;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
bmsr = rl_phy_readreg(sc, PHY_BMSR);
|
|
if (bootverbose)
|
|
printf("rl%d: PHY status word: %x\n", sc->rl_unit, bmsr);
|
|
|
|
/* fallback */
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
if (bmsr & PHY_BMSR_10BTHALF) {
|
|
if (bootverbose)
|
|
printf("rl%d: 10Mbps half-duplex mode supported\n",
|
|
sc->rl_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_10BTFULL) {
|
|
if (bootverbose)
|
|
printf("rl%d: 10Mbps full-duplex mode supported\n",
|
|
sc->rl_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXHALF) {
|
|
if (bootverbose)
|
|
printf("rl%d: 100Mbps half-duplex mode supported\n",
|
|
sc->rl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXFULL) {
|
|
if (bootverbose)
|
|
printf("rl%d: 100Mbps full-duplex mode supported\n",
|
|
sc->rl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
}
|
|
|
|
/* Some also support 100BaseT4. */
|
|
if (bmsr & PHY_BMSR_100BT4) {
|
|
if (bootverbose)
|
|
printf("rl%d: 100baseT4 mode supported\n", sc->rl_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
|
|
#ifdef FORCE_AUTONEG_TFOUR
|
|
if (bootverbose)
|
|
printf("rl%d: forcing on autoneg support for BT4\n",
|
|
sc->rl_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
#endif
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_CANAUTONEG) {
|
|
if (bootverbose)
|
|
printf("rl%d: autoneg supported\n", sc->rl_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set speed and duplex mode.
|
|
*/
|
|
static void rl_setmode_mii(sc, media)
|
|
struct rl_softc *sc;
|
|
int media;
|
|
{
|
|
u_int16_t bmcr;
|
|
|
|
printf("rl%d: selecting MII, ", sc->rl_unit);
|
|
|
|
bmcr = rl_phy_readreg(sc, PHY_BMCR);
|
|
|
|
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
|
|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_T4) {
|
|
printf("100Mbps/T4, half-duplex\n");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
printf("100Mbps, ");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
printf("10Mbps, ");
|
|
bmcr &= ~PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
printf("full duplex\n");
|
|
bmcr |= PHY_BMCR_DUPLEX;
|
|
} else {
|
|
printf("half duplex\n");
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
}
|
|
|
|
rl_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
|
|
return;
|
|
}
|
|
|
|
static void rl_reset(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
|
|
|
|
for (i = 0; i < RL_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
|
|
break;
|
|
}
|
|
if (i == RL_TIMEOUT)
|
|
printf("rl%d: reset never completed!\n", sc->rl_unit);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static char *
|
|
rl_probe(config_id, device_id)
|
|
pcici_t config_id;
|
|
pcidi_t device_id;
|
|
{
|
|
struct rl_type *t;
|
|
|
|
t = rl_devs;
|
|
|
|
while(t->rl_name != NULL) {
|
|
if ((device_id & 0xFFFF) == t->rl_vid &&
|
|
((device_id >> 16) & 0xFFFF) == t->rl_did) {
|
|
return(t->rl_name);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static void
|
|
rl_attach(config_id, unit)
|
|
pcici_t config_id;
|
|
int unit;
|
|
{
|
|
int s, i;
|
|
#ifndef RL_USEIOSPACE
|
|
vm_offset_t pbase, vbase;
|
|
#endif
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
u_int32_t command;
|
|
struct rl_softc *sc;
|
|
struct ifnet *ifp;
|
|
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
struct rl_type *p;
|
|
u_int16_t phy_vid, phy_did, phy_sts;
|
|
u_int16_t rl_did = 0;
|
|
|
|
s = splimp();
|
|
|
|
sc = malloc(sizeof(struct rl_softc), M_DEVBUF, M_NOWAIT);
|
|
if (sc == NULL) {
|
|
printf("rl%d: no memory for softc struct!\n", unit);
|
|
return;
|
|
}
|
|
bzero(sc, sizeof(struct rl_softc));
|
|
|
|
/*
|
|
* Handle power management nonsense.
|
|
*/
|
|
|
|
command = pci_conf_read(config_id, RL_PCI_CAPID) & 0x000000FF;
|
|
if (command == 0x01) {
|
|
|
|
command = pci_conf_read(config_id, RL_PCI_PWRMGMTCTRL);
|
|
if (command & RL_PSTATE_MASK) {
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
/* Save important PCI config data. */
|
|
iobase = pci_conf_read(config_id, RL_PCI_LOIO);
|
|
membase = pci_conf_read(config_id, RL_PCI_LOMEM);
|
|
irq = pci_conf_read(config_id, RL_PCI_INTLINE);
|
|
|
|
/* Reset the power state. */
|
|
printf("rl%d: chip is is in D%d power mode "
|
|
"-- setting to D0\n", unit, command & RL_PSTATE_MASK);
|
|
command &= 0xFFFFFFFC;
|
|
pci_conf_write(config_id, RL_PCI_PWRMGMTCTRL, command);
|
|
|
|
/* Restore PCI config data. */
|
|
pci_conf_write(config_id, RL_PCI_LOIO, iobase);
|
|
pci_conf_write(config_id, RL_PCI_LOMEM, membase);
|
|
pci_conf_write(config_id, RL_PCI_INTLINE, irq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
|
|
#ifdef RL_USEIOSPACE
|
|
if (!(command & PCIM_CMD_PORTEN)) {
|
|
printf("rl%d: failed to enable I/O ports!\n", unit);
|
|
free(sc, M_DEVBUF);
|
|
goto fail;
|
|
}
|
|
|
|
sc->iobase = pci_conf_read(config_id, RL_PCI_LOIO) & 0xFFFFFFFC;
|
|
#else
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
printf("rl%d: failed to enable memory mapping!\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pci_map_mem(config_id, RL_PCI_LOMEM, &vbase, &pbase)) {
|
|
printf ("rl%d: couldn't map memory\n", unit);
|
|
goto fail;
|
|
}
|
|
sc->csr = (volatile caddr_t)vbase;
|
|
#endif
|
|
|
|
/* Allocate interrupt */
|
|
if (!pci_map_int(config_id, rl_intr, sc, &net_imask)) {
|
|
printf("rl%d: couldn't map interrupt\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
rl_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
rl_read_eeprom(sc, (caddr_t)&eaddr, RL_EE_EADDR, 3, 0);
|
|
|
|
/*
|
|
* A RealTek chip was detected. Inform the world.
|
|
*/
|
|
printf("rl%d: Ethernet address: %6D\n", unit, eaddr, ":");
|
|
|
|
sc->rl_unit = unit;
|
|
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* Now read the exact device type from the EEPROM to find
|
|
* out if it's an 8129 or 8139.
|
|
*/
|
|
rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
|
|
|
|
if (rl_did == RT_DEVICEID_8139)
|
|
sc->rl_type = RL_8139;
|
|
else if (rl_did == RT_DEVICEID_8129)
|
|
sc->rl_type = RL_8129;
|
|
else {
|
|
printf("rl%d: unknown device ID: %x\n", unit, rl_did);
|
|
free(sc, M_DEVBUF);
|
|
goto fail;
|
|
}
|
|
|
|
sc->rl_cdata.rl_rx_buf = contigmalloc(RL_RXBUFLEN + 16, M_DEVBUF,
|
|
M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
|
|
|
|
if (sc->rl_cdata.rl_rx_buf == NULL) {
|
|
free(sc, M_DEVBUF);
|
|
printf("rl%d: no memory for list buffers!\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = unit;
|
|
ifp->if_name = "rl";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = rl_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = rl_start;
|
|
ifp->if_watchdog = rl_watchdog;
|
|
ifp->if_init = rl_init;
|
|
ifp->if_baudrate = 10000000;
|
|
|
|
if (sc->rl_type == RL_8129) {
|
|
if (bootverbose)
|
|
printf("rl%d: probing for a PHY\n", sc->rl_unit);
|
|
for (i = RL_PHYADDR_MIN; i < RL_PHYADDR_MAX + 1; i++) {
|
|
if (bootverbose)
|
|
printf("rl%d: checking address: %d\n",
|
|
sc->rl_unit, i);
|
|
sc->rl_phy_addr = i;
|
|
rl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(rl_phy_readreg(sc, PHY_BMCR)
|
|
& PHY_BMCR_RESET);
|
|
if ((phy_sts = rl_phy_readreg(sc, PHY_BMSR)))
|
|
break;
|
|
}
|
|
if (phy_sts) {
|
|
phy_vid = rl_phy_readreg(sc, PHY_VENID);
|
|
phy_did = rl_phy_readreg(sc, PHY_DEVID);
|
|
if (bootverbose)
|
|
printf("rl%d: found PHY at address %d, ",
|
|
sc->rl_unit, sc->rl_phy_addr);
|
|
if (bootverbose)
|
|
printf("vendor id: %x device id: %x\n",
|
|
phy_vid, phy_did);
|
|
p = rl_phys;
|
|
while(p->rl_vid) {
|
|
if (phy_vid == p->rl_vid &&
|
|
(phy_did | 0x000F) == p->rl_did) {
|
|
sc->rl_pinfo = p;
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
if (sc->rl_pinfo == NULL)
|
|
sc->rl_pinfo = &rl_phys[PHY_UNKNOWN];
|
|
if (bootverbose)
|
|
printf("rl%d: PHY type: %s\n",
|
|
sc->rl_unit, sc->rl_pinfo->rl_name);
|
|
} else {
|
|
printf("rl%d: MII without any phy!\n", sc->rl_unit);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do ifmedia setup.
|
|
*/
|
|
ifmedia_init(&sc->ifmedia, 0, rl_ifmedia_upd, rl_ifmedia_sts);
|
|
|
|
rl_getmode_mii(sc);
|
|
|
|
/* Choose a default media. */
|
|
media = IFM_ETHER|IFM_AUTO;
|
|
ifmedia_set(&sc->ifmedia, media);
|
|
|
|
rl_autoneg_mii(sc, RL_FLAG_FORCEDELAY, 1);
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
at_shutdown(rl_shutdown, sc, SHUTDOWN_POST_SYNC);
|
|
|
|
fail:
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int rl_list_tx_init(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
struct rl_chain_data *cd;
|
|
int i;
|
|
|
|
cd = &sc->rl_cdata;
|
|
for (i = 0; i < RL_TX_LIST_CNT; i++) {
|
|
cd->rl_tx_chain[i].rl_desc = i * 4;
|
|
CSR_WRITE_4(sc, RL_TXADDR0 + cd->rl_tx_chain[i].rl_desc, 0);
|
|
CSR_WRITE_4(sc, RL_TXSTAT0 + cd->rl_tx_chain[i].rl_desc, 0);
|
|
if (i == (RL_TX_LIST_CNT - 1))
|
|
cd->rl_tx_chain[i].rl_next = &cd->rl_tx_chain[0];
|
|
else
|
|
cd->rl_tx_chain[i].rl_next = &cd->rl_tx_chain[i + 1];
|
|
}
|
|
|
|
sc->rl_cdata.rl_tx_cnt = 0;
|
|
cd->rl_tx_cur = cd->rl_tx_free = &cd->rl_tx_chain[0];
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*
|
|
* You know there's something wrong with a PCI bus-master chip design
|
|
* when you have to use m_devget().
|
|
*
|
|
* The receive operation is badly documented in the datasheet, so I'll
|
|
* attempt to document it here. The driver provides a buffer area and
|
|
* places its base address in the RX buffer start address register.
|
|
* The chip then begins copying frames into the RX buffer. Each frame
|
|
* is preceeded by a 32-bit RX status word which specifies the length
|
|
* of the frame and certain other status bits. Each frame (starting with
|
|
* the status word) is also 32-bit aligned. The frame length is in the
|
|
* first 16 bits of the status word; the lower 15 bits correspond with
|
|
* the 'rx status register' mentioned in the datasheet.
|
|
*/
|
|
static void rl_rxeof(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
int total_len = 0;
|
|
u_int32_t rxstat;
|
|
caddr_t rxbufpos;
|
|
int wrap = 0;
|
|
u_int16_t cur_rx;
|
|
u_int16_t limit;
|
|
u_int16_t rx_bytes = 0, max_bytes;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
|
|
|
|
/* Do not try to read past this point. */
|
|
limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
|
|
|
|
if (limit < cur_rx)
|
|
max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
|
|
else
|
|
max_bytes = limit - cur_rx;
|
|
|
|
while((CSR_READ_1(sc, RL_COMMAND) & 1) == 0) {
|
|
rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
|
|
rxstat = *(u_int32_t *)rxbufpos;
|
|
|
|
/*
|
|
* Here's a totally undocumented fact for you. When the
|
|
* RealTek chip is in the process of copying a packet into
|
|
* RAM for you, the length will be 0xfff0. If you spot a
|
|
* packet header with this value, you need to stop. The
|
|
* datasheet makes absolutely no mention of this and
|
|
* RealTek should be shot for this.
|
|
*/
|
|
if ((u_int16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
|
|
break;
|
|
|
|
if (!(rxstat & RL_RXSTAT_RXOK)) {
|
|
ifp->if_ierrors++;
|
|
if (rxstat & (RL_RXSTAT_BADSYM|RL_RXSTAT_RUNT|
|
|
RL_RXSTAT_GIANT|RL_RXSTAT_CRCERR|
|
|
RL_RXSTAT_ALIGNERR)) {
|
|
CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB);
|
|
CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB|
|
|
RL_CMD_RX_ENB);
|
|
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
|
|
CSR_WRITE_4(sc, RL_RXADDR,
|
|
vtophys(sc->rl_cdata.rl_rx_buf));
|
|
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
|
|
cur_rx = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* No errors; receive the packet. */
|
|
total_len = rxstat >> 16;
|
|
rx_bytes += total_len + 4;
|
|
|
|
/*
|
|
* Avoid trying to read more bytes than we know
|
|
* the chip has prepared for us.
|
|
*/
|
|
if (rx_bytes > max_bytes)
|
|
break;
|
|
|
|
rxbufpos = sc->rl_cdata.rl_rx_buf +
|
|
((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
|
|
|
|
if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
|
|
rxbufpos = sc->rl_cdata.rl_rx_buf;
|
|
|
|
wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
|
|
|
|
if (total_len > wrap) {
|
|
m = m_devget(rxbufpos, wrap, 0, ifp, NULL);
|
|
if (m == NULL) {
|
|
ifp->if_ierrors++;
|
|
printf("rl%d: out of mbufs, tried to "
|
|
"copy %d bytes\n", sc->rl_unit, wrap);
|
|
}
|
|
else
|
|
m_copyback(m, wrap, total_len - wrap,
|
|
sc->rl_cdata.rl_rx_buf);
|
|
cur_rx = (total_len - wrap);
|
|
} else {
|
|
m = m_devget(rxbufpos, total_len, 0, ifp, NULL);
|
|
if (m == NULL) {
|
|
ifp->if_ierrors++;
|
|
printf("rl%d: out of mbufs, tried to "
|
|
"copy %d bytes\n", sc->rl_unit, total_len);
|
|
}
|
|
cur_rx += total_len + 4;
|
|
}
|
|
|
|
/*
|
|
* Round up to 32-bit boundary.
|
|
*/
|
|
cur_rx = (cur_rx + 3) & ~3;
|
|
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
|
|
|
|
if (m == NULL)
|
|
continue;
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
ifp->if_ipackets++;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Handle BPF listeners. Let the BPF user see the packet, but
|
|
* don't pass it up to the ether_input() layer unless it's
|
|
* a broadcast packet, multicast packet, matches our ethernet
|
|
* address or the interface is in promiscuous mode.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp, m);
|
|
if (ifp->if_flags & IFF_PROMISC &&
|
|
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
|
|
ETHER_ADDR_LEN) &&
|
|
(eh->ether_dhost[0] & 1) == 0)) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/* Remove header from mbuf and pass it on. */
|
|
m_adj(m, sizeof(struct ether_header));
|
|
ether_input(ifp, eh, m);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void rl_txeof(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
struct rl_chain *cur_tx;
|
|
struct ifnet *ifp;
|
|
u_int32_t txstat;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Clear the timeout timer. */
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been uploaded.
|
|
*/
|
|
if (sc->rl_cdata.rl_tx_free == NULL)
|
|
return;
|
|
|
|
while(sc->rl_cdata.rl_tx_free->rl_mbuf != NULL) {
|
|
cur_tx = sc->rl_cdata.rl_tx_free;
|
|
txstat = CSR_READ_4(sc, RL_TXSTAT0 + cur_tx->rl_desc);
|
|
|
|
if (!(txstat & RL_TXSTAT_TX_OK))
|
|
break;
|
|
|
|
if (txstat & RL_TXSTAT_COLLCNT)
|
|
ifp->if_collisions +=
|
|
(txstat & RL_TXSTAT_COLLCNT) >> 24;
|
|
|
|
sc->rl_cdata.rl_tx_free = cur_tx->rl_next;
|
|
|
|
sc->rl_cdata.rl_tx_cnt--;
|
|
m_freem(cur_tx->rl_mbuf);
|
|
cur_tx->rl_mbuf = NULL;
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
if (!sc->rl_cdata.rl_tx_cnt) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
if (sc->rl_want_auto)
|
|
rl_autoneg_mii(sc, RL_FLAG_SCHEDDELAY, 1);
|
|
} else {
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
rl_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* TX error handler.
|
|
*/
|
|
static void rl_txeoc(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
u_int32_t txstat;
|
|
struct rl_chain *cur_tx;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (sc->rl_cdata.rl_tx_free == NULL)
|
|
return;
|
|
|
|
while(sc->rl_cdata.rl_tx_free->rl_mbuf != NULL) {
|
|
cur_tx = sc->rl_cdata.rl_tx_free;
|
|
txstat = CSR_READ_4(sc, RL_TXSTAT0 + cur_tx->rl_desc);
|
|
|
|
if (!(txstat & RL_TXSTAT_OWN))
|
|
break;
|
|
|
|
if (!(txstat & RL_TXSTAT_TX_OK)) {
|
|
ifp->if_oerrors++;
|
|
if (txstat & RL_TXSTAT_COLLCNT)
|
|
ifp->if_collisions +=
|
|
(txstat & RL_TXSTAT_COLLCNT) >> 24;
|
|
CSR_WRITE_4(sc, RL_TXADDR0 + cur_tx->rl_desc,
|
|
vtophys(mtod(cur_tx->rl_mbuf, caddr_t)));
|
|
CSR_WRITE_4(sc, RL_TXSTAT0 + cur_tx->rl_desc,
|
|
RL_TX_EARLYTHRESH |
|
|
cur_tx->rl_mbuf->m_pkthdr.len);
|
|
break;
|
|
} else {
|
|
if (txstat & RL_TXSTAT_COLLCNT)
|
|
ifp->if_collisions +=
|
|
(txstat & RL_TXSTAT_COLLCNT) >> 24;
|
|
sc->rl_cdata.rl_tx_free = cur_tx->rl_next;
|
|
|
|
sc->rl_cdata.rl_tx_cnt--;
|
|
m_freem(cur_tx->rl_mbuf);
|
|
cur_tx->rl_mbuf = NULL;
|
|
ifp->if_opackets++;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void rl_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct rl_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int16_t status;
|
|
|
|
sc = arg;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, RL_IMR, 0x0000);
|
|
|
|
for (;;) {
|
|
|
|
status = CSR_READ_2(sc, RL_ISR);
|
|
if (status)
|
|
CSR_WRITE_2(sc, RL_ISR, status);
|
|
|
|
if ((status & RL_INTRS) == 0)
|
|
break;
|
|
|
|
if (status & RL_ISR_RX_OK)
|
|
rl_rxeof(sc);
|
|
|
|
if (status & RL_ISR_RX_ERR)
|
|
rl_rxeof(sc);
|
|
|
|
if (status & RL_ISR_TX_OK)
|
|
rl_txeof(sc);
|
|
|
|
if (status & RL_ISR_TX_ERR)
|
|
rl_txeoc(sc);
|
|
|
|
if (status & RL_ISR_SYSTEM_ERR) {
|
|
rl_reset(sc);
|
|
rl_init(sc);
|
|
}
|
|
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL) {
|
|
rl_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int rl_encap(sc, c, m_head)
|
|
struct rl_softc *sc;
|
|
struct rl_chain *c;
|
|
struct mbuf *m_head;
|
|
{
|
|
struct mbuf *m;
|
|
|
|
/*
|
|
* There are two possible encapsulation mechanisms
|
|
* that we can use: an efficient one, and a very lossy
|
|
* one. The efficient one only happens very rarely,
|
|
* whereas the lossy one can and most likely will happen
|
|
* all the time.
|
|
* The efficient case happens if:
|
|
* - the packet fits in a single mbuf
|
|
* - the packet is 32-bit aligned within the mbuf data area
|
|
* In this case, we can DMA from the mbuf directly.
|
|
* The lossy case covers everything else. Bah.
|
|
*/
|
|
|
|
m = m_head;
|
|
|
|
if (m->m_pkthdr.len > MHLEN || (mtod(m, u_int32_t) & 0x00000003)) {
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("rl%d: no memory for tx list", sc->rl_unit);
|
|
return(1);
|
|
}
|
|
if (m_head->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
printf("rl%d: no memory for tx list",
|
|
sc->rl_unit);
|
|
return(1);
|
|
}
|
|
}
|
|
m_copydata(m_head, 0, m_head->m_pkthdr.len,
|
|
mtod(m_new, caddr_t));
|
|
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
|
|
m_freem(m_head);
|
|
m_head = m_new;
|
|
}
|
|
|
|
/* Pad frames to at least 60 bytes. */
|
|
if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN)
|
|
m_head->m_pkthdr.len +=
|
|
(RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
|
|
|
|
c->rl_mbuf = m_head;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine.
|
|
*/
|
|
|
|
static void rl_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct rl_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
struct rl_chain *cur_tx = NULL;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->rl_autoneg) {
|
|
sc->rl_tx_pend = 1;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check for an available queue slot. If there are none,
|
|
* punt.
|
|
*/
|
|
if (sc->rl_cdata.rl_tx_cur->rl_mbuf != NULL) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
while(sc->rl_cdata.rl_tx_cur->rl_mbuf == NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
|
|
/* Pick a descriptor off the free list. */
|
|
cur_tx = sc->rl_cdata.rl_tx_cur;
|
|
sc->rl_cdata.rl_tx_cur = cur_tx->rl_next;
|
|
sc->rl_cdata.rl_tx_cnt++;
|
|
|
|
/* Pack the data into the descriptor. */
|
|
rl_encap(sc, cur_tx, m_head);
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, cur_tx->rl_mbuf);
|
|
#endif
|
|
/*
|
|
* Transmit the frame.
|
|
*/
|
|
CSR_WRITE_4(sc, RL_TXADDR0 + cur_tx->rl_desc,
|
|
vtophys(mtod(cur_tx->rl_mbuf, caddr_t)));
|
|
CSR_WRITE_4(sc, RL_TXSTAT0 + cur_tx->rl_desc,
|
|
RL_TX_EARLYTHRESH | cur_tx->rl_mbuf->m_pkthdr.len);
|
|
}
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
static void rl_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct rl_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
int s, i;
|
|
u_int32_t rxcfg = 0;
|
|
u_int16_t phy_bmcr = 0;
|
|
|
|
if (sc->rl_autoneg)
|
|
return;
|
|
|
|
s = splimp();
|
|
|
|
/*
|
|
* XXX Hack for the 8139: the built-in autoneg logic's state
|
|
* gets reset by rl_init() when we don't want it to. Try
|
|
* to preserve it. (For 8129 cards with real external PHYs,
|
|
* the BMCR register doesn't change, but this doesn't hurt.)
|
|
*/
|
|
if (sc->rl_type == RL_8139)
|
|
phy_bmcr = rl_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
rl_stop(sc);
|
|
|
|
/* Init our MAC address */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
CSR_WRITE_1(sc, RL_IDR0 + i, sc->arpcom.ac_enaddr[i]);
|
|
}
|
|
|
|
/* Init the RX buffer pointer register. */
|
|
CSR_WRITE_4(sc, RL_RXADDR, vtophys(sc->rl_cdata.rl_rx_buf));
|
|
|
|
/* Init TX descriptors. */
|
|
rl_list_tx_init(sc);
|
|
|
|
/*
|
|
* Enable transmit and receive.
|
|
*/
|
|
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
|
|
|
|
/*
|
|
* Set the buffer size values.
|
|
*/
|
|
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
|
|
|
|
/* Set the individual bit to receive frames for this host only. */
|
|
rxcfg = CSR_READ_4(sc, RL_RXCFG);
|
|
rxcfg |= RL_RXCFG_RX_INDIV;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
rxcfg |= RL_RXCFG_RX_ALLPHYS;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
} else {
|
|
rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
}
|
|
|
|
/*
|
|
* Set capture broadcast bit to capture broadcast frames.
|
|
*/
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
rxcfg |= RL_RXCFG_RX_BROAD;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
} else {
|
|
rxcfg &= ~RL_RXCFG_RX_BROAD;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
}
|
|
|
|
/*
|
|
* Program the multicast filter, if necessary.
|
|
*/
|
|
rl_setmulti(sc);
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
|
|
|
|
/* Start RX/TX process. */
|
|
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
|
|
|
|
/* Restore state of BMCR */
|
|
if (sc->rl_pinfo != NULL)
|
|
rl_phy_writereg(sc, PHY_BMCR, phy_bmcr);
|
|
|
|
CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
(void)splx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int rl_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct rl_softc *sc;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
ifm = &sc->ifmedia;
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
|
|
rl_autoneg_mii(sc, RL_FLAG_SCHEDDELAY, 1);
|
|
else
|
|
rl_setmode_mii(sc, ifm->ifm_media);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void rl_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct rl_softc *sc;
|
|
u_int16_t advert = 0, ability = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (!(rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
|
|
if (rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
|
|
else
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
|
|
|
|
if (rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
return;
|
|
}
|
|
|
|
ability = rl_phy_readreg(sc, PHY_LPAR);
|
|
advert = rl_phy_readreg(sc, PHY_ANAR);
|
|
if (advert & PHY_ANAR_100BT4 &&
|
|
ability & PHY_ANAR_100BT4) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int rl_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
rl_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
rl_stop(sc);
|
|
}
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
rl_setmulti(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void rl_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct rl_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->rl_autoneg) {
|
|
rl_autoneg_mii(sc, RL_FLAG_DELAYTIMEO, 1);
|
|
return;
|
|
}
|
|
|
|
printf("rl%d: watchdog timeout\n", sc->rl_unit);
|
|
ifp->if_oerrors++;
|
|
if (!(rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
|
|
printf("rl%d: no carrier - transceiver cable problem?\n",
|
|
sc->rl_unit);
|
|
rl_txeoc(sc);
|
|
rl_txeof(sc);
|
|
rl_rxeof(sc);
|
|
rl_init(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void rl_stop(sc)
|
|
struct rl_softc *sc;
|
|
{
|
|
register int i;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_timer = 0;
|
|
|
|
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
|
|
CSR_WRITE_2(sc, RL_IMR, 0x0000);
|
|
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < RL_TX_LIST_CNT; i++) {
|
|
if (sc->rl_cdata.rl_tx_chain[i].rl_mbuf != NULL) {
|
|
m_freem(sc->rl_cdata.rl_tx_chain[i].rl_mbuf);
|
|
sc->rl_cdata.rl_tx_chain[i].rl_mbuf = NULL;
|
|
CSR_WRITE_4(sc, RL_TXADDR0 +
|
|
sc->rl_cdata.rl_tx_chain[i].rl_desc, 0x00000000);
|
|
}
|
|
}
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void rl_shutdown(howto, arg)
|
|
int howto;
|
|
void *arg;
|
|
{
|
|
struct rl_softc *sc = (struct rl_softc *)arg;
|
|
|
|
rl_stop(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static struct pci_device rl_device = {
|
|
"rl",
|
|
rl_probe,
|
|
rl_attach,
|
|
&rl_count,
|
|
NULL
|
|
};
|
|
DATA_SET(pcidevice_set, rl_device);
|