385195c062
container structures, depending on VIMAGE_GLOBALS compile time option. Make VIMAGE_GLOBALS a new compile-time option, which by default will not be defined, resulting in instatiations of global variables selected for V_irtualization (enclosed in #ifdef VIMAGE_GLOBALS blocks) to be effectively compiled out. Instantiate new global container structures to hold V_irtualized variables: vnet_net_0, vnet_inet_0, vnet_inet6_0, vnet_ipsec_0, vnet_netgraph_0, and vnet_gif_0. Update the VSYM() macro so that depending on VIMAGE_GLOBALS the V_ macros resolve either to the original globals, or to fields inside container structures, i.e. effectively #ifdef VIMAGE_GLOBALS #define V_rt_tables rt_tables #else #define V_rt_tables vnet_net_0._rt_tables #endif Update SYSCTL_V_*() macros to operate either on globals or on fields inside container structs. Extend the internal kldsym() lookups with the ability to resolve selected fields inside the virtualization container structs. This applies only to the fields which are explicitly registered for kldsym() visibility via VNET_MOD_DECLARE() and vnet_mod_register(), currently this is done only in sys/net/if.c. Fix a few broken instances of MODULE_GLOBAL() macro use in SCTP code, and modify the MODULE_GLOBAL() macro to resolve to V_ macros, which in turn result in proper code being generated depending on VIMAGE_GLOBALS. De-virtualize local static variables in sys/contrib/pf/net/pf_subr.c which were prematurely V_irtualized by automated V_ prepending scripts during earlier merging steps. PF virtualization will be done separately, most probably after next PF import. Convert a few variable initializations at instantiation to initialization in init functions, most notably in ipfw. Also convert TUNABLE_INT() initializers for V_ variables to TUNABLE_FETCH_INT() in initializer functions. Discussed at: devsummit Strassburg Reviewed by: bz, julian Approved by: julian (mentor) Obtained from: //depot/projects/vimage-commit2/... X-MFC after: never Sponsored by: NLnet Foundation, The FreeBSD Foundation
2274 lines
62 KiB
C
2274 lines
62 KiB
C
/*-
|
|
* Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
|
|
* Portions Copyright (c) 2000 Akamba Corp.
|
|
* All rights reserved
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#define DUMMYNET_DEBUG
|
|
|
|
#include "opt_inet6.h"
|
|
|
|
/*
|
|
* This module implements IP dummynet, a bandwidth limiter/delay emulator
|
|
* used in conjunction with the ipfw package.
|
|
* Description of the data structures used is in ip_dummynet.h
|
|
* Here you mainly find the following blocks of code:
|
|
* + variable declarations;
|
|
* + heap management functions;
|
|
* + scheduler and dummynet functions;
|
|
* + configuration and initialization.
|
|
*
|
|
* NOTA BENE: critical sections are protected by the "dummynet lock".
|
|
*
|
|
* Most important Changes:
|
|
*
|
|
* 011004: KLDable
|
|
* 010124: Fixed WF2Q behaviour
|
|
* 010122: Fixed spl protection.
|
|
* 000601: WF2Q support
|
|
* 000106: large rewrite, use heaps to handle very many pipes.
|
|
* 980513: initial release
|
|
*
|
|
* include files marked with XXX are probably not needed
|
|
*/
|
|
|
|
#include <sys/limits.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/time.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <net/if.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_dummynet.h>
|
|
#include <netinet/ip_var.h>
|
|
|
|
#include <netinet/if_ether.h> /* for struct arpcom */
|
|
|
|
#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
|
|
#include <netinet6/ip6_var.h>
|
|
|
|
/*
|
|
* We keep a private variable for the simulation time, but we could
|
|
* probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
|
|
*/
|
|
static dn_key curr_time = 0 ; /* current simulation time */
|
|
|
|
static int dn_hash_size = 64 ; /* default hash size */
|
|
|
|
/* statistics on number of queue searches and search steps */
|
|
static long searches, search_steps ;
|
|
static int pipe_expire = 1 ; /* expire queue if empty */
|
|
static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
|
|
|
|
static long pipe_slot_limit = 100; /* Foot shooting limit for pipe queues. */
|
|
static long pipe_byte_limit = 1024 * 1024;
|
|
|
|
static int red_lookup_depth = 256; /* RED - default lookup table depth */
|
|
static int red_avg_pkt_size = 512; /* RED - default medium packet size */
|
|
static int red_max_pkt_size = 1500; /* RED - default max packet size */
|
|
|
|
static struct timeval prev_t, t;
|
|
static long tick_last; /* Last tick duration (usec). */
|
|
static long tick_delta; /* Last vs standard tick diff (usec). */
|
|
static long tick_delta_sum; /* Accumulated tick difference (usec).*/
|
|
static long tick_adjustment; /* Tick adjustments done. */
|
|
static long tick_lost; /* Lost(coalesced) ticks number. */
|
|
/* Adjusted vs non-adjusted curr_time difference (ticks). */
|
|
static long tick_diff;
|
|
|
|
static int io_fast;
|
|
static unsigned long io_pkt;
|
|
static unsigned long io_pkt_fast;
|
|
static unsigned long io_pkt_drop;
|
|
|
|
/*
|
|
* Three heaps contain queues and pipes that the scheduler handles:
|
|
*
|
|
* ready_heap contains all dn_flow_queue related to fixed-rate pipes.
|
|
*
|
|
* wfq_ready_heap contains the pipes associated with WF2Q flows
|
|
*
|
|
* extract_heap contains pipes associated with delay lines.
|
|
*
|
|
*/
|
|
|
|
MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
|
|
|
|
static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
|
|
|
|
static int heap_init(struct dn_heap *h, int size);
|
|
static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
|
|
static void heap_extract(struct dn_heap *h, void *obj);
|
|
static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
|
|
struct mbuf **tail);
|
|
static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
|
|
struct mbuf **tail);
|
|
static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
|
|
struct mbuf **tail);
|
|
|
|
#define HASHSIZE 16
|
|
#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
|
|
static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
|
|
static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
|
|
|
|
static struct callout dn_timeout;
|
|
|
|
extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
|
|
|
|
#ifdef SYSCTL_NODE
|
|
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
|
|
CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, curr_time,
|
|
CTLFLAG_RD, &curr_time, 0, "Current tick");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
|
|
CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
|
|
CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, searches,
|
|
CTLFLAG_RD, &searches, 0, "Number of queue searches");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, search_steps,
|
|
CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
|
|
CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
|
|
CTLFLAG_RW, &dn_max_ratio, 0,
|
|
"Max ratio between dynamic queues and buckets");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
|
|
CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
|
|
CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
|
|
CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
|
|
CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
|
|
CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
|
|
CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
|
|
CTLFLAG_RD, &tick_diff, 0,
|
|
"Adjusted vs non-adjusted curr_time difference (ticks).");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
|
|
CTLFLAG_RD, &tick_lost, 0,
|
|
"Number of ticks coalesced by dummynet taskqueue.");
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
|
|
CTLFLAG_RW, &io_fast, 0, "Enable fast dummynet io.");
|
|
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
|
|
CTLFLAG_RD, &io_pkt, 0,
|
|
"Number of packets passed to dummynet.");
|
|
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
|
|
CTLFLAG_RD, &io_pkt_fast, 0,
|
|
"Number of packets bypassed dummynet scheduler.");
|
|
SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
|
|
CTLFLAG_RD, &io_pkt_drop, 0,
|
|
"Number of packets dropped by dummynet.");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
|
|
CTLFLAG_RW, &pipe_slot_limit, 0, "Upper limit in slots for pipe queue.");
|
|
SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
|
|
CTLFLAG_RW, &pipe_byte_limit, 0, "Upper limit in bytes for pipe queue.");
|
|
#endif
|
|
|
|
#ifdef DUMMYNET_DEBUG
|
|
int dummynet_debug = 0;
|
|
#ifdef SYSCTL_NODE
|
|
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
|
|
0, "control debugging printfs");
|
|
#endif
|
|
#define DPRINTF(X) if (dummynet_debug) printf X
|
|
#else
|
|
#define DPRINTF(X)
|
|
#endif
|
|
|
|
static struct task dn_task;
|
|
static struct taskqueue *dn_tq = NULL;
|
|
static void dummynet_task(void *, int);
|
|
|
|
static struct mtx dummynet_mtx;
|
|
#define DUMMYNET_LOCK_INIT() \
|
|
mtx_init(&dummynet_mtx, "dummynet", NULL, MTX_DEF)
|
|
#define DUMMYNET_LOCK_DESTROY() mtx_destroy(&dummynet_mtx)
|
|
#define DUMMYNET_LOCK() mtx_lock(&dummynet_mtx)
|
|
#define DUMMYNET_UNLOCK() mtx_unlock(&dummynet_mtx)
|
|
#define DUMMYNET_LOCK_ASSERT() mtx_assert(&dummynet_mtx, MA_OWNED)
|
|
|
|
static int config_pipe(struct dn_pipe *p);
|
|
static int ip_dn_ctl(struct sockopt *sopt);
|
|
|
|
static void dummynet(void *);
|
|
static void dummynet_flush(void);
|
|
static void dummynet_send(struct mbuf *);
|
|
void dummynet_drain(void);
|
|
static ip_dn_io_t dummynet_io;
|
|
static void dn_rule_delete(void *);
|
|
|
|
/*
|
|
* Heap management functions.
|
|
*
|
|
* In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
|
|
* Some macros help finding parent/children so we can optimize them.
|
|
*
|
|
* heap_init() is called to expand the heap when needed.
|
|
* Increment size in blocks of 16 entries.
|
|
* XXX failure to allocate a new element is a pretty bad failure
|
|
* as we basically stall a whole queue forever!!
|
|
* Returns 1 on error, 0 on success
|
|
*/
|
|
#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
|
|
#define HEAP_LEFT(x) ( 2*(x) + 1 )
|
|
#define HEAP_IS_LEFT(x) ( (x) & 1 )
|
|
#define HEAP_RIGHT(x) ( 2*(x) + 2 )
|
|
#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
|
|
#define HEAP_INCREMENT 15
|
|
|
|
static int
|
|
heap_init(struct dn_heap *h, int new_size)
|
|
{
|
|
struct dn_heap_entry *p;
|
|
|
|
if (h->size >= new_size ) {
|
|
printf("dummynet: %s, Bogus call, have %d want %d\n", __func__,
|
|
h->size, new_size);
|
|
return 0 ;
|
|
}
|
|
new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
|
|
p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT);
|
|
if (p == NULL) {
|
|
printf("dummynet: %s, resize %d failed\n", __func__, new_size );
|
|
return 1 ; /* error */
|
|
}
|
|
if (h->size > 0) {
|
|
bcopy(h->p, p, h->size * sizeof(*p) );
|
|
free(h->p, M_DUMMYNET);
|
|
}
|
|
h->p = p ;
|
|
h->size = new_size ;
|
|
return 0 ;
|
|
}
|
|
|
|
/*
|
|
* Insert element in heap. Normally, p != NULL, we insert p in
|
|
* a new position and bubble up. If p == NULL, then the element is
|
|
* already in place, and key is the position where to start the
|
|
* bubble-up.
|
|
* Returns 1 on failure (cannot allocate new heap entry)
|
|
*
|
|
* If offset > 0 the position (index, int) of the element in the heap is
|
|
* also stored in the element itself at the given offset in bytes.
|
|
*/
|
|
#define SET_OFFSET(heap, node) \
|
|
if (heap->offset > 0) \
|
|
*((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
|
|
/*
|
|
* RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
|
|
*/
|
|
#define RESET_OFFSET(heap, node) \
|
|
if (heap->offset > 0) \
|
|
*((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
|
|
static int
|
|
heap_insert(struct dn_heap *h, dn_key key1, void *p)
|
|
{
|
|
int son = h->elements ;
|
|
|
|
if (p == NULL) /* data already there, set starting point */
|
|
son = key1 ;
|
|
else { /* insert new element at the end, possibly resize */
|
|
son = h->elements ;
|
|
if (son == h->size) /* need resize... */
|
|
if (heap_init(h, h->elements+1) )
|
|
return 1 ; /* failure... */
|
|
h->p[son].object = p ;
|
|
h->p[son].key = key1 ;
|
|
h->elements++ ;
|
|
}
|
|
while (son > 0) { /* bubble up */
|
|
int father = HEAP_FATHER(son) ;
|
|
struct dn_heap_entry tmp ;
|
|
|
|
if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
|
|
break ; /* found right position */
|
|
/* son smaller than father, swap and repeat */
|
|
HEAP_SWAP(h->p[son], h->p[father], tmp) ;
|
|
SET_OFFSET(h, son);
|
|
son = father ;
|
|
}
|
|
SET_OFFSET(h, son);
|
|
return 0 ;
|
|
}
|
|
|
|
/*
|
|
* remove top element from heap, or obj if obj != NULL
|
|
*/
|
|
static void
|
|
heap_extract(struct dn_heap *h, void *obj)
|
|
{
|
|
int child, father, max = h->elements - 1 ;
|
|
|
|
if (max < 0) {
|
|
printf("dummynet: warning, extract from empty heap 0x%p\n", h);
|
|
return ;
|
|
}
|
|
father = 0 ; /* default: move up smallest child */
|
|
if (obj != NULL) { /* extract specific element, index is at offset */
|
|
if (h->offset <= 0)
|
|
panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
|
|
father = *((int *)((char *)obj + h->offset)) ;
|
|
if (father < 0 || father >= h->elements) {
|
|
printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
|
|
father, h->elements);
|
|
panic("dummynet: heap_extract");
|
|
}
|
|
}
|
|
RESET_OFFSET(h, father);
|
|
child = HEAP_LEFT(father) ; /* left child */
|
|
while (child <= max) { /* valid entry */
|
|
if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
|
|
child = child+1 ; /* take right child, otherwise left */
|
|
h->p[father] = h->p[child] ;
|
|
SET_OFFSET(h, father);
|
|
father = child ;
|
|
child = HEAP_LEFT(child) ; /* left child for next loop */
|
|
}
|
|
h->elements-- ;
|
|
if (father != max) {
|
|
/*
|
|
* Fill hole with last entry and bubble up, reusing the insert code
|
|
*/
|
|
h->p[father] = h->p[max] ;
|
|
heap_insert(h, father, NULL); /* this one cannot fail */
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* change object position and update references
|
|
* XXX this one is never used!
|
|
*/
|
|
static void
|
|
heap_move(struct dn_heap *h, dn_key new_key, void *object)
|
|
{
|
|
int temp;
|
|
int i ;
|
|
int max = h->elements-1 ;
|
|
struct dn_heap_entry buf ;
|
|
|
|
if (h->offset <= 0)
|
|
panic("cannot move items on this heap");
|
|
|
|
i = *((int *)((char *)object + h->offset));
|
|
if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
|
|
h->p[i].key = new_key ;
|
|
for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
|
|
i = temp ) { /* bubble up */
|
|
HEAP_SWAP(h->p[i], h->p[temp], buf) ;
|
|
SET_OFFSET(h, i);
|
|
}
|
|
} else { /* must move down */
|
|
h->p[i].key = new_key ;
|
|
while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
|
|
if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
|
|
temp++ ; /* select child with min key */
|
|
if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
|
|
HEAP_SWAP(h->p[i], h->p[temp], buf) ;
|
|
SET_OFFSET(h, i);
|
|
} else
|
|
break ;
|
|
i = temp ;
|
|
}
|
|
}
|
|
SET_OFFSET(h, i);
|
|
}
|
|
#endif /* heap_move, unused */
|
|
|
|
/*
|
|
* heapify() will reorganize data inside an array to maintain the
|
|
* heap property. It is needed when we delete a bunch of entries.
|
|
*/
|
|
static void
|
|
heapify(struct dn_heap *h)
|
|
{
|
|
int i ;
|
|
|
|
for (i = 0 ; i < h->elements ; i++ )
|
|
heap_insert(h, i , NULL) ;
|
|
}
|
|
|
|
/*
|
|
* cleanup the heap and free data structure
|
|
*/
|
|
static void
|
|
heap_free(struct dn_heap *h)
|
|
{
|
|
if (h->size >0 )
|
|
free(h->p, M_DUMMYNET);
|
|
bzero(h, sizeof(*h) );
|
|
}
|
|
|
|
/*
|
|
* --- end of heap management functions ---
|
|
*/
|
|
|
|
/*
|
|
* Return the mbuf tag holding the dummynet state. As an optimization
|
|
* this is assumed to be the first tag on the list. If this turns out
|
|
* wrong we'll need to search the list.
|
|
*/
|
|
static struct dn_pkt_tag *
|
|
dn_tag_get(struct mbuf *m)
|
|
{
|
|
struct m_tag *mtag = m_tag_first(m);
|
|
KASSERT(mtag != NULL &&
|
|
mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
|
|
mtag->m_tag_id == PACKET_TAG_DUMMYNET,
|
|
("packet on dummynet queue w/o dummynet tag!"));
|
|
return (struct dn_pkt_tag *)(mtag+1);
|
|
}
|
|
|
|
/*
|
|
* Scheduler functions:
|
|
*
|
|
* transmit_event() is called when the delay-line needs to enter
|
|
* the scheduler, either because of existing pkts getting ready,
|
|
* or new packets entering the queue. The event handled is the delivery
|
|
* time of the packet.
|
|
*
|
|
* ready_event() does something similar with fixed-rate queues, and the
|
|
* event handled is the finish time of the head pkt.
|
|
*
|
|
* wfq_ready_event() does something similar with WF2Q queues, and the
|
|
* event handled is the start time of the head pkt.
|
|
*
|
|
* In all cases, we make sure that the data structures are consistent
|
|
* before passing pkts out, because this might trigger recursive
|
|
* invocations of the procedures.
|
|
*/
|
|
static void
|
|
transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
|
|
{
|
|
struct mbuf *m;
|
|
struct dn_pkt_tag *pkt;
|
|
|
|
DUMMYNET_LOCK_ASSERT();
|
|
|
|
while ((m = pipe->head) != NULL) {
|
|
pkt = dn_tag_get(m);
|
|
if (!DN_KEY_LEQ(pkt->output_time, curr_time))
|
|
break;
|
|
|
|
pipe->head = m->m_nextpkt;
|
|
if (*tail != NULL)
|
|
(*tail)->m_nextpkt = m;
|
|
else
|
|
*head = m;
|
|
*tail = m;
|
|
}
|
|
if (*tail != NULL)
|
|
(*tail)->m_nextpkt = NULL;
|
|
|
|
/* If there are leftover packets, put into the heap for next event. */
|
|
if ((m = pipe->head) != NULL) {
|
|
pkt = dn_tag_get(m);
|
|
/*
|
|
* XXX Should check errors on heap_insert, by draining the
|
|
* whole pipe p and hoping in the future we are more successful.
|
|
*/
|
|
heap_insert(&extract_heap, pkt->output_time, pipe);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* the following macro computes how many ticks we have to wait
|
|
* before being able to transmit a packet. The credit is taken from
|
|
* either a pipe (WF2Q) or a flow_queue (per-flow queueing)
|
|
*/
|
|
#define SET_TICKS(_m, q, p) \
|
|
((_m)->m_pkthdr.len * 8 * hz - (q)->numbytes + p->bandwidth - 1) / \
|
|
p->bandwidth;
|
|
|
|
/*
|
|
* extract pkt from queue, compute output time (could be now)
|
|
* and put into delay line (p_queue)
|
|
*/
|
|
static void
|
|
move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, struct dn_pipe *p,
|
|
int len)
|
|
{
|
|
struct dn_pkt_tag *dt = dn_tag_get(pkt);
|
|
|
|
q->head = pkt->m_nextpkt ;
|
|
q->len-- ;
|
|
q->len_bytes -= len ;
|
|
|
|
dt->output_time = curr_time + p->delay ;
|
|
|
|
if (p->head == NULL)
|
|
p->head = pkt;
|
|
else
|
|
p->tail->m_nextpkt = pkt;
|
|
p->tail = pkt;
|
|
p->tail->m_nextpkt = NULL;
|
|
}
|
|
|
|
/*
|
|
* ready_event() is invoked every time the queue must enter the
|
|
* scheduler, either because the first packet arrives, or because
|
|
* a previously scheduled event fired.
|
|
* On invokation, drain as many pkts as possible (could be 0) and then
|
|
* if there are leftover packets reinsert the pkt in the scheduler.
|
|
*/
|
|
static void
|
|
ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
|
|
{
|
|
struct mbuf *pkt;
|
|
struct dn_pipe *p = q->fs->pipe;
|
|
int p_was_empty;
|
|
|
|
DUMMYNET_LOCK_ASSERT();
|
|
|
|
if (p == NULL) {
|
|
printf("dummynet: ready_event- pipe is gone\n");
|
|
return;
|
|
}
|
|
p_was_empty = (p->head == NULL);
|
|
|
|
/*
|
|
* Schedule fixed-rate queues linked to this pipe:
|
|
* account for the bw accumulated since last scheduling, then
|
|
* drain as many pkts as allowed by q->numbytes and move to
|
|
* the delay line (in p) computing output time.
|
|
* bandwidth==0 (no limit) means we can drain the whole queue,
|
|
* setting len_scaled = 0 does the job.
|
|
*/
|
|
q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
|
|
while ((pkt = q->head) != NULL) {
|
|
int len = pkt->m_pkthdr.len;
|
|
int len_scaled = p->bandwidth ? len * 8 * hz : 0;
|
|
|
|
if (len_scaled > q->numbytes)
|
|
break;
|
|
q->numbytes -= len_scaled;
|
|
move_pkt(pkt, q, p, len);
|
|
}
|
|
/*
|
|
* If we have more packets queued, schedule next ready event
|
|
* (can only occur when bandwidth != 0, otherwise we would have
|
|
* flushed the whole queue in the previous loop).
|
|
* To this purpose we record the current time and compute how many
|
|
* ticks to go for the finish time of the packet.
|
|
*/
|
|
if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */
|
|
dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
|
|
|
|
q->sched_time = curr_time;
|
|
heap_insert(&ready_heap, curr_time + t, (void *)q);
|
|
/*
|
|
* XXX Should check errors on heap_insert, and drain the whole
|
|
* queue on error hoping next time we are luckier.
|
|
*/
|
|
} else /* RED needs to know when the queue becomes empty. */
|
|
q->q_time = curr_time;
|
|
|
|
/*
|
|
* If the delay line was empty call transmit_event() now.
|
|
* Otherwise, the scheduler will take care of it.
|
|
*/
|
|
if (p_was_empty)
|
|
transmit_event(p, head, tail);
|
|
}
|
|
|
|
/*
|
|
* Called when we can transmit packets on WF2Q queues. Take pkts out of
|
|
* the queues at their start time, and enqueue into the delay line.
|
|
* Packets are drained until p->numbytes < 0. As long as
|
|
* len_scaled >= p->numbytes, the packet goes into the delay line
|
|
* with a deadline p->delay. For the last packet, if p->numbytes < 0,
|
|
* there is an additional delay.
|
|
*/
|
|
static void
|
|
ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
|
|
{
|
|
int p_was_empty = (p->head == NULL);
|
|
struct dn_heap *sch = &(p->scheduler_heap);
|
|
struct dn_heap *neh = &(p->not_eligible_heap);
|
|
int64_t p_numbytes = p->numbytes;
|
|
|
|
DUMMYNET_LOCK_ASSERT();
|
|
|
|
if (p->if_name[0] == 0) /* tx clock is simulated */
|
|
/*
|
|
* Since result may not fit into p->numbytes (32bit) we
|
|
* are using 64bit var here.
|
|
*/
|
|
p_numbytes += (curr_time - p->sched_time) * p->bandwidth;
|
|
else { /*
|
|
* tx clock is for real,
|
|
* the ifq must be empty or this is a NOP.
|
|
*/
|
|
if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
|
|
return;
|
|
else {
|
|
DPRINTF(("dummynet: pipe %d ready from %s --\n",
|
|
p->pipe_nr, p->if_name));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* While we have backlogged traffic AND credit, we need to do
|
|
* something on the queue.
|
|
*/
|
|
while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
|
|
if (sch->elements > 0) {
|
|
/* Have some eligible pkts to send out. */
|
|
struct dn_flow_queue *q = sch->p[0].object;
|
|
struct mbuf *pkt = q->head;
|
|
struct dn_flow_set *fs = q->fs;
|
|
uint64_t len = pkt->m_pkthdr.len;
|
|
int len_scaled = p->bandwidth ? len * 8 * hz : 0;
|
|
|
|
heap_extract(sch, NULL); /* Remove queue from heap. */
|
|
p_numbytes -= len_scaled;
|
|
move_pkt(pkt, q, p, len);
|
|
|
|
p->V += (len << MY_M) / p->sum; /* Update V. */
|
|
q->S = q->F; /* Update start time. */
|
|
if (q->len == 0) {
|
|
/* Flow not backlogged any more. */
|
|
fs->backlogged--;
|
|
heap_insert(&(p->idle_heap), q->F, q);
|
|
} else {
|
|
/* Still backlogged. */
|
|
|
|
/*
|
|
* Update F and position in backlogged queue,
|
|
* then put flow in not_eligible_heap
|
|
* (we will fix this later).
|
|
*/
|
|
len = (q->head)->m_pkthdr.len;
|
|
q->F += (len << MY_M) / (uint64_t)fs->weight;
|
|
if (DN_KEY_LEQ(q->S, p->V))
|
|
heap_insert(neh, q->S, q);
|
|
else
|
|
heap_insert(sch, q->F, q);
|
|
}
|
|
}
|
|
/*
|
|
* Now compute V = max(V, min(S_i)). Remember that all elements
|
|
* in sch have by definition S_i <= V so if sch is not empty,
|
|
* V is surely the max and we must not update it. Conversely,
|
|
* if sch is empty we only need to look at neh.
|
|
*/
|
|
if (sch->elements == 0 && neh->elements > 0)
|
|
p->V = MAX64(p->V, neh->p[0].key);
|
|
/* Move from neh to sch any packets that have become eligible */
|
|
while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
|
|
struct dn_flow_queue *q = neh->p[0].object;
|
|
heap_extract(neh, NULL);
|
|
heap_insert(sch, q->F, q);
|
|
}
|
|
|
|
if (p->if_name[0] != '\0') { /* Tx clock is from a real thing */
|
|
p_numbytes = -1; /* Mark not ready for I/O. */
|
|
break;
|
|
}
|
|
}
|
|
if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0 &&
|
|
p->idle_heap.elements > 0) {
|
|
/*
|
|
* No traffic and no events scheduled.
|
|
* We can get rid of idle-heap.
|
|
*/
|
|
int i;
|
|
|
|
for (i = 0; i < p->idle_heap.elements; i++) {
|
|
struct dn_flow_queue *q = p->idle_heap.p[i].object;
|
|
|
|
q->F = 0;
|
|
q->S = q->F + 1;
|
|
}
|
|
p->sum = 0;
|
|
p->V = 0;
|
|
p->idle_heap.elements = 0;
|
|
}
|
|
/*
|
|
* If we are getting clocks from dummynet (not a real interface) and
|
|
* If we are under credit, schedule the next ready event.
|
|
* Also fix the delivery time of the last packet.
|
|
*/
|
|
if (p->if_name[0]==0 && p_numbytes < 0) { /* This implies bw > 0. */
|
|
dn_key t = 0; /* Number of ticks i have to wait. */
|
|
|
|
if (p->bandwidth > 0)
|
|
t = (p->bandwidth - 1 - p_numbytes) / p->bandwidth;
|
|
dn_tag_get(p->tail)->output_time += t;
|
|
p->sched_time = curr_time;
|
|
heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
|
|
/*
|
|
* XXX Should check errors on heap_insert, and drain the whole
|
|
* queue on error hoping next time we are luckier.
|
|
*/
|
|
}
|
|
|
|
/* Fit (adjust if necessary) 64bit result into 32bit variable. */
|
|
if (p_numbytes > INT_MAX)
|
|
p->numbytes = INT_MAX;
|
|
else if (p_numbytes < INT_MIN)
|
|
p->numbytes = INT_MIN;
|
|
else
|
|
p->numbytes = p_numbytes;
|
|
|
|
/*
|
|
* If the delay line was empty call transmit_event() now.
|
|
* Otherwise, the scheduler will take care of it.
|
|
*/
|
|
if (p_was_empty)
|
|
transmit_event(p, head, tail);
|
|
}
|
|
|
|
/*
|
|
* This is called one tick, after previous run. It is used to
|
|
* schedule next run.
|
|
*/
|
|
static void
|
|
dummynet(void * __unused unused)
|
|
{
|
|
|
|
taskqueue_enqueue(dn_tq, &dn_task);
|
|
}
|
|
|
|
/*
|
|
* The main dummynet processing function.
|
|
*/
|
|
static void
|
|
dummynet_task(void *context, int pending)
|
|
{
|
|
struct mbuf *head = NULL, *tail = NULL;
|
|
struct dn_pipe *pipe;
|
|
struct dn_heap *heaps[3];
|
|
struct dn_heap *h;
|
|
void *p; /* generic parameter to handler */
|
|
int i;
|
|
|
|
DUMMYNET_LOCK();
|
|
|
|
heaps[0] = &ready_heap; /* fixed-rate queues */
|
|
heaps[1] = &wfq_ready_heap; /* wfq queues */
|
|
heaps[2] = &extract_heap; /* delay line */
|
|
|
|
/* Update number of lost(coalesced) ticks. */
|
|
tick_lost += pending - 1;
|
|
|
|
getmicrouptime(&t);
|
|
/* Last tick duration (usec). */
|
|
tick_last = (t.tv_sec - prev_t.tv_sec) * 1000000 +
|
|
(t.tv_usec - prev_t.tv_usec);
|
|
/* Last tick vs standard tick difference (usec). */
|
|
tick_delta = (tick_last * hz - 1000000) / hz;
|
|
/* Accumulated tick difference (usec). */
|
|
tick_delta_sum += tick_delta;
|
|
|
|
prev_t = t;
|
|
|
|
/*
|
|
* Adjust curr_time if accumulated tick difference greater than
|
|
* 'standard' tick. Since curr_time should be monotonically increasing,
|
|
* we do positive adjustment as required and throttle curr_time in
|
|
* case of negative adjustment.
|
|
*/
|
|
curr_time++;
|
|
if (tick_delta_sum - tick >= 0) {
|
|
int diff = tick_delta_sum / tick;
|
|
|
|
curr_time += diff;
|
|
tick_diff += diff;
|
|
tick_delta_sum %= tick;
|
|
tick_adjustment++;
|
|
} else if (tick_delta_sum + tick <= 0) {
|
|
curr_time--;
|
|
tick_diff--;
|
|
tick_delta_sum += tick;
|
|
tick_adjustment++;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
h = heaps[i];
|
|
while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
|
|
if (h->p[0].key > curr_time)
|
|
printf("dummynet: warning, "
|
|
"heap %d is %d ticks late\n",
|
|
i, (int)(curr_time - h->p[0].key));
|
|
/* store a copy before heap_extract */
|
|
p = h->p[0].object;
|
|
/* need to extract before processing */
|
|
heap_extract(h, NULL);
|
|
if (i == 0)
|
|
ready_event(p, &head, &tail);
|
|
else if (i == 1) {
|
|
struct dn_pipe *pipe = p;
|
|
if (pipe->if_name[0] != '\0')
|
|
printf("dummynet: bad ready_event_wfq "
|
|
"for pipe %s\n", pipe->if_name);
|
|
else
|
|
ready_event_wfq(p, &head, &tail);
|
|
} else
|
|
transmit_event(p, &head, &tail);
|
|
}
|
|
}
|
|
|
|
/* Sweep pipes trying to expire idle flow_queues. */
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH(pipe, &pipehash[i], next)
|
|
if (pipe->idle_heap.elements > 0 &&
|
|
DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) {
|
|
struct dn_flow_queue *q =
|
|
pipe->idle_heap.p[0].object;
|
|
|
|
heap_extract(&(pipe->idle_heap), NULL);
|
|
/* Mark timestamp as invalid. */
|
|
q->S = q->F + 1;
|
|
pipe->sum -= q->fs->weight;
|
|
}
|
|
|
|
DUMMYNET_UNLOCK();
|
|
|
|
if (head != NULL)
|
|
dummynet_send(head);
|
|
|
|
callout_reset(&dn_timeout, 1, dummynet, NULL);
|
|
}
|
|
|
|
static void
|
|
dummynet_send(struct mbuf *m)
|
|
{
|
|
struct dn_pkt_tag *pkt;
|
|
struct mbuf *n;
|
|
struct ip *ip;
|
|
|
|
for (; m != NULL; m = n) {
|
|
n = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
pkt = dn_tag_get(m);
|
|
switch (pkt->dn_dir) {
|
|
case DN_TO_IP_OUT:
|
|
ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
|
|
break ;
|
|
case DN_TO_IP_IN :
|
|
ip = mtod(m, struct ip *);
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_off = htons(ip->ip_off);
|
|
netisr_dispatch(NETISR_IP, m);
|
|
break;
|
|
#ifdef INET6
|
|
case DN_TO_IP6_IN:
|
|
netisr_dispatch(NETISR_IPV6, m);
|
|
break;
|
|
|
|
case DN_TO_IP6_OUT:
|
|
ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
|
|
break;
|
|
#endif
|
|
case DN_TO_IFB_FWD:
|
|
if (bridge_dn_p != NULL)
|
|
((*bridge_dn_p)(m, pkt->ifp));
|
|
else
|
|
printf("dummynet: if_bridge not loaded\n");
|
|
|
|
break;
|
|
case DN_TO_ETH_DEMUX:
|
|
/*
|
|
* The Ethernet code assumes the Ethernet header is
|
|
* contiguous in the first mbuf header.
|
|
* Insure this is true.
|
|
*/
|
|
if (m->m_len < ETHER_HDR_LEN &&
|
|
(m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
|
|
printf("dummynet/ether: pullup failed, "
|
|
"dropping packet\n");
|
|
break;
|
|
}
|
|
ether_demux(m->m_pkthdr.rcvif, m);
|
|
break;
|
|
case DN_TO_ETH_OUT:
|
|
ether_output_frame(pkt->ifp, m);
|
|
break;
|
|
default:
|
|
printf("dummynet: bad switch %d!\n", pkt->dn_dir);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unconditionally expire empty queues in case of shortage.
|
|
* Returns the number of queues freed.
|
|
*/
|
|
static int
|
|
expire_queues(struct dn_flow_set *fs)
|
|
{
|
|
struct dn_flow_queue *q, *prev ;
|
|
int i, initial_elements = fs->rq_elements ;
|
|
|
|
if (fs->last_expired == time_uptime)
|
|
return 0 ;
|
|
fs->last_expired = time_uptime ;
|
|
for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
|
|
for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
|
|
if (q->head != NULL || q->S != q->F+1) {
|
|
prev = q ;
|
|
q = q->next ;
|
|
} else { /* entry is idle, expire it */
|
|
struct dn_flow_queue *old_q = q ;
|
|
|
|
if (prev != NULL)
|
|
prev->next = q = q->next ;
|
|
else
|
|
fs->rq[i] = q = q->next ;
|
|
fs->rq_elements-- ;
|
|
free(old_q, M_DUMMYNET);
|
|
}
|
|
return initial_elements - fs->rq_elements ;
|
|
}
|
|
|
|
/*
|
|
* If room, create a new queue and put at head of slot i;
|
|
* otherwise, create or use the default queue.
|
|
*/
|
|
static struct dn_flow_queue *
|
|
create_queue(struct dn_flow_set *fs, int i)
|
|
{
|
|
struct dn_flow_queue *q;
|
|
|
|
if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
|
|
expire_queues(fs) == 0) {
|
|
/* No way to get room, use or create overflow queue. */
|
|
i = fs->rq_size;
|
|
if (fs->rq[i] != NULL)
|
|
return fs->rq[i];
|
|
}
|
|
q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO);
|
|
if (q == NULL) {
|
|
printf("dummynet: sorry, cannot allocate queue for new flow\n");
|
|
return (NULL);
|
|
}
|
|
q->fs = fs;
|
|
q->hash_slot = i;
|
|
q->next = fs->rq[i];
|
|
q->S = q->F + 1; /* hack - mark timestamp as invalid. */
|
|
q->numbytes = io_fast ? fs->pipe->bandwidth : 0;
|
|
fs->rq[i] = q;
|
|
fs->rq_elements++;
|
|
return (q);
|
|
}
|
|
|
|
/*
|
|
* Given a flow_set and a pkt in last_pkt, find a matching queue
|
|
* after appropriate masking. The queue is moved to front
|
|
* so that further searches take less time.
|
|
*/
|
|
static struct dn_flow_queue *
|
|
find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
|
|
{
|
|
int i = 0 ; /* we need i and q for new allocations */
|
|
struct dn_flow_queue *q, *prev;
|
|
int is_v6 = IS_IP6_FLOW_ID(id);
|
|
|
|
if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
|
|
q = fs->rq[0] ;
|
|
else {
|
|
/* first, do the masking, then hash */
|
|
id->dst_port &= fs->flow_mask.dst_port ;
|
|
id->src_port &= fs->flow_mask.src_port ;
|
|
id->proto &= fs->flow_mask.proto ;
|
|
id->flags = 0 ; /* we don't care about this one */
|
|
if (is_v6) {
|
|
APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
|
|
APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
|
|
id->flow_id6 &= fs->flow_mask.flow_id6;
|
|
|
|
i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
|
|
((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
|
|
((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
|
|
((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
|
|
|
|
((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
|
|
((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
|
|
((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
|
|
((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
|
|
|
|
((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
|
|
((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
|
|
((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
|
|
((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
|
|
|
|
((id->src_ip6.__u6_addr.__u6_addr32[0] << 16) & 0xffff)^
|
|
((id->src_ip6.__u6_addr.__u6_addr32[1] << 16) & 0xffff)^
|
|
((id->src_ip6.__u6_addr.__u6_addr32[2] << 16) & 0xffff)^
|
|
((id->src_ip6.__u6_addr.__u6_addr32[3] << 16) & 0xffff)^
|
|
|
|
(id->dst_port << 1) ^ (id->src_port) ^
|
|
(id->proto ) ^
|
|
(id->flow_id6);
|
|
} else {
|
|
id->dst_ip &= fs->flow_mask.dst_ip ;
|
|
id->src_ip &= fs->flow_mask.src_ip ;
|
|
|
|
i = ( (id->dst_ip) & 0xffff ) ^
|
|
( (id->dst_ip >> 15) & 0xffff ) ^
|
|
( (id->src_ip << 1) & 0xffff ) ^
|
|
( (id->src_ip >> 16 ) & 0xffff ) ^
|
|
(id->dst_port << 1) ^ (id->src_port) ^
|
|
(id->proto );
|
|
}
|
|
i = i % fs->rq_size ;
|
|
/* finally, scan the current list for a match */
|
|
searches++ ;
|
|
for (prev=NULL, q = fs->rq[i] ; q ; ) {
|
|
search_steps++;
|
|
if (is_v6 &&
|
|
IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&
|
|
IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&
|
|
id->dst_port == q->id.dst_port &&
|
|
id->src_port == q->id.src_port &&
|
|
id->proto == q->id.proto &&
|
|
id->flags == q->id.flags &&
|
|
id->flow_id6 == q->id.flow_id6)
|
|
break ; /* found */
|
|
|
|
if (!is_v6 && id->dst_ip == q->id.dst_ip &&
|
|
id->src_ip == q->id.src_ip &&
|
|
id->dst_port == q->id.dst_port &&
|
|
id->src_port == q->id.src_port &&
|
|
id->proto == q->id.proto &&
|
|
id->flags == q->id.flags)
|
|
break ; /* found */
|
|
|
|
/* No match. Check if we can expire the entry */
|
|
if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
|
|
/* entry is idle and not in any heap, expire it */
|
|
struct dn_flow_queue *old_q = q ;
|
|
|
|
if (prev != NULL)
|
|
prev->next = q = q->next ;
|
|
else
|
|
fs->rq[i] = q = q->next ;
|
|
fs->rq_elements-- ;
|
|
free(old_q, M_DUMMYNET);
|
|
continue ;
|
|
}
|
|
prev = q ;
|
|
q = q->next ;
|
|
}
|
|
if (q && prev != NULL) { /* found and not in front */
|
|
prev->next = q->next ;
|
|
q->next = fs->rq[i] ;
|
|
fs->rq[i] = q ;
|
|
}
|
|
}
|
|
if (q == NULL) { /* no match, need to allocate a new entry */
|
|
q = create_queue(fs, i);
|
|
if (q != NULL)
|
|
q->id = *id ;
|
|
}
|
|
return q ;
|
|
}
|
|
|
|
static int
|
|
red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
|
|
{
|
|
/*
|
|
* RED algorithm
|
|
*
|
|
* RED calculates the average queue size (avg) using a low-pass filter
|
|
* with an exponential weighted (w_q) moving average:
|
|
* avg <- (1-w_q) * avg + w_q * q_size
|
|
* where q_size is the queue length (measured in bytes or * packets).
|
|
*
|
|
* If q_size == 0, we compute the idle time for the link, and set
|
|
* avg = (1 - w_q)^(idle/s)
|
|
* where s is the time needed for transmitting a medium-sized packet.
|
|
*
|
|
* Now, if avg < min_th the packet is enqueued.
|
|
* If avg > max_th the packet is dropped. Otherwise, the packet is
|
|
* dropped with probability P function of avg.
|
|
*/
|
|
|
|
int64_t p_b = 0;
|
|
|
|
/* Queue in bytes or packets? */
|
|
u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ?
|
|
q->len_bytes : q->len;
|
|
|
|
DPRINTF(("\ndummynet: %d q: %2u ", (int)curr_time, q_size));
|
|
|
|
/* Average queue size estimation. */
|
|
if (q_size != 0) {
|
|
/* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
|
|
int diff = SCALE(q_size) - q->avg;
|
|
int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
|
|
|
|
q->avg += (int)v;
|
|
} else {
|
|
/*
|
|
* Queue is empty, find for how long the queue has been
|
|
* empty and use a lookup table for computing
|
|
* (1 - * w_q)^(idle_time/s) where s is the time to send a
|
|
* (small) packet.
|
|
* XXX check wraps...
|
|
*/
|
|
if (q->avg) {
|
|
u_int t = (curr_time - q->q_time) / fs->lookup_step;
|
|
|
|
q->avg = (t < fs->lookup_depth) ?
|
|
SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
|
|
}
|
|
}
|
|
DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
|
|
|
|
/* Should i drop? */
|
|
if (q->avg < fs->min_th) {
|
|
q->count = -1;
|
|
return (0); /* accept packet */
|
|
}
|
|
if (q->avg >= fs->max_th) { /* average queue >= max threshold */
|
|
if (fs->flags_fs & DN_IS_GENTLE_RED) {
|
|
/*
|
|
* According to Gentle-RED, if avg is greater than
|
|
* max_th the packet is dropped with a probability
|
|
* p_b = c_3 * avg - c_4
|
|
* where c_3 = (1 - max_p) / max_th
|
|
* c_4 = 1 - 2 * max_p
|
|
*/
|
|
p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
|
|
fs->c_4;
|
|
} else {
|
|
q->count = -1;
|
|
DPRINTF(("dummynet: - drop"));
|
|
return (1);
|
|
}
|
|
} else if (q->avg > fs->min_th) {
|
|
/*
|
|
* We compute p_b using the linear dropping function
|
|
* p_b = c_1 * avg - c_2
|
|
* where c_1 = max_p / (max_th - min_th)
|
|
* c_2 = max_p * min_th / (max_th - min_th)
|
|
*/
|
|
p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
|
|
}
|
|
|
|
if (fs->flags_fs & DN_QSIZE_IS_BYTES)
|
|
p_b = (p_b * len) / fs->max_pkt_size;
|
|
if (++q->count == 0)
|
|
q->random = random() & 0xffff;
|
|
else {
|
|
/*
|
|
* q->count counts packets arrived since last drop, so a greater
|
|
* value of q->count means a greater packet drop probability.
|
|
*/
|
|
if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
|
|
q->count = 0;
|
|
DPRINTF(("dummynet: - red drop"));
|
|
/* After a drop we calculate a new random value. */
|
|
q->random = random() & 0xffff;
|
|
return (1); /* drop */
|
|
}
|
|
}
|
|
/* End of RED algorithm. */
|
|
|
|
return (0); /* accept */
|
|
}
|
|
|
|
static __inline struct dn_flow_set *
|
|
locate_flowset(int fs_nr)
|
|
{
|
|
struct dn_flow_set *fs;
|
|
|
|
SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
|
|
if (fs->fs_nr == fs_nr)
|
|
return (fs);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static __inline struct dn_pipe *
|
|
locate_pipe(int pipe_nr)
|
|
{
|
|
struct dn_pipe *pipe;
|
|
|
|
SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
|
|
if (pipe->pipe_nr == pipe_nr)
|
|
return (pipe);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* dummynet hook for packets. Below 'pipe' is a pipe or a queue
|
|
* depending on whether WF2Q or fixed bw is used.
|
|
*
|
|
* pipe_nr pipe or queue the packet is destined for.
|
|
* dir where shall we send the packet after dummynet.
|
|
* m the mbuf with the packet
|
|
* ifp the 'ifp' parameter from the caller.
|
|
* NULL in ip_input, destination interface in ip_output,
|
|
* rule matching rule, in case of multiple passes
|
|
*/
|
|
static int
|
|
dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
|
|
{
|
|
struct mbuf *m = *m0, *head = NULL, *tail = NULL;
|
|
struct dn_pkt_tag *pkt;
|
|
struct m_tag *mtag;
|
|
struct dn_flow_set *fs = NULL;
|
|
struct dn_pipe *pipe;
|
|
uint64_t len = m->m_pkthdr.len;
|
|
struct dn_flow_queue *q = NULL;
|
|
int is_pipe;
|
|
ipfw_insn *cmd = ACTION_PTR(fwa->rule);
|
|
|
|
KASSERT(m->m_nextpkt == NULL,
|
|
("dummynet_io: mbuf queue passed to dummynet"));
|
|
|
|
if (cmd->opcode == O_LOG)
|
|
cmd += F_LEN(cmd);
|
|
if (cmd->opcode == O_ALTQ)
|
|
cmd += F_LEN(cmd);
|
|
if (cmd->opcode == O_TAG)
|
|
cmd += F_LEN(cmd);
|
|
is_pipe = (cmd->opcode == O_PIPE);
|
|
|
|
DUMMYNET_LOCK();
|
|
io_pkt++;
|
|
/*
|
|
* This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
|
|
*
|
|
* XXXGL: probably the pipe->fs and fs->pipe logic here
|
|
* below can be simplified.
|
|
*/
|
|
if (is_pipe) {
|
|
pipe = locate_pipe(fwa->cookie);
|
|
if (pipe != NULL)
|
|
fs = &(pipe->fs);
|
|
} else
|
|
fs = locate_flowset(fwa->cookie);
|
|
|
|
if (fs == NULL)
|
|
goto dropit; /* This queue/pipe does not exist! */
|
|
pipe = fs->pipe;
|
|
if (pipe == NULL) { /* Must be a queue, try find a matching pipe. */
|
|
pipe = locate_pipe(fs->parent_nr);
|
|
if (pipe != NULL)
|
|
fs->pipe = pipe;
|
|
else {
|
|
printf("dummynet: no pipe %d for queue %d, drop pkt\n",
|
|
fs->parent_nr, fs->fs_nr);
|
|
goto dropit;
|
|
}
|
|
}
|
|
q = find_queue(fs, &(fwa->f_id));
|
|
if (q == NULL)
|
|
goto dropit; /* Cannot allocate queue. */
|
|
|
|
/* Update statistics, then check reasons to drop pkt. */
|
|
q->tot_bytes += len;
|
|
q->tot_pkts++;
|
|
if (fs->plr && random() < fs->plr)
|
|
goto dropit; /* Random pkt drop. */
|
|
if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
|
|
if (q->len_bytes > fs->qsize)
|
|
goto dropit; /* Queue size overflow. */
|
|
} else {
|
|
if (q->len >= fs->qsize)
|
|
goto dropit; /* Queue count overflow. */
|
|
}
|
|
if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len))
|
|
goto dropit;
|
|
|
|
/* XXX expensive to zero, see if we can remove it. */
|
|
mtag = m_tag_get(PACKET_TAG_DUMMYNET,
|
|
sizeof(struct dn_pkt_tag), M_NOWAIT | M_ZERO);
|
|
if (mtag == NULL)
|
|
goto dropit; /* Cannot allocate packet header. */
|
|
m_tag_prepend(m, mtag); /* Attach to mbuf chain. */
|
|
|
|
pkt = (struct dn_pkt_tag *)(mtag + 1);
|
|
/*
|
|
* Ok, i can handle the pkt now...
|
|
* Build and enqueue packet + parameters.
|
|
*/
|
|
pkt->rule = fwa->rule;
|
|
pkt->dn_dir = dir;
|
|
|
|
pkt->ifp = fwa->oif;
|
|
|
|
if (q->head == NULL)
|
|
q->head = m;
|
|
else
|
|
q->tail->m_nextpkt = m;
|
|
q->tail = m;
|
|
q->len++;
|
|
q->len_bytes += len;
|
|
|
|
if (q->head != m) /* Flow was not idle, we are done. */
|
|
goto done;
|
|
|
|
if (q->q_time < curr_time)
|
|
q->numbytes = io_fast ? fs->pipe->bandwidth : 0;
|
|
q->q_time = curr_time;
|
|
|
|
/*
|
|
* If we reach this point the flow was previously idle, so we need
|
|
* to schedule it. This involves different actions for fixed-rate or
|
|
* WF2Q queues.
|
|
*/
|
|
if (is_pipe) {
|
|
/* Fixed-rate queue: just insert into the ready_heap. */
|
|
dn_key t = 0;
|
|
|
|
if (pipe->bandwidth && m->m_pkthdr.len * 8 * hz > q->numbytes)
|
|
t = SET_TICKS(m, q, pipe);
|
|
q->sched_time = curr_time;
|
|
if (t == 0) /* Must process it now. */
|
|
ready_event(q, &head, &tail);
|
|
else
|
|
heap_insert(&ready_heap, curr_time + t , q);
|
|
} else {
|
|
/*
|
|
* WF2Q. First, compute start time S: if the flow was
|
|
* idle (S = F + 1) set S to the virtual time V for the
|
|
* controlling pipe, and update the sum of weights for the pipe;
|
|
* otherwise, remove flow from idle_heap and set S to max(F,V).
|
|
* Second, compute finish time F = S + len / weight.
|
|
* Third, if pipe was idle, update V = max(S, V).
|
|
* Fourth, count one more backlogged flow.
|
|
*/
|
|
if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid. */
|
|
q->S = pipe->V;
|
|
pipe->sum += fs->weight; /* Add weight of new queue. */
|
|
} else {
|
|
heap_extract(&(pipe->idle_heap), q);
|
|
q->S = MAX64(q->F, pipe->V);
|
|
}
|
|
q->F = q->S + (len << MY_M) / (uint64_t)fs->weight;
|
|
|
|
if (pipe->not_eligible_heap.elements == 0 &&
|
|
pipe->scheduler_heap.elements == 0)
|
|
pipe->V = MAX64(q->S, pipe->V);
|
|
fs->backlogged++;
|
|
/*
|
|
* Look at eligibility. A flow is not eligibile if S>V (when
|
|
* this happens, it means that there is some other flow already
|
|
* scheduled for the same pipe, so the scheduler_heap cannot be
|
|
* empty). If the flow is not eligible we just store it in the
|
|
* not_eligible_heap. Otherwise, we store in the scheduler_heap
|
|
* and possibly invoke ready_event_wfq() right now if there is
|
|
* leftover credit.
|
|
* Note that for all flows in scheduler_heap (SCH), S_i <= V,
|
|
* and for all flows in not_eligible_heap (NEH), S_i > V.
|
|
* So when we need to compute max(V, min(S_i)) forall i in
|
|
* SCH+NEH, we only need to look into NEH.
|
|
*/
|
|
if (DN_KEY_GT(q->S, pipe->V)) { /* Not eligible. */
|
|
if (pipe->scheduler_heap.elements == 0)
|
|
printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
|
|
heap_insert(&(pipe->not_eligible_heap), q->S, q);
|
|
} else {
|
|
heap_insert(&(pipe->scheduler_heap), q->F, q);
|
|
if (pipe->numbytes >= 0) { /* Pipe is idle. */
|
|
if (pipe->scheduler_heap.elements != 1)
|
|
printf("dummynet: OUCH! pipe should have been idle!\n");
|
|
DPRINTF(("dummynet: waking up pipe %d at %d\n",
|
|
pipe->pipe_nr, (int)(q->F >> MY_M)));
|
|
pipe->sched_time = curr_time;
|
|
ready_event_wfq(pipe, &head, &tail);
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
if (head == m && dir != DN_TO_IFB_FWD && dir != DN_TO_ETH_DEMUX &&
|
|
dir != DN_TO_ETH_OUT) { /* Fast io. */
|
|
io_pkt_fast++;
|
|
if (m->m_nextpkt != NULL)
|
|
printf("dummynet: fast io: pkt chain detected!\n");
|
|
head = m->m_nextpkt = NULL;
|
|
} else
|
|
*m0 = NULL; /* Normal io. */
|
|
|
|
DUMMYNET_UNLOCK();
|
|
if (head != NULL)
|
|
dummynet_send(head);
|
|
return (0);
|
|
|
|
dropit:
|
|
io_pkt_drop++;
|
|
if (q)
|
|
q->drops++;
|
|
DUMMYNET_UNLOCK();
|
|
m_freem(m);
|
|
*m0 = NULL;
|
|
return ((fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
|
|
}
|
|
|
|
/*
|
|
* Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
|
|
* Doing this would probably save us the initial bzero of dn_pkt
|
|
*/
|
|
#define DN_FREE_PKT(_m) do { \
|
|
m_freem(_m); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Dispose all packets and flow_queues on a flow_set.
|
|
* If all=1, also remove red lookup table and other storage,
|
|
* including the descriptor itself.
|
|
* For the one in dn_pipe MUST also cleanup ready_heap...
|
|
*/
|
|
static void
|
|
purge_flow_set(struct dn_flow_set *fs, int all)
|
|
{
|
|
struct dn_flow_queue *q, *qn;
|
|
int i;
|
|
|
|
DUMMYNET_LOCK_ASSERT();
|
|
|
|
for (i = 0; i <= fs->rq_size; i++) {
|
|
for (q = fs->rq[i]; q != NULL; q = qn) {
|
|
struct mbuf *m, *mnext;
|
|
|
|
mnext = q->head;
|
|
while ((m = mnext) != NULL) {
|
|
mnext = m->m_nextpkt;
|
|
DN_FREE_PKT(m);
|
|
}
|
|
qn = q->next;
|
|
free(q, M_DUMMYNET);
|
|
}
|
|
fs->rq[i] = NULL;
|
|
}
|
|
|
|
fs->rq_elements = 0;
|
|
if (all) {
|
|
/* RED - free lookup table. */
|
|
if (fs->w_q_lookup != NULL)
|
|
free(fs->w_q_lookup, M_DUMMYNET);
|
|
if (fs->rq != NULL)
|
|
free(fs->rq, M_DUMMYNET);
|
|
/* If this fs is not part of a pipe, free it. */
|
|
if (fs->pipe == NULL || fs != &(fs->pipe->fs))
|
|
free(fs, M_DUMMYNET);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dispose all packets queued on a pipe (not a flow_set).
|
|
* Also free all resources associated to a pipe, which is about
|
|
* to be deleted.
|
|
*/
|
|
static void
|
|
purge_pipe(struct dn_pipe *pipe)
|
|
{
|
|
struct mbuf *m, *mnext;
|
|
|
|
purge_flow_set( &(pipe->fs), 1 );
|
|
|
|
mnext = pipe->head;
|
|
while ((m = mnext) != NULL) {
|
|
mnext = m->m_nextpkt;
|
|
DN_FREE_PKT(m);
|
|
}
|
|
|
|
heap_free( &(pipe->scheduler_heap) );
|
|
heap_free( &(pipe->not_eligible_heap) );
|
|
heap_free( &(pipe->idle_heap) );
|
|
}
|
|
|
|
/*
|
|
* Delete all pipes and heaps returning memory. Must also
|
|
* remove references from all ipfw rules to all pipes.
|
|
*/
|
|
static void
|
|
dummynet_flush(void)
|
|
{
|
|
struct dn_pipe *pipe, *pipe1;
|
|
struct dn_flow_set *fs, *fs1;
|
|
int i;
|
|
|
|
DUMMYNET_LOCK();
|
|
/* Free heaps so we don't have unwanted events. */
|
|
heap_free(&ready_heap);
|
|
heap_free(&wfq_ready_heap);
|
|
heap_free(&extract_heap);
|
|
|
|
/*
|
|
* Now purge all queued pkts and delete all pipes.
|
|
*
|
|
* XXXGL: can we merge the for(;;) cycles into one or not?
|
|
*/
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
|
|
SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
|
|
purge_flow_set(fs, 1);
|
|
}
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
|
|
SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
|
|
purge_pipe(pipe);
|
|
free(pipe, M_DUMMYNET);
|
|
}
|
|
DUMMYNET_UNLOCK();
|
|
}
|
|
|
|
extern struct ip_fw *ip_fw_default_rule ;
|
|
static void
|
|
dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
|
|
{
|
|
int i ;
|
|
struct dn_flow_queue *q ;
|
|
struct mbuf *m ;
|
|
|
|
for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
|
|
for (q = fs->rq[i] ; q ; q = q->next )
|
|
for (m = q->head ; m ; m = m->m_nextpkt ) {
|
|
struct dn_pkt_tag *pkt = dn_tag_get(m) ;
|
|
if (pkt->rule == r)
|
|
pkt->rule = ip_fw_default_rule ;
|
|
}
|
|
}
|
|
/*
|
|
* when a firewall rule is deleted, scan all queues and remove the flow-id
|
|
* from packets matching this rule.
|
|
*/
|
|
void
|
|
dn_rule_delete(void *r)
|
|
{
|
|
struct dn_pipe *pipe;
|
|
struct dn_flow_set *fs;
|
|
struct dn_pkt_tag *pkt;
|
|
struct mbuf *m;
|
|
int i;
|
|
|
|
DUMMYNET_LOCK();
|
|
/*
|
|
* If the rule references a queue (dn_flow_set), then scan
|
|
* the flow set, otherwise scan pipes. Should do either, but doing
|
|
* both does not harm.
|
|
*/
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH(fs, &flowsethash[i], next)
|
|
dn_rule_delete_fs(fs, r);
|
|
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH(pipe, &pipehash[i], next) {
|
|
fs = &(pipe->fs);
|
|
dn_rule_delete_fs(fs, r);
|
|
for (m = pipe->head ; m ; m = m->m_nextpkt ) {
|
|
pkt = dn_tag_get(m);
|
|
if (pkt->rule == r)
|
|
pkt->rule = ip_fw_default_rule;
|
|
}
|
|
}
|
|
DUMMYNET_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* setup RED parameters
|
|
*/
|
|
static int
|
|
config_red(struct dn_flow_set *p, struct dn_flow_set *x)
|
|
{
|
|
int i;
|
|
|
|
x->w_q = p->w_q;
|
|
x->min_th = SCALE(p->min_th);
|
|
x->max_th = SCALE(p->max_th);
|
|
x->max_p = p->max_p;
|
|
|
|
x->c_1 = p->max_p / (p->max_th - p->min_th);
|
|
x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
|
|
|
|
if (x->flags_fs & DN_IS_GENTLE_RED) {
|
|
x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
|
|
x->c_4 = SCALE(1) - 2 * p->max_p;
|
|
}
|
|
|
|
/* If the lookup table already exist, free and create it again. */
|
|
if (x->w_q_lookup) {
|
|
free(x->w_q_lookup, M_DUMMYNET);
|
|
x->w_q_lookup = NULL;
|
|
}
|
|
if (red_lookup_depth == 0) {
|
|
printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth"
|
|
"must be > 0\n");
|
|
free(x, M_DUMMYNET);
|
|
return (EINVAL);
|
|
}
|
|
x->lookup_depth = red_lookup_depth;
|
|
x->w_q_lookup = (u_int *)malloc(x->lookup_depth * sizeof(int),
|
|
M_DUMMYNET, M_NOWAIT);
|
|
if (x->w_q_lookup == NULL) {
|
|
printf("dummynet: sorry, cannot allocate red lookup table\n");
|
|
free(x, M_DUMMYNET);
|
|
return(ENOSPC);
|
|
}
|
|
|
|
/* Fill the lookup table with (1 - w_q)^x */
|
|
x->lookup_step = p->lookup_step;
|
|
x->lookup_weight = p->lookup_weight;
|
|
x->w_q_lookup[0] = SCALE(1) - x->w_q;
|
|
|
|
for (i = 1; i < x->lookup_depth; i++)
|
|
x->w_q_lookup[i] =
|
|
SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
|
|
|
|
if (red_avg_pkt_size < 1)
|
|
red_avg_pkt_size = 512;
|
|
x->avg_pkt_size = red_avg_pkt_size;
|
|
if (red_max_pkt_size < 1)
|
|
red_max_pkt_size = 1500;
|
|
x->max_pkt_size = red_max_pkt_size;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
|
|
{
|
|
if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
|
|
int l = pfs->rq_size;
|
|
|
|
if (l == 0)
|
|
l = dn_hash_size;
|
|
if (l < 4)
|
|
l = 4;
|
|
else if (l > DN_MAX_HASH_SIZE)
|
|
l = DN_MAX_HASH_SIZE;
|
|
x->rq_size = l;
|
|
} else /* one is enough for null mask */
|
|
x->rq_size = 1;
|
|
x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
|
|
M_DUMMYNET, M_NOWAIT | M_ZERO);
|
|
if (x->rq == NULL) {
|
|
printf("dummynet: sorry, cannot allocate queue\n");
|
|
return (ENOMEM);
|
|
}
|
|
x->rq_elements = 0;
|
|
return 0 ;
|
|
}
|
|
|
|
static void
|
|
set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
|
|
{
|
|
x->flags_fs = src->flags_fs;
|
|
x->qsize = src->qsize;
|
|
x->plr = src->plr;
|
|
x->flow_mask = src->flow_mask;
|
|
if (x->flags_fs & DN_QSIZE_IS_BYTES) {
|
|
if (x->qsize > pipe_byte_limit)
|
|
x->qsize = 1024 * 1024;
|
|
} else {
|
|
if (x->qsize == 0)
|
|
x->qsize = 50;
|
|
if (x->qsize > pipe_slot_limit)
|
|
x->qsize = 50;
|
|
}
|
|
/* Configuring RED. */
|
|
if (x->flags_fs & DN_IS_RED)
|
|
config_red(src, x); /* XXX should check errors */
|
|
}
|
|
|
|
/*
|
|
* Setup pipe or queue parameters.
|
|
*/
|
|
static int
|
|
config_pipe(struct dn_pipe *p)
|
|
{
|
|
struct dn_flow_set *pfs = &(p->fs);
|
|
struct dn_flow_queue *q;
|
|
int i, error;
|
|
|
|
/*
|
|
* The config program passes parameters as follows:
|
|
* bw = bits/second (0 means no limits),
|
|
* delay = ms, must be translated into ticks.
|
|
* qsize = slots/bytes
|
|
*/
|
|
p->delay = (p->delay * hz) / 1000;
|
|
/* We need either a pipe number or a flow_set number. */
|
|
if (p->pipe_nr == 0 && pfs->fs_nr == 0)
|
|
return (EINVAL);
|
|
if (p->pipe_nr != 0 && pfs->fs_nr != 0)
|
|
return (EINVAL);
|
|
if (p->pipe_nr != 0) { /* this is a pipe */
|
|
struct dn_pipe *pipe;
|
|
|
|
DUMMYNET_LOCK();
|
|
pipe = locate_pipe(p->pipe_nr); /* locate pipe */
|
|
|
|
if (pipe == NULL) { /* new pipe */
|
|
pipe = malloc(sizeof(struct dn_pipe), M_DUMMYNET,
|
|
M_NOWAIT | M_ZERO);
|
|
if (pipe == NULL) {
|
|
DUMMYNET_UNLOCK();
|
|
printf("dummynet: no memory for new pipe\n");
|
|
return (ENOMEM);
|
|
}
|
|
pipe->pipe_nr = p->pipe_nr;
|
|
pipe->fs.pipe = pipe;
|
|
/*
|
|
* idle_heap is the only one from which
|
|
* we extract from the middle.
|
|
*/
|
|
pipe->idle_heap.size = pipe->idle_heap.elements = 0;
|
|
pipe->idle_heap.offset =
|
|
offsetof(struct dn_flow_queue, heap_pos);
|
|
} else
|
|
/* Flush accumulated credit for all queues. */
|
|
for (i = 0; i <= pipe->fs.rq_size; i++)
|
|
for (q = pipe->fs.rq[i]; q; q = q->next)
|
|
q->numbytes = io_fast ? p->bandwidth : 0;
|
|
|
|
pipe->bandwidth = p->bandwidth;
|
|
pipe->numbytes = 0; /* just in case... */
|
|
bcopy(p->if_name, pipe->if_name, sizeof(p->if_name));
|
|
pipe->ifp = NULL; /* reset interface ptr */
|
|
pipe->delay = p->delay;
|
|
set_fs_parms(&(pipe->fs), pfs);
|
|
|
|
if (pipe->fs.rq == NULL) { /* a new pipe */
|
|
error = alloc_hash(&(pipe->fs), pfs);
|
|
if (error) {
|
|
DUMMYNET_UNLOCK();
|
|
free(pipe, M_DUMMYNET);
|
|
return (error);
|
|
}
|
|
SLIST_INSERT_HEAD(&pipehash[HASH(pipe->pipe_nr)],
|
|
pipe, next);
|
|
}
|
|
DUMMYNET_UNLOCK();
|
|
} else { /* config queue */
|
|
struct dn_flow_set *fs;
|
|
|
|
DUMMYNET_LOCK();
|
|
fs = locate_flowset(pfs->fs_nr); /* locate flow_set */
|
|
|
|
if (fs == NULL) { /* new */
|
|
if (pfs->parent_nr == 0) { /* need link to a pipe */
|
|
DUMMYNET_UNLOCK();
|
|
return (EINVAL);
|
|
}
|
|
fs = malloc(sizeof(struct dn_flow_set), M_DUMMYNET,
|
|
M_NOWAIT | M_ZERO);
|
|
if (fs == NULL) {
|
|
DUMMYNET_UNLOCK();
|
|
printf(
|
|
"dummynet: no memory for new flow_set\n");
|
|
return (ENOMEM);
|
|
}
|
|
fs->fs_nr = pfs->fs_nr;
|
|
fs->parent_nr = pfs->parent_nr;
|
|
fs->weight = pfs->weight;
|
|
if (fs->weight == 0)
|
|
fs->weight = 1;
|
|
else if (fs->weight > 100)
|
|
fs->weight = 100;
|
|
} else {
|
|
/*
|
|
* Change parent pipe not allowed;
|
|
* must delete and recreate.
|
|
*/
|
|
if (pfs->parent_nr != 0 &&
|
|
fs->parent_nr != pfs->parent_nr) {
|
|
DUMMYNET_UNLOCK();
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
set_fs_parms(fs, pfs);
|
|
|
|
if (fs->rq == NULL) { /* a new flow_set */
|
|
error = alloc_hash(fs, pfs);
|
|
if (error) {
|
|
DUMMYNET_UNLOCK();
|
|
free(fs, M_DUMMYNET);
|
|
return (error);
|
|
}
|
|
SLIST_INSERT_HEAD(&flowsethash[HASH(fs->fs_nr)],
|
|
fs, next);
|
|
}
|
|
DUMMYNET_UNLOCK();
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Helper function to remove from a heap queues which are linked to
|
|
* a flow_set about to be deleted.
|
|
*/
|
|
static void
|
|
fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
|
|
{
|
|
int i = 0, found = 0 ;
|
|
for (; i < h->elements ;)
|
|
if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
|
|
h->elements-- ;
|
|
h->p[i] = h->p[h->elements] ;
|
|
found++ ;
|
|
} else
|
|
i++ ;
|
|
if (found)
|
|
heapify(h);
|
|
}
|
|
|
|
/*
|
|
* helper function to remove a pipe from a heap (can be there at most once)
|
|
*/
|
|
static void
|
|
pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
|
|
{
|
|
if (h->elements > 0) {
|
|
int i = 0 ;
|
|
for (i=0; i < h->elements ; i++ ) {
|
|
if (h->p[i].object == p) { /* found it */
|
|
h->elements-- ;
|
|
h->p[i] = h->p[h->elements] ;
|
|
heapify(h);
|
|
break ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* drain all queues. Called in case of severe mbuf shortage.
|
|
*/
|
|
void
|
|
dummynet_drain(void)
|
|
{
|
|
struct dn_flow_set *fs;
|
|
struct dn_pipe *pipe;
|
|
struct mbuf *m, *mnext;
|
|
int i;
|
|
|
|
DUMMYNET_LOCK_ASSERT();
|
|
|
|
heap_free(&ready_heap);
|
|
heap_free(&wfq_ready_heap);
|
|
heap_free(&extract_heap);
|
|
/* remove all references to this pipe from flow_sets */
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH(fs, &flowsethash[i], next)
|
|
purge_flow_set(fs, 0);
|
|
|
|
for (i = 0; i < HASHSIZE; i++) {
|
|
SLIST_FOREACH(pipe, &pipehash[i], next) {
|
|
purge_flow_set(&(pipe->fs), 0);
|
|
|
|
mnext = pipe->head;
|
|
while ((m = mnext) != NULL) {
|
|
mnext = m->m_nextpkt;
|
|
DN_FREE_PKT(m);
|
|
}
|
|
pipe->head = pipe->tail = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fully delete a pipe or a queue, cleaning up associated info.
|
|
*/
|
|
static int
|
|
delete_pipe(struct dn_pipe *p)
|
|
{
|
|
|
|
if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
|
|
return EINVAL ;
|
|
if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
|
|
return EINVAL ;
|
|
if (p->pipe_nr != 0) { /* this is an old-style pipe */
|
|
struct dn_pipe *pipe;
|
|
struct dn_flow_set *fs;
|
|
int i;
|
|
|
|
DUMMYNET_LOCK();
|
|
pipe = locate_pipe(p->pipe_nr); /* locate pipe */
|
|
|
|
if (pipe == NULL) {
|
|
DUMMYNET_UNLOCK();
|
|
return (ENOENT); /* not found */
|
|
}
|
|
|
|
/* Unlink from list of pipes. */
|
|
SLIST_REMOVE(&pipehash[HASH(pipe->pipe_nr)], pipe, dn_pipe, next);
|
|
|
|
/* Remove all references to this pipe from flow_sets. */
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH(fs, &flowsethash[i], next)
|
|
if (fs->pipe == pipe) {
|
|
printf("dummynet: ++ ref to pipe %d from fs %d\n",
|
|
p->pipe_nr, fs->fs_nr);
|
|
fs->pipe = NULL ;
|
|
purge_flow_set(fs, 0);
|
|
}
|
|
fs_remove_from_heap(&ready_heap, &(pipe->fs));
|
|
purge_pipe(pipe); /* remove all data associated to this pipe */
|
|
/* remove reference to here from extract_heap and wfq_ready_heap */
|
|
pipe_remove_from_heap(&extract_heap, pipe);
|
|
pipe_remove_from_heap(&wfq_ready_heap, pipe);
|
|
DUMMYNET_UNLOCK();
|
|
|
|
free(pipe, M_DUMMYNET);
|
|
} else { /* this is a WF2Q queue (dn_flow_set) */
|
|
struct dn_flow_set *fs;
|
|
|
|
DUMMYNET_LOCK();
|
|
fs = locate_flowset(p->fs.fs_nr); /* locate set */
|
|
|
|
if (fs == NULL) {
|
|
DUMMYNET_UNLOCK();
|
|
return (ENOENT); /* not found */
|
|
}
|
|
|
|
/* Unlink from list of flowsets. */
|
|
SLIST_REMOVE( &flowsethash[HASH(fs->fs_nr)], fs, dn_flow_set, next);
|
|
|
|
if (fs->pipe != NULL) {
|
|
/* Update total weight on parent pipe and cleanup parent heaps. */
|
|
fs->pipe->sum -= fs->weight * fs->backlogged ;
|
|
fs_remove_from_heap(&(fs->pipe->not_eligible_heap), fs);
|
|
fs_remove_from_heap(&(fs->pipe->scheduler_heap), fs);
|
|
#if 1 /* XXX should i remove from idle_heap as well ? */
|
|
fs_remove_from_heap(&(fs->pipe->idle_heap), fs);
|
|
#endif
|
|
}
|
|
purge_flow_set(fs, 1);
|
|
DUMMYNET_UNLOCK();
|
|
}
|
|
return 0 ;
|
|
}
|
|
|
|
/*
|
|
* helper function used to copy data from kernel in DUMMYNET_GET
|
|
*/
|
|
static char *
|
|
dn_copy_set(struct dn_flow_set *set, char *bp)
|
|
{
|
|
int i, copied = 0 ;
|
|
struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
|
|
|
|
DUMMYNET_LOCK_ASSERT();
|
|
|
|
for (i = 0 ; i <= set->rq_size ; i++)
|
|
for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
|
|
if (q->hash_slot != i)
|
|
printf("dummynet: ++ at %d: wrong slot (have %d, "
|
|
"should be %d)\n", copied, q->hash_slot, i);
|
|
if (q->fs != set)
|
|
printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
|
|
i, q->fs, set);
|
|
copied++ ;
|
|
bcopy(q, qp, sizeof( *q ) );
|
|
/* cleanup pointers */
|
|
qp->next = NULL ;
|
|
qp->head = qp->tail = NULL ;
|
|
qp->fs = NULL ;
|
|
}
|
|
if (copied != set->rq_elements)
|
|
printf("dummynet: ++ wrong count, have %d should be %d\n",
|
|
copied, set->rq_elements);
|
|
return (char *)qp ;
|
|
}
|
|
|
|
static size_t
|
|
dn_calc_size(void)
|
|
{
|
|
struct dn_flow_set *fs;
|
|
struct dn_pipe *pipe;
|
|
size_t size = 0;
|
|
int i;
|
|
|
|
DUMMYNET_LOCK_ASSERT();
|
|
/*
|
|
* Compute size of data structures: list of pipes and flow_sets.
|
|
*/
|
|
for (i = 0; i < HASHSIZE; i++) {
|
|
SLIST_FOREACH(pipe, &pipehash[i], next)
|
|
size += sizeof(*pipe) +
|
|
pipe->fs.rq_elements * sizeof(struct dn_flow_queue);
|
|
SLIST_FOREACH(fs, &flowsethash[i], next)
|
|
size += sizeof (*fs) +
|
|
fs->rq_elements * sizeof(struct dn_flow_queue);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static int
|
|
dummynet_get(struct sockopt *sopt)
|
|
{
|
|
char *buf, *bp ; /* bp is the "copy-pointer" */
|
|
size_t size ;
|
|
struct dn_flow_set *fs;
|
|
struct dn_pipe *pipe;
|
|
int error=0, i ;
|
|
|
|
/* XXX lock held too long */
|
|
DUMMYNET_LOCK();
|
|
/*
|
|
* XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
|
|
* cannot use this flag while holding a mutex.
|
|
*/
|
|
for (i = 0; i < 10; i++) {
|
|
size = dn_calc_size();
|
|
DUMMYNET_UNLOCK();
|
|
buf = malloc(size, M_TEMP, M_WAITOK);
|
|
DUMMYNET_LOCK();
|
|
if (size == dn_calc_size())
|
|
break;
|
|
free(buf, M_TEMP);
|
|
buf = NULL;
|
|
}
|
|
if (buf == NULL) {
|
|
DUMMYNET_UNLOCK();
|
|
return ENOBUFS ;
|
|
}
|
|
bp = buf;
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH(pipe, &pipehash[i], next) {
|
|
struct dn_pipe *pipe_bp = (struct dn_pipe *)bp;
|
|
|
|
/*
|
|
* Copy pipe descriptor into *bp, convert delay back to ms,
|
|
* then copy the flow_set descriptor(s) one at a time.
|
|
* After each flow_set, copy the queue descriptor it owns.
|
|
*/
|
|
bcopy(pipe, bp, sizeof(*pipe));
|
|
pipe_bp->delay = (pipe_bp->delay * 1000) / hz;
|
|
/*
|
|
* XXX the following is a hack based on ->next being the
|
|
* first field in dn_pipe and dn_flow_set. The correct
|
|
* solution would be to move the dn_flow_set to the beginning
|
|
* of struct dn_pipe.
|
|
*/
|
|
pipe_bp->next.sle_next = (struct dn_pipe *)DN_IS_PIPE;
|
|
/* Clean pointers. */
|
|
pipe_bp->head = pipe_bp->tail = NULL;
|
|
pipe_bp->fs.next.sle_next = NULL;
|
|
pipe_bp->fs.pipe = NULL;
|
|
pipe_bp->fs.rq = NULL;
|
|
|
|
bp += sizeof(*pipe) ;
|
|
bp = dn_copy_set(&(pipe->fs), bp);
|
|
}
|
|
|
|
for (i = 0; i < HASHSIZE; i++)
|
|
SLIST_FOREACH(fs, &flowsethash[i], next) {
|
|
struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp;
|
|
|
|
bcopy(fs, bp, sizeof(*fs));
|
|
/* XXX same hack as above */
|
|
fs_bp->next.sle_next = (struct dn_flow_set *)DN_IS_QUEUE;
|
|
fs_bp->pipe = NULL;
|
|
fs_bp->rq = NULL;
|
|
bp += sizeof(*fs);
|
|
bp = dn_copy_set(fs, bp);
|
|
}
|
|
|
|
DUMMYNET_UNLOCK();
|
|
|
|
error = sooptcopyout(sopt, buf, size);
|
|
free(buf, M_TEMP);
|
|
return error ;
|
|
}
|
|
|
|
/*
|
|
* Handler for the various dummynet socket options (get, flush, config, del)
|
|
*/
|
|
static int
|
|
ip_dn_ctl(struct sockopt *sopt)
|
|
{
|
|
int error = 0 ;
|
|
struct dn_pipe *p, tmp_pipe;
|
|
|
|
error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Disallow sets in really-really secure mode. */
|
|
if (sopt->sopt_dir == SOPT_SET) {
|
|
#if __FreeBSD_version >= 500034
|
|
error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
|
|
if (error)
|
|
return (error);
|
|
#else
|
|
if (securelevel >= 3)
|
|
return (EPERM);
|
|
#endif
|
|
}
|
|
|
|
switch (sopt->sopt_name) {
|
|
default :
|
|
printf("dummynet: -- unknown option %d", sopt->sopt_name);
|
|
return EINVAL ;
|
|
|
|
case IP_DUMMYNET_GET :
|
|
error = dummynet_get(sopt);
|
|
break ;
|
|
|
|
case IP_DUMMYNET_FLUSH :
|
|
dummynet_flush() ;
|
|
break ;
|
|
|
|
case IP_DUMMYNET_CONFIGURE :
|
|
p = &tmp_pipe ;
|
|
error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
|
|
if (error)
|
|
break ;
|
|
error = config_pipe(p);
|
|
break ;
|
|
|
|
case IP_DUMMYNET_DEL : /* remove a pipe or queue */
|
|
p = &tmp_pipe ;
|
|
error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
|
|
if (error)
|
|
break ;
|
|
|
|
error = delete_pipe(p);
|
|
break ;
|
|
}
|
|
return error ;
|
|
}
|
|
|
|
static void
|
|
ip_dn_init(void)
|
|
{
|
|
int i;
|
|
|
|
if (bootverbose)
|
|
printf("DUMMYNET with IPv6 initialized (040826)\n");
|
|
|
|
DUMMYNET_LOCK_INIT();
|
|
|
|
for (i = 0; i < HASHSIZE; i++) {
|
|
SLIST_INIT(&pipehash[i]);
|
|
SLIST_INIT(&flowsethash[i]);
|
|
}
|
|
ready_heap.size = ready_heap.elements = 0;
|
|
ready_heap.offset = 0;
|
|
|
|
wfq_ready_heap.size = wfq_ready_heap.elements = 0;
|
|
wfq_ready_heap.offset = 0;
|
|
|
|
extract_heap.size = extract_heap.elements = 0;
|
|
extract_heap.offset = 0;
|
|
|
|
ip_dn_ctl_ptr = ip_dn_ctl;
|
|
ip_dn_io_ptr = dummynet_io;
|
|
ip_dn_ruledel_ptr = dn_rule_delete;
|
|
|
|
TASK_INIT(&dn_task, 0, dummynet_task, NULL);
|
|
dn_tq = taskqueue_create_fast("dummynet", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &dn_tq);
|
|
taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet");
|
|
|
|
callout_init(&dn_timeout, CALLOUT_MPSAFE);
|
|
callout_reset(&dn_timeout, 1, dummynet, NULL);
|
|
|
|
/* Initialize curr_time adjustment mechanics. */
|
|
getmicrouptime(&prev_t);
|
|
}
|
|
|
|
#ifdef KLD_MODULE
|
|
static void
|
|
ip_dn_destroy(void)
|
|
{
|
|
ip_dn_ctl_ptr = NULL;
|
|
ip_dn_io_ptr = NULL;
|
|
ip_dn_ruledel_ptr = NULL;
|
|
|
|
DUMMYNET_LOCK();
|
|
callout_stop(&dn_timeout);
|
|
DUMMYNET_UNLOCK();
|
|
taskqueue_drain(dn_tq, &dn_task);
|
|
taskqueue_free(dn_tq);
|
|
|
|
dummynet_flush();
|
|
|
|
DUMMYNET_LOCK_DESTROY();
|
|
}
|
|
#endif /* KLD_MODULE */
|
|
|
|
static int
|
|
dummynet_modevent(module_t mod, int type, void *data)
|
|
{
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
if (DUMMYNET_LOADED) {
|
|
printf("DUMMYNET already loaded\n");
|
|
return EEXIST ;
|
|
}
|
|
ip_dn_init();
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
#if !defined(KLD_MODULE)
|
|
printf("dummynet statically compiled, cannot unload\n");
|
|
return EINVAL ;
|
|
#else
|
|
ip_dn_destroy();
|
|
#endif
|
|
break ;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
break ;
|
|
}
|
|
return 0 ;
|
|
}
|
|
|
|
static moduledata_t dummynet_mod = {
|
|
"dummynet",
|
|
dummynet_modevent,
|
|
NULL
|
|
};
|
|
DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY);
|
|
MODULE_DEPEND(dummynet, ipfw, 2, 2, 2);
|
|
MODULE_VERSION(dummynet, 1);
|