freebsd-dev/contrib/libevent/event.c
Ed Maste c43e99fd14 Copy libevent sources to contrib
To replace the libevent embedded in ntp, for OpenSSL 1.1.1 compat.

Approved by:	re (gjb)
2018-10-09 14:05:11 +00:00

3941 lines
100 KiB
C

/*
* Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu>
* Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "event2/event-config.h"
#include "evconfig-private.h"
#ifdef _WIN32
#include <winsock2.h>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#undef WIN32_LEAN_AND_MEAN
#endif
#include <sys/types.h>
#if !defined(_WIN32) && defined(EVENT__HAVE_SYS_TIME_H)
#include <sys/time.h>
#endif
#include <sys/queue.h>
#ifdef EVENT__HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#ifdef EVENT__HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include <limits.h>
#include "event2/event.h"
#include "event2/event_struct.h"
#include "event2/event_compat.h"
#include "event-internal.h"
#include "defer-internal.h"
#include "evthread-internal.h"
#include "event2/thread.h"
#include "event2/util.h"
#include "log-internal.h"
#include "evmap-internal.h"
#include "iocp-internal.h"
#include "changelist-internal.h"
#define HT_NO_CACHE_HASH_VALUES
#include "ht-internal.h"
#include "util-internal.h"
#ifdef EVENT__HAVE_WORKING_KQUEUE
#include "kqueue-internal.h"
#endif
#ifdef EVENT__HAVE_EVENT_PORTS
extern const struct eventop evportops;
#endif
#ifdef EVENT__HAVE_SELECT
extern const struct eventop selectops;
#endif
#ifdef EVENT__HAVE_POLL
extern const struct eventop pollops;
#endif
#ifdef EVENT__HAVE_EPOLL
extern const struct eventop epollops;
#endif
#ifdef EVENT__HAVE_WORKING_KQUEUE
extern const struct eventop kqops;
#endif
#ifdef EVENT__HAVE_DEVPOLL
extern const struct eventop devpollops;
#endif
#ifdef _WIN32
extern const struct eventop win32ops;
#endif
/* Array of backends in order of preference. */
static const struct eventop *eventops[] = {
#ifdef EVENT__HAVE_EVENT_PORTS
&evportops,
#endif
#ifdef EVENT__HAVE_WORKING_KQUEUE
&kqops,
#endif
#ifdef EVENT__HAVE_EPOLL
&epollops,
#endif
#ifdef EVENT__HAVE_DEVPOLL
&devpollops,
#endif
#ifdef EVENT__HAVE_POLL
&pollops,
#endif
#ifdef EVENT__HAVE_SELECT
&selectops,
#endif
#ifdef _WIN32
&win32ops,
#endif
NULL
};
/* Global state; deprecated */
struct event_base *event_global_current_base_ = NULL;
#define current_base event_global_current_base_
/* Global state */
static void *event_self_cbarg_ptr_ = NULL;
/* Prototypes */
static void event_queue_insert_active(struct event_base *, struct event_callback *);
static void event_queue_insert_active_later(struct event_base *, struct event_callback *);
static void event_queue_insert_timeout(struct event_base *, struct event *);
static void event_queue_insert_inserted(struct event_base *, struct event *);
static void event_queue_remove_active(struct event_base *, struct event_callback *);
static void event_queue_remove_active_later(struct event_base *, struct event_callback *);
static void event_queue_remove_timeout(struct event_base *, struct event *);
static void event_queue_remove_inserted(struct event_base *, struct event *);
static void event_queue_make_later_events_active(struct event_base *base);
static int evthread_make_base_notifiable_nolock_(struct event_base *base);
static int event_del_(struct event *ev, int blocking);
#ifdef USE_REINSERT_TIMEOUT
/* This code seems buggy; only turn it on if we find out what the trouble is. */
static void event_queue_reinsert_timeout(struct event_base *,struct event *, int was_common, int is_common, int old_timeout_idx);
#endif
static int event_haveevents(struct event_base *);
static int event_process_active(struct event_base *);
static int timeout_next(struct event_base *, struct timeval **);
static void timeout_process(struct event_base *);
static inline void event_signal_closure(struct event_base *, struct event *ev);
static inline void event_persist_closure(struct event_base *, struct event *ev);
static int evthread_notify_base(struct event_base *base);
static void insert_common_timeout_inorder(struct common_timeout_list *ctl,
struct event *ev);
#ifndef EVENT__DISABLE_DEBUG_MODE
/* These functions implement a hashtable of which 'struct event *' structures
* have been setup or added. We don't want to trust the content of the struct
* event itself, since we're trying to work through cases where an event gets
* clobbered or freed. Instead, we keep a hashtable indexed by the pointer.
*/
struct event_debug_entry {
HT_ENTRY(event_debug_entry) node;
const struct event *ptr;
unsigned added : 1;
};
static inline unsigned
hash_debug_entry(const struct event_debug_entry *e)
{
/* We need to do this silliness to convince compilers that we
* honestly mean to cast e->ptr to an integer, and discard any
* part of it that doesn't fit in an unsigned.
*/
unsigned u = (unsigned) ((ev_uintptr_t) e->ptr);
/* Our hashtable implementation is pretty sensitive to low bits,
* and every struct event is over 64 bytes in size, so we can
* just say >>6. */
return (u >> 6);
}
static inline int
eq_debug_entry(const struct event_debug_entry *a,
const struct event_debug_entry *b)
{
return a->ptr == b->ptr;
}
int event_debug_mode_on_ = 0;
#if !defined(EVENT__DISABLE_THREAD_SUPPORT) && !defined(EVENT__DISABLE_DEBUG_MODE)
/**
* @brief debug mode variable which is set for any function/structure that needs
* to be shared across threads (if thread support is enabled).
*
* When and if evthreads are initialized, this variable will be evaluated,
* and if set to something other than zero, this means the evthread setup
* functions were called out of order.
*
* See: "Locks and threading" in the documentation.
*/
int event_debug_created_threadable_ctx_ = 0;
#endif
/* Set if it's too late to enable event_debug_mode. */
static int event_debug_mode_too_late = 0;
#ifndef EVENT__DISABLE_THREAD_SUPPORT
static void *event_debug_map_lock_ = NULL;
#endif
static HT_HEAD(event_debug_map, event_debug_entry) global_debug_map =
HT_INITIALIZER();
HT_PROTOTYPE(event_debug_map, event_debug_entry, node, hash_debug_entry,
eq_debug_entry)
HT_GENERATE(event_debug_map, event_debug_entry, node, hash_debug_entry,
eq_debug_entry, 0.5, mm_malloc, mm_realloc, mm_free)
/* Macro: record that ev is now setup (that is, ready for an add) */
#define event_debug_note_setup_(ev) do { \
if (event_debug_mode_on_) { \
struct event_debug_entry *dent,find; \
find.ptr = (ev); \
EVLOCK_LOCK(event_debug_map_lock_, 0); \
dent = HT_FIND(event_debug_map, &global_debug_map, &find); \
if (dent) { \
dent->added = 0; \
} else { \
dent = mm_malloc(sizeof(*dent)); \
if (!dent) \
event_err(1, \
"Out of memory in debugging code"); \
dent->ptr = (ev); \
dent->added = 0; \
HT_INSERT(event_debug_map, &global_debug_map, dent); \
} \
EVLOCK_UNLOCK(event_debug_map_lock_, 0); \
} \
event_debug_mode_too_late = 1; \
} while (0)
/* Macro: record that ev is no longer setup */
#define event_debug_note_teardown_(ev) do { \
if (event_debug_mode_on_) { \
struct event_debug_entry *dent,find; \
find.ptr = (ev); \
EVLOCK_LOCK(event_debug_map_lock_, 0); \
dent = HT_REMOVE(event_debug_map, &global_debug_map, &find); \
if (dent) \
mm_free(dent); \
EVLOCK_UNLOCK(event_debug_map_lock_, 0); \
} \
event_debug_mode_too_late = 1; \
} while (0)
/* Macro: record that ev is now added */
#define event_debug_note_add_(ev) do { \
if (event_debug_mode_on_) { \
struct event_debug_entry *dent,find; \
find.ptr = (ev); \
EVLOCK_LOCK(event_debug_map_lock_, 0); \
dent = HT_FIND(event_debug_map, &global_debug_map, &find); \
if (dent) { \
dent->added = 1; \
} else { \
event_errx(EVENT_ERR_ABORT_, \
"%s: noting an add on a non-setup event %p" \
" (events: 0x%x, fd: "EV_SOCK_FMT \
", flags: 0x%x)", \
__func__, (ev), (ev)->ev_events, \
EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \
} \
EVLOCK_UNLOCK(event_debug_map_lock_, 0); \
} \
event_debug_mode_too_late = 1; \
} while (0)
/* Macro: record that ev is no longer added */
#define event_debug_note_del_(ev) do { \
if (event_debug_mode_on_) { \
struct event_debug_entry *dent,find; \
find.ptr = (ev); \
EVLOCK_LOCK(event_debug_map_lock_, 0); \
dent = HT_FIND(event_debug_map, &global_debug_map, &find); \
if (dent) { \
dent->added = 0; \
} else { \
event_errx(EVENT_ERR_ABORT_, \
"%s: noting a del on a non-setup event %p" \
" (events: 0x%x, fd: "EV_SOCK_FMT \
", flags: 0x%x)", \
__func__, (ev), (ev)->ev_events, \
EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \
} \
EVLOCK_UNLOCK(event_debug_map_lock_, 0); \
} \
event_debug_mode_too_late = 1; \
} while (0)
/* Macro: assert that ev is setup (i.e., okay to add or inspect) */
#define event_debug_assert_is_setup_(ev) do { \
if (event_debug_mode_on_) { \
struct event_debug_entry *dent,find; \
find.ptr = (ev); \
EVLOCK_LOCK(event_debug_map_lock_, 0); \
dent = HT_FIND(event_debug_map, &global_debug_map, &find); \
if (!dent) { \
event_errx(EVENT_ERR_ABORT_, \
"%s called on a non-initialized event %p" \
" (events: 0x%x, fd: "EV_SOCK_FMT\
", flags: 0x%x)", \
__func__, (ev), (ev)->ev_events, \
EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \
} \
EVLOCK_UNLOCK(event_debug_map_lock_, 0); \
} \
} while (0)
/* Macro: assert that ev is not added (i.e., okay to tear down or set
* up again) */
#define event_debug_assert_not_added_(ev) do { \
if (event_debug_mode_on_) { \
struct event_debug_entry *dent,find; \
find.ptr = (ev); \
EVLOCK_LOCK(event_debug_map_lock_, 0); \
dent = HT_FIND(event_debug_map, &global_debug_map, &find); \
if (dent && dent->added) { \
event_errx(EVENT_ERR_ABORT_, \
"%s called on an already added event %p" \
" (events: 0x%x, fd: "EV_SOCK_FMT", " \
"flags: 0x%x)", \
__func__, (ev), (ev)->ev_events, \
EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \
} \
EVLOCK_UNLOCK(event_debug_map_lock_, 0); \
} \
} while (0)
#else
#define event_debug_note_setup_(ev) \
((void)0)
#define event_debug_note_teardown_(ev) \
((void)0)
#define event_debug_note_add_(ev) \
((void)0)
#define event_debug_note_del_(ev) \
((void)0)
#define event_debug_assert_is_setup_(ev) \
((void)0)
#define event_debug_assert_not_added_(ev) \
((void)0)
#endif
#define EVENT_BASE_ASSERT_LOCKED(base) \
EVLOCK_ASSERT_LOCKED((base)->th_base_lock)
/* How often (in seconds) do we check for changes in wall clock time relative
* to monotonic time? Set this to -1 for 'never.' */
#define CLOCK_SYNC_INTERVAL 5
/** Set 'tp' to the current time according to 'base'. We must hold the lock
* on 'base'. If there is a cached time, return it. Otherwise, use
* clock_gettime or gettimeofday as appropriate to find out the right time.
* Return 0 on success, -1 on failure.
*/
static int
gettime(struct event_base *base, struct timeval *tp)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (base->tv_cache.tv_sec) {
*tp = base->tv_cache;
return (0);
}
if (evutil_gettime_monotonic_(&base->monotonic_timer, tp) == -1) {
return -1;
}
if (base->last_updated_clock_diff + CLOCK_SYNC_INTERVAL
< tp->tv_sec) {
struct timeval tv;
evutil_gettimeofday(&tv,NULL);
evutil_timersub(&tv, tp, &base->tv_clock_diff);
base->last_updated_clock_diff = tp->tv_sec;
}
return 0;
}
int
event_base_gettimeofday_cached(struct event_base *base, struct timeval *tv)
{
int r;
if (!base) {
base = current_base;
if (!current_base)
return evutil_gettimeofday(tv, NULL);
}
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (base->tv_cache.tv_sec == 0) {
r = evutil_gettimeofday(tv, NULL);
} else {
evutil_timeradd(&base->tv_cache, &base->tv_clock_diff, tv);
r = 0;
}
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
/** Make 'base' have no current cached time. */
static inline void
clear_time_cache(struct event_base *base)
{
base->tv_cache.tv_sec = 0;
}
/** Replace the cached time in 'base' with the current time. */
static inline void
update_time_cache(struct event_base *base)
{
base->tv_cache.tv_sec = 0;
if (!(base->flags & EVENT_BASE_FLAG_NO_CACHE_TIME))
gettime(base, &base->tv_cache);
}
int
event_base_update_cache_time(struct event_base *base)
{
if (!base) {
base = current_base;
if (!current_base)
return -1;
}
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (base->running_loop)
update_time_cache(base);
EVBASE_RELEASE_LOCK(base, th_base_lock);
return 0;
}
static inline struct event *
event_callback_to_event(struct event_callback *evcb)
{
EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_INIT));
return EVUTIL_UPCAST(evcb, struct event, ev_evcallback);
}
static inline struct event_callback *
event_to_event_callback(struct event *ev)
{
return &ev->ev_evcallback;
}
struct event_base *
event_init(void)
{
struct event_base *base = event_base_new_with_config(NULL);
if (base == NULL) {
event_errx(1, "%s: Unable to construct event_base", __func__);
return NULL;
}
current_base = base;
return (base);
}
struct event_base *
event_base_new(void)
{
struct event_base *base = NULL;
struct event_config *cfg = event_config_new();
if (cfg) {
base = event_base_new_with_config(cfg);
event_config_free(cfg);
}
return base;
}
/** Return true iff 'method' is the name of a method that 'cfg' tells us to
* avoid. */
static int
event_config_is_avoided_method(const struct event_config *cfg,
const char *method)
{
struct event_config_entry *entry;
TAILQ_FOREACH(entry, &cfg->entries, next) {
if (entry->avoid_method != NULL &&
strcmp(entry->avoid_method, method) == 0)
return (1);
}
return (0);
}
/** Return true iff 'method' is disabled according to the environment. */
static int
event_is_method_disabled(const char *name)
{
char environment[64];
int i;
evutil_snprintf(environment, sizeof(environment), "EVENT_NO%s", name);
for (i = 8; environment[i] != '\0'; ++i)
environment[i] = EVUTIL_TOUPPER_(environment[i]);
/* Note that evutil_getenv_() ignores the environment entirely if
* we're setuid */
return (evutil_getenv_(environment) != NULL);
}
int
event_base_get_features(const struct event_base *base)
{
return base->evsel->features;
}
void
event_enable_debug_mode(void)
{
#ifndef EVENT__DISABLE_DEBUG_MODE
if (event_debug_mode_on_)
event_errx(1, "%s was called twice!", __func__);
if (event_debug_mode_too_late)
event_errx(1, "%s must be called *before* creating any events "
"or event_bases",__func__);
event_debug_mode_on_ = 1;
HT_INIT(event_debug_map, &global_debug_map);
#endif
}
void
event_disable_debug_mode(void)
{
#ifndef EVENT__DISABLE_DEBUG_MODE
struct event_debug_entry **ent, *victim;
EVLOCK_LOCK(event_debug_map_lock_, 0);
for (ent = HT_START(event_debug_map, &global_debug_map); ent; ) {
victim = *ent;
ent = HT_NEXT_RMV(event_debug_map, &global_debug_map, ent);
mm_free(victim);
}
HT_CLEAR(event_debug_map, &global_debug_map);
EVLOCK_UNLOCK(event_debug_map_lock_ , 0);
event_debug_mode_on_ = 0;
#endif
}
struct event_base *
event_base_new_with_config(const struct event_config *cfg)
{
int i;
struct event_base *base;
int should_check_environment;
#ifndef EVENT__DISABLE_DEBUG_MODE
event_debug_mode_too_late = 1;
#endif
if ((base = mm_calloc(1, sizeof(struct event_base))) == NULL) {
event_warn("%s: calloc", __func__);
return NULL;
}
if (cfg)
base->flags = cfg->flags;
should_check_environment =
!(cfg && (cfg->flags & EVENT_BASE_FLAG_IGNORE_ENV));
{
struct timeval tmp;
int precise_time =
cfg && (cfg->flags & EVENT_BASE_FLAG_PRECISE_TIMER);
int flags;
if (should_check_environment && !precise_time) {
precise_time = evutil_getenv_("EVENT_PRECISE_TIMER") != NULL;
base->flags |= EVENT_BASE_FLAG_PRECISE_TIMER;
}
flags = precise_time ? EV_MONOT_PRECISE : 0;
evutil_configure_monotonic_time_(&base->monotonic_timer, flags);
gettime(base, &tmp);
}
min_heap_ctor_(&base->timeheap);
base->sig.ev_signal_pair[0] = -1;
base->sig.ev_signal_pair[1] = -1;
base->th_notify_fd[0] = -1;
base->th_notify_fd[1] = -1;
TAILQ_INIT(&base->active_later_queue);
evmap_io_initmap_(&base->io);
evmap_signal_initmap_(&base->sigmap);
event_changelist_init_(&base->changelist);
base->evbase = NULL;
if (cfg) {
memcpy(&base->max_dispatch_time,
&cfg->max_dispatch_interval, sizeof(struct timeval));
base->limit_callbacks_after_prio =
cfg->limit_callbacks_after_prio;
} else {
base->max_dispatch_time.tv_sec = -1;
base->limit_callbacks_after_prio = 1;
}
if (cfg && cfg->max_dispatch_callbacks >= 0) {
base->max_dispatch_callbacks = cfg->max_dispatch_callbacks;
} else {
base->max_dispatch_callbacks = INT_MAX;
}
if (base->max_dispatch_callbacks == INT_MAX &&
base->max_dispatch_time.tv_sec == -1)
base->limit_callbacks_after_prio = INT_MAX;
for (i = 0; eventops[i] && !base->evbase; i++) {
if (cfg != NULL) {
/* determine if this backend should be avoided */
if (event_config_is_avoided_method(cfg,
eventops[i]->name))
continue;
if ((eventops[i]->features & cfg->require_features)
!= cfg->require_features)
continue;
}
/* also obey the environment variables */
if (should_check_environment &&
event_is_method_disabled(eventops[i]->name))
continue;
base->evsel = eventops[i];
base->evbase = base->evsel->init(base);
}
if (base->evbase == NULL) {
event_warnx("%s: no event mechanism available",
__func__);
base->evsel = NULL;
event_base_free(base);
return NULL;
}
if (evutil_getenv_("EVENT_SHOW_METHOD"))
event_msgx("libevent using: %s", base->evsel->name);
/* allocate a single active event queue */
if (event_base_priority_init(base, 1) < 0) {
event_base_free(base);
return NULL;
}
/* prepare for threading */
#if !defined(EVENT__DISABLE_THREAD_SUPPORT) && !defined(EVENT__DISABLE_DEBUG_MODE)
event_debug_created_threadable_ctx_ = 1;
#endif
#ifndef EVENT__DISABLE_THREAD_SUPPORT
if (EVTHREAD_LOCKING_ENABLED() &&
(!cfg || !(cfg->flags & EVENT_BASE_FLAG_NOLOCK))) {
int r;
EVTHREAD_ALLOC_LOCK(base->th_base_lock, 0);
EVTHREAD_ALLOC_COND(base->current_event_cond);
r = evthread_make_base_notifiable(base);
if (r<0) {
event_warnx("%s: Unable to make base notifiable.", __func__);
event_base_free(base);
return NULL;
}
}
#endif
#ifdef _WIN32
if (cfg && (cfg->flags & EVENT_BASE_FLAG_STARTUP_IOCP))
event_base_start_iocp_(base, cfg->n_cpus_hint);
#endif
return (base);
}
int
event_base_start_iocp_(struct event_base *base, int n_cpus)
{
#ifdef _WIN32
if (base->iocp)
return 0;
base->iocp = event_iocp_port_launch_(n_cpus);
if (!base->iocp) {
event_warnx("%s: Couldn't launch IOCP", __func__);
return -1;
}
return 0;
#else
return -1;
#endif
}
void
event_base_stop_iocp_(struct event_base *base)
{
#ifdef _WIN32
int rv;
if (!base->iocp)
return;
rv = event_iocp_shutdown_(base->iocp, -1);
EVUTIL_ASSERT(rv >= 0);
base->iocp = NULL;
#endif
}
static int
event_base_cancel_single_callback_(struct event_base *base,
struct event_callback *evcb,
int run_finalizers)
{
int result = 0;
if (evcb->evcb_flags & EVLIST_INIT) {
struct event *ev = event_callback_to_event(evcb);
if (!(ev->ev_flags & EVLIST_INTERNAL)) {
event_del_(ev, EVENT_DEL_EVEN_IF_FINALIZING);
result = 1;
}
} else {
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
event_callback_cancel_nolock_(base, evcb, 1);
EVBASE_RELEASE_LOCK(base, th_base_lock);
result = 1;
}
if (run_finalizers && (evcb->evcb_flags & EVLIST_FINALIZING)) {
switch (evcb->evcb_closure) {
case EV_CLOSURE_EVENT_FINALIZE:
case EV_CLOSURE_EVENT_FINALIZE_FREE: {
struct event *ev = event_callback_to_event(evcb);
ev->ev_evcallback.evcb_cb_union.evcb_evfinalize(ev, ev->ev_arg);
if (evcb->evcb_closure == EV_CLOSURE_EVENT_FINALIZE_FREE)
mm_free(ev);
break;
}
case EV_CLOSURE_CB_FINALIZE:
evcb->evcb_cb_union.evcb_cbfinalize(evcb, evcb->evcb_arg);
break;
default:
break;
}
}
return result;
}
static int event_base_free_queues_(struct event_base *base, int run_finalizers)
{
int deleted = 0, i;
for (i = 0; i < base->nactivequeues; ++i) {
struct event_callback *evcb, *next;
for (evcb = TAILQ_FIRST(&base->activequeues[i]); evcb; ) {
next = TAILQ_NEXT(evcb, evcb_active_next);
deleted += event_base_cancel_single_callback_(base, evcb, run_finalizers);
evcb = next;
}
}
{
struct event_callback *evcb;
while ((evcb = TAILQ_FIRST(&base->active_later_queue))) {
deleted += event_base_cancel_single_callback_(base, evcb, run_finalizers);
}
}
return deleted;
}
static void
event_base_free_(struct event_base *base, int run_finalizers)
{
int i, n_deleted=0;
struct event *ev;
/* XXXX grab the lock? If there is contention when one thread frees
* the base, then the contending thread will be very sad soon. */
/* event_base_free(NULL) is how to free the current_base if we
* made it with event_init and forgot to hold a reference to it. */
if (base == NULL && current_base)
base = current_base;
/* Don't actually free NULL. */
if (base == NULL) {
event_warnx("%s: no base to free", __func__);
return;
}
/* XXX(niels) - check for internal events first */
#ifdef _WIN32
event_base_stop_iocp_(base);
#endif
/* threading fds if we have them */
if (base->th_notify_fd[0] != -1) {
event_del(&base->th_notify);
EVUTIL_CLOSESOCKET(base->th_notify_fd[0]);
if (base->th_notify_fd[1] != -1)
EVUTIL_CLOSESOCKET(base->th_notify_fd[1]);
base->th_notify_fd[0] = -1;
base->th_notify_fd[1] = -1;
event_debug_unassign(&base->th_notify);
}
/* Delete all non-internal events. */
evmap_delete_all_(base);
while ((ev = min_heap_top_(&base->timeheap)) != NULL) {
event_del(ev);
++n_deleted;
}
for (i = 0; i < base->n_common_timeouts; ++i) {
struct common_timeout_list *ctl =
base->common_timeout_queues[i];
event_del(&ctl->timeout_event); /* Internal; doesn't count */
event_debug_unassign(&ctl->timeout_event);
for (ev = TAILQ_FIRST(&ctl->events); ev; ) {
struct event *next = TAILQ_NEXT(ev,
ev_timeout_pos.ev_next_with_common_timeout);
if (!(ev->ev_flags & EVLIST_INTERNAL)) {
event_del(ev);
++n_deleted;
}
ev = next;
}
mm_free(ctl);
}
if (base->common_timeout_queues)
mm_free(base->common_timeout_queues);
for (;;) {
/* For finalizers we can register yet another finalizer out from
* finalizer, and iff finalizer will be in active_later_queue we can
* add finalizer to activequeues, and we will have events in
* activequeues after this function returns, which is not what we want
* (we even have an assertion for this).
*
* A simple case is bufferevent with underlying (i.e. filters).
*/
int i = event_base_free_queues_(base, run_finalizers);
if (!i) {
break;
}
n_deleted += i;
}
if (n_deleted)
event_debug(("%s: %d events were still set in base",
__func__, n_deleted));
while (LIST_FIRST(&base->once_events)) {
struct event_once *eonce = LIST_FIRST(&base->once_events);
LIST_REMOVE(eonce, next_once);
mm_free(eonce);
}
if (base->evsel != NULL && base->evsel->dealloc != NULL)
base->evsel->dealloc(base);
for (i = 0; i < base->nactivequeues; ++i)
EVUTIL_ASSERT(TAILQ_EMPTY(&base->activequeues[i]));
EVUTIL_ASSERT(min_heap_empty_(&base->timeheap));
min_heap_dtor_(&base->timeheap);
mm_free(base->activequeues);
evmap_io_clear_(&base->io);
evmap_signal_clear_(&base->sigmap);
event_changelist_freemem_(&base->changelist);
EVTHREAD_FREE_LOCK(base->th_base_lock, 0);
EVTHREAD_FREE_COND(base->current_event_cond);
/* If we're freeing current_base, there won't be a current_base. */
if (base == current_base)
current_base = NULL;
mm_free(base);
}
void
event_base_free_nofinalize(struct event_base *base)
{
event_base_free_(base, 0);
}
void
event_base_free(struct event_base *base)
{
event_base_free_(base, 1);
}
/* Fake eventop; used to disable the backend temporarily inside event_reinit
* so that we can call event_del() on an event without telling the backend.
*/
static int
nil_backend_del(struct event_base *b, evutil_socket_t fd, short old,
short events, void *fdinfo)
{
return 0;
}
const struct eventop nil_eventop = {
"nil",
NULL, /* init: unused. */
NULL, /* add: unused. */
nil_backend_del, /* del: used, so needs to be killed. */
NULL, /* dispatch: unused. */
NULL, /* dealloc: unused. */
0, 0, 0
};
/* reinitialize the event base after a fork */
int
event_reinit(struct event_base *base)
{
const struct eventop *evsel;
int res = 0;
int was_notifiable = 0;
int had_signal_added = 0;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
evsel = base->evsel;
/* check if this event mechanism requires reinit on the backend */
if (evsel->need_reinit) {
/* We're going to call event_del() on our notify events (the
* ones that tell about signals and wakeup events). But we
* don't actually want to tell the backend to change its
* state, since it might still share some resource (a kqueue,
* an epoll fd) with the parent process, and we don't want to
* delete the fds from _that_ backend, we temporarily stub out
* the evsel with a replacement.
*/
base->evsel = &nil_eventop;
}
/* We need to re-create a new signal-notification fd and a new
* thread-notification fd. Otherwise, we'll still share those with
* the parent process, which would make any notification sent to them
* get received by one or both of the event loops, more or less at
* random.
*/
if (base->sig.ev_signal_added) {
event_del_nolock_(&base->sig.ev_signal, EVENT_DEL_AUTOBLOCK);
event_debug_unassign(&base->sig.ev_signal);
memset(&base->sig.ev_signal, 0, sizeof(base->sig.ev_signal));
had_signal_added = 1;
base->sig.ev_signal_added = 0;
}
if (base->sig.ev_signal_pair[0] != -1)
EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[0]);
if (base->sig.ev_signal_pair[1] != -1)
EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[1]);
if (base->th_notify_fn != NULL) {
was_notifiable = 1;
base->th_notify_fn = NULL;
}
if (base->th_notify_fd[0] != -1) {
event_del_nolock_(&base->th_notify, EVENT_DEL_AUTOBLOCK);
EVUTIL_CLOSESOCKET(base->th_notify_fd[0]);
if (base->th_notify_fd[1] != -1)
EVUTIL_CLOSESOCKET(base->th_notify_fd[1]);
base->th_notify_fd[0] = -1;
base->th_notify_fd[1] = -1;
event_debug_unassign(&base->th_notify);
}
/* Replace the original evsel. */
base->evsel = evsel;
if (evsel->need_reinit) {
/* Reconstruct the backend through brute-force, so that we do
* not share any structures with the parent process. For some
* backends, this is necessary: epoll and kqueue, for
* instance, have events associated with a kernel
* structure. If didn't reinitialize, we'd share that
* structure with the parent process, and any changes made by
* the parent would affect our backend's behavior (and vice
* versa).
*/
if (base->evsel->dealloc != NULL)
base->evsel->dealloc(base);
base->evbase = evsel->init(base);
if (base->evbase == NULL) {
event_errx(1,
"%s: could not reinitialize event mechanism",
__func__);
res = -1;
goto done;
}
/* Empty out the changelist (if any): we are starting from a
* blank slate. */
event_changelist_freemem_(&base->changelist);
/* Tell the event maps to re-inform the backend about all
* pending events. This will make the signal notification
* event get re-created if necessary. */
if (evmap_reinit_(base) < 0)
res = -1;
} else {
res = evsig_init_(base);
if (res == 0 && had_signal_added) {
res = event_add_nolock_(&base->sig.ev_signal, NULL, 0);
if (res == 0)
base->sig.ev_signal_added = 1;
}
}
/* If we were notifiable before, and nothing just exploded, become
* notifiable again. */
if (was_notifiable && res == 0)
res = evthread_make_base_notifiable_nolock_(base);
done:
EVBASE_RELEASE_LOCK(base, th_base_lock);
return (res);
}
/* Get the monotonic time for this event_base' timer */
int
event_gettime_monotonic(struct event_base *base, struct timeval *tv)
{
int rv = -1;
if (base && tv) {
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
rv = evutil_gettime_monotonic_(&(base->monotonic_timer), tv);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
return rv;
}
const char **
event_get_supported_methods(void)
{
static const char **methods = NULL;
const struct eventop **method;
const char **tmp;
int i = 0, k;
/* count all methods */
for (method = &eventops[0]; *method != NULL; ++method) {
++i;
}
/* allocate one more than we need for the NULL pointer */
tmp = mm_calloc((i + 1), sizeof(char *));
if (tmp == NULL)
return (NULL);
/* populate the array with the supported methods */
for (k = 0, i = 0; eventops[k] != NULL; ++k) {
tmp[i++] = eventops[k]->name;
}
tmp[i] = NULL;
if (methods != NULL)
mm_free((char**)methods);
methods = tmp;
return (methods);
}
struct event_config *
event_config_new(void)
{
struct event_config *cfg = mm_calloc(1, sizeof(*cfg));
if (cfg == NULL)
return (NULL);
TAILQ_INIT(&cfg->entries);
cfg->max_dispatch_interval.tv_sec = -1;
cfg->max_dispatch_callbacks = INT_MAX;
cfg->limit_callbacks_after_prio = 1;
return (cfg);
}
static void
event_config_entry_free(struct event_config_entry *entry)
{
if (entry->avoid_method != NULL)
mm_free((char *)entry->avoid_method);
mm_free(entry);
}
void
event_config_free(struct event_config *cfg)
{
struct event_config_entry *entry;
while ((entry = TAILQ_FIRST(&cfg->entries)) != NULL) {
TAILQ_REMOVE(&cfg->entries, entry, next);
event_config_entry_free(entry);
}
mm_free(cfg);
}
int
event_config_set_flag(struct event_config *cfg, int flag)
{
if (!cfg)
return -1;
cfg->flags |= flag;
return 0;
}
int
event_config_avoid_method(struct event_config *cfg, const char *method)
{
struct event_config_entry *entry = mm_malloc(sizeof(*entry));
if (entry == NULL)
return (-1);
if ((entry->avoid_method = mm_strdup(method)) == NULL) {
mm_free(entry);
return (-1);
}
TAILQ_INSERT_TAIL(&cfg->entries, entry, next);
return (0);
}
int
event_config_require_features(struct event_config *cfg,
int features)
{
if (!cfg)
return (-1);
cfg->require_features = features;
return (0);
}
int
event_config_set_num_cpus_hint(struct event_config *cfg, int cpus)
{
if (!cfg)
return (-1);
cfg->n_cpus_hint = cpus;
return (0);
}
int
event_config_set_max_dispatch_interval(struct event_config *cfg,
const struct timeval *max_interval, int max_callbacks, int min_priority)
{
if (max_interval)
memcpy(&cfg->max_dispatch_interval, max_interval,
sizeof(struct timeval));
else
cfg->max_dispatch_interval.tv_sec = -1;
cfg->max_dispatch_callbacks =
max_callbacks >= 0 ? max_callbacks : INT_MAX;
if (min_priority < 0)
min_priority = 0;
cfg->limit_callbacks_after_prio = min_priority;
return (0);
}
int
event_priority_init(int npriorities)
{
return event_base_priority_init(current_base, npriorities);
}
int
event_base_priority_init(struct event_base *base, int npriorities)
{
int i, r;
r = -1;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (N_ACTIVE_CALLBACKS(base) || npriorities < 1
|| npriorities >= EVENT_MAX_PRIORITIES)
goto err;
if (npriorities == base->nactivequeues)
goto ok;
if (base->nactivequeues) {
mm_free(base->activequeues);
base->nactivequeues = 0;
}
/* Allocate our priority queues */
base->activequeues = (struct evcallback_list *)
mm_calloc(npriorities, sizeof(struct evcallback_list));
if (base->activequeues == NULL) {
event_warn("%s: calloc", __func__);
goto err;
}
base->nactivequeues = npriorities;
for (i = 0; i < base->nactivequeues; ++i) {
TAILQ_INIT(&base->activequeues[i]);
}
ok:
r = 0;
err:
EVBASE_RELEASE_LOCK(base, th_base_lock);
return (r);
}
int
event_base_get_npriorities(struct event_base *base)
{
int n;
if (base == NULL)
base = current_base;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
n = base->nactivequeues;
EVBASE_RELEASE_LOCK(base, th_base_lock);
return (n);
}
int
event_base_get_num_events(struct event_base *base, unsigned int type)
{
int r = 0;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (type & EVENT_BASE_COUNT_ACTIVE)
r += base->event_count_active;
if (type & EVENT_BASE_COUNT_VIRTUAL)
r += base->virtual_event_count;
if (type & EVENT_BASE_COUNT_ADDED)
r += base->event_count;
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
int
event_base_get_max_events(struct event_base *base, unsigned int type, int clear)
{
int r = 0;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (type & EVENT_BASE_COUNT_ACTIVE) {
r += base->event_count_active_max;
if (clear)
base->event_count_active_max = 0;
}
if (type & EVENT_BASE_COUNT_VIRTUAL) {
r += base->virtual_event_count_max;
if (clear)
base->virtual_event_count_max = 0;
}
if (type & EVENT_BASE_COUNT_ADDED) {
r += base->event_count_max;
if (clear)
base->event_count_max = 0;
}
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
/* Returns true iff we're currently watching any events. */
static int
event_haveevents(struct event_base *base)
{
/* Caller must hold th_base_lock */
return (base->virtual_event_count > 0 || base->event_count > 0);
}
/* "closure" function called when processing active signal events */
static inline void
event_signal_closure(struct event_base *base, struct event *ev)
{
short ncalls;
int should_break;
/* Allows deletes to work */
ncalls = ev->ev_ncalls;
if (ncalls != 0)
ev->ev_pncalls = &ncalls;
EVBASE_RELEASE_LOCK(base, th_base_lock);
while (ncalls) {
ncalls--;
ev->ev_ncalls = ncalls;
if (ncalls == 0)
ev->ev_pncalls = NULL;
(*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg);
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
should_break = base->event_break;
EVBASE_RELEASE_LOCK(base, th_base_lock);
if (should_break) {
if (ncalls != 0)
ev->ev_pncalls = NULL;
return;
}
}
}
/* Common timeouts are special timeouts that are handled as queues rather than
* in the minheap. This is more efficient than the minheap if we happen to
* know that we're going to get several thousands of timeout events all with
* the same timeout value.
*
* Since all our timeout handling code assumes timevals can be copied,
* assigned, etc, we can't use "magic pointer" to encode these common
* timeouts. Searching through a list to see if every timeout is common could
* also get inefficient. Instead, we take advantage of the fact that tv_usec
* is 32 bits long, but only uses 20 of those bits (since it can never be over
* 999999.) We use the top bits to encode 4 bites of magic number, and 8 bits
* of index into the event_base's aray of common timeouts.
*/
#define MICROSECONDS_MASK COMMON_TIMEOUT_MICROSECONDS_MASK
#define COMMON_TIMEOUT_IDX_MASK 0x0ff00000
#define COMMON_TIMEOUT_IDX_SHIFT 20
#define COMMON_TIMEOUT_MASK 0xf0000000
#define COMMON_TIMEOUT_MAGIC 0x50000000
#define COMMON_TIMEOUT_IDX(tv) \
(((tv)->tv_usec & COMMON_TIMEOUT_IDX_MASK)>>COMMON_TIMEOUT_IDX_SHIFT)
/** Return true iff if 'tv' is a common timeout in 'base' */
static inline int
is_common_timeout(const struct timeval *tv,
const struct event_base *base)
{
int idx;
if ((tv->tv_usec & COMMON_TIMEOUT_MASK) != COMMON_TIMEOUT_MAGIC)
return 0;
idx = COMMON_TIMEOUT_IDX(tv);
return idx < base->n_common_timeouts;
}
/* True iff tv1 and tv2 have the same common-timeout index, or if neither
* one is a common timeout. */
static inline int
is_same_common_timeout(const struct timeval *tv1, const struct timeval *tv2)
{
return (tv1->tv_usec & ~MICROSECONDS_MASK) ==
(tv2->tv_usec & ~MICROSECONDS_MASK);
}
/** Requires that 'tv' is a common timeout. Return the corresponding
* common_timeout_list. */
static inline struct common_timeout_list *
get_common_timeout_list(struct event_base *base, const struct timeval *tv)
{
return base->common_timeout_queues[COMMON_TIMEOUT_IDX(tv)];
}
#if 0
static inline int
common_timeout_ok(const struct timeval *tv,
struct event_base *base)
{
const struct timeval *expect =
&get_common_timeout_list(base, tv)->duration;
return tv->tv_sec == expect->tv_sec &&
tv->tv_usec == expect->tv_usec;
}
#endif
/* Add the timeout for the first event in given common timeout list to the
* event_base's minheap. */
static void
common_timeout_schedule(struct common_timeout_list *ctl,
const struct timeval *now, struct event *head)
{
struct timeval timeout = head->ev_timeout;
timeout.tv_usec &= MICROSECONDS_MASK;
event_add_nolock_(&ctl->timeout_event, &timeout, 1);
}
/* Callback: invoked when the timeout for a common timeout queue triggers.
* This means that (at least) the first event in that queue should be run,
* and the timeout should be rescheduled if there are more events. */
static void
common_timeout_callback(evutil_socket_t fd, short what, void *arg)
{
struct timeval now;
struct common_timeout_list *ctl = arg;
struct event_base *base = ctl->base;
struct event *ev = NULL;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
gettime(base, &now);
while (1) {
ev = TAILQ_FIRST(&ctl->events);
if (!ev || ev->ev_timeout.tv_sec > now.tv_sec ||
(ev->ev_timeout.tv_sec == now.tv_sec &&
(ev->ev_timeout.tv_usec&MICROSECONDS_MASK) > now.tv_usec))
break;
event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
event_active_nolock_(ev, EV_TIMEOUT, 1);
}
if (ev)
common_timeout_schedule(ctl, &now, ev);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
#define MAX_COMMON_TIMEOUTS 256
const struct timeval *
event_base_init_common_timeout(struct event_base *base,
const struct timeval *duration)
{
int i;
struct timeval tv;
const struct timeval *result=NULL;
struct common_timeout_list *new_ctl;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (duration->tv_usec > 1000000) {
memcpy(&tv, duration, sizeof(struct timeval));
if (is_common_timeout(duration, base))
tv.tv_usec &= MICROSECONDS_MASK;
tv.tv_sec += tv.tv_usec / 1000000;
tv.tv_usec %= 1000000;
duration = &tv;
}
for (i = 0; i < base->n_common_timeouts; ++i) {
const struct common_timeout_list *ctl =
base->common_timeout_queues[i];
if (duration->tv_sec == ctl->duration.tv_sec &&
duration->tv_usec ==
(ctl->duration.tv_usec & MICROSECONDS_MASK)) {
EVUTIL_ASSERT(is_common_timeout(&ctl->duration, base));
result = &ctl->duration;
goto done;
}
}
if (base->n_common_timeouts == MAX_COMMON_TIMEOUTS) {
event_warnx("%s: Too many common timeouts already in use; "
"we only support %d per event_base", __func__,
MAX_COMMON_TIMEOUTS);
goto done;
}
if (base->n_common_timeouts_allocated == base->n_common_timeouts) {
int n = base->n_common_timeouts < 16 ? 16 :
base->n_common_timeouts*2;
struct common_timeout_list **newqueues =
mm_realloc(base->common_timeout_queues,
n*sizeof(struct common_timeout_queue *));
if (!newqueues) {
event_warn("%s: realloc",__func__);
goto done;
}
base->n_common_timeouts_allocated = n;
base->common_timeout_queues = newqueues;
}
new_ctl = mm_calloc(1, sizeof(struct common_timeout_list));
if (!new_ctl) {
event_warn("%s: calloc",__func__);
goto done;
}
TAILQ_INIT(&new_ctl->events);
new_ctl->duration.tv_sec = duration->tv_sec;
new_ctl->duration.tv_usec =
duration->tv_usec | COMMON_TIMEOUT_MAGIC |
(base->n_common_timeouts << COMMON_TIMEOUT_IDX_SHIFT);
evtimer_assign(&new_ctl->timeout_event, base,
common_timeout_callback, new_ctl);
new_ctl->timeout_event.ev_flags |= EVLIST_INTERNAL;
event_priority_set(&new_ctl->timeout_event, 0);
new_ctl->base = base;
base->common_timeout_queues[base->n_common_timeouts++] = new_ctl;
result = &new_ctl->duration;
done:
if (result)
EVUTIL_ASSERT(is_common_timeout(result, base));
EVBASE_RELEASE_LOCK(base, th_base_lock);
return result;
}
/* Closure function invoked when we're activating a persistent event. */
static inline void
event_persist_closure(struct event_base *base, struct event *ev)
{
void (*evcb_callback)(evutil_socket_t, short, void *);
// Other fields of *ev that must be stored before executing
evutil_socket_t evcb_fd;
short evcb_res;
void *evcb_arg;
/* reschedule the persistent event if we have a timeout. */
if (ev->ev_io_timeout.tv_sec || ev->ev_io_timeout.tv_usec) {
/* If there was a timeout, we want it to run at an interval of
* ev_io_timeout after the last time it was _scheduled_ for,
* not ev_io_timeout after _now_. If it fired for another
* reason, though, the timeout ought to start ticking _now_. */
struct timeval run_at, relative_to, delay, now;
ev_uint32_t usec_mask = 0;
EVUTIL_ASSERT(is_same_common_timeout(&ev->ev_timeout,
&ev->ev_io_timeout));
gettime(base, &now);
if (is_common_timeout(&ev->ev_timeout, base)) {
delay = ev->ev_io_timeout;
usec_mask = delay.tv_usec & ~MICROSECONDS_MASK;
delay.tv_usec &= MICROSECONDS_MASK;
if (ev->ev_res & EV_TIMEOUT) {
relative_to = ev->ev_timeout;
relative_to.tv_usec &= MICROSECONDS_MASK;
} else {
relative_to = now;
}
} else {
delay = ev->ev_io_timeout;
if (ev->ev_res & EV_TIMEOUT) {
relative_to = ev->ev_timeout;
} else {
relative_to = now;
}
}
evutil_timeradd(&relative_to, &delay, &run_at);
if (evutil_timercmp(&run_at, &now, <)) {
/* Looks like we missed at least one invocation due to
* a clock jump, not running the event loop for a
* while, really slow callbacks, or
* something. Reschedule relative to now.
*/
evutil_timeradd(&now, &delay, &run_at);
}
run_at.tv_usec |= usec_mask;
event_add_nolock_(ev, &run_at, 1);
}
// Save our callback before we release the lock
evcb_callback = ev->ev_callback;
evcb_fd = ev->ev_fd;
evcb_res = ev->ev_res;
evcb_arg = ev->ev_arg;
// Release the lock
EVBASE_RELEASE_LOCK(base, th_base_lock);
// Execute the callback
(evcb_callback)(evcb_fd, evcb_res, evcb_arg);
}
/*
Helper for event_process_active to process all the events in a single queue,
releasing the lock as we go. This function requires that the lock be held
when it's invoked. Returns -1 if we get a signal or an event_break that
means we should stop processing any active events now. Otherwise returns
the number of non-internal event_callbacks that we processed.
*/
static int
event_process_active_single_queue(struct event_base *base,
struct evcallback_list *activeq,
int max_to_process, const struct timeval *endtime)
{
struct event_callback *evcb;
int count = 0;
EVUTIL_ASSERT(activeq != NULL);
for (evcb = TAILQ_FIRST(activeq); evcb; evcb = TAILQ_FIRST(activeq)) {
struct event *ev=NULL;
if (evcb->evcb_flags & EVLIST_INIT) {
ev = event_callback_to_event(evcb);
if (ev->ev_events & EV_PERSIST || ev->ev_flags & EVLIST_FINALIZING)
event_queue_remove_active(base, evcb);
else
event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
event_debug((
"event_process_active: event: %p, %s%s%scall %p",
ev,
ev->ev_res & EV_READ ? "EV_READ " : " ",
ev->ev_res & EV_WRITE ? "EV_WRITE " : " ",
ev->ev_res & EV_CLOSED ? "EV_CLOSED " : " ",
ev->ev_callback));
} else {
event_queue_remove_active(base, evcb);
event_debug(("event_process_active: event_callback %p, "
"closure %d, call %p",
evcb, evcb->evcb_closure, evcb->evcb_cb_union.evcb_callback));
}
if (!(evcb->evcb_flags & EVLIST_INTERNAL))
++count;
base->current_event = evcb;
#ifndef EVENT__DISABLE_THREAD_SUPPORT
base->current_event_waiters = 0;
#endif
switch (evcb->evcb_closure) {
case EV_CLOSURE_EVENT_SIGNAL:
EVUTIL_ASSERT(ev != NULL);
event_signal_closure(base, ev);
break;
case EV_CLOSURE_EVENT_PERSIST:
EVUTIL_ASSERT(ev != NULL);
event_persist_closure(base, ev);
break;
case EV_CLOSURE_EVENT: {
void (*evcb_callback)(evutil_socket_t, short, void *);
EVUTIL_ASSERT(ev != NULL);
evcb_callback = *ev->ev_callback;
EVBASE_RELEASE_LOCK(base, th_base_lock);
evcb_callback(ev->ev_fd, ev->ev_res, ev->ev_arg);
}
break;
case EV_CLOSURE_CB_SELF: {
void (*evcb_selfcb)(struct event_callback *, void *) = evcb->evcb_cb_union.evcb_selfcb;
EVBASE_RELEASE_LOCK(base, th_base_lock);
evcb_selfcb(evcb, evcb->evcb_arg);
}
break;
case EV_CLOSURE_EVENT_FINALIZE:
case EV_CLOSURE_EVENT_FINALIZE_FREE: {
void (*evcb_evfinalize)(struct event *, void *);
int evcb_closure = evcb->evcb_closure;
EVUTIL_ASSERT(ev != NULL);
base->current_event = NULL;
evcb_evfinalize = ev->ev_evcallback.evcb_cb_union.evcb_evfinalize;
EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_FINALIZING));
EVBASE_RELEASE_LOCK(base, th_base_lock);
evcb_evfinalize(ev, ev->ev_arg);
event_debug_note_teardown_(ev);
if (evcb_closure == EV_CLOSURE_EVENT_FINALIZE_FREE)
mm_free(ev);
}
break;
case EV_CLOSURE_CB_FINALIZE: {
void (*evcb_cbfinalize)(struct event_callback *, void *) = evcb->evcb_cb_union.evcb_cbfinalize;
base->current_event = NULL;
EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_FINALIZING));
EVBASE_RELEASE_LOCK(base, th_base_lock);
evcb_cbfinalize(evcb, evcb->evcb_arg);
}
break;
default:
EVUTIL_ASSERT(0);
}
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
base->current_event = NULL;
#ifndef EVENT__DISABLE_THREAD_SUPPORT
if (base->current_event_waiters) {
base->current_event_waiters = 0;
EVTHREAD_COND_BROADCAST(base->current_event_cond);
}
#endif
if (base->event_break)
return -1;
if (count >= max_to_process)
return count;
if (count && endtime) {
struct timeval now;
update_time_cache(base);
gettime(base, &now);
if (evutil_timercmp(&now, endtime, >=))
return count;
}
if (base->event_continue)
break;
}
return count;
}
/*
* Active events are stored in priority queues. Lower priorities are always
* process before higher priorities. Low priority events can starve high
* priority ones.
*/
static int
event_process_active(struct event_base *base)
{
/* Caller must hold th_base_lock */
struct evcallback_list *activeq = NULL;
int i, c = 0;
const struct timeval *endtime;
struct timeval tv;
const int maxcb = base->max_dispatch_callbacks;
const int limit_after_prio = base->limit_callbacks_after_prio;
if (base->max_dispatch_time.tv_sec >= 0) {
update_time_cache(base);
gettime(base, &tv);
evutil_timeradd(&base->max_dispatch_time, &tv, &tv);
endtime = &tv;
} else {
endtime = NULL;
}
for (i = 0; i < base->nactivequeues; ++i) {
if (TAILQ_FIRST(&base->activequeues[i]) != NULL) {
base->event_running_priority = i;
activeq = &base->activequeues[i];
if (i < limit_after_prio)
c = event_process_active_single_queue(base, activeq,
INT_MAX, NULL);
else
c = event_process_active_single_queue(base, activeq,
maxcb, endtime);
if (c < 0) {
goto done;
} else if (c > 0)
break; /* Processed a real event; do not
* consider lower-priority events */
/* If we get here, all of the events we processed
* were internal. Continue. */
}
}
done:
base->event_running_priority = -1;
return c;
}
/*
* Wait continuously for events. We exit only if no events are left.
*/
int
event_dispatch(void)
{
return (event_loop(0));
}
int
event_base_dispatch(struct event_base *event_base)
{
return (event_base_loop(event_base, 0));
}
const char *
event_base_get_method(const struct event_base *base)
{
EVUTIL_ASSERT(base);
return (base->evsel->name);
}
/** Callback: used to implement event_base_loopexit by telling the event_base
* that it's time to exit its loop. */
static void
event_loopexit_cb(evutil_socket_t fd, short what, void *arg)
{
struct event_base *base = arg;
base->event_gotterm = 1;
}
int
event_loopexit(const struct timeval *tv)
{
return (event_once(-1, EV_TIMEOUT, event_loopexit_cb,
current_base, tv));
}
int
event_base_loopexit(struct event_base *event_base, const struct timeval *tv)
{
return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb,
event_base, tv));
}
int
event_loopbreak(void)
{
return (event_base_loopbreak(current_base));
}
int
event_base_loopbreak(struct event_base *event_base)
{
int r = 0;
if (event_base == NULL)
return (-1);
EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
event_base->event_break = 1;
if (EVBASE_NEED_NOTIFY(event_base)) {
r = evthread_notify_base(event_base);
} else {
r = (0);
}
EVBASE_RELEASE_LOCK(event_base, th_base_lock);
return r;
}
int
event_base_loopcontinue(struct event_base *event_base)
{
int r = 0;
if (event_base == NULL)
return (-1);
EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
event_base->event_continue = 1;
if (EVBASE_NEED_NOTIFY(event_base)) {
r = evthread_notify_base(event_base);
} else {
r = (0);
}
EVBASE_RELEASE_LOCK(event_base, th_base_lock);
return r;
}
int
event_base_got_break(struct event_base *event_base)
{
int res;
EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
res = event_base->event_break;
EVBASE_RELEASE_LOCK(event_base, th_base_lock);
return res;
}
int
event_base_got_exit(struct event_base *event_base)
{
int res;
EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
res = event_base->event_gotterm;
EVBASE_RELEASE_LOCK(event_base, th_base_lock);
return res;
}
/* not thread safe */
int
event_loop(int flags)
{
return event_base_loop(current_base, flags);
}
int
event_base_loop(struct event_base *base, int flags)
{
const struct eventop *evsel = base->evsel;
struct timeval tv;
struct timeval *tv_p;
int res, done, retval = 0;
/* Grab the lock. We will release it inside evsel.dispatch, and again
* as we invoke user callbacks. */
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (base->running_loop) {
event_warnx("%s: reentrant invocation. Only one event_base_loop"
" can run on each event_base at once.", __func__);
EVBASE_RELEASE_LOCK(base, th_base_lock);
return -1;
}
base->running_loop = 1;
clear_time_cache(base);
if (base->sig.ev_signal_added && base->sig.ev_n_signals_added)
evsig_set_base_(base);
done = 0;
#ifndef EVENT__DISABLE_THREAD_SUPPORT
base->th_owner_id = EVTHREAD_GET_ID();
#endif
base->event_gotterm = base->event_break = 0;
while (!done) {
base->event_continue = 0;
base->n_deferreds_queued = 0;
/* Terminate the loop if we have been asked to */
if (base->event_gotterm) {
break;
}
if (base->event_break) {
break;
}
tv_p = &tv;
if (!N_ACTIVE_CALLBACKS(base) && !(flags & EVLOOP_NONBLOCK)) {
timeout_next(base, &tv_p);
} else {
/*
* if we have active events, we just poll new events
* without waiting.
*/
evutil_timerclear(&tv);
}
/* If we have no events, we just exit */
if (0==(flags&EVLOOP_NO_EXIT_ON_EMPTY) &&
!event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) {
event_debug(("%s: no events registered.", __func__));
retval = 1;
goto done;
}
event_queue_make_later_events_active(base);
clear_time_cache(base);
res = evsel->dispatch(base, tv_p);
if (res == -1) {
event_debug(("%s: dispatch returned unsuccessfully.",
__func__));
retval = -1;
goto done;
}
update_time_cache(base);
timeout_process(base);
if (N_ACTIVE_CALLBACKS(base)) {
int n = event_process_active(base);
if ((flags & EVLOOP_ONCE)
&& N_ACTIVE_CALLBACKS(base) == 0
&& n != 0)
done = 1;
} else if (flags & EVLOOP_NONBLOCK)
done = 1;
}
event_debug(("%s: asked to terminate loop.", __func__));
done:
clear_time_cache(base);
base->running_loop = 0;
EVBASE_RELEASE_LOCK(base, th_base_lock);
return (retval);
}
/* One-time callback to implement event_base_once: invokes the user callback,
* then deletes the allocated storage */
static void
event_once_cb(evutil_socket_t fd, short events, void *arg)
{
struct event_once *eonce = arg;
(*eonce->cb)(fd, events, eonce->arg);
EVBASE_ACQUIRE_LOCK(eonce->ev.ev_base, th_base_lock);
LIST_REMOVE(eonce, next_once);
EVBASE_RELEASE_LOCK(eonce->ev.ev_base, th_base_lock);
event_debug_unassign(&eonce->ev);
mm_free(eonce);
}
/* not threadsafe, event scheduled once. */
int
event_once(evutil_socket_t fd, short events,
void (*callback)(evutil_socket_t, short, void *),
void *arg, const struct timeval *tv)
{
return event_base_once(current_base, fd, events, callback, arg, tv);
}
/* Schedules an event once */
int
event_base_once(struct event_base *base, evutil_socket_t fd, short events,
void (*callback)(evutil_socket_t, short, void *),
void *arg, const struct timeval *tv)
{
struct event_once *eonce;
int res = 0;
int activate = 0;
/* We cannot support signals that just fire once, or persistent
* events. */
if (events & (EV_SIGNAL|EV_PERSIST))
return (-1);
if ((eonce = mm_calloc(1, sizeof(struct event_once))) == NULL)
return (-1);
eonce->cb = callback;
eonce->arg = arg;
if ((events & (EV_TIMEOUT|EV_SIGNAL|EV_READ|EV_WRITE|EV_CLOSED)) == EV_TIMEOUT) {
evtimer_assign(&eonce->ev, base, event_once_cb, eonce);
if (tv == NULL || ! evutil_timerisset(tv)) {
/* If the event is going to become active immediately,
* don't put it on the timeout queue. This is one
* idiom for scheduling a callback, so let's make
* it fast (and order-preserving). */
activate = 1;
}
} else if (events & (EV_READ|EV_WRITE|EV_CLOSED)) {
events &= EV_READ|EV_WRITE|EV_CLOSED;
event_assign(&eonce->ev, base, fd, events, event_once_cb, eonce);
} else {
/* Bad event combination */
mm_free(eonce);
return (-1);
}
if (res == 0) {
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (activate)
event_active_nolock_(&eonce->ev, EV_TIMEOUT, 1);
else
res = event_add_nolock_(&eonce->ev, tv, 0);
if (res != 0) {
mm_free(eonce);
return (res);
} else {
LIST_INSERT_HEAD(&base->once_events, eonce, next_once);
}
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
return (0);
}
int
event_assign(struct event *ev, struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg)
{
if (!base)
base = current_base;
if (arg == &event_self_cbarg_ptr_)
arg = ev;
event_debug_assert_not_added_(ev);
ev->ev_base = base;
ev->ev_callback = callback;
ev->ev_arg = arg;
ev->ev_fd = fd;
ev->ev_events = events;
ev->ev_res = 0;
ev->ev_flags = EVLIST_INIT;
ev->ev_ncalls = 0;
ev->ev_pncalls = NULL;
if (events & EV_SIGNAL) {
if ((events & (EV_READ|EV_WRITE|EV_CLOSED)) != 0) {
event_warnx("%s: EV_SIGNAL is not compatible with "
"EV_READ, EV_WRITE or EV_CLOSED", __func__);
return -1;
}
ev->ev_closure = EV_CLOSURE_EVENT_SIGNAL;
} else {
if (events & EV_PERSIST) {
evutil_timerclear(&ev->ev_io_timeout);
ev->ev_closure = EV_CLOSURE_EVENT_PERSIST;
} else {
ev->ev_closure = EV_CLOSURE_EVENT;
}
}
min_heap_elem_init_(ev);
if (base != NULL) {
/* by default, we put new events into the middle priority */
ev->ev_pri = base->nactivequeues / 2;
}
event_debug_note_setup_(ev);
return 0;
}
int
event_base_set(struct event_base *base, struct event *ev)
{
/* Only innocent events may be assigned to a different base */
if (ev->ev_flags != EVLIST_INIT)
return (-1);
event_debug_assert_is_setup_(ev);
ev->ev_base = base;
ev->ev_pri = base->nactivequeues/2;
return (0);
}
void
event_set(struct event *ev, evutil_socket_t fd, short events,
void (*callback)(evutil_socket_t, short, void *), void *arg)
{
int r;
r = event_assign(ev, current_base, fd, events, callback, arg);
EVUTIL_ASSERT(r == 0);
}
void *
event_self_cbarg(void)
{
return &event_self_cbarg_ptr_;
}
struct event *
event_base_get_running_event(struct event_base *base)
{
struct event *ev = NULL;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (EVBASE_IN_THREAD(base)) {
struct event_callback *evcb = base->current_event;
if (evcb->evcb_flags & EVLIST_INIT)
ev = event_callback_to_event(evcb);
}
EVBASE_RELEASE_LOCK(base, th_base_lock);
return ev;
}
struct event *
event_new(struct event_base *base, evutil_socket_t fd, short events, void (*cb)(evutil_socket_t, short, void *), void *arg)
{
struct event *ev;
ev = mm_malloc(sizeof(struct event));
if (ev == NULL)
return (NULL);
if (event_assign(ev, base, fd, events, cb, arg) < 0) {
mm_free(ev);
return (NULL);
}
return (ev);
}
void
event_free(struct event *ev)
{
/* This is disabled, so that events which have been finalized be a
* valid target for event_free(). That's */
// event_debug_assert_is_setup_(ev);
/* make sure that this event won't be coming back to haunt us. */
event_del(ev);
event_debug_note_teardown_(ev);
mm_free(ev);
}
void
event_debug_unassign(struct event *ev)
{
event_debug_assert_not_added_(ev);
event_debug_note_teardown_(ev);
ev->ev_flags &= ~EVLIST_INIT;
}
#define EVENT_FINALIZE_FREE_ 0x10000
static int
event_finalize_nolock_(struct event_base *base, unsigned flags, struct event *ev, event_finalize_callback_fn cb)
{
ev_uint8_t closure = (flags & EVENT_FINALIZE_FREE_) ?
EV_CLOSURE_EVENT_FINALIZE_FREE : EV_CLOSURE_EVENT_FINALIZE;
event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
ev->ev_closure = closure;
ev->ev_evcallback.evcb_cb_union.evcb_evfinalize = cb;
event_active_nolock_(ev, EV_FINALIZE, 1);
ev->ev_flags |= EVLIST_FINALIZING;
return 0;
}
static int
event_finalize_impl_(unsigned flags, struct event *ev, event_finalize_callback_fn cb)
{
int r;
struct event_base *base = ev->ev_base;
if (EVUTIL_FAILURE_CHECK(!base)) {
event_warnx("%s: event has no event_base set.", __func__);
return -1;
}
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
r = event_finalize_nolock_(base, flags, ev, cb);
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
int
event_finalize(unsigned flags, struct event *ev, event_finalize_callback_fn cb)
{
return event_finalize_impl_(flags, ev, cb);
}
int
event_free_finalize(unsigned flags, struct event *ev, event_finalize_callback_fn cb)
{
return event_finalize_impl_(flags|EVENT_FINALIZE_FREE_, ev, cb);
}
void
event_callback_finalize_nolock_(struct event_base *base, unsigned flags, struct event_callback *evcb, void (*cb)(struct event_callback *, void *))
{
struct event *ev = NULL;
if (evcb->evcb_flags & EVLIST_INIT) {
ev = event_callback_to_event(evcb);
event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
} else {
event_callback_cancel_nolock_(base, evcb, 0); /*XXX can this fail?*/
}
evcb->evcb_closure = EV_CLOSURE_CB_FINALIZE;
evcb->evcb_cb_union.evcb_cbfinalize = cb;
event_callback_activate_nolock_(base, evcb); /* XXX can this really fail?*/
evcb->evcb_flags |= EVLIST_FINALIZING;
}
void
event_callback_finalize_(struct event_base *base, unsigned flags, struct event_callback *evcb, void (*cb)(struct event_callback *, void *))
{
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
event_callback_finalize_nolock_(base, flags, evcb, cb);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
/** Internal: Finalize all of the n_cbs callbacks in evcbs. The provided
* callback will be invoked on *one of them*, after they have *all* been
* finalized. */
int
event_callback_finalize_many_(struct event_base *base, int n_cbs, struct event_callback **evcbs, void (*cb)(struct event_callback *, void *))
{
int n_pending = 0, i;
if (base == NULL)
base = current_base;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
event_debug(("%s: %d events finalizing", __func__, n_cbs));
/* At most one can be currently executing; the rest we just
* cancel... But we always make sure that the finalize callback
* runs. */
for (i = 0; i < n_cbs; ++i) {
struct event_callback *evcb = evcbs[i];
if (evcb == base->current_event) {
event_callback_finalize_nolock_(base, 0, evcb, cb);
++n_pending;
} else {
event_callback_cancel_nolock_(base, evcb, 0);
}
}
if (n_pending == 0) {
/* Just do the first one. */
event_callback_finalize_nolock_(base, 0, evcbs[0], cb);
}
EVBASE_RELEASE_LOCK(base, th_base_lock);
return 0;
}
/*
* Set's the priority of an event - if an event is already scheduled
* changing the priority is going to fail.
*/
int
event_priority_set(struct event *ev, int pri)
{
event_debug_assert_is_setup_(ev);
if (ev->ev_flags & EVLIST_ACTIVE)
return (-1);
if (pri < 0 || pri >= ev->ev_base->nactivequeues)
return (-1);
ev->ev_pri = pri;
return (0);
}
/*
* Checks if a specific event is pending or scheduled.
*/
int
event_pending(const struct event *ev, short event, struct timeval *tv)
{
int flags = 0;
if (EVUTIL_FAILURE_CHECK(ev->ev_base == NULL)) {
event_warnx("%s: event has no event_base set.", __func__);
return 0;
}
EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
event_debug_assert_is_setup_(ev);
if (ev->ev_flags & EVLIST_INSERTED)
flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL));
if (ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))
flags |= ev->ev_res;
if (ev->ev_flags & EVLIST_TIMEOUT)
flags |= EV_TIMEOUT;
event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL);
/* See if there is a timeout that we should report */
if (tv != NULL && (flags & event & EV_TIMEOUT)) {
struct timeval tmp = ev->ev_timeout;
tmp.tv_usec &= MICROSECONDS_MASK;
/* correctly remamp to real time */
evutil_timeradd(&ev->ev_base->tv_clock_diff, &tmp, tv);
}
EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
return (flags & event);
}
int
event_initialized(const struct event *ev)
{
if (!(ev->ev_flags & EVLIST_INIT))
return 0;
return 1;
}
void
event_get_assignment(const struct event *event, struct event_base **base_out, evutil_socket_t *fd_out, short *events_out, event_callback_fn *callback_out, void **arg_out)
{
event_debug_assert_is_setup_(event);
if (base_out)
*base_out = event->ev_base;
if (fd_out)
*fd_out = event->ev_fd;
if (events_out)
*events_out = event->ev_events;
if (callback_out)
*callback_out = event->ev_callback;
if (arg_out)
*arg_out = event->ev_arg;
}
size_t
event_get_struct_event_size(void)
{
return sizeof(struct event);
}
evutil_socket_t
event_get_fd(const struct event *ev)
{
event_debug_assert_is_setup_(ev);
return ev->ev_fd;
}
struct event_base *
event_get_base(const struct event *ev)
{
event_debug_assert_is_setup_(ev);
return ev->ev_base;
}
short
event_get_events(const struct event *ev)
{
event_debug_assert_is_setup_(ev);
return ev->ev_events;
}
event_callback_fn
event_get_callback(const struct event *ev)
{
event_debug_assert_is_setup_(ev);
return ev->ev_callback;
}
void *
event_get_callback_arg(const struct event *ev)
{
event_debug_assert_is_setup_(ev);
return ev->ev_arg;
}
int
event_get_priority(const struct event *ev)
{
event_debug_assert_is_setup_(ev);
return ev->ev_pri;
}
int
event_add(struct event *ev, const struct timeval *tv)
{
int res;
if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
event_warnx("%s: event has no event_base set.", __func__);
return -1;
}
EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
res = event_add_nolock_(ev, tv, 0);
EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
return (res);
}
/* Helper callback: wake an event_base from another thread. This version
* works by writing a byte to one end of a socketpair, so that the event_base
* listening on the other end will wake up as the corresponding event
* triggers */
static int
evthread_notify_base_default(struct event_base *base)
{
char buf[1];
int r;
buf[0] = (char) 0;
#ifdef _WIN32
r = send(base->th_notify_fd[1], buf, 1, 0);
#else
r = write(base->th_notify_fd[1], buf, 1);
#endif
return (r < 0 && ! EVUTIL_ERR_IS_EAGAIN(errno)) ? -1 : 0;
}
#ifdef EVENT__HAVE_EVENTFD
/* Helper callback: wake an event_base from another thread. This version
* assumes that you have a working eventfd() implementation. */
static int
evthread_notify_base_eventfd(struct event_base *base)
{
ev_uint64_t msg = 1;
int r;
do {
r = write(base->th_notify_fd[0], (void*) &msg, sizeof(msg));
} while (r < 0 && errno == EAGAIN);
return (r < 0) ? -1 : 0;
}
#endif
/** Tell the thread currently running the event_loop for base (if any) that it
* needs to stop waiting in its dispatch function (if it is) and process all
* active callbacks. */
static int
evthread_notify_base(struct event_base *base)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (!base->th_notify_fn)
return -1;
if (base->is_notify_pending)
return 0;
base->is_notify_pending = 1;
return base->th_notify_fn(base);
}
/* Implementation function to remove a timeout on a currently pending event.
*/
int
event_remove_timer_nolock_(struct event *ev)
{
struct event_base *base = ev->ev_base;
EVENT_BASE_ASSERT_LOCKED(base);
event_debug_assert_is_setup_(ev);
event_debug(("event_remove_timer_nolock: event: %p", ev));
/* If it's not pending on a timeout, we don't need to do anything. */
if (ev->ev_flags & EVLIST_TIMEOUT) {
event_queue_remove_timeout(base, ev);
evutil_timerclear(&ev->ev_.ev_io.ev_timeout);
}
return (0);
}
int
event_remove_timer(struct event *ev)
{
int res;
if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
event_warnx("%s: event has no event_base set.", __func__);
return -1;
}
EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
res = event_remove_timer_nolock_(ev);
EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
return (res);
}
/* Implementation function to add an event. Works just like event_add,
* except: 1) it requires that we have the lock. 2) if tv_is_absolute is set,
* we treat tv as an absolute time, not as an interval to add to the current
* time */
int
event_add_nolock_(struct event *ev, const struct timeval *tv,
int tv_is_absolute)
{
struct event_base *base = ev->ev_base;
int res = 0;
int notify = 0;
EVENT_BASE_ASSERT_LOCKED(base);
event_debug_assert_is_setup_(ev);
event_debug((
"event_add: event: %p (fd "EV_SOCK_FMT"), %s%s%s%scall %p",
ev,
EV_SOCK_ARG(ev->ev_fd),
ev->ev_events & EV_READ ? "EV_READ " : " ",
ev->ev_events & EV_WRITE ? "EV_WRITE " : " ",
ev->ev_events & EV_CLOSED ? "EV_CLOSED " : " ",
tv ? "EV_TIMEOUT " : " ",
ev->ev_callback));
EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL));
if (ev->ev_flags & EVLIST_FINALIZING) {
/* XXXX debug */
return (-1);
}
/*
* prepare for timeout insertion further below, if we get a
* failure on any step, we should not change any state.
*/
if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) {
if (min_heap_reserve_(&base->timeheap,
1 + min_heap_size_(&base->timeheap)) == -1)
return (-1); /* ENOMEM == errno */
}
/* If the main thread is currently executing a signal event's
* callback, and we are not the main thread, then we want to wait
* until the callback is done before we mess with the event, or else
* we can race on ev_ncalls and ev_pncalls below. */
#ifndef EVENT__DISABLE_THREAD_SUPPORT
if (base->current_event == event_to_event_callback(ev) &&
(ev->ev_events & EV_SIGNAL)
&& !EVBASE_IN_THREAD(base)) {
++base->current_event_waiters;
EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
}
#endif
if ((ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL)) &&
!(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) {
if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))
res = evmap_io_add_(base, ev->ev_fd, ev);
else if (ev->ev_events & EV_SIGNAL)
res = evmap_signal_add_(base, (int)ev->ev_fd, ev);
if (res != -1)
event_queue_insert_inserted(base, ev);
if (res == 1) {
/* evmap says we need to notify the main thread. */
notify = 1;
res = 0;
}
}
/*
* we should change the timeout state only if the previous event
* addition succeeded.
*/
if (res != -1 && tv != NULL) {
struct timeval now;
int common_timeout;
#ifdef USE_REINSERT_TIMEOUT
int was_common;
int old_timeout_idx;
#endif
/*
* for persistent timeout events, we remember the
* timeout value and re-add the event.
*
* If tv_is_absolute, this was already set.
*/
if (ev->ev_closure == EV_CLOSURE_EVENT_PERSIST && !tv_is_absolute)
ev->ev_io_timeout = *tv;
#ifndef USE_REINSERT_TIMEOUT
if (ev->ev_flags & EVLIST_TIMEOUT) {
event_queue_remove_timeout(base, ev);
}
#endif
/* Check if it is active due to a timeout. Rescheduling
* this timeout before the callback can be executed
* removes it from the active list. */
if ((ev->ev_flags & EVLIST_ACTIVE) &&
(ev->ev_res & EV_TIMEOUT)) {
if (ev->ev_events & EV_SIGNAL) {
/* See if we are just active executing
* this event in a loop
*/
if (ev->ev_ncalls && ev->ev_pncalls) {
/* Abort loop */
*ev->ev_pncalls = 0;
}
}
event_queue_remove_active(base, event_to_event_callback(ev));
}
gettime(base, &now);
common_timeout = is_common_timeout(tv, base);
#ifdef USE_REINSERT_TIMEOUT
was_common = is_common_timeout(&ev->ev_timeout, base);
old_timeout_idx = COMMON_TIMEOUT_IDX(&ev->ev_timeout);
#endif
if (tv_is_absolute) {
ev->ev_timeout = *tv;
} else if (common_timeout) {
struct timeval tmp = *tv;
tmp.tv_usec &= MICROSECONDS_MASK;
evutil_timeradd(&now, &tmp, &ev->ev_timeout);
ev->ev_timeout.tv_usec |=
(tv->tv_usec & ~MICROSECONDS_MASK);
} else {
evutil_timeradd(&now, tv, &ev->ev_timeout);
}
event_debug((
"event_add: event %p, timeout in %d seconds %d useconds, call %p",
ev, (int)tv->tv_sec, (int)tv->tv_usec, ev->ev_callback));
#ifdef USE_REINSERT_TIMEOUT
event_queue_reinsert_timeout(base, ev, was_common, common_timeout, old_timeout_idx);
#else
event_queue_insert_timeout(base, ev);
#endif
if (common_timeout) {
struct common_timeout_list *ctl =
get_common_timeout_list(base, &ev->ev_timeout);
if (ev == TAILQ_FIRST(&ctl->events)) {
common_timeout_schedule(ctl, &now, ev);
}
} else {
struct event* top = NULL;
/* See if the earliest timeout is now earlier than it
* was before: if so, we will need to tell the main
* thread to wake up earlier than it would otherwise.
* We double check the timeout of the top element to
* handle time distortions due to system suspension.
*/
if (min_heap_elt_is_top_(ev))
notify = 1;
else if ((top = min_heap_top_(&base->timeheap)) != NULL &&
evutil_timercmp(&top->ev_timeout, &now, <))
notify = 1;
}
}
/* if we are not in the right thread, we need to wake up the loop */
if (res != -1 && notify && EVBASE_NEED_NOTIFY(base))
evthread_notify_base(base);
event_debug_note_add_(ev);
return (res);
}
static int
event_del_(struct event *ev, int blocking)
{
int res;
if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
event_warnx("%s: event has no event_base set.", __func__);
return -1;
}
EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
res = event_del_nolock_(ev, blocking);
EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
return (res);
}
int
event_del(struct event *ev)
{
return event_del_(ev, EVENT_DEL_AUTOBLOCK);
}
int
event_del_block(struct event *ev)
{
return event_del_(ev, EVENT_DEL_BLOCK);
}
int
event_del_noblock(struct event *ev)
{
return event_del_(ev, EVENT_DEL_NOBLOCK);
}
/** Helper for event_del: always called with th_base_lock held.
*
* "blocking" must be one of the EVENT_DEL_{BLOCK, NOBLOCK, AUTOBLOCK,
* EVEN_IF_FINALIZING} values. See those for more information.
*/
int
event_del_nolock_(struct event *ev, int blocking)
{
struct event_base *base;
int res = 0, notify = 0;
event_debug(("event_del: %p (fd "EV_SOCK_FMT"), callback %p",
ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_callback));
/* An event without a base has not been added */
if (ev->ev_base == NULL)
return (-1);
EVENT_BASE_ASSERT_LOCKED(ev->ev_base);
if (blocking != EVENT_DEL_EVEN_IF_FINALIZING) {
if (ev->ev_flags & EVLIST_FINALIZING) {
/* XXXX Debug */
return 0;
}
}
/* If the main thread is currently executing this event's callback,
* and we are not the main thread, then we want to wait until the
* callback is done before we start removing the event. That way,
* when this function returns, it will be safe to free the
* user-supplied argument. */
base = ev->ev_base;
#ifndef EVENT__DISABLE_THREAD_SUPPORT
if (blocking != EVENT_DEL_NOBLOCK &&
base->current_event == event_to_event_callback(ev) &&
!EVBASE_IN_THREAD(base) &&
(blocking == EVENT_DEL_BLOCK || !(ev->ev_events & EV_FINALIZE))) {
++base->current_event_waiters;
EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
}
#endif
EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL));
/* See if we are just active executing this event in a loop */
if (ev->ev_events & EV_SIGNAL) {
if (ev->ev_ncalls && ev->ev_pncalls) {
/* Abort loop */
*ev->ev_pncalls = 0;
}
}
if (ev->ev_flags & EVLIST_TIMEOUT) {
/* NOTE: We never need to notify the main thread because of a
* deleted timeout event: all that could happen if we don't is
* that the dispatch loop might wake up too early. But the
* point of notifying the main thread _is_ to wake up the
* dispatch loop early anyway, so we wouldn't gain anything by
* doing it.
*/
event_queue_remove_timeout(base, ev);
}
if (ev->ev_flags & EVLIST_ACTIVE)
event_queue_remove_active(base, event_to_event_callback(ev));
else if (ev->ev_flags & EVLIST_ACTIVE_LATER)
event_queue_remove_active_later(base, event_to_event_callback(ev));
if (ev->ev_flags & EVLIST_INSERTED) {
event_queue_remove_inserted(base, ev);
if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))
res = evmap_io_del_(base, ev->ev_fd, ev);
else
res = evmap_signal_del_(base, (int)ev->ev_fd, ev);
if (res == 1) {
/* evmap says we need to notify the main thread. */
notify = 1;
res = 0;
}
}
/* if we are not in the right thread, we need to wake up the loop */
if (res != -1 && notify && EVBASE_NEED_NOTIFY(base))
evthread_notify_base(base);
event_debug_note_del_(ev);
return (res);
}
void
event_active(struct event *ev, int res, short ncalls)
{
if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
event_warnx("%s: event has no event_base set.", __func__);
return;
}
EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
event_debug_assert_is_setup_(ev);
event_active_nolock_(ev, res, ncalls);
EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
}
void
event_active_nolock_(struct event *ev, int res, short ncalls)
{
struct event_base *base;
event_debug(("event_active: %p (fd "EV_SOCK_FMT"), res %d, callback %p",
ev, EV_SOCK_ARG(ev->ev_fd), (int)res, ev->ev_callback));
base = ev->ev_base;
EVENT_BASE_ASSERT_LOCKED(base);
if (ev->ev_flags & EVLIST_FINALIZING) {
/* XXXX debug */
return;
}
switch ((ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) {
default:
case EVLIST_ACTIVE|EVLIST_ACTIVE_LATER:
EVUTIL_ASSERT(0);
break;
case EVLIST_ACTIVE:
/* We get different kinds of events, add them together */
ev->ev_res |= res;
return;
case EVLIST_ACTIVE_LATER:
ev->ev_res |= res;
break;
case 0:
ev->ev_res = res;
break;
}
if (ev->ev_pri < base->event_running_priority)
base->event_continue = 1;
if (ev->ev_events & EV_SIGNAL) {
#ifndef EVENT__DISABLE_THREAD_SUPPORT
if (base->current_event == event_to_event_callback(ev) &&
!EVBASE_IN_THREAD(base)) {
++base->current_event_waiters;
EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
}
#endif
ev->ev_ncalls = ncalls;
ev->ev_pncalls = NULL;
}
event_callback_activate_nolock_(base, event_to_event_callback(ev));
}
void
event_active_later_(struct event *ev, int res)
{
EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
event_active_later_nolock_(ev, res);
EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
}
void
event_active_later_nolock_(struct event *ev, int res)
{
struct event_base *base = ev->ev_base;
EVENT_BASE_ASSERT_LOCKED(base);
if (ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) {
/* We get different kinds of events, add them together */
ev->ev_res |= res;
return;
}
ev->ev_res = res;
event_callback_activate_later_nolock_(base, event_to_event_callback(ev));
}
int
event_callback_activate_(struct event_base *base,
struct event_callback *evcb)
{
int r;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
r = event_callback_activate_nolock_(base, evcb);
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
int
event_callback_activate_nolock_(struct event_base *base,
struct event_callback *evcb)
{
int r = 1;
if (evcb->evcb_flags & EVLIST_FINALIZING)
return 0;
switch (evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) {
default:
EVUTIL_ASSERT(0);
case EVLIST_ACTIVE_LATER:
event_queue_remove_active_later(base, evcb);
r = 0;
break;
case EVLIST_ACTIVE:
return 0;
case 0:
break;
}
event_queue_insert_active(base, evcb);
if (EVBASE_NEED_NOTIFY(base))
evthread_notify_base(base);
return r;
}
int
event_callback_activate_later_nolock_(struct event_base *base,
struct event_callback *evcb)
{
if (evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))
return 0;
event_queue_insert_active_later(base, evcb);
if (EVBASE_NEED_NOTIFY(base))
evthread_notify_base(base);
return 1;
}
void
event_callback_init_(struct event_base *base,
struct event_callback *cb)
{
memset(cb, 0, sizeof(*cb));
cb->evcb_pri = base->nactivequeues - 1;
}
int
event_callback_cancel_(struct event_base *base,
struct event_callback *evcb)
{
int r;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
r = event_callback_cancel_nolock_(base, evcb, 0);
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
int
event_callback_cancel_nolock_(struct event_base *base,
struct event_callback *evcb, int even_if_finalizing)
{
if ((evcb->evcb_flags & EVLIST_FINALIZING) && !even_if_finalizing)
return 0;
if (evcb->evcb_flags & EVLIST_INIT)
return event_del_nolock_(event_callback_to_event(evcb),
even_if_finalizing ? EVENT_DEL_EVEN_IF_FINALIZING : EVENT_DEL_AUTOBLOCK);
switch ((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) {
default:
case EVLIST_ACTIVE|EVLIST_ACTIVE_LATER:
EVUTIL_ASSERT(0);
break;
case EVLIST_ACTIVE:
/* We get different kinds of events, add them together */
event_queue_remove_active(base, evcb);
return 0;
case EVLIST_ACTIVE_LATER:
event_queue_remove_active_later(base, evcb);
break;
case 0:
break;
}
return 0;
}
void
event_deferred_cb_init_(struct event_callback *cb, ev_uint8_t priority, deferred_cb_fn fn, void *arg)
{
memset(cb, 0, sizeof(*cb));
cb->evcb_cb_union.evcb_selfcb = fn;
cb->evcb_arg = arg;
cb->evcb_pri = priority;
cb->evcb_closure = EV_CLOSURE_CB_SELF;
}
void
event_deferred_cb_set_priority_(struct event_callback *cb, ev_uint8_t priority)
{
cb->evcb_pri = priority;
}
void
event_deferred_cb_cancel_(struct event_base *base, struct event_callback *cb)
{
if (!base)
base = current_base;
event_callback_cancel_(base, cb);
}
#define MAX_DEFERREDS_QUEUED 32
int
event_deferred_cb_schedule_(struct event_base *base, struct event_callback *cb)
{
int r = 1;
if (!base)
base = current_base;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
if (base->n_deferreds_queued > MAX_DEFERREDS_QUEUED) {
r = event_callback_activate_later_nolock_(base, cb);
} else {
r = event_callback_activate_nolock_(base, cb);
if (r) {
++base->n_deferreds_queued;
}
}
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
static int
timeout_next(struct event_base *base, struct timeval **tv_p)
{
/* Caller must hold th_base_lock */
struct timeval now;
struct event *ev;
struct timeval *tv = *tv_p;
int res = 0;
ev = min_heap_top_(&base->timeheap);
if (ev == NULL) {
/* if no time-based events are active wait for I/O */
*tv_p = NULL;
goto out;
}
if (gettime(base, &now) == -1) {
res = -1;
goto out;
}
if (evutil_timercmp(&ev->ev_timeout, &now, <=)) {
evutil_timerclear(tv);
goto out;
}
evutil_timersub(&ev->ev_timeout, &now, tv);
EVUTIL_ASSERT(tv->tv_sec >= 0);
EVUTIL_ASSERT(tv->tv_usec >= 0);
event_debug(("timeout_next: event: %p, in %d seconds, %d useconds", ev, (int)tv->tv_sec, (int)tv->tv_usec));
out:
return (res);
}
/* Activate every event whose timeout has elapsed. */
static void
timeout_process(struct event_base *base)
{
/* Caller must hold lock. */
struct timeval now;
struct event *ev;
if (min_heap_empty_(&base->timeheap)) {
return;
}
gettime(base, &now);
while ((ev = min_heap_top_(&base->timeheap))) {
if (evutil_timercmp(&ev->ev_timeout, &now, >))
break;
/* delete this event from the I/O queues */
event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
event_debug(("timeout_process: event: %p, call %p",
ev, ev->ev_callback));
event_active_nolock_(ev, EV_TIMEOUT, 1);
}
}
#if (EVLIST_INTERNAL >> 4) != 1
#error "Mismatch for value of EVLIST_INTERNAL"
#endif
#ifndef MAX
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif
#define MAX_EVENT_COUNT(var, v) var = MAX(var, v)
/* These are a fancy way to spell
if (flags & EVLIST_INTERNAL)
base->event_count--/++;
*/
#define DECR_EVENT_COUNT(base,flags) \
((base)->event_count -= (~((flags) >> 4) & 1))
#define INCR_EVENT_COUNT(base,flags) do { \
((base)->event_count += (~((flags) >> 4) & 1)); \
MAX_EVENT_COUNT((base)->event_count_max, (base)->event_count); \
} while (0)
static void
event_queue_remove_inserted(struct event_base *base, struct event *ev)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (EVUTIL_FAILURE_CHECK(!(ev->ev_flags & EVLIST_INSERTED))) {
event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__,
ev, EV_SOCK_ARG(ev->ev_fd), EVLIST_INSERTED);
return;
}
DECR_EVENT_COUNT(base, ev->ev_flags);
ev->ev_flags &= ~EVLIST_INSERTED;
}
static void
event_queue_remove_active(struct event_base *base, struct event_callback *evcb)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (EVUTIL_FAILURE_CHECK(!(evcb->evcb_flags & EVLIST_ACTIVE))) {
event_errx(1, "%s: %p not on queue %x", __func__,
evcb, EVLIST_ACTIVE);
return;
}
DECR_EVENT_COUNT(base, evcb->evcb_flags);
evcb->evcb_flags &= ~EVLIST_ACTIVE;
base->event_count_active--;
TAILQ_REMOVE(&base->activequeues[evcb->evcb_pri],
evcb, evcb_active_next);
}
static void
event_queue_remove_active_later(struct event_base *base, struct event_callback *evcb)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (EVUTIL_FAILURE_CHECK(!(evcb->evcb_flags & EVLIST_ACTIVE_LATER))) {
event_errx(1, "%s: %p not on queue %x", __func__,
evcb, EVLIST_ACTIVE_LATER);
return;
}
DECR_EVENT_COUNT(base, evcb->evcb_flags);
evcb->evcb_flags &= ~EVLIST_ACTIVE_LATER;
base->event_count_active--;
TAILQ_REMOVE(&base->active_later_queue, evcb, evcb_active_next);
}
static void
event_queue_remove_timeout(struct event_base *base, struct event *ev)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (EVUTIL_FAILURE_CHECK(!(ev->ev_flags & EVLIST_TIMEOUT))) {
event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__,
ev, EV_SOCK_ARG(ev->ev_fd), EVLIST_TIMEOUT);
return;
}
DECR_EVENT_COUNT(base, ev->ev_flags);
ev->ev_flags &= ~EVLIST_TIMEOUT;
if (is_common_timeout(&ev->ev_timeout, base)) {
struct common_timeout_list *ctl =
get_common_timeout_list(base, &ev->ev_timeout);
TAILQ_REMOVE(&ctl->events, ev,
ev_timeout_pos.ev_next_with_common_timeout);
} else {
min_heap_erase_(&base->timeheap, ev);
}
}
#ifdef USE_REINSERT_TIMEOUT
/* Remove and reinsert 'ev' into the timeout queue. */
static void
event_queue_reinsert_timeout(struct event_base *base, struct event *ev,
int was_common, int is_common, int old_timeout_idx)
{
struct common_timeout_list *ctl;
if (!(ev->ev_flags & EVLIST_TIMEOUT)) {
event_queue_insert_timeout(base, ev);
return;
}
switch ((was_common<<1) | is_common) {
case 3: /* Changing from one common timeout to another */
ctl = base->common_timeout_queues[old_timeout_idx];
TAILQ_REMOVE(&ctl->events, ev,
ev_timeout_pos.ev_next_with_common_timeout);
ctl = get_common_timeout_list(base, &ev->ev_timeout);
insert_common_timeout_inorder(ctl, ev);
break;
case 2: /* Was common; is no longer common */
ctl = base->common_timeout_queues[old_timeout_idx];
TAILQ_REMOVE(&ctl->events, ev,
ev_timeout_pos.ev_next_with_common_timeout);
min_heap_push_(&base->timeheap, ev);
break;
case 1: /* Wasn't common; has become common. */
min_heap_erase_(&base->timeheap, ev);
ctl = get_common_timeout_list(base, &ev->ev_timeout);
insert_common_timeout_inorder(ctl, ev);
break;
case 0: /* was in heap; is still on heap. */
min_heap_adjust_(&base->timeheap, ev);
break;
default:
EVUTIL_ASSERT(0); /* unreachable */
break;
}
}
#endif
/* Add 'ev' to the common timeout list in 'ev'. */
static void
insert_common_timeout_inorder(struct common_timeout_list *ctl,
struct event *ev)
{
struct event *e;
/* By all logic, we should just be able to append 'ev' to the end of
* ctl->events, since the timeout on each 'ev' is set to {the common
* timeout} + {the time when we add the event}, and so the events
* should arrive in order of their timeeouts. But just in case
* there's some wacky threading issue going on, we do a search from
* the end of 'ev' to find the right insertion point.
*/
TAILQ_FOREACH_REVERSE(e, &ctl->events,
event_list, ev_timeout_pos.ev_next_with_common_timeout) {
/* This timercmp is a little sneaky, since both ev and e have
* magic values in tv_usec. Fortunately, they ought to have
* the _same_ magic values in tv_usec. Let's assert for that.
*/
EVUTIL_ASSERT(
is_same_common_timeout(&e->ev_timeout, &ev->ev_timeout));
if (evutil_timercmp(&ev->ev_timeout, &e->ev_timeout, >=)) {
TAILQ_INSERT_AFTER(&ctl->events, e, ev,
ev_timeout_pos.ev_next_with_common_timeout);
return;
}
}
TAILQ_INSERT_HEAD(&ctl->events, ev,
ev_timeout_pos.ev_next_with_common_timeout);
}
static void
event_queue_insert_inserted(struct event_base *base, struct event *ev)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (EVUTIL_FAILURE_CHECK(ev->ev_flags & EVLIST_INSERTED)) {
event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already inserted", __func__,
ev, EV_SOCK_ARG(ev->ev_fd));
return;
}
INCR_EVENT_COUNT(base, ev->ev_flags);
ev->ev_flags |= EVLIST_INSERTED;
}
static void
event_queue_insert_active(struct event_base *base, struct event_callback *evcb)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (evcb->evcb_flags & EVLIST_ACTIVE) {
/* Double insertion is possible for active events */
return;
}
INCR_EVENT_COUNT(base, evcb->evcb_flags);
evcb->evcb_flags |= EVLIST_ACTIVE;
base->event_count_active++;
MAX_EVENT_COUNT(base->event_count_active_max, base->event_count_active);
EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues);
TAILQ_INSERT_TAIL(&base->activequeues[evcb->evcb_pri],
evcb, evcb_active_next);
}
static void
event_queue_insert_active_later(struct event_base *base, struct event_callback *evcb)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (evcb->evcb_flags & (EVLIST_ACTIVE_LATER|EVLIST_ACTIVE)) {
/* Double insertion is possible */
return;
}
INCR_EVENT_COUNT(base, evcb->evcb_flags);
evcb->evcb_flags |= EVLIST_ACTIVE_LATER;
base->event_count_active++;
MAX_EVENT_COUNT(base->event_count_active_max, base->event_count_active);
EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues);
TAILQ_INSERT_TAIL(&base->active_later_queue, evcb, evcb_active_next);
}
static void
event_queue_insert_timeout(struct event_base *base, struct event *ev)
{
EVENT_BASE_ASSERT_LOCKED(base);
if (EVUTIL_FAILURE_CHECK(ev->ev_flags & EVLIST_TIMEOUT)) {
event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already on timeout", __func__,
ev, EV_SOCK_ARG(ev->ev_fd));
return;
}
INCR_EVENT_COUNT(base, ev->ev_flags);
ev->ev_flags |= EVLIST_TIMEOUT;
if (is_common_timeout(&ev->ev_timeout, base)) {
struct common_timeout_list *ctl =
get_common_timeout_list(base, &ev->ev_timeout);
insert_common_timeout_inorder(ctl, ev);
} else {
min_heap_push_(&base->timeheap, ev);
}
}
static void
event_queue_make_later_events_active(struct event_base *base)
{
struct event_callback *evcb;
EVENT_BASE_ASSERT_LOCKED(base);
while ((evcb = TAILQ_FIRST(&base->active_later_queue))) {
TAILQ_REMOVE(&base->active_later_queue, evcb, evcb_active_next);
evcb->evcb_flags = (evcb->evcb_flags & ~EVLIST_ACTIVE_LATER) | EVLIST_ACTIVE;
EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues);
TAILQ_INSERT_TAIL(&base->activequeues[evcb->evcb_pri], evcb, evcb_active_next);
base->n_deferreds_queued += (evcb->evcb_closure == EV_CLOSURE_CB_SELF);
}
}
/* Functions for debugging */
const char *
event_get_version(void)
{
return (EVENT__VERSION);
}
ev_uint32_t
event_get_version_number(void)
{
return (EVENT__NUMERIC_VERSION);
}
/*
* No thread-safe interface needed - the information should be the same
* for all threads.
*/
const char *
event_get_method(void)
{
return (current_base->evsel->name);
}
#ifndef EVENT__DISABLE_MM_REPLACEMENT
static void *(*mm_malloc_fn_)(size_t sz) = NULL;
static void *(*mm_realloc_fn_)(void *p, size_t sz) = NULL;
static void (*mm_free_fn_)(void *p) = NULL;
void *
event_mm_malloc_(size_t sz)
{
if (sz == 0)
return NULL;
if (mm_malloc_fn_)
return mm_malloc_fn_(sz);
else
return malloc(sz);
}
void *
event_mm_calloc_(size_t count, size_t size)
{
if (count == 0 || size == 0)
return NULL;
if (mm_malloc_fn_) {
size_t sz = count * size;
void *p = NULL;
if (count > EV_SIZE_MAX / size)
goto error;
p = mm_malloc_fn_(sz);
if (p)
return memset(p, 0, sz);
} else {
void *p = calloc(count, size);
#ifdef _WIN32
/* Windows calloc doesn't reliably set ENOMEM */
if (p == NULL)
goto error;
#endif
return p;
}
error:
errno = ENOMEM;
return NULL;
}
char *
event_mm_strdup_(const char *str)
{
if (!str) {
errno = EINVAL;
return NULL;
}
if (mm_malloc_fn_) {
size_t ln = strlen(str);
void *p = NULL;
if (ln == EV_SIZE_MAX)
goto error;
p = mm_malloc_fn_(ln+1);
if (p)
return memcpy(p, str, ln+1);
} else
#ifdef _WIN32
return _strdup(str);
#else
return strdup(str);
#endif
error:
errno = ENOMEM;
return NULL;
}
void *
event_mm_realloc_(void *ptr, size_t sz)
{
if (mm_realloc_fn_)
return mm_realloc_fn_(ptr, sz);
else
return realloc(ptr, sz);
}
void
event_mm_free_(void *ptr)
{
if (mm_free_fn_)
mm_free_fn_(ptr);
else
free(ptr);
}
void
event_set_mem_functions(void *(*malloc_fn)(size_t sz),
void *(*realloc_fn)(void *ptr, size_t sz),
void (*free_fn)(void *ptr))
{
mm_malloc_fn_ = malloc_fn;
mm_realloc_fn_ = realloc_fn;
mm_free_fn_ = free_fn;
}
#endif
#ifdef EVENT__HAVE_EVENTFD
static void
evthread_notify_drain_eventfd(evutil_socket_t fd, short what, void *arg)
{
ev_uint64_t msg;
ev_ssize_t r;
struct event_base *base = arg;
r = read(fd, (void*) &msg, sizeof(msg));
if (r<0 && errno != EAGAIN) {
event_sock_warn(fd, "Error reading from eventfd");
}
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
base->is_notify_pending = 0;
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
#endif
static void
evthread_notify_drain_default(evutil_socket_t fd, short what, void *arg)
{
unsigned char buf[1024];
struct event_base *base = arg;
#ifdef _WIN32
while (recv(fd, (char*)buf, sizeof(buf), 0) > 0)
;
#else
while (read(fd, (char*)buf, sizeof(buf)) > 0)
;
#endif
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
base->is_notify_pending = 0;
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
int
evthread_make_base_notifiable(struct event_base *base)
{
int r;
if (!base)
return -1;
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
r = evthread_make_base_notifiable_nolock_(base);
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
static int
evthread_make_base_notifiable_nolock_(struct event_base *base)
{
void (*cb)(evutil_socket_t, short, void *);
int (*notify)(struct event_base *);
if (base->th_notify_fn != NULL) {
/* The base is already notifiable: we're doing fine. */
return 0;
}
#if defined(EVENT__HAVE_WORKING_KQUEUE)
if (base->evsel == &kqops && event_kq_add_notify_event_(base) == 0) {
base->th_notify_fn = event_kq_notify_base_;
/* No need to add an event here; the backend can wake
* itself up just fine. */
return 0;
}
#endif
#ifdef EVENT__HAVE_EVENTFD
base->th_notify_fd[0] = evutil_eventfd_(0,
EVUTIL_EFD_CLOEXEC|EVUTIL_EFD_NONBLOCK);
if (base->th_notify_fd[0] >= 0) {
base->th_notify_fd[1] = -1;
notify = evthread_notify_base_eventfd;
cb = evthread_notify_drain_eventfd;
} else
#endif
if (evutil_make_internal_pipe_(base->th_notify_fd) == 0) {
notify = evthread_notify_base_default;
cb = evthread_notify_drain_default;
} else {
return -1;
}
base->th_notify_fn = notify;
/* prepare an event that we can use for wakeup */
event_assign(&base->th_notify, base, base->th_notify_fd[0],
EV_READ|EV_PERSIST, cb, base);
/* we need to mark this as internal event */
base->th_notify.ev_flags |= EVLIST_INTERNAL;
event_priority_set(&base->th_notify, 0);
return event_add_nolock_(&base->th_notify, NULL, 0);
}
int
event_base_foreach_event_nolock_(struct event_base *base,
event_base_foreach_event_cb fn, void *arg)
{
int r, i;
unsigned u;
struct event *ev;
/* Start out with all the EVLIST_INSERTED events. */
if ((r = evmap_foreach_event_(base, fn, arg)))
return r;
/* Okay, now we deal with those events that have timeouts and are in
* the min-heap. */
for (u = 0; u < base->timeheap.n; ++u) {
ev = base->timeheap.p[u];
if (ev->ev_flags & EVLIST_INSERTED) {
/* we already processed this one */
continue;
}
if ((r = fn(base, ev, arg)))
return r;
}
/* Now for the events in one of the timeout queues.
* the min-heap. */
for (i = 0; i < base->n_common_timeouts; ++i) {
struct common_timeout_list *ctl =
base->common_timeout_queues[i];
TAILQ_FOREACH(ev, &ctl->events,
ev_timeout_pos.ev_next_with_common_timeout) {
if (ev->ev_flags & EVLIST_INSERTED) {
/* we already processed this one */
continue;
}
if ((r = fn(base, ev, arg)))
return r;
}
}
/* Finally, we deal wit all the active events that we haven't touched
* yet. */
for (i = 0; i < base->nactivequeues; ++i) {
struct event_callback *evcb;
TAILQ_FOREACH(evcb, &base->activequeues[i], evcb_active_next) {
if ((evcb->evcb_flags & (EVLIST_INIT|EVLIST_INSERTED|EVLIST_TIMEOUT)) != EVLIST_INIT) {
/* This isn't an event (evlist_init clear), or
* we already processed it. (inserted or
* timeout set */
continue;
}
ev = event_callback_to_event(evcb);
if ((r = fn(base, ev, arg)))
return r;
}
}
return 0;
}
/* Helper for event_base_dump_events: called on each event in the event base;
* dumps only the inserted events. */
static int
dump_inserted_event_fn(const struct event_base *base, const struct event *e, void *arg)
{
FILE *output = arg;
const char *gloss = (e->ev_events & EV_SIGNAL) ?
"sig" : "fd ";
if (! (e->ev_flags & (EVLIST_INSERTED|EVLIST_TIMEOUT)))
return 0;
fprintf(output, " %p [%s "EV_SOCK_FMT"]%s%s%s%s%s%s",
(void*)e, gloss, EV_SOCK_ARG(e->ev_fd),
(e->ev_events&EV_READ)?" Read":"",
(e->ev_events&EV_WRITE)?" Write":"",
(e->ev_events&EV_CLOSED)?" EOF":"",
(e->ev_events&EV_SIGNAL)?" Signal":"",
(e->ev_events&EV_PERSIST)?" Persist":"",
(e->ev_flags&EVLIST_INTERNAL)?" Internal":"");
if (e->ev_flags & EVLIST_TIMEOUT) {
struct timeval tv;
tv.tv_sec = e->ev_timeout.tv_sec;
tv.tv_usec = e->ev_timeout.tv_usec & MICROSECONDS_MASK;
evutil_timeradd(&tv, &base->tv_clock_diff, &tv);
fprintf(output, " Timeout=%ld.%06d",
(long)tv.tv_sec, (int)(tv.tv_usec & MICROSECONDS_MASK));
}
fputc('\n', output);
return 0;
}
/* Helper for event_base_dump_events: called on each event in the event base;
* dumps only the active events. */
static int
dump_active_event_fn(const struct event_base *base, const struct event *e, void *arg)
{
FILE *output = arg;
const char *gloss = (e->ev_events & EV_SIGNAL) ?
"sig" : "fd ";
if (! (e->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)))
return 0;
fprintf(output, " %p [%s "EV_SOCK_FMT", priority=%d]%s%s%s%s%s active%s%s\n",
(void*)e, gloss, EV_SOCK_ARG(e->ev_fd), e->ev_pri,
(e->ev_res&EV_READ)?" Read":"",
(e->ev_res&EV_WRITE)?" Write":"",
(e->ev_res&EV_CLOSED)?" EOF":"",
(e->ev_res&EV_SIGNAL)?" Signal":"",
(e->ev_res&EV_TIMEOUT)?" Timeout":"",
(e->ev_flags&EVLIST_INTERNAL)?" [Internal]":"",
(e->ev_flags&EVLIST_ACTIVE_LATER)?" [NextTime]":"");
return 0;
}
int
event_base_foreach_event(struct event_base *base,
event_base_foreach_event_cb fn, void *arg)
{
int r;
if ((!fn) || (!base)) {
return -1;
}
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
r = event_base_foreach_event_nolock_(base, fn, arg);
EVBASE_RELEASE_LOCK(base, th_base_lock);
return r;
}
void
event_base_dump_events(struct event_base *base, FILE *output)
{
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
fprintf(output, "Inserted events:\n");
event_base_foreach_event_nolock_(base, dump_inserted_event_fn, output);
fprintf(output, "Active events:\n");
event_base_foreach_event_nolock_(base, dump_active_event_fn, output);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
void
event_base_active_by_fd(struct event_base *base, evutil_socket_t fd, short events)
{
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
evmap_io_active_(base, fd, events & (EV_READ|EV_WRITE|EV_CLOSED));
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
void
event_base_active_by_signal(struct event_base *base, int sig)
{
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
evmap_signal_active_(base, sig, 1);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
void
event_base_add_virtual_(struct event_base *base)
{
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
base->virtual_event_count++;
MAX_EVENT_COUNT(base->virtual_event_count_max, base->virtual_event_count);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
void
event_base_del_virtual_(struct event_base *base)
{
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
EVUTIL_ASSERT(base->virtual_event_count > 0);
base->virtual_event_count--;
if (base->virtual_event_count == 0 && EVBASE_NEED_NOTIFY(base))
evthread_notify_base(base);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
static void
event_free_debug_globals_locks(void)
{
#ifndef EVENT__DISABLE_THREAD_SUPPORT
#ifndef EVENT__DISABLE_DEBUG_MODE
if (event_debug_map_lock_ != NULL) {
EVTHREAD_FREE_LOCK(event_debug_map_lock_, 0);
event_debug_map_lock_ = NULL;
evthreadimpl_disable_lock_debugging_();
}
#endif /* EVENT__DISABLE_DEBUG_MODE */
#endif /* EVENT__DISABLE_THREAD_SUPPORT */
return;
}
static void
event_free_debug_globals(void)
{
event_free_debug_globals_locks();
}
static void
event_free_evsig_globals(void)
{
evsig_free_globals_();
}
static void
event_free_evutil_globals(void)
{
evutil_free_globals_();
}
static void
event_free_globals(void)
{
event_free_debug_globals();
event_free_evsig_globals();
event_free_evutil_globals();
}
void
libevent_global_shutdown(void)
{
event_disable_debug_mode();
event_free_globals();
}
#ifndef EVENT__DISABLE_THREAD_SUPPORT
int
event_global_setup_locks_(const int enable_locks)
{
#ifndef EVENT__DISABLE_DEBUG_MODE
EVTHREAD_SETUP_GLOBAL_LOCK(event_debug_map_lock_, 0);
#endif
if (evsig_global_setup_locks_(enable_locks) < 0)
return -1;
if (evutil_global_setup_locks_(enable_locks) < 0)
return -1;
if (evutil_secure_rng_global_setup_locks_(enable_locks) < 0)
return -1;
return 0;
}
#endif
void
event_base_assert_ok_(struct event_base *base)
{
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
event_base_assert_ok_nolock_(base);
EVBASE_RELEASE_LOCK(base, th_base_lock);
}
void
event_base_assert_ok_nolock_(struct event_base *base)
{
int i;
int count;
/* First do checks on the per-fd and per-signal lists */
evmap_check_integrity_(base);
/* Check the heap property */
for (i = 1; i < (int)base->timeheap.n; ++i) {
int parent = (i - 1) / 2;
struct event *ev, *p_ev;
ev = base->timeheap.p[i];
p_ev = base->timeheap.p[parent];
EVUTIL_ASSERT(ev->ev_flags & EVLIST_TIMEOUT);
EVUTIL_ASSERT(evutil_timercmp(&p_ev->ev_timeout, &ev->ev_timeout, <=));
EVUTIL_ASSERT(ev->ev_timeout_pos.min_heap_idx == i);
}
/* Check that the common timeouts are fine */
for (i = 0; i < base->n_common_timeouts; ++i) {
struct common_timeout_list *ctl = base->common_timeout_queues[i];
struct event *last=NULL, *ev;
EVUTIL_ASSERT_TAILQ_OK(&ctl->events, event, ev_timeout_pos.ev_next_with_common_timeout);
TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) {
if (last)
EVUTIL_ASSERT(evutil_timercmp(&last->ev_timeout, &ev->ev_timeout, <=));
EVUTIL_ASSERT(ev->ev_flags & EVLIST_TIMEOUT);
EVUTIL_ASSERT(is_common_timeout(&ev->ev_timeout,base));
EVUTIL_ASSERT(COMMON_TIMEOUT_IDX(&ev->ev_timeout) == i);
last = ev;
}
}
/* Check the active queues. */
count = 0;
for (i = 0; i < base->nactivequeues; ++i) {
struct event_callback *evcb;
EVUTIL_ASSERT_TAILQ_OK(&base->activequeues[i], event_callback, evcb_active_next);
TAILQ_FOREACH(evcb, &base->activequeues[i], evcb_active_next) {
EVUTIL_ASSERT((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) == EVLIST_ACTIVE);
EVUTIL_ASSERT(evcb->evcb_pri == i);
++count;
}
}
{
struct event_callback *evcb;
TAILQ_FOREACH(evcb, &base->active_later_queue, evcb_active_next) {
EVUTIL_ASSERT((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) == EVLIST_ACTIVE_LATER);
++count;
}
}
EVUTIL_ASSERT(count == base->event_count_active);
}