freebsd-dev/sys/dev/ath/if_ath.c
Adrian Chadd 375307d411 Delete the per-TXQ locks and replace them with a single TX lock.
I couldn't think of a way to maintain the hardware TXQ locks _and_ layer
on top of that per-TXQ software queuing and any other kind of fine-grained
locks (eg per-TID, or per-node locks.)

So for now, to facilitate some further code refactoring and development
as part of the final push to get software queue ps-poll and u-apsd handling
into this driver, just do away with them entirely.

I may eventually bring them back at some point, when it looks slightly more
architectually cleaner to do so.  But as it stands at the present, it's
not really buying us much:

* in order to properly serialise things and not get bitten by scheduling
  and locking interactions with things higher up in the stack, we need to
  wrap the whole TX path in a long held lock.  Otherwise we can end up
  being pre-empted during frame handling, resulting in some out of order
  frame handling between sequence number allocation and encryption handling
  (ie, the seqno and the CCMP IV get out of sequence);

* .. so whilst that's the case, holding the lock for that long means that
  we're acquiring and releasing the TXQ lock _inside_ that context;

* And we also acquire it per-frame during frame completion, but we currently
  can't hold the lock for the duration of the TX completion as we need
  to call net80211 layer things with the locks _unheld_ to avoid LOR.

* .. the other places were grab that lock are reset/flush, which don't happen
  often.

My eventual aim is to change the TX path so all rejected frame transmissions
and all frame completions result in any ieee80211_free_node() calls to occur
outside of the TX lock; then I can cut back on the amount of locking that
goes on here.

There may be some LORs that occur when ieee80211_free_node() is called when
the TX queue path fails; I'll begin to address these in follow-up commits.
2012-12-02 06:24:08 +00:00

5732 lines
154 KiB
C

/*-
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
/*
* This is needed for register operations which are performed
* by the driver - eg, calls to ath_hal_gettsf32().
*
* It's also required for any AH_DEBUG checks in here, eg the
* module dependencies.
*/
#include "opt_ah.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <sys/module.h>
#include <sys/ktr.h>
#include <sys/smp.h> /* for mp_ncpus */
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tsf.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_sysctl.h>
#include <dev/ath/if_ath_led.h>
#include <dev/ath/if_ath_keycache.h>
#include <dev/ath/if_ath_rx.h>
#include <dev/ath/if_ath_rx_edma.h>
#include <dev/ath/if_ath_tx_edma.h>
#include <dev/ath/if_ath_beacon.h>
#include <dev/ath/if_athdfs.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#ifdef ATH_DEBUG_ALQ
#include <dev/ath/if_ath_alq.h>
#endif
/*
* Only enable this if you're working on PS-POLL support.
*/
#undef ATH_SW_PSQ
/*
* ATH_BCBUF determines the number of vap's that can transmit
* beacons and also (currently) the number of vap's that can
* have unique mac addresses/bssid. When staggering beacons
* 4 is probably a good max as otherwise the beacons become
* very closely spaced and there is limited time for cab q traffic
* to go out. You can burst beacons instead but that is not good
* for stations in power save and at some point you really want
* another radio (and channel).
*
* The limit on the number of mac addresses is tied to our use of
* the U/L bit and tracking addresses in a byte; it would be
* worthwhile to allow more for applications like proxy sta.
*/
CTASSERT(ATH_BCBUF <= 8);
static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_vap_delete(struct ieee80211vap *);
static void ath_init(void *);
static void ath_stop_locked(struct ifnet *);
static void ath_stop(struct ifnet *);
static int ath_reset_vap(struct ieee80211vap *, u_long);
static void ath_start_queue(struct ifnet *ifp);
static int ath_media_change(struct ifnet *);
static void ath_watchdog(void *);
static int ath_ioctl(struct ifnet *, u_long, caddr_t);
static void ath_fatal_proc(void *, int);
static void ath_bmiss_vap(struct ieee80211vap *);
static void ath_bmiss_proc(void *, int);
static void ath_key_update_begin(struct ieee80211vap *);
static void ath_key_update_end(struct ieee80211vap *);
static void ath_update_mcast(struct ifnet *);
static void ath_update_promisc(struct ifnet *);
static void ath_updateslot(struct ifnet *);
static void ath_bstuck_proc(void *, int);
static void ath_reset_proc(void *, int);
static int ath_desc_alloc(struct ath_softc *);
static void ath_desc_free(struct ath_softc *);
static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_node_cleanup(struct ieee80211_node *);
static void ath_node_free(struct ieee80211_node *);
static void ath_node_getsignal(const struct ieee80211_node *,
int8_t *, int8_t *);
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
static int ath_tx_setup(struct ath_softc *, int, int);
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
static void ath_tx_cleanup(struct ath_softc *);
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
int dosched);
static void ath_tx_proc_q0(void *, int);
static void ath_tx_proc_q0123(void *, int);
static void ath_tx_proc(void *, int);
static void ath_txq_sched_tasklet(void *, int);
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
static void ath_scan_start(struct ieee80211com *);
static void ath_scan_end(struct ieee80211com *);
static void ath_set_channel(struct ieee80211com *);
#ifdef ATH_ENABLE_11N
static void ath_update_chw(struct ieee80211com *);
#endif /* ATH_ENABLE_11N */
static void ath_calibrate(void *);
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void ath_setup_stationkey(struct ieee80211_node *);
static void ath_newassoc(struct ieee80211_node *, int);
static int ath_setregdomain(struct ieee80211com *,
struct ieee80211_regdomain *, int,
struct ieee80211_channel []);
static void ath_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel []);
static int ath_getchannels(struct ath_softc *);
static int ath_rate_setup(struct ath_softc *, u_int mode);
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
static void ath_announce(struct ath_softc *);
static void ath_dfs_tasklet(void *, int);
static void ath_node_powersave(struct ieee80211_node *, int);
static int ath_node_set_tim(struct ieee80211_node *, int);
#ifdef IEEE80211_SUPPORT_TDMA
#include <dev/ath/if_ath_tdma.h>
#endif
SYSCTL_DECL(_hw_ath);
/* XXX validate sysctl values */
static int ath_longcalinterval = 30; /* long cals every 30 secs */
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
0, "long chip calibration interval (secs)");
static int ath_shortcalinterval = 100; /* short cals every 100 ms */
SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
0, "short chip calibration interval (msecs)");
static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
0, "reset chip calibration results (secs)");
static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
0, "ANI calibration (msecs)");
int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
0, "rx buffers allocated");
TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
0, "tx buffers allocated");
TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
0, "tx (mgmt) buffers allocated");
TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
int ath_bstuck_threshold = 4; /* max missed beacons */
SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
0, "max missed beacon xmits before chip reset");
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
void
ath_legacy_attach_comp_func(struct ath_softc *sc)
{
/*
* Special case certain configurations. Note the
* CAB queue is handled by these specially so don't
* include them when checking the txq setup mask.
*/
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
case 0x01:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
break;
case 0x0f:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
break;
default:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
break;
}
}
#define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
#define HAL_MODE_HT40 \
(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
int
ath_attach(u_int16_t devid, struct ath_softc *sc)
{
struct ifnet *ifp;
struct ieee80211com *ic;
struct ath_hal *ah = NULL;
HAL_STATUS status;
int error = 0, i;
u_int wmodes;
uint8_t macaddr[IEEE80211_ADDR_LEN];
int rx_chainmask, tx_chainmask;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
CURVNET_SET(vnet0);
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
error = ENOSPC;
CURVNET_RESTORE();
goto bad;
}
ic = ifp->if_l2com;
/* set these up early for if_printf use */
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
CURVNET_RESTORE();
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
sc->sc_eepromdata, &status);
if (ah == NULL) {
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
status);
error = ENXIO;
goto bad;
}
sc->sc_ah = ah;
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
#ifdef ATH_DEBUG
sc->sc_debug = ath_debug;
#endif
/*
* Setup the DMA/EDMA functions based on the current
* hardware support.
*
* This is required before the descriptors are allocated.
*/
if (ath_hal_hasedma(sc->sc_ah)) {
sc->sc_isedma = 1;
ath_recv_setup_edma(sc);
ath_xmit_setup_edma(sc);
} else {
ath_recv_setup_legacy(sc);
ath_xmit_setup_legacy(sc);
}
/*
* Check if the MAC has multi-rate retry support.
* We do this by trying to setup a fake extended
* descriptor. MAC's that don't have support will
* return false w/o doing anything. MAC's that do
* support it will return true w/o doing anything.
*/
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
/*
* Check if the device has hardware counters for PHY
* errors. If so we need to enable the MIB interrupt
* so we can act on stat triggers.
*/
if (ath_hal_hwphycounters(ah))
sc->sc_needmib = 1;
/*
* Get the hardware key cache size.
*/
sc->sc_keymax = ath_hal_keycachesize(ah);
if (sc->sc_keymax > ATH_KEYMAX) {
if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
ATH_KEYMAX, sc->sc_keymax);
sc->sc_keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
/*
* Collect the default channel list.
*/
error = ath_getchannels(sc);
if (error != 0)
goto bad;
/*
* Setup rate tables for all potential media types.
*/
ath_rate_setup(sc, IEEE80211_MODE_11A);
ath_rate_setup(sc, IEEE80211_MODE_11B);
ath_rate_setup(sc, IEEE80211_MODE_11G);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_11NA);
ath_rate_setup(sc, IEEE80211_MODE_11NG);
ath_rate_setup(sc, IEEE80211_MODE_HALF);
ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
/* NB: setup here so ath_rate_update is happy */
ath_setcurmode(sc, IEEE80211_MODE_11A);
/*
* Allocate TX descriptors and populate the lists.
*/
error = ath_desc_alloc(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate TX descriptors: %d\n",
error);
goto bad;
}
error = ath_txdma_setup(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate TX descriptors: %d\n",
error);
goto bad;
}
/*
* Allocate RX descriptors and populate the lists.
*/
error = ath_rxdma_setup(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate RX descriptors: %d\n",
error);
goto bad;
}
callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
ATH_TXBUF_LOCK_INIT(sc);
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
"%s taskq", ifp->if_xname);
TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles resetting
* these queues at the needed time.
*
* XXX PS-Poll
*/
sc->sc_bhalq = ath_beaconq_setup(sc);
if (sc->sc_bhalq == (u_int) -1) {
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
error = EIO;
goto bad2;
}
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) {
if_printf(ifp, "unable to setup CAB xmit queue!\n");
error = EIO;
goto bad2;
}
/* NB: insure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
ieee80211_wme_acnames[WME_AC_BK]);
error = EIO;
goto bad2;
}
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
/*
* Not enough hardware tx queues to properly do WME;
* just punt and assign them all to the same h/w queue.
* We could do a better job of this if, for example,
* we allocate queues when we switch from station to
* AP mode.
*/
if (sc->sc_ac2q[WME_AC_VI] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
if (sc->sc_ac2q[WME_AC_BE] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
}
/*
* Attach the TX completion function.
*
* The non-EDMA chips may have some special case optimisations;
* this method gives everyone a chance to attach cleanly.
*/
sc->sc_tx.xmit_attach_comp_func(sc);
/*
* Setup rate control. Some rate control modules
* call back to change the anntena state so expose
* the necessary entry points.
* XXX maybe belongs in struct ath_ratectrl?
*/
sc->sc_setdefantenna = ath_setdefantenna;
sc->sc_rc = ath_rate_attach(sc);
if (sc->sc_rc == NULL) {
error = EIO;
goto bad2;
}
/* Attach DFS module */
if (! ath_dfs_attach(sc)) {
device_printf(sc->sc_dev,
"%s: unable to attach DFS\n", __func__);
error = EIO;
goto bad2;
}
/* Start DFS processing tasklet */
TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
/* Configure LED state */
sc->sc_blinking = 0;
sc->sc_ledstate = 1;
sc->sc_ledon = 0; /* low true */
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
/*
* Don't setup hardware-based blinking.
*
* Although some NICs may have this configured in the
* default reset register values, the user may wish
* to alter which pins have which function.
*
* The reference driver attaches the MAC network LED to GPIO1 and
* the MAC power LED to GPIO2. However, the DWA-552 cardbus
* NIC has these reversed.
*/
sc->sc_hardled = (1 == 0);
sc->sc_led_net_pin = -1;
sc->sc_led_pwr_pin = -1;
/*
* Auto-enable soft led processing for IBM cards and for
* 5211 minipci cards. Users can also manually enable/disable
* support with a sysctl.
*/
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_start = ath_start_queue;
ifp->if_ioctl = ath_ioctl;
ifp->if_init = ath_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
/* XXX not right but it's not used anywhere important */
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_WDS /* 4-address traffic works */
| IEEE80211_C_MBSS /* mesh point link mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
#ifndef ATH_ENABLE_11N
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#endif
| IEEE80211_C_TXFRAG /* handle tx frags */
#ifdef ATH_ENABLE_DFS
| IEEE80211_C_DFS /* Enable radar detection */
#endif
;
/*
* Query the hal to figure out h/w crypto support.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
/*
* Check if h/w does the MIC and/or whether the
* separate key cache entries are required to
* handle both tx+rx MIC keys.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
/*
* If the h/w supports storing tx+rx MIC keys
* in one cache slot automatically enable use.
*/
if (ath_hal_hastkipsplit(ah) ||
!ath_hal_settkipsplit(ah, AH_FALSE))
sc->sc_splitmic = 1;
/*
* If the h/w can do TKIP MIC together with WME then
* we use it; otherwise we force the MIC to be done
* in software by the net80211 layer.
*/
if (ath_hal_haswmetkipmic(ah))
sc->sc_wmetkipmic = 1;
}
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
/*
* Check for multicast key search support.
*/
if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
!ath_hal_getmcastkeysearch(sc->sc_ah)) {
ath_hal_setmcastkeysearch(sc->sc_ah, 1);
}
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
setbit(sc->sc_keymap, i);
setbit(sc->sc_keymap, i+64);
if (sc->sc_splitmic) {
setbit(sc->sc_keymap, i+32);
setbit(sc->sc_keymap, i+32+64);
}
}
/*
* TPC support can be done either with a global cap or
* per-packet support. The latter is not available on
* all parts. We're a bit pedantic here as all parts
* support a global cap.
*/
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
ic->ic_caps |= IEEE80211_C_TXPMGT;
/*
* Mark WME capability only if we have sufficient
* hardware queues to do proper priority scheduling.
*/
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
ic->ic_caps |= IEEE80211_C_WME;
/*
* Check for misc other capabilities.
*/
if (ath_hal_hasbursting(ah))
ic->ic_caps |= IEEE80211_C_BURST;
sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
if (ath_hal_hasfastframes(ah))
ic->ic_caps |= IEEE80211_C_FF;
wmodes = ath_hal_getwirelessmodes(ah);
if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
ic->ic_caps |= IEEE80211_C_TURBOP;
#ifdef IEEE80211_SUPPORT_TDMA
if (ath_hal_macversion(ah) > 0x78) {
ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
ic->ic_tdma_update = ath_tdma_update;
}
#endif
/*
* TODO: enforce that at least this many frames are available
* in the txbuf list before allowing data frames (raw or
* otherwise) to be transmitted.
*/
sc->sc_txq_data_minfree = 10;
/*
* Leave this as default to maintain legacy behaviour.
* Shortening the cabq/mcastq may end up causing some
* undesirable behaviour.
*/
sc->sc_txq_mcastq_maxdepth = ath_txbuf;
/*
* Allow the TX and RX chainmasks to be overridden by
* environment variables and/or device.hints.
*
* This must be done early - before the hardware is
* calibrated or before the 802.11n stream calculation
* is done.
*/
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "rx_chainmask",
&rx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
rx_chainmask);
(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
}
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "tx_chainmask",
&tx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
tx_chainmask);
(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
}
/*
* Disable MRR with protected frames by default.
* Only 802.11n series NICs can handle this.
*/
sc->sc_mrrprot = 0; /* XXX should be a capability */
/*
* Query the enterprise mode information the HAL.
*/
if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
&sc->sc_ent_cfg) == HAL_OK)
sc->sc_use_ent = 1;
#ifdef ATH_ENABLE_11N
/*
* Query HT capabilities
*/
if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
(wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
int rxs, txs;
device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
sc->sc_mrrprot = 1; /* XXX should be a capability */
ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
| IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
| IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
| IEEE80211_HTCAP_MAXAMSDU_3839
/* max A-MSDU length */
| IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
;
/*
* Enable short-GI for HT20 only if the hardware
* advertises support.
* Notably, anything earlier than the AR9287 doesn't.
*/
if ((ath_hal_getcapability(ah,
HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
(wmodes & HAL_MODE_HT20)) {
device_printf(sc->sc_dev,
"[HT] enabling short-GI in 20MHz mode\n");
ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
}
if (wmodes & HAL_MODE_HT40)
ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
| IEEE80211_HTCAP_SHORTGI40;
/*
* TX/RX streams need to be taken into account when
* negotiating which MCS rates it'll receive and
* what MCS rates are available for TX.
*/
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
ic->ic_txstream = txs;
ic->ic_rxstream = rxs;
(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
&sc->sc_rts_aggr_limit);
if (sc->sc_rts_aggr_limit != (64 * 1024))
device_printf(sc->sc_dev,
"[HT] RTS aggregates limited to %d KiB\n",
sc->sc_rts_aggr_limit / 1024);
device_printf(sc->sc_dev,
"[HT] %d RX streams; %d TX streams\n", rxs, txs);
}
#endif
/*
* Initial aggregation settings.
*/
sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
/*
* Check if the hardware requires PCI register serialisation.
* Some of the Owl based MACs require this.
*/
if (mp_ncpus > 1 &&
ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
0, NULL) == HAL_OK) {
sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
device_printf(sc->sc_dev,
"Enabling register serialisation\n");
}
/*
* Indicate we need the 802.11 header padded to a
* 32-bit boundary for 4-address and QoS frames.
*/
ic->ic_flags |= IEEE80211_F_DATAPAD;
/*
* Query the hal about antenna support.
*/
sc->sc_defant = ath_hal_getdefantenna(ah);
/*
* Not all chips have the VEOL support we want to
* use with IBSS beacons; check here for it.
*/
sc->sc_hasveol = ath_hal_hasveol(ah);
/* get mac address from hardware */
ath_hal_getmac(ah, macaddr);
if (sc->sc_hasbmask)
ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
/* NB: used to size node table key mapping array */
ic->ic_max_keyix = sc->sc_keymax;
/* call MI attach routine. */
ieee80211_ifattach(ic, macaddr);
ic->ic_setregdomain = ath_setregdomain;
ic->ic_getradiocaps = ath_getradiocaps;
sc->sc_opmode = HAL_M_STA;
/* override default methods */
ic->ic_newassoc = ath_newassoc;
ic->ic_updateslot = ath_updateslot;
ic->ic_wme.wme_update = ath_wme_update;
ic->ic_vap_create = ath_vap_create;
ic->ic_vap_delete = ath_vap_delete;
ic->ic_raw_xmit = ath_raw_xmit;
ic->ic_update_mcast = ath_update_mcast;
ic->ic_update_promisc = ath_update_promisc;
ic->ic_node_alloc = ath_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = ath_node_free;
sc->sc_node_cleanup = ic->ic_node_cleanup;
ic->ic_node_cleanup = ath_node_cleanup;
ic->ic_node_getsignal = ath_node_getsignal;
ic->ic_scan_start = ath_scan_start;
ic->ic_scan_end = ath_scan_end;
ic->ic_set_channel = ath_set_channel;
#ifdef ATH_ENABLE_11N
/* 802.11n specific - but just override anyway */
sc->sc_addba_request = ic->ic_addba_request;
sc->sc_addba_response = ic->ic_addba_response;
sc->sc_addba_stop = ic->ic_addba_stop;
sc->sc_bar_response = ic->ic_bar_response;
sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
ic->ic_addba_request = ath_addba_request;
ic->ic_addba_response = ath_addba_response;
ic->ic_addba_response_timeout = ath_addba_response_timeout;
ic->ic_addba_stop = ath_addba_stop;
ic->ic_bar_response = ath_bar_response;
ic->ic_update_chw = ath_update_chw;
#endif /* ATH_ENABLE_11N */
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
/*
* There's one vendor bitmap entry in the RX radiotap
* header; make sure that's taken into account.
*/
ieee80211_radiotap_attachv(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
ATH_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
ATH_RX_RADIOTAP_PRESENT);
#else
/*
* No vendor bitmap/extensions are present.
*/
ieee80211_radiotap_attach(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
ATH_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
ATH_RX_RADIOTAP_PRESENT);
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
/*
* Setup the ALQ logging if required
*/
#ifdef ATH_DEBUG_ALQ
if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
if_ath_alq_setcfg(&sc->sc_alq,
sc->sc_ah->ah_macVersion,
sc->sc_ah->ah_macRev,
sc->sc_ah->ah_phyRev,
sc->sc_ah->ah_magic);
#endif
/*
* Setup dynamic sysctl's now that country code and
* regdomain are available from the hal.
*/
ath_sysctlattach(sc);
ath_sysctl_stats_attach(sc);
ath_sysctl_hal_attach(sc);
if (bootverbose)
ieee80211_announce(ic);
ath_announce(sc);
return 0;
bad2:
ath_tx_cleanup(sc);
ath_desc_free(sc);
ath_txdma_teardown(sc);
ath_rxdma_teardown(sc);
bad:
if (ah)
ath_hal_detach(ah);
/*
* To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
*/
if (ifp != NULL && ifp->if_vnet) {
CURVNET_SET(ifp->if_vnet);
if_free(ifp);
CURVNET_RESTORE();
} else if (ifp != NULL)
if_free(ifp);
sc->sc_invalid = 1;
return error;
}
int
ath_detach(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
/*
* NB: the order of these is important:
* o stop the chip so no more interrupts will fire
* o call the 802.11 layer before detaching the hal to
* insure callbacks into the driver to delete global
* key cache entries can be handled
* o free the taskqueue which drains any pending tasks
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
* node state and potentially want to use them
* o to cleanup the tx queues the hal is called, so detach
* it last
* Other than that, it's straightforward...
*/
ath_stop(ifp);
ieee80211_ifdetach(ifp->if_l2com);
taskqueue_free(sc->sc_tq);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->detach(sc->sc_tx99);
#endif
ath_rate_detach(sc->sc_rc);
#ifdef ATH_DEBUG_ALQ
if_ath_alq_tidyup(&sc->sc_alq);
#endif
ath_dfs_detach(sc);
ath_desc_free(sc);
ath_txdma_teardown(sc);
ath_rxdma_teardown(sc);
ath_tx_cleanup(sc);
ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
CURVNET_SET(ifp->if_vnet);
if_free(ifp);
CURVNET_RESTORE();
return 0;
}
/*
* MAC address handling for multiple BSS on the same radio.
* The first vap uses the MAC address from the EEPROM. For
* subsequent vap's we set the U/L bit (bit 1) in the MAC
* address and use the next six bits as an index.
*/
static void
assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
{
int i;
if (clone && sc->sc_hasbmask) {
/* NB: we only do this if h/w supports multiple bssid */
for (i = 0; i < 8; i++)
if ((sc->sc_bssidmask & (1<<i)) == 0)
break;
if (i != 0)
mac[0] |= (i << 2)|0x2;
} else
i = 0;
sc->sc_bssidmask |= 1<<i;
sc->sc_hwbssidmask[0] &= ~mac[0];
if (i == 0)
sc->sc_nbssid0++;
}
static void
reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
{
int i = mac[0] >> 2;
uint8_t mask;
if (i != 0 || --sc->sc_nbssid0 == 0) {
sc->sc_bssidmask &= ~(1<<i);
/* recalculate bssid mask from remaining addresses */
mask = 0xff;
for (i = 1; i < 8; i++)
if (sc->sc_bssidmask & (1<<i))
mask &= ~((i<<2)|0x2);
sc->sc_hwbssidmask[0] |= mask;
}
}
/*
* Assign a beacon xmit slot. We try to space out
* assignments so when beacons are staggered the
* traffic coming out of the cab q has maximal time
* to go out before the next beacon is scheduled.
*/
static int
assign_bslot(struct ath_softc *sc)
{
u_int slot, free;
free = 0;
for (slot = 0; slot < ATH_BCBUF; slot++)
if (sc->sc_bslot[slot] == NULL) {
if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
return slot;
free = slot;
/* NB: keep looking for a double slot */
}
return free;
}
static struct ieee80211vap *
ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac0[IEEE80211_ADDR_LEN])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp;
struct ieee80211vap *vap;
uint8_t mac[IEEE80211_ADDR_LEN];
int needbeacon, error;
enum ieee80211_opmode ic_opmode;
avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
M_80211_VAP, M_WAITOK | M_ZERO);
needbeacon = 0;
IEEE80211_ADDR_COPY(mac, mac0);
ATH_LOCK(sc);
ic_opmode = opmode; /* default to opmode of new vap */
switch (opmode) {
case IEEE80211_M_STA:
if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev, "only 1 sta vap supported\n");
goto bad;
}
if (sc->sc_nvaps) {
/*
* With multiple vaps we must fall back
* to s/w beacon miss handling.
*/
flags |= IEEE80211_CLONE_NOBEACONS;
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Station mode w/o beacons are implemented w/ AP mode.
*/
ic_opmode = IEEE80211_M_HOSTAP;
}
break;
case IEEE80211_M_IBSS:
if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev,
"only 1 ibss vap supported\n");
goto bad;
}
needbeacon = 1;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (flags & IEEE80211_CLONE_TDMA) {
if (sc->sc_nvaps != 0) {
device_printf(sc->sc_dev,
"only 1 tdma vap supported\n");
goto bad;
}
needbeacon = 1;
flags |= IEEE80211_CLONE_NOBEACONS;
}
/* fall thru... */
#endif
case IEEE80211_M_MONITOR:
if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
/*
* Adopt existing mode. Adding a monitor or ahdemo
* vap to an existing configuration is of dubious
* value but should be ok.
*/
/* XXX not right for monitor mode */
ic_opmode = ic->ic_opmode;
}
break;
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
needbeacon = 1;
break;
case IEEE80211_M_WDS:
if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
device_printf(sc->sc_dev,
"wds not supported in sta mode\n");
goto bad;
}
/*
* Silently remove any request for a unique
* bssid; WDS vap's always share the local
* mac address.
*/
flags &= ~IEEE80211_CLONE_BSSID;
if (sc->sc_nvaps == 0)
ic_opmode = IEEE80211_M_HOSTAP;
else
ic_opmode = ic->ic_opmode;
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
goto bad;
}
/*
* Check that a beacon buffer is available; the code below assumes it.
*/
if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
device_printf(sc->sc_dev, "no beacon buffer available\n");
goto bad;
}
/* STA, AHDEMO? */
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
}
vap = &avp->av_vap;
/* XXX can't hold mutex across if_alloc */
ATH_UNLOCK(sc);
error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
bssid, mac);
ATH_LOCK(sc);
if (error != 0) {
device_printf(sc->sc_dev, "%s: error %d creating vap\n",
__func__, error);
goto bad2;
}
/* h/w crypto support */
vap->iv_key_alloc = ath_key_alloc;
vap->iv_key_delete = ath_key_delete;
vap->iv_key_set = ath_key_set;
vap->iv_key_update_begin = ath_key_update_begin;
vap->iv_key_update_end = ath_key_update_end;
/* override various methods */
avp->av_recv_mgmt = vap->iv_recv_mgmt;
vap->iv_recv_mgmt = ath_recv_mgmt;
vap->iv_reset = ath_reset_vap;
vap->iv_update_beacon = ath_beacon_update;
avp->av_newstate = vap->iv_newstate;
vap->iv_newstate = ath_newstate;
avp->av_bmiss = vap->iv_bmiss;
vap->iv_bmiss = ath_bmiss_vap;
avp->av_node_ps = vap->iv_node_ps;
vap->iv_node_ps = ath_node_powersave;
avp->av_set_tim = vap->iv_set_tim;
vap->iv_set_tim = ath_node_set_tim;
/* Set default parameters */
/*
* Anything earlier than some AR9300 series MACs don't
* support a smaller MPDU density.
*/
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
/*
* All NICs can handle the maximum size, however
* AR5416 based MACs can only TX aggregates w/ RTS
* protection when the total aggregate size is <= 8k.
* However, for now that's enforced by the TX path.
*/
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
avp->av_bslot = -1;
if (needbeacon) {
/*
* Allocate beacon state and setup the q for buffered
* multicast frames. We know a beacon buffer is
* available because we checked above.
*/
avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
/*
* Assign the vap to a beacon xmit slot. As above
* this cannot fail to find a free one.
*/
avp->av_bslot = assign_bslot(sc);
KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
("beacon slot %u not empty", avp->av_bslot));
sc->sc_bslot[avp->av_bslot] = vap;
sc->sc_nbcnvaps++;
}
if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
/*
* Multple vaps are to transmit beacons and we
* have h/w support for TSF adjusting; enable
* use of staggered beacons.
*/
sc->sc_stagbeacons = 1;
}
ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
}
ic->ic_opmode = ic_opmode;
if (opmode != IEEE80211_M_WDS) {
sc->sc_nvaps++;
if (opmode == IEEE80211_M_STA)
sc->sc_nstavaps++;
if (opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps++;
}
switch (ic_opmode) {
case IEEE80211_M_IBSS:
sc->sc_opmode = HAL_M_IBSS;
break;
case IEEE80211_M_STA:
sc->sc_opmode = HAL_M_STA;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
sc->sc_tdma = 1;
/* NB: disable tsf adjust */
sc->sc_stagbeacons = 0;
}
/*
* NB: adhoc demo mode is a pseudo mode; to the hal it's
* just ap mode.
*/
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
sc->sc_opmode = HAL_M_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->sc_opmode = HAL_M_MONITOR;
break;
default:
/* XXX should not happen */
break;
}
if (sc->sc_hastsfadd) {
/*
* Configure whether or not TSF adjust should be done.
*/
ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Enable s/w beacon miss handling.
*/
sc->sc_swbmiss = 1;
}
ATH_UNLOCK(sc);
/* complete setup */
ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
return vap;
bad2:
reclaim_address(sc, mac);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
bad:
free(avp, M_80211_VAP);
ATH_UNLOCK(sc);
return NULL;
}
static void
ath_vap_delete(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp = ATH_VAP(vap);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Quiesce the hardware while we remove the vap. In
* particular we need to reclaim all references to
* the vap state by any frames pending on the tx queues.
*/
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
/* XXX Do all frames from all vaps/nodes need draining here? */
ath_stoprecv(sc, 1); /* stop recv side */
}
ieee80211_vap_detach(vap);
/*
* XXX Danger Will Robinson! Danger!
*
* Because ieee80211_vap_detach() can queue a frame (the station
* diassociate message?) after we've drained the TXQ and
* flushed the software TXQ, we will end up with a frame queued
* to a node whose vap is about to be freed.
*
* To work around this, flush the hardware/software again.
* This may be racy - the ath task may be running and the packet
* may be being scheduled between sw->hw txq. Tsk.
*
* TODO: figure out why a new node gets allocated somewhere around
* here (after the ath_tx_swq() call; and after an ath_stop_locked()
* call!)
*/
ath_draintxq(sc, ATH_RESET_DEFAULT);
ATH_LOCK(sc);
/*
* Reclaim beacon state. Note this must be done before
* the vap instance is reclaimed as we may have a reference
* to it in the buffer for the beacon frame.
*/
if (avp->av_bcbuf != NULL) {
if (avp->av_bslot != -1) {
sc->sc_bslot[avp->av_bslot] = NULL;
sc->sc_nbcnvaps--;
}
ath_beacon_return(sc, avp->av_bcbuf);
avp->av_bcbuf = NULL;
if (sc->sc_nbcnvaps == 0) {
sc->sc_stagbeacons = 0;
if (sc->sc_hastsfadd)
ath_hal_settsfadjust(sc->sc_ah, 0);
}
/*
* Reclaim any pending mcast frames for the vap.
*/
ath_tx_draintxq(sc, &avp->av_mcastq);
}
/*
* Update bookkeeping.
*/
if (vap->iv_opmode == IEEE80211_M_STA) {
sc->sc_nstavaps--;
if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
sc->sc_swbmiss = 0;
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) {
reclaim_address(sc, vap->iv_myaddr);
ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
if (vap->iv_opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps--;
}
if (vap->iv_opmode != IEEE80211_M_WDS)
sc->sc_nvaps--;
#ifdef IEEE80211_SUPPORT_TDMA
/* TDMA operation ceases when the last vap is destroyed */
if (sc->sc_tdma && sc->sc_nvaps == 0) {
sc->sc_tdma = 0;
sc->sc_swbmiss = 0;
}
#endif
free(avp, M_80211_VAP);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Restart rx+tx machines if still running (RUNNING will
* be reset if we just destroyed the last vap).
*/
if (ath_startrecv(sc) != 0)
if_printf(ifp, "%s: unable to restart recv logic\n",
__func__);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
ath_hal_intrset(ah, sc->sc_imask);
}
ATH_UNLOCK(sc);
}
void
ath_suspend(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
ieee80211_suspend_all(ic);
/*
* NB: don't worry about putting the chip in low power
* mode; pci will power off our socket on suspend and
* CardBus detaches the device.
*/
/*
* XXX ensure none of the taskqueues are running
* XXX ensure sc_invalid is 1
* XXX ensure the calibration callout is disabled
*/
/* Disable the PCIe PHY, complete with workarounds */
ath_hal_enablepcie(sc->sc_ah, 1, 1);
}
/*
* Reset the key cache since some parts do not reset the
* contents on resume. First we clear all entries, then
* re-load keys that the 802.11 layer assumes are setup
* in h/w.
*/
static void
ath_reset_keycache(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
int i;
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
ieee80211_crypto_reload_keys(ic);
}
void
ath_resume(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
/* Re-enable PCIe, re-enable the PCIe bus */
ath_hal_enablepcie(ah, 0, 0);
/*
* Must reset the chip before we reload the
* keycache as we were powered down on suspend.
*/
ath_hal_reset(ah, sc->sc_opmode,
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
AH_FALSE, &status);
ath_reset_keycache(sc);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Restore the LED configuration */
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
if (sc->sc_resume_up)
ieee80211_resume_all(ic);
/* XXX beacons ? */
}
void
ath_shutdown(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
__func__, ifp->if_flags);
ath_stop(ifp);
/* NB: no point powering down chip as we're about to reboot */
}
/*
* Interrupt handler. Most of the actual processing is deferred.
*/
void
ath_intr(void *arg)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
HAL_INT status = 0;
uint32_t txqs;
/*
* If we're inside a reset path, just print a warning and
* clear the ISR. The reset routine will finish it for us.
*/
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt) {
HAL_INT status;
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: in reset, ignoring: status=0x%x\n",
__func__, status);
ATH_PCU_UNLOCK(sc);
return;
}
if (sc->sc_invalid) {
/*
* The hardware is not ready/present, don't touch anything.
* Note this can happen early on if the IRQ is shared.
*/
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
ATH_PCU_UNLOCK(sc);
return;
}
if ((ifp->if_flags & IFF_UP) == 0 ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
HAL_INT status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
ATH_PCU_UNLOCK(sc);
return;
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
#ifdef ATH_KTR_INTR_DEBUG
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
"ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
ah->ah_intrstate[0],
ah->ah_intrstate[1],
ah->ah_intrstate[2],
ah->ah_intrstate[3],
ah->ah_intrstate[6]);
#endif
/* Squirrel away SYNC interrupt debugging */
if (ah->ah_syncstate != 0) {
int i;
for (i = 0; i < 32; i++)
if (ah->ah_syncstate & (i << i))
sc->sc_intr_stats.sync_intr[i]++;
}
status &= sc->sc_imask; /* discard unasked for bits */
/* Short-circuit un-handled interrupts */
if (status == 0x0) {
ATH_PCU_UNLOCK(sc);
return;
}
/*
* Take a note that we're inside the interrupt handler, so
* the reset routines know to wait.
*/
sc->sc_intr_cnt++;
ATH_PCU_UNLOCK(sc);
/*
* Handle the interrupt. We won't run concurrent with the reset
* or channel change routines as they'll wait for sc_intr_cnt
* to be 0 before continuing.
*/
if (status & HAL_INT_FATAL) {
sc->sc_stats.ast_hardware++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
} else {
if (status & HAL_INT_SWBA) {
/*
* Software beacon alert--time to send a beacon.
* Handle beacon transmission directly; deferring
* this is too slow to meet timing constraints
* under load.
*/
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
if (sc->sc_tdmaswba == 0) {
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap =
TAILQ_FIRST(&ic->ic_vaps);
ath_tdma_beacon_send(sc, vap);
sc->sc_tdmaswba =
vap->iv_tdma->tdma_bintval;
} else
sc->sc_tdmaswba--;
} else
#endif
{
ath_beacon_proc(sc, 0);
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Schedule the rx taskq in case there's no
* traffic so any frames held on the staging
* queue are aged and potentially flushed.
*/
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
#endif
}
}
if (status & HAL_INT_RXEOL) {
int imask;
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
ATH_PCU_LOCK(sc);
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
sc->sc_stats.ast_rxeol++;
/*
* Disable RXEOL/RXORN - prevent an interrupt
* storm until the PCU logic can be reset.
* In case the interface is reset some other
* way before "sc_kickpcu" is called, don't
* modify sc_imask - that way if it is reset
* by a call to ath_reset() somehow, the
* interrupt mask will be correctly reprogrammed.
*/
imask = sc->sc_imask;
imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
ath_hal_intrset(ah, imask);
/*
* Only blank sc_rxlink if we've not yet kicked
* the PCU.
*
* This isn't entirely correct - the correct solution
* would be to have a PCU lock and engage that for
* the duration of the PCU fiddling; which would include
* running the RX process. Otherwise we could end up
* messing up the RX descriptor chain and making the
* RX desc list much shorter.
*/
if (! sc->sc_kickpcu)
sc->sc_rxlink = NULL;
sc->sc_kickpcu = 1;
/*
* Enqueue an RX proc, to handled whatever
* is in the RX queue.
* This will then kick the PCU.
*/
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_TXURN) {
sc->sc_stats.ast_txurn++;
/* bump tx trigger level */
ath_hal_updatetxtriglevel(ah, AH_TRUE);
}
/*
* Handle both the legacy and RX EDMA interrupt bits.
* Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
*/
if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
sc->sc_stats.ast_rx_intr++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
}
if (status & HAL_INT_TX) {
sc->sc_stats.ast_tx_intr++;
/*
* Grab all the currently set bits in the HAL txq bitmap
* and blank them. This is the only place we should be
* doing this.
*/
if (! sc->sc_isedma) {
ATH_PCU_LOCK(sc);
txqs = 0xffffffff;
ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
"ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
txqs,
sc->sc_txq_active,
sc->sc_txq_active | txqs);
sc->sc_txq_active |= txqs;
ATH_PCU_UNLOCK(sc);
}
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
}
if (status & HAL_INT_BMISS) {
sc->sc_stats.ast_bmiss++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
}
if (status & HAL_INT_GTT)
sc->sc_stats.ast_tx_timeout++;
if (status & HAL_INT_CST)
sc->sc_stats.ast_tx_cst++;
if (status & HAL_INT_MIB) {
sc->sc_stats.ast_mib++;
ATH_PCU_LOCK(sc);
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to fire.
*/
ath_hal_intrset(ah, 0);
/*
* Let the hal handle the event. We assume it will
* clear whatever condition caused the interrupt.
*/
ath_hal_mibevent(ah, &sc->sc_halstats);
/*
* Don't reset the interrupt if we've just
* kicked the PCU, or we may get a nested
* RXEOL before the rxproc has had a chance
* to run.
*/
if (sc->sc_kickpcu == 0)
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_RXORN) {
/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
sc->sc_stats.ast_rxorn++;
}
}
ATH_PCU_LOCK(sc);
sc->sc_intr_cnt--;
ATH_PCU_UNLOCK(sc);
}
static void
ath_fatal_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
u_int32_t *state;
u_int32_t len;
void *sp;
if_printf(ifp, "hardware error; resetting\n");
/*
* Fatal errors are unrecoverable. Typically these
* are caused by DMA errors. Collect h/w state from
* the hal so we can diagnose what's going on.
*/
if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
state = sp;
if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
state[0], state[1] , state[2], state[3],
state[4], state[5]);
}
ath_reset(ifp, ATH_RESET_NOLOSS);
}
static void
ath_bmiss_vap(struct ieee80211vap *vap)
{
/*
* Workaround phantom bmiss interrupts by sanity-checking
* the time of our last rx'd frame. If it is within the
* beacon miss interval then ignore the interrupt. If it's
* truly a bmiss we'll get another interrupt soon and that'll
* be dispatched up for processing. Note this applies only
* for h/w beacon miss events.
*/
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
u_int64_t lastrx = sc->sc_lastrx;
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
/* XXX should take a locked ref to iv_bss */
u_int bmisstimeout =
vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
__func__, (unsigned long long) tsf,
(unsigned long long)(tsf - lastrx),
(unsigned long long) lastrx, bmisstimeout);
if (tsf - lastrx <= bmisstimeout) {
sc->sc_stats.ast_bmiss_phantom++;
return;
}
}
ATH_VAP(vap)->av_bmiss(vap);
}
static int
ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
{
uint32_t rsize;
void *sp;
if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
return 0;
KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
*hangs = *(uint32_t *)sp;
return 1;
}
static void
ath_bmiss_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
ath_reset(ifp, ATH_RESET_NOLOSS);
} else
ieee80211_beacon_miss(ifp->if_l2com);
}
/*
* Handle TKIP MIC setup to deal hardware that doesn't do MIC
* calcs together with WME. If necessary disable the crypto
* hardware and mark the 802.11 state so keys will be setup
* with the MIC work done in software.
*/
static void
ath_settkipmic(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
if (ic->ic_flags & IEEE80211_F_WME) {
ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
} else {
ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
}
}
}
static void
ath_init(void *arg)
{
struct ath_softc *sc = (struct ath_softc *) arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
__func__, ifp->if_flags);
ATH_LOCK(sc);
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop_locked(ifp);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
ath_settkipmic(sc);
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
if_printf(ifp, "unable to reset hardware; hal status %u\n",
status);
ATH_UNLOCK(sc);
return;
}
ath_chan_change(sc, ic->ic_curchan);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/*
* Likewise this is set during reset so update
* state cached in the driver.
*/
sc->sc_diversity = ath_hal_getdiversity(ah);
sc->sc_lastlongcal = 0;
sc->sc_resetcal = 1;
sc->sc_lastcalreset = 0;
sc->sc_lastani = 0;
sc->sc_lastshortcal = 0;
sc->sc_doresetcal = AH_FALSE;
/*
* Beacon timers were cleared here; give ath_newstate()
* a hint that the beacon timers should be poked when
* things transition to the RUN state.
*/
sc->sc_beacons = 0;
/*
* Setup the hardware after reset: the key cache
* is filled as needed and the receive engine is
* set going. Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
if_printf(ifp, "unable to start recv logic\n");
ATH_UNLOCK(sc);
return;
}
/*
* Enable interrupts.
*/
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
| HAL_INT_RXEOL | HAL_INT_RXORN
| HAL_INT_FATAL | HAL_INT_GLOBAL;
/*
* Enable RX EDMA bits. Note these overlap with
* HAL_INT_RX and HAL_INT_RXDESC respectively.
*/
if (sc->sc_isedma)
sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
sc->sc_imask |= HAL_INT_MIB;
/* Enable global TX timeout and carrier sense timeout if available */
if (ath_hal_gtxto_supported(ah))
sc->sc_imask |= HAL_INT_GTT;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
__func__, sc->sc_imask);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
ath_hal_intrset(ah, sc->sc_imask);
ATH_UNLOCK(sc);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->start(sc->sc_tx99);
else
#endif
ieee80211_start_all(ic); /* start all vap's */
}
static void
ath_stop_locked(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
__func__, sc->sc_invalid, ifp->if_flags);
ATH_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/*
* Shutdown the hardware and driver:
* reset 802.11 state machine
* turn off timers
* disable interrupts
* turn off the radio
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->stop(sc->sc_tx99);
#endif
callout_stop(&sc->sc_wd_ch);
sc->sc_wd_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
if (!sc->sc_invalid) {
if (sc->sc_softled) {
callout_stop(&sc->sc_ledtimer);
ath_hal_gpioset(ah, sc->sc_ledpin,
!sc->sc_ledon);
sc->sc_blinking = 0;
}
ath_hal_intrset(ah, 0);
}
ath_draintxq(sc, ATH_RESET_DEFAULT);
if (!sc->sc_invalid) {
ath_stoprecv(sc, 1);
ath_hal_phydisable(ah);
} else
sc->sc_rxlink = NULL;
ath_beacon_free(sc); /* XXX not needed */
}
}
#define MAX_TXRX_ITERATIONS 1000
static void
ath_txrx_stop_locked(struct ath_softc *sc)
{
int i = MAX_TXRX_ITERATIONS;
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK_ASSERT(sc);
/*
* Sleep until all the pending operations have completed.
*
* The caller must ensure that reset has been incremented
* or the pending operations may continue being queued.
*/
while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
sc->sc_txstart_cnt || sc->sc_intr_cnt) {
if (i <= 0)
break;
msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
i--;
}
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_TXRX_ITERATIONS);
}
#undef MAX_TXRX_ITERATIONS
#if 0
static void
ath_txrx_stop(struct ath_softc *sc)
{
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK(sc);
ath_txrx_stop_locked(sc);
ATH_PCU_UNLOCK(sc);
}
#endif
static void
ath_txrx_start(struct ath_softc *sc)
{
taskqueue_unblock(sc->sc_tq);
}
/*
* Grab the reset lock, and wait around until noone else
* is trying to do anything with it.
*
* This is totally horrible but we can't hold this lock for
* long enough to do TX/RX or we end up with net80211/ip stack
* LORs and eventual deadlock.
*
* "dowait" signals whether to spin, waiting for the reset
* lock count to reach 0. This should (for now) only be used
* during the reset path, as the rest of the code may not
* be locking-reentrant enough to behave correctly.
*
* Another, cleaner way should be found to serialise all of
* these operations.
*/
#define MAX_RESET_ITERATIONS 10
static int
ath_reset_grablock(struct ath_softc *sc, int dowait)
{
int w = 0;
int i = MAX_RESET_ITERATIONS;
ATH_PCU_LOCK_ASSERT(sc);
do {
if (sc->sc_inreset_cnt == 0) {
w = 1;
break;
}
if (dowait == 0) {
w = 0;
break;
}
ATH_PCU_UNLOCK(sc);
pause("ath_reset_grablock", 1);
i--;
ATH_PCU_LOCK(sc);
} while (i > 0);
/*
* We always increment the refcounter, regardless
* of whether we succeeded to get it in an exclusive
* way.
*/
sc->sc_inreset_cnt++;
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_RESET_ITERATIONS);
if (w == 0)
device_printf(sc->sc_dev,
"%s: warning, recursive reset path!\n",
__func__);
return w;
}
#undef MAX_RESET_ITERATIONS
/*
* XXX TODO: write ath_reset_releaselock
*/
static void
ath_stop(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
ATH_LOCK(sc);
ath_stop_locked(ifp);
ATH_UNLOCK(sc);
}
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from various errors and
* to reset or reload hardware state.
*/
int
ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
int i;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* Try to (stop any further TX/RX from occuring */
taskqueue_block(sc->sc_tq);
ATH_PCU_LOCK(sc);
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
ATH_PCU_UNLOCK(sc);
/*
* Should now wait for pending TX/RX to complete
* and block future ones from occuring. This needs to be
* done before the TX queue is drained.
*/
ath_draintxq(sc, reset_type); /* stop xmit side */
/*
* Regardless of whether we're doing a no-loss flush or
* not, stop the PCU and handle what's in the RX queue.
* That way frames aren't dropped which shouldn't be.
*/
ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
ath_rx_flush(sc);
ath_settkipmic(sc); /* configure TKIP MIC handling */
/* NB: indicate channel change so we do a full reset */
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
__func__, status);
sc->sc_diversity = ath_hal_getdiversity(ah);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
if (ath_startrecv(sc) != 0) /* restart recv */
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
/*
* We may be doing a reset in response to an ioctl
* that changes the channel so update any state that
* might change as a result.
*/
ath_chan_change(sc, ic->ic_curchan);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Release the reset lock and re-enable interrupts here.
* If an interrupt was being processed in ath_intr(),
* it would disable interrupts at this point. So we have
* to atomically enable interrupts and decrement the
* reset counter - this way ath_intr() doesn't end up
* disabling interrupts without a corresponding enable
* in the rest or channel change path.
*/
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
/*
* TX and RX can be started here. If it were started with
* sc_inreset_cnt > 0, the TX and RX path would abort.
* Thus if this is a nested call through the reset or
* channel change code, TX completion will occur but
* RX completion and ath_start / ath_tx_start will not
* run.
*/
/* Restart TX/RX as needed */
ath_txrx_start(sc);
/* Restart TX completion and pending TX */
if (reset_type == ATH_RESET_NOLOSS) {
ATH_TX_LOCK(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ath_txq_restart_dma(sc, &sc->sc_txq[i]);
ath_txq_sched(sc, &sc->sc_txq[i]);
}
}
ATH_TX_UNLOCK(sc);
}
/*
* This may have been set during an ath_start() call which
* set this once it detected a concurrent TX was going on.
* So, clear it.
*/
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
/* Handle any frames in the TX queue */
/*
* XXX should this be done by the caller, rather than
* ath_reset() ?
*/
ath_tx_kick(sc); /* restart xmit */
return 0;
}
static int
ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
switch (cmd) {
case IEEE80211_IOC_TXPOWER:
/*
* If per-packet TPC is enabled, then we have nothing
* to do; otherwise we need to force the global limit.
* All this can happen directly; no need to reset.
*/
if (!ath_hal_gettpc(ah))
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
return 0;
}
/* XXX? Full or NOLOSS? */
return ath_reset(ifp, ATH_RESET_FULL);
}
struct ath_buf *
_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK_ASSERT(sc);
if (btype == ATH_BUFTYPE_MGMT)
bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
else
bf = TAILQ_FIRST(&sc->sc_txbuf);
if (bf == NULL) {
sc->sc_stats.ast_tx_getnobuf++;
} else {
if (bf->bf_flags & ATH_BUF_BUSY) {
sc->sc_stats.ast_tx_getbusybuf++;
bf = NULL;
}
}
if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
if (btype == ATH_BUFTYPE_MGMT)
TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt--;
/*
* This shuldn't happen; however just to be
* safe print a warning and fudge the txbuf
* count.
*/
if (sc->sc_txbuf_cnt < 0) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt < 0?\n",
__func__);
sc->sc_txbuf_cnt = 0;
}
}
} else
bf = NULL;
if (bf == NULL) {
/* XXX should check which list, mgmt or otherwise */
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
"out of xmit buffers" : "xmit buffer busy");
return NULL;
}
/* XXX TODO: should do this at buffer list initialisation */
/* XXX (then, ensure the buffer has the right flag set) */
if (btype == ATH_BUFTYPE_MGMT)
bf->bf_flags |= ATH_BUF_MGMT;
else
bf->bf_flags &= (~ATH_BUF_MGMT);
/* Valid bf here; clear some basic fields */
bf->bf_next = NULL; /* XXX just to be sure */
bf->bf_last = NULL; /* XXX again, just to be sure */
bf->bf_comp = NULL; /* XXX again, just to be sure */
bzero(&bf->bf_state, sizeof(bf->bf_state));
/*
* Track the descriptor ID only if doing EDMA
*/
if (sc->sc_isedma) {
bf->bf_descid = sc->sc_txbuf_descid;
sc->sc_txbuf_descid++;
}
return bf;
}
/*
* When retrying a software frame, buffers marked ATH_BUF_BUSY
* can't be thrown back on the queue as they could still be
* in use by the hardware.
*
* This duplicates the buffer, or returns NULL.
*
* The descriptor is also copied but the link pointers and
* the DMA segments aren't copied; this frame should thus
* be again passed through the descriptor setup/chain routines
* so the link is correct.
*
* The caller must free the buffer using ath_freebuf().
*
* XXX TODO: this call shouldn't fail as it'll cause packet loss
* XXX in the TX pathway when retries are needed.
* XXX Figure out how to keep some buffers free, or factor the
* XXX number of busy buffers into the xmit path (ath_start())
* XXX so we don't over-commit.
*/
struct ath_buf *
ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
{
struct ath_buf *tbf;
tbf = ath_getbuf(sc,
(bf->bf_flags & ATH_BUF_MGMT) ?
ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
if (tbf == NULL)
return NULL; /* XXX failure? Why? */
/* Copy basics */
tbf->bf_next = NULL;
tbf->bf_nseg = bf->bf_nseg;
tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
tbf->bf_status = bf->bf_status;
tbf->bf_m = bf->bf_m;
tbf->bf_node = bf->bf_node;
/* will be setup by the chain/setup function */
tbf->bf_lastds = NULL;
/* for now, last == self */
tbf->bf_last = tbf;
tbf->bf_comp = bf->bf_comp;
/* NOTE: DMA segments will be setup by the setup/chain functions */
/* The caller has to re-init the descriptor + links */
/* Copy state */
memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
return tbf;
}
struct ath_buf *
ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK(sc);
bf = _ath_getbuf_locked(sc, btype);
/*
* If a mgmt buffer was requested but we're out of those,
* try requesting a normal one.
*/
if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
ATH_TXBUF_UNLOCK(sc);
if (bf == NULL) {
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
sc->sc_stats.ast_tx_qstop++;
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
}
return bf;
}
static void
ath_start_queue(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
ath_tx_kick(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
}
void
ath_start_task(void *arg, int npending)
{
struct ath_softc *sc = (struct ath_softc *) arg;
struct ifnet *ifp = sc->sc_ifp;
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
/* XXX is it ok to hold the ATH_LOCK here? */
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
ATH_PCU_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
sc->sc_stats.ast_tx_qstop++;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
return;
}
sc->sc_txstart_cnt++;
ATH_PCU_UNLOCK(sc);
ATH_TX_LOCK(sc);
ath_start(sc->sc_ifp);
ATH_TX_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
}
void
ath_start(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct ath_buf *bf;
struct mbuf *m, *next;
ath_bufhead frags;
int npkts = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
return;
ATH_TX_LOCK_ASSERT(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
for (;;) {
ATH_TXBUF_LOCK(sc);
if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
/* XXX increment counter? */
ATH_TXBUF_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
break;
}
ATH_TXBUF_UNLOCK(sc);
/*
* Grab a TX buffer and associated resources.
*/
bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
if (bf == NULL)
break;
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
ATH_TXBUF_LOCK(sc);
ath_returnbuf_head(sc, bf);
ATH_TXBUF_UNLOCK(sc);
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
npkts ++;
/*
* Check for fragmentation. If this frame
* has been broken up verify we have enough
* buffers to send all the fragments so all
* go out or none...
*/
TAILQ_INIT(&frags);
if ((m->m_flags & M_FRAG) &&
!ath_txfrag_setup(sc, &frags, m, ni)) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: out of txfrag buffers\n", __func__);
sc->sc_stats.ast_tx_nofrag++;
ifp->if_oerrors++;
ath_freetx(m);
goto bad;
}
ifp->if_opackets++;
nextfrag:
/*
* Pass the frame to the h/w for transmission.
* Fragmented frames have each frag chained together
* with m_nextpkt. We know there are sufficient ath_buf's
* to send all the frags because of work done by
* ath_txfrag_setup. We leave m_nextpkt set while
* calling ath_tx_start so it can use it to extend the
* the tx duration to cover the subsequent frag and
* so it can reclaim all the mbufs in case of an error;
* ath_tx_start clears m_nextpkt once it commits to
* handing the frame to the hardware.
*/
next = m->m_nextpkt;
if (ath_tx_start(sc, ni, bf, m)) {
bad:
ifp->if_oerrors++;
reclaim:
bf->bf_m = NULL;
bf->bf_node = NULL;
ATH_TXBUF_LOCK(sc);
ath_returnbuf_head(sc, bf);
ath_txfrag_cleanup(sc, &frags, ni);
ATH_TXBUF_UNLOCK(sc);
/*
* XXX todo, free the node outside of
* the TX lock context!
*/
if (ni != NULL)
ieee80211_free_node(ni);
continue;
}
/*
* Check here if the node is in power save state.
*/
ath_tx_update_tim(sc, ni, 1);
if (next != NULL) {
/*
* Beware of state changing between frags.
* XXX check sta power-save state?
*/
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: flush fragmented packet, state %s\n",
__func__,
ieee80211_state_name[ni->ni_vap->iv_state]);
ath_freetx(next);
goto reclaim;
}
m = next;
bf = TAILQ_FIRST(&frags);
KASSERT(bf != NULL, ("no buf for txfrag"));
TAILQ_REMOVE(&frags, bf, bf_list);
goto nextfrag;
}
sc->sc_wd_timer = 5;
}
ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
}
static int
ath_media_change(struct ifnet *ifp)
{
int error = ieee80211_media_change(ifp);
/* NB: only the fixed rate can change and that doesn't need a reset */
return (error == ENETRESET ? 0 : error);
}
/*
* Block/unblock tx+rx processing while a key change is done.
* We assume the caller serializes key management operations
* so we only need to worry about synchronization with other
* uses that originate in the driver.
*/
static void
ath_key_update_begin(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
taskqueue_block(sc->sc_tq);
IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
}
static void
ath_key_update_end(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
IF_UNLOCK(&ifp->if_snd);
taskqueue_unblock(sc->sc_tq);
}
static void
ath_update_promisc(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
u_int32_t rfilt;
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(sc->sc_ah, rfilt);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
}
static void
ath_update_mcast(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
u_int32_t mfilt[2];
/* calculate and install multicast filter */
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
struct ifmultiaddr *ifma;
/*
* Merge multicast addresses to form the hardware filter.
*/
mfilt[0] = mfilt[1] = 0;
if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
caddr_t dl;
u_int32_t val;
u_int8_t pos;
/* calculate XOR of eight 6bit values */
dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
val = LE_READ_4(dl + 0);
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
val = LE_READ_4(dl + 3);
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
pos &= 0x3f;
mfilt[pos / 32] |= (1 << (pos % 32));
}
if_maddr_runlock(ifp);
} else
mfilt[0] = mfilt[1] = ~0;
ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
__func__, mfilt[0], mfilt[1]);
}
void
ath_mode_init(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(ah, rfilt);
/* configure operational mode */
ath_hal_setopmode(ah);
DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
"%s: ah=%p, ifp=%p, if_addr=%p\n",
__func__,
ah,
ifp,
(ifp == NULL) ? NULL : ifp->if_addr);
/* handle any link-level address change */
ath_hal_setmac(ah, IF_LLADDR(ifp));
/* calculate and install multicast filter */
ath_update_mcast(ifp);
}
/*
* Set the slot time based on the current setting.
*/
void
ath_setslottime(struct ath_softc *sc)
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
u_int usec;
if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
usec = 13;
else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
usec = 21;
else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
/* honor short/long slot time only in 11g */
/* XXX shouldn't honor on pure g or turbo g channel */
if (ic->ic_flags & IEEE80211_F_SHSLOT)
usec = HAL_SLOT_TIME_9;
else
usec = HAL_SLOT_TIME_20;
} else
usec = HAL_SLOT_TIME_9;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
ath_hal_setslottime(ah, usec);
sc->sc_updateslot = OK;
}
/*
* Callback from the 802.11 layer to update the
* slot time based on the current setting.
*/
static void
ath_updateslot(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
/*
* When not coordinating the BSS, change the hardware
* immediately. For other operation we defer the change
* until beacon updates have propagated to the stations.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS)
sc->sc_updateslot = UPDATE;
else
ath_setslottime(sc);
}
/*
* Append the contents of src to dst; both queues
* are assumed to be locked.
*/
void
ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
{
TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
dst->axq_link = src->axq_link;
src->axq_link = NULL;
dst->axq_depth += src->axq_depth;
dst->axq_aggr_depth += src->axq_aggr_depth;
src->axq_depth = 0;
src->axq_aggr_depth = 0;
}
/*
* Reset the hardware, with no loss.
*
* This can't be used for a general case reset.
*/
static void
ath_reset_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
#if 0
if_printf(ifp, "%s: resetting\n", __func__);
#endif
ath_reset(ifp, ATH_RESET_NOLOSS);
}
/*
* Reset the hardware after detecting beacons have stopped.
*/
static void
ath_bstuck_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs = 0;
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
sc->sc_bmisscount);
sc->sc_stats.ast_bstuck++;
/*
* This assumes that there's no simultaneous channel mode change
* occuring.
*/
ath_reset(ifp, ATH_RESET_NOLOSS);
}
static void
ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
KASSERT(error == 0, ("error %u on bus_dma callback", error));
*paddr = segs->ds_addr;
}
/*
* Allocate the descriptors and appropriate DMA tag/setup.
*
* For some situations (eg EDMA TX completion), there isn't a requirement
* for the ath_buf entries to be allocated.
*/
int
ath_descdma_alloc_desc(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int ds_size, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
struct ifnet *ifp = sc->sc_ifp;
int error;
dd->dd_descsize = ds_size;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: %s DMA: %u desc, %d bytes per descriptor\n",
__func__, name, ndesc, dd->dd_descsize);
dd->dd_name = name;
dd->dd_desc_len = dd->dd_descsize * ndesc;
/*
* Merlin work-around:
* Descriptors that cross the 4KB boundary can't be used.
* Assume one skipped descriptor per 4KB page.
*/
if (! ath_hal_split4ktrans(sc->sc_ah)) {
int numpages = dd->dd_desc_len / 4096;
dd->dd_desc_len += ds_size * numpages;
}
/*
* Setup DMA descriptor area.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
PAGE_SIZE, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dd->dd_desc_len, /* maxsize */
1, /* nsegments */
dd->dd_desc_len, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dd->dd_dmat);
if (error != 0) {
if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
return error;
}
/* allocate descriptors */
error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&dd->dd_dmamap);
if (error != 0) {
if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
"error %u\n", ndesc, dd->dd_name, error);
goto fail1;
}
error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
dd->dd_desc, dd->dd_desc_len,
ath_load_cb, &dd->dd_desc_paddr,
BUS_DMA_NOWAIT);
if (error != 0) {
if_printf(ifp, "unable to map %s descriptors, error %u\n",
dd->dd_name, error);
goto fail2;
}
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
__func__, dd->dd_name, (uint8_t *) dd->dd_desc,
(u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
/*XXX*/ (u_long) dd->dd_desc_len);
return (0);
fail2:
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
fail1:
bus_dma_tag_destroy(dd->dd_dmat);
memset(dd, 0, sizeof(*dd));
return error;
#undef DS2PHYS
#undef ATH_DESC_4KB_BOUND_CHECK
}
int
ath_descdma_setup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int ds_size, int nbuf, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
struct ifnet *ifp = sc->sc_ifp;
uint8_t *ds;
struct ath_buf *bf;
int i, bsize, error;
/* Allocate descriptors */
error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
nbuf * ndesc);
/* Assume any errors during allocation were dealt with */
if (error != 0) {
return (error);
}
ds = (uint8_t *) dd->dd_desc;
/* allocate rx buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
if (bf == NULL) {
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
dd->dd_name, bsize);
goto fail3;
}
dd->dd_bufptr = bf;
TAILQ_INIT(head);
for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
bf->bf_desc = (struct ath_desc *) ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (! ath_hal_split4ktrans(sc->sc_ah)) {
/*
* Merlin WAR: Skip descriptor addresses which
* cause 4KB boundary crossing along any point
* in the descriptor.
*/
if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
dd->dd_descsize)) {
/* Start at the next page */
ds += 0x1000 - (bf->bf_daddr & 0xFFF);
bf->bf_desc = (struct ath_desc *) ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&bf->bf_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s "
"buffer %u, error %u\n", dd->dd_name, i, error);
ath_descdma_cleanup(sc, dd, head);
return error;
}
bf->bf_lastds = bf->bf_desc; /* Just an initial value */
TAILQ_INSERT_TAIL(head, bf, bf_list);
}
/*
* XXX TODO: ensure that ds doesn't overflow the descriptor
* allocation otherwise weird stuff will occur and crash your
* machine.
*/
return 0;
/* XXX this should likely just call ath_descdma_cleanup() */
fail3:
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
bus_dma_tag_destroy(dd->dd_dmat);
memset(dd, 0, sizeof(*dd));
return error;
#undef DS2PHYS
#undef ATH_DESC_4KB_BOUND_CHECK
}
/*
* Allocate ath_buf entries but no descriptor contents.
*
* This is for RX EDMA where the descriptors are the header part of
* the RX buffer.
*/
int
ath_descdma_setup_rx_edma(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head,
const char *name, int nbuf, int rx_status_len)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_buf *bf;
int i, bsize, error;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
__func__, name, nbuf);
dd->dd_name = name;
/*
* This is (mostly) purely for show. We're not allocating any actual
* descriptors here as EDMA RX has the descriptor be part
* of the RX buffer.
*
* However, dd_desc_len is used by ath_descdma_free() to determine
* whether we have already freed this DMA mapping.
*/
dd->dd_desc_len = rx_status_len * nbuf;
dd->dd_descsize = rx_status_len;
/* allocate rx buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
if (bf == NULL) {
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
dd->dd_name, bsize);
error = ENOMEM;
goto fail3;
}
dd->dd_bufptr = bf;
TAILQ_INIT(head);
for (i = 0; i < nbuf; i++, bf++) {
bf->bf_desc = NULL;
bf->bf_daddr = 0;
bf->bf_lastds = NULL; /* Just an initial value */
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&bf->bf_dmamap);
if (error != 0) {
if_printf(ifp, "unable to create dmamap for %s "
"buffer %u, error %u\n", dd->dd_name, i, error);
ath_descdma_cleanup(sc, dd, head);
return error;
}
TAILQ_INSERT_TAIL(head, bf, bf_list);
}
return 0;
fail3:
memset(dd, 0, sizeof(*dd));
return error;
}
void
ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd, ath_bufhead *head)
{
struct ath_buf *bf;
struct ieee80211_node *ni;
if (dd->dd_dmamap != 0) {
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
bus_dma_tag_destroy(dd->dd_dmat);
}
if (head != NULL) {
TAILQ_FOREACH(bf, head, bf_list) {
if (bf->bf_m) {
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
if (bf->bf_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
bf->bf_dmamap = NULL;
}
ni = bf->bf_node;
bf->bf_node = NULL;
if (ni != NULL) {
/*
* Reclaim node reference.
*/
ieee80211_free_node(ni);
}
}
}
if (head != NULL)
TAILQ_INIT(head);
if (dd->dd_bufptr != NULL)
free(dd->dd_bufptr, M_ATHDEV);
memset(dd, 0, sizeof(*dd));
}
static int
ath_desc_alloc(struct ath_softc *sc)
{
int error;
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
"tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
if (error != 0) {
return error;
}
sc->sc_txbuf_cnt = ath_txbuf;
error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
"tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
ATH_TXDESC);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
return error;
}
/*
* XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
* flag doesn't have to be set in ath_getbuf_locked().
*/
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
&sc->sc_txbuf_mgmt);
return error;
}
return 0;
}
static void
ath_desc_free(struct ath_softc *sc)
{
if (sc->sc_bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
if (sc->sc_txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
if (sc->sc_txdma_mgmt.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
&sc->sc_txbuf_mgmt);
}
static struct ieee80211_node *
ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
struct ath_node *an;
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
if (an == NULL) {
/* XXX stat+msg */
return NULL;
}
ath_rate_node_init(sc, an);
/* Setup the mutex - there's no associd yet so set the name to NULL */
snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
device_get_nameunit(sc->sc_dev), an);
mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
/* XXX setup ath_tid */
ath_tx_tid_init(sc, an);
DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
return &an->an_node;
}
static void
ath_node_cleanup(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
ath_tx_node_flush(sc, ATH_NODE(ni));
ath_rate_node_cleanup(sc, ATH_NODE(ni));
sc->sc_node_cleanup(ni);
}
static void
ath_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
mtx_destroy(&ATH_NODE(ni)->an_mtx);
sc->sc_node_free(ni);
}
static void
ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
*rssi = ic->ic_node_getrssi(ni);
if (ni->ni_chan != IEEE80211_CHAN_ANYC)
*noise = ath_hal_getchannoise(ah, ni->ni_chan);
else
*noise = -95; /* nominally correct */
}
/*
* Set the default antenna.
*/
void
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
{
struct ath_hal *ah = sc->sc_ah;
/* XXX block beacon interrupts */
ath_hal_setdefantenna(ah, antenna);
if (sc->sc_defant != antenna)
sc->sc_stats.ast_ant_defswitch++;
sc->sc_defant = antenna;
sc->sc_rxotherant = 0;
}
static void
ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
{
txq->axq_qnum = qnum;
txq->axq_ac = 0;
txq->axq_depth = 0;
txq->axq_aggr_depth = 0;
txq->axq_intrcnt = 0;
txq->axq_link = NULL;
txq->axq_softc = sc;
TAILQ_INIT(&txq->axq_q);
TAILQ_INIT(&txq->axq_tidq);
}
/*
* Setup a h/w transmit queue.
*/
static struct ath_txq *
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
int qnum;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype;
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*/
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
if (qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (qnum >= N(sc->sc_txq)) {
device_printf(sc->sc_dev,
"hal qnum %u out of range, max %zu!\n",
qnum, N(sc->sc_txq));
ath_hal_releasetxqueue(ah, qnum);
return NULL;
}
if (!ATH_TXQ_SETUP(sc, qnum)) {
ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
sc->sc_txqsetup |= 1<<qnum;
}
return &sc->sc_txq[qnum];
#undef N
}
/*
* Setup a hardware data transmit queue for the specified
* access control. The hal may not support all requested
* queues in which case it will return a reference to a
* previously setup queue. We record the mapping from ac's
* to h/w queues for use by ath_tx_start and also track
* the set of h/w queues being used to optimize work in the
* transmit interrupt handler and related routines.
*/
static int
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_txq *txq;
if (ac >= N(sc->sc_ac2q)) {
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
ac, N(sc->sc_ac2q));
return 0;
}
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
if (txq != NULL) {
txq->axq_ac = ac;
sc->sc_ac2q[ac] = txq;
return 1;
} else
return 0;
#undef N
}
/*
* Update WME parameters for a transmit queue.
*/
static int
ath_txq_update(struct ath_softc *sc, int ac)
{
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
#define ATH_TXOP_TO_US(v) (v<<5)
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_txq *txq = sc->sc_ac2q[ac];
struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
/*
* AIFS is zero so there's no pre-transmit wait. The
* burst time defines the slot duration and is configured
* through net80211. The QCU is setup to not do post-xmit
* back off, lockout all lower-priority QCU's, and fire
* off the DMA beacon alert timer which is setup based
* on the slot configuration.
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
| HAL_TXQ_DBA_GATED
| HAL_TXQ_BACKOFF_DISABLE
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
;
qi.tqi_aifs = 0;
/* XXX +dbaprep? */
qi.tqi_readyTime = sc->sc_tdmaslotlen;
qi.tqi_burstTime = qi.tqi_readyTime;
} else {
#endif
/*
* XXX shouldn't this just use the default flags
* used in the previous queue setup?
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
;
qi.tqi_aifs = wmep->wmep_aifsn;
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
qi.tqi_readyTime = 0;
qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
#ifdef IEEE80211_SUPPORT_TDMA
}
#endif
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
__func__, txq->axq_qnum, qi.tqi_qflags,
qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
if_printf(ifp, "unable to update hardware queue "
"parameters for %s traffic!\n",
ieee80211_wme_acnames[ac]);
return 0;
} else {
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
return 1;
}
#undef ATH_TXOP_TO_US
#undef ATH_EXPONENT_TO_VALUE
}
/*
* Callback from the 802.11 layer to update WME parameters.
*/
int
ath_wme_update(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
return !ath_txq_update(sc, WME_AC_BE) ||
!ath_txq_update(sc, WME_AC_BK) ||
!ath_txq_update(sc, WME_AC_VI) ||
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
}
/*
* Reclaim resources for a setup queue.
*/
static void
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
}
/*
* Reclaim all tx queue resources.
*/
static void
ath_tx_cleanup(struct ath_softc *sc)
{
int i;
ATH_TXBUF_LOCK_DESTROY(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
}
/*
* Return h/w rate index for an IEEE rate (w/o basic rate bit)
* using the current rates in sc_rixmap.
*/
int
ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
{
int rix = sc->sc_rixmap[rate];
/* NB: return lowest rix for invalid rate */
return (rix == 0xff ? 0 : rix);
}
static void
ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
int sr, lr, pri;
if (ts->ts_status == 0) {
u_int8_t txant = ts->ts_antenna;
sc->sc_stats.ast_ant_tx[txant]++;
sc->sc_ant_tx[txant]++;
if (ts->ts_finaltsi != 0)
sc->sc_stats.ast_tx_altrate++;
pri = M_WME_GETAC(bf->bf_m);
if (pri >= WME_AC_VO)
ic->ic_wme.wme_hipri_traffic++;
if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
ni->ni_inact = ni->ni_inact_reload;
} else {
if (ts->ts_status & HAL_TXERR_XRETRY)
sc->sc_stats.ast_tx_xretries++;
if (ts->ts_status & HAL_TXERR_FIFO)
sc->sc_stats.ast_tx_fifoerr++;
if (ts->ts_status & HAL_TXERR_FILT)
sc->sc_stats.ast_tx_filtered++;
if (ts->ts_status & HAL_TXERR_XTXOP)
sc->sc_stats.ast_tx_xtxop++;
if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
sc->sc_stats.ast_tx_timerexpired++;
if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
sc->sc_stats.ast_tx_data_underrun++;
if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
sc->sc_stats.ast_tx_delim_underrun++;
if (bf->bf_m->m_flags & M_FF)
sc->sc_stats.ast_ff_txerr++;
}
/* XXX when is this valid? */
if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
sc->sc_stats.ast_tx_desccfgerr++;
sr = ts->ts_shortretry;
lr = ts->ts_longretry;
sc->sc_stats.ast_tx_shortretry += sr;
sc->sc_stats.ast_tx_longretry += lr;
}
/*
* The default completion. If fail is 1, this means
* "please don't retry the frame, and just return -1 status
* to the net80211 stack.
*/
void
ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
int st;
if (fail == 1)
st = -1;
else
st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
ts->ts_status : HAL_TXERR_XRETRY;
if (bf->bf_state.bfs_dobaw)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: dobaw should've been cleared!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
if (bf->bf_next != NULL)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: bf_next not NULL!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
/*
* Check if the node software queue is empty; if so
* then clear the TIM.
*
* This needs to be done before the buffer is freed as
* otherwise the node reference will have been released
* and the node may not actually exist any longer.
*
* XXX I don't like this belonging here, but it's cleaner
* to do it here right now then all the other places
* where ath_tx_default_comp() is called.
*
* XXX TODO: during drain, ensure that the callback is
* being called so we get a chance to update the TIM.
*/
if (bf->bf_node)
ath_tx_update_tim(sc, bf->bf_node, 0);
/*
* Do any tx complete callback. Note this must
* be done before releasing the node reference.
* This will free the mbuf, release the net80211
* node and recycle the ath_buf.
*/
ath_tx_freebuf(sc, bf, st);
}
/*
* Update rate control with the given completion status.
*/
void
ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
int nframes, int nbad)
{
struct ath_node *an;
/* Only for unicast frames */
if (ni == NULL)
return;
an = ATH_NODE(ni);
ATH_NODE_UNLOCK_ASSERT(an);
if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
ATH_NODE_LOCK(an);
ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
ATH_NODE_UNLOCK(an);
}
}
/*
* Update the busy status of the last frame on the free list.
* When doing TDMA, the busy flag tracks whether the hardware
* currently points to this buffer or not, and thus gated DMA
* may restart by re-reading the last descriptor in this
* buffer.
*
* This should be called in the completion function once one
* of the buffers has been used.
*/
static void
ath_tx_update_busy(struct ath_softc *sc)
{
struct ath_buf *last;
/*
* Since the last frame may still be marked
* as ATH_BUF_BUSY, unmark it here before
* finishing the frame processing.
* Since we've completed a frame (aggregate
* or otherwise), the hardware has moved on
* and is no longer referencing the previous
* descriptor.
*/
ATH_TXBUF_LOCK_ASSERT(sc);
last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
if (last != NULL)
last->bf_flags &= ~ATH_BUF_BUSY;
last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
if (last != NULL)
last->bf_flags &= ~ATH_BUF_BUSY;
}
/*
* Process the completion of the given buffer.
*
* This calls the rate control update and then the buffer completion.
* This will either free the buffer or requeue it. In any case, the
* bf pointer should be treated as invalid after this function is called.
*/
void
ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
struct ath_tx_status *ts, struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = NULL;
ATH_TX_UNLOCK_ASSERT(sc);
/* If unicast frame, update general statistics */
if (ni != NULL) {
an = ATH_NODE(ni);
/* update statistics */
ath_tx_update_stats(sc, ts, bf);
}
/*
* Call the completion handler.
* The completion handler is responsible for
* calling the rate control code.
*
* Frames with no completion handler get the
* rate control code called here.
*/
if (bf->bf_comp == NULL) {
if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
(bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
/*
* XXX assume this isn't an aggregate
* frame.
*/
ath_tx_update_ratectrl(sc, ni,
bf->bf_state.bfs_rc, ts,
bf->bf_state.bfs_pktlen, 1,
(ts->ts_status == 0 ? 0 : 1));
}
ath_tx_default_comp(sc, bf, 0);
} else
bf->bf_comp(sc, bf, 0);
}
/*
* Process completed xmit descriptors from the specified queue.
* Kick the packet scheduler if needed. This can occur from this
* particular task.
*/
static int
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
struct ath_desc *ds;
struct ath_tx_status *ts;
struct ieee80211_node *ni;
#ifdef IEEE80211_SUPPORT_SUPERG
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
#endif /* IEEE80211_SUPPORT_SUPERG */
int nacked;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
__func__, txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
"ath_tx_processq: txq=%u head %p link %p depth %p",
txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link,
txq->axq_depth);
nacked = 0;
for (;;) {
ATH_TX_LOCK(sc);
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
ATH_TX_UNLOCK(sc);
break;
}
ds = bf->bf_lastds; /* XXX must be setup correctly! */
ts = &bf->bf_status.ds_txstat;
status = ath_hal_txprocdesc(ah, ds, ts);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
status == HAL_OK);
else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
status == HAL_OK);
#endif
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq,
ATH_ALQ_EDMA_TXSTATUS)) {
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
sc->sc_tx_statuslen,
(char *) ds);
}
#endif
if (status == HAL_EINPROGRESS) {
ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
"ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
txq->axq_qnum, bf, ds);
ATH_TX_UNLOCK(sc);
break;
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
#ifdef IEEE80211_SUPPORT_TDMA
if (txq->axq_depth > 0) {
/*
* More frames follow. Mark the buffer busy
* so it's not re-used while the hardware may
* still re-read the link field in the descriptor.
*
* Use the last buffer in an aggregate as that
* is where the hardware may be - intermediate
* descriptors won't be "busy".
*/
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
} else
#else
if (txq->axq_depth == 0)
#endif
txq->axq_link = NULL;
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
ni = bf->bf_node;
ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
"ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
txq->axq_qnum, bf, ds, ni, ts->ts_status);
/*
* If unicast frame was ack'd update RSSI,
* including the last rx time used to
* workaround phantom bmiss interrupts.
*/
if (ni != NULL && ts->ts_status == 0 &&
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
nacked++;
sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
ts->ts_rssi);
}
ATH_TX_UNLOCK(sc);
/*
* Update statistics and call completion
*/
ath_tx_process_buf_completion(sc, txq, ts, bf);
/* XXX at this point, bf and ni may be totally invalid */
}
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Flush fast-frame staging queue when traffic slows.
*/
if (txq->axq_depth <= 1)
ieee80211_ff_flush(ic, txq->axq_ac);
#endif
/* Kick the TXQ scheduler */
if (dosched) {
ATH_TX_LOCK(sc);
ath_txq_sched(sc, txq);
ATH_TX_UNLOCK(sc);
}
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_processq: txq=%u: done",
txq->axq_qnum);
return nacked;
}
#define TXQACTIVE(t, q) ( (t) & (1 << (q)))
/*
* Deferred processing of transmit interrupt; special-cased
* for a single hardware transmit queue (e.g. 5210 and 5211).
*/
static void
ath_tx_proc_q0(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_proc_q0: txqs=0x%08x", txqs);
if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
/* XXX why is lastrx updated in tx code? */
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_tx_kick(sc);
}
/*
* Deferred processing of transmit interrupt; special-cased
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
*/
static void
ath_tx_proc_q0123(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
int nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_proc_q0123: txqs=0x%08x", txqs);
/*
* Process each active queue.
*/
nacked = 0;
if (TXQACTIVE(txqs, 0))
nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
if (TXQACTIVE(txqs, 1))
nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
if (TXQACTIVE(txqs, 2))
nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
if (TXQACTIVE(txqs, 3))
nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_tx_kick(sc);
}
/*
* Deferred processing of transmit interrupt.
*/
static void
ath_tx_proc(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
int i, nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
/*
* Process each active queue.
*/
nacked = 0;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
/* XXX check this inside of IF_LOCK? */
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ath_tx_kick(sc);
}
#undef TXQACTIVE
/*
* Deferred processing of TXQ rescheduling.
*/
static void
ath_txq_sched_tasklet(void *arg, int npending)
{
struct ath_softc *sc = arg;
int i;
/* XXX is skipping ok? */
ATH_PCU_LOCK(sc);
#if 0
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
#endif
sc->sc_txproc_cnt++;
ATH_PCU_UNLOCK(sc);
ATH_TX_LOCK(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ath_txq_sched(sc, &sc->sc_txq[i]);
}
}
ATH_TX_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
}
void
ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
{
ATH_TXBUF_LOCK_ASSERT(sc);
if (bf->bf_flags & ATH_BUF_MGMT)
TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt++;
if (sc->sc_txbuf_cnt > ath_txbuf) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt > %d?\n",
__func__,
ath_txbuf);
sc->sc_txbuf_cnt = ath_txbuf;
}
}
}
void
ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
{
ATH_TXBUF_LOCK_ASSERT(sc);
if (bf->bf_flags & ATH_BUF_MGMT)
TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt++;
if (sc->sc_txbuf_cnt > ATH_TXBUF) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt > %d?\n",
__func__,
ATH_TXBUF);
sc->sc_txbuf_cnt = ATH_TXBUF;
}
}
}
/*
* Return a buffer to the pool and update the 'busy' flag on the
* previous 'tail' entry.
*
* This _must_ only be called when the buffer is involved in a completed
* TX. The logic is that if it was part of an active TX, the previous
* buffer on the list is now not involved in a halted TX DMA queue, waiting
* for restart (eg for TDMA.)
*
* The caller must free the mbuf and recycle the node reference.
*/
void
ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
{
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
ATH_TXBUF_LOCK(sc);
ath_tx_update_busy(sc);
ath_returnbuf_tail(sc, bf);
ATH_TXBUF_UNLOCK(sc);
}
/*
* This is currently used by ath_tx_draintxq() and
* ath_tx_tid_free_pkts().
*
* It recycles a single ath_buf.
*/
void
ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
{
struct ieee80211_node *ni = bf->bf_node;
struct mbuf *m0 = bf->bf_m;
bf->bf_node = NULL;
bf->bf_m = NULL;
/* Free the buffer, it's not needed any longer */
ath_freebuf(sc, bf);
if (ni != NULL) {
/*
* Do any callback and reclaim the node reference.
*/
if (m0->m_flags & M_TXCB)
ieee80211_process_callback(ni, m0, status);
ieee80211_free_node(ni);
}
m_freem(m0);
/*
* XXX the buffer used to be freed -after-, but the DMA map was
* freed where ath_freebuf() now is. I've no idea what this
* will do.
*/
}
void
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
{
#ifdef ATH_DEBUG
struct ath_hal *ah = sc->sc_ah;
#endif
struct ath_buf *bf;
u_int ix;
/*
* NB: this assumes output has been stopped and
* we do not need to block ath_tx_proc
*/
ATH_TXBUF_LOCK(sc);
bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
if (bf != NULL)
bf->bf_flags &= ~ATH_BUF_BUSY;
bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
if (bf != NULL)
bf->bf_flags &= ~ATH_BUF_BUSY;
ATH_TXBUF_UNLOCK(sc);
for (ix = 0;; ix++) {
ATH_TX_LOCK(sc);
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
txq->axq_link = NULL;
/*
* There's currently no flag that indicates
* a buffer is on the FIFO. So until that
* occurs, just clear the FIFO counter here.
*
* Yes, this means that if something in parallel
* is pushing things onto this TXQ and pushing
* _that_ into the hardware, things will get
* very fruity very quickly.
*/
txq->axq_fifo_depth = 0;
ATH_TX_UNLOCK(sc);
break;
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
int status = 0;
/*
* EDMA operation has a TX completion FIFO
* separate from the TX descriptor, so this
* method of checking the "completion" status
* is wrong.
*/
if (! sc->sc_isedma) {
status = (ath_hal_txprocdesc(ah,
bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
}
ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
bf->bf_m->m_len, 0, -1);
}
#endif /* ATH_DEBUG */
/*
* Since we're now doing magic in the completion
* functions, we -must- call it for aggregation
* destinations or BAW tracking will get upset.
*/
/*
* Clear ATH_BUF_BUSY; the completion handler
* will free the buffer.
*/
ATH_TX_UNLOCK(sc);
bf->bf_flags &= ~ATH_BUF_BUSY;
if (bf->bf_comp)
bf->bf_comp(sc, bf, 1);
else
ath_tx_default_comp(sc, bf, 1);
}
/*
* Drain software queued frames which are on
* active TIDs.
*/
ath_tx_txq_drain(sc, txq);
}
static void
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
__func__, txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
txq->axq_link);
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
}
int
ath_stoptxdma(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int i;
/* XXX return value */
if (sc->sc_invalid)
return 0;
if (!sc->sc_invalid) {
/* don't touch the hardware if marked invalid */
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
__func__, sc->sc_bhalq,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
NULL);
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_stopdma(sc, &sc->sc_txq[i]);
}
return 1;
}
/*
* Drain the transmit queues and reclaim resources.
*/
void
ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
{
#ifdef ATH_DEBUG
struct ath_hal *ah = sc->sc_ah;
#endif
struct ifnet *ifp = sc->sc_ifp;
int i;
(void) ath_stoptxdma(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
/*
* XXX TODO: should we just handle the completed TX frames
* here, whether or not the reset is a full one or not?
*/
if (ATH_TXQ_SETUP(sc, i)) {
if (reset_type == ATH_RESET_NOLOSS)
ath_tx_processq(sc, &sc->sc_txq[i], 0);
else
ath_tx_draintxq(sc, &sc->sc_txq[i]);
}
}
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
if (bf != NULL && bf->bf_m != NULL) {
ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
ath_hal_txprocdesc(ah, bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
ieee80211_dump_pkt(ifp->if_l2com,
mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
0, -1);
}
}
#endif /* ATH_DEBUG */
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
}
/*
* Update internal state after a channel change.
*/
static void
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
{
enum ieee80211_phymode mode;
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
mode = ieee80211_chan2mode(chan);
if (mode != sc->sc_curmode)
ath_setcurmode(sc, mode);
sc->sc_curchan = chan;
}
/*
* Set/change channels. If the channel is really being changed,
* it's done by resetting the chip. To accomplish this we must
* first cleanup any pending DMA, then restart stuff after a la
* ath_init.
*/
static int
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
int ret = 0;
/* Treat this as an interface reset */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* (Try to) stop TX/RX from occuring */
taskqueue_block(sc->sc_tq);
ATH_PCU_LOCK(sc);
ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */
ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags);
if (chan != sc->sc_curchan) {
HAL_STATUS status;
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
#if 0
ath_hal_intrset(ah, 0); /* disable interrupts */
#endif
ath_stoprecv(sc, 1); /* turn off frame recv */
/*
* First, handle completed TX/RX frames.
*/
ath_rx_flush(sc);
ath_draintxq(sc, ATH_RESET_NOLOSS);
/*
* Next, flush the non-scheduled frames.
*/
ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
if_printf(ifp, "%s: unable to reset "
"channel %u (%u MHz, flags 0x%x), hal status %u\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags, status);
ret = EIO;
goto finish;
}
sc->sc_diversity = ath_hal_getdiversity(ah);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, chan);
/*
* Re-enable rx framework.
*/
if (ath_startrecv(sc) != 0) {
if_printf(ifp, "%s: unable to restart recv logic\n",
__func__);
ret = EIO;
goto finish;
}
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ath_chan_change(sc, chan);
/*
* Reset clears the beacon timers; reset them
* here if needed.
*/
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Re-enable interrupts.
*/
#if 0
ath_hal_intrset(ah, sc->sc_imask);
#endif
}
finish:
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
ath_txrx_start(sc);
/* XXX ath_start? */
return ret;
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath_calibrate(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
HAL_BOOL longCal, isCalDone = AH_TRUE;
HAL_BOOL aniCal, shortCal = AH_FALSE;
int nextcal;
if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
goto restart;
longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
if (sc->sc_doresetcal)
shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
if (aniCal) {
sc->sc_stats.ast_ani_cal++;
sc->sc_lastani = ticks;
ath_hal_ani_poll(ah, sc->sc_curchan);
}
if (longCal) {
sc->sc_stats.ast_per_cal++;
sc->sc_lastlongcal = ticks;
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: rfgain change\n", __func__);
sc->sc_stats.ast_per_rfgain++;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
return;
}
/*
* If this long cal is after an idle period, then
* reset the data collection state so we start fresh.
*/
if (sc->sc_resetcal) {
(void) ath_hal_calreset(ah, sc->sc_curchan);
sc->sc_lastcalreset = ticks;
sc->sc_lastshortcal = ticks;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
}
}
/* Only call if we're doing a short/long cal, not for ANI calibration */
if (shortCal || longCal) {
isCalDone = AH_FALSE;
if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
if (longCal) {
/*
* Calibrate noise floor data again in case of change.
*/
ath_hal_process_noisefloor(ah);
}
} else {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: calibration of channel %u failed\n",
__func__, sc->sc_curchan->ic_freq);
sc->sc_stats.ast_per_calfail++;
}
if (shortCal)
sc->sc_lastshortcal = ticks;
}
if (!isCalDone) {
restart:
/*
* Use a shorter interval to potentially collect multiple
* data samples required to complete calibration. Once
* we're told the work is done we drop back to a longer
* interval between requests. We're more aggressive doing
* work when operating as an AP to improve operation right
* after startup.
*/
sc->sc_lastshortcal = ticks;
nextcal = ath_shortcalinterval*hz/1000;
if (sc->sc_opmode != HAL_M_HOSTAP)
nextcal *= 10;
sc->sc_doresetcal = AH_TRUE;
} else {
/* nextcal should be the shortest time for next event */
nextcal = ath_longcalinterval*hz;
if (sc->sc_lastcalreset == 0)
sc->sc_lastcalreset = sc->sc_lastlongcal;
else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
sc->sc_resetcal = 1; /* setup reset next trip */
sc->sc_doresetcal = AH_FALSE;
}
/* ANI calibration may occur more often than short/long/resetcal */
if (ath_anicalinterval > 0)
nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
if (nextcal != 0) {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
__func__, nextcal, isCalDone ? "" : "!");
callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
__func__);
/* NB: don't rearm timer */
}
}
static void
ath_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* XXX calibration timer? */
ATH_LOCK(sc);
sc->sc_scanning = 1;
sc->sc_syncbeacon = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
__func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
}
static void
ath_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
ATH_LOCK(sc);
sc->sc_scanning = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
ath_hal_process_noisefloor(ah);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid),
sc->sc_curaid);
}
#ifdef ATH_ENABLE_11N
/*
* For now, just do a channel change.
*
* Later, we'll go through the hard slog of suspending tx/rx, changing rate
* control state and resetting the hardware without dropping frames out
* of the queue.
*
* The unfortunate trouble here is making absolutely sure that the
* channel width change has propagated enough so the hardware
* absolutely isn't handed bogus frames for it's current operating
* mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
* does occur in parallel, we need to make certain we've blocked
* any further ongoing TX (and RX, that can cause raw TX)
* before we do this.
*/
static void
ath_update_chw(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
ath_set_channel(ic);
}
#endif /* ATH_ENABLE_11N */
static void
ath_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ath_softc *sc = ifp->if_softc;
(void) ath_chan_set(sc, ic->ic_curchan);
/*
* If we are returning to our bss channel then mark state
* so the next recv'd beacon's tsf will be used to sync the
* beacon timers. Note that since we only hear beacons in
* sta/ibss mode this has no effect in other operating modes.
*/
ATH_LOCK(sc);
if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
sc->sc_syncbeacon = 1;
ATH_UNLOCK(sc);
}
/*
* Walk the vap list and check if there any vap's in RUN state.
*/
static int
ath_isanyrunningvaps(struct ieee80211vap *this)
{
struct ieee80211com *ic = this->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
return 1;
}
return 0;
}
static int
ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp = ATH_VAP(vap);
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_node *ni = NULL;
int i, error, stamode;
u_int32_t rfilt;
int csa_run_transition = 0;
static const HAL_LED_STATE leds[] = {
HAL_LED_INIT, /* IEEE80211_S_INIT */
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
HAL_LED_RUN, /* IEEE80211_S_CAC */
HAL_LED_RUN, /* IEEE80211_S_RUN */
HAL_LED_RUN, /* IEEE80211_S_CSA */
HAL_LED_RUN, /* IEEE80211_S_SLEEP */
};
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
/*
* net80211 _should_ have the comlock asserted at this point.
* There are some comments around the calls to vap->iv_newstate
* which indicate that it (newstate) may end up dropping the
* lock. This and the subsequent lock assert check after newstate
* are an attempt to catch these and figure out how/why.
*/
IEEE80211_LOCK_ASSERT(ic);
if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
csa_run_transition = 1;
callout_drain(&sc->sc_cal_ch);
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
if (nstate == IEEE80211_S_SCAN) {
/*
* Scanning: turn off beacon miss and don't beacon.
* Mark beacon state so when we reach RUN state we'll
* [re]setup beacons. Unblock the task q thread so
* deferred interrupt processing is done.
*/
ath_hal_intrset(ah,
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
sc->sc_beacons = 0;
taskqueue_unblock(sc->sc_tq);
}
ni = ieee80211_ref_node(vap->iv_bss);
rfilt = ath_calcrxfilter(sc);
stamode = (vap->iv_opmode == IEEE80211_M_STA ||
vap->iv_opmode == IEEE80211_M_AHDEMO ||
vap->iv_opmode == IEEE80211_M_IBSS);
if (stamode && nstate == IEEE80211_S_RUN) {
sc->sc_curaid = ni->ni_associd;
IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
}
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
ath_hal_setrxfilter(ah, rfilt);
/* XXX is this to restore keycache on resume? */
if (vap->iv_opmode != IEEE80211_M_STA &&
(vap->iv_flags & IEEE80211_F_PRIVACY)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath_hal_keyisvalid(ah, i))
ath_hal_keysetmac(ah, i, ni->ni_bssid);
}
/*
* Invoke the parent method to do net80211 work.
*/
error = avp->av_newstate(vap, nstate, arg);
if (error != 0)
goto bad;
/*
* See above: ensure av_newstate() doesn't drop the lock
* on us.
*/
IEEE80211_LOCK_ASSERT(ic);
if (nstate == IEEE80211_S_RUN) {
/* NB: collect bss node again, it may have changed */
ieee80211_free_node(ni);
ni = ieee80211_ref_node(vap->iv_bss);
DPRINTF(sc, ATH_DEBUG_STATE,
"%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
"capinfo 0x%04x chan %d\n", __func__,
vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
switch (vap->iv_opmode) {
#ifdef IEEE80211_SUPPORT_TDMA
case IEEE80211_M_AHDEMO:
if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
break;
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
case IEEE80211_M_MBSS:
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; there will be a state
* transition from RUN->RUN that means we may
* be called with beacon transmission active.
*/
ath_hal_stoptxdma(ah, sc->sc_bhalq);
error = ath_beacon_alloc(sc, ni);
if (error != 0)
goto bad;
/*
* If joining an adhoc network defer beacon timer
* configuration to the next beacon frame so we
* have a current TSF to use. Otherwise we're
* starting an ibss/bss so there's no need to delay;
* if this is the first vap moving to RUN state, then
* beacon state needs to be [re]configured.
*/
if (vap->iv_opmode == IEEE80211_M_IBSS &&
ni->ni_tstamp.tsf != 0) {
sc->sc_syncbeacon = 1;
} else if (!sc->sc_beacons) {
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA)
ath_tdma_config(sc, vap);
else
#endif
ath_beacon_config(sc, vap);
sc->sc_beacons = 1;
}
break;
case IEEE80211_M_STA:
/*
* Defer beacon timer configuration to the next
* beacon frame so we have a current TSF to use
* (any TSF collected when scanning is likely old).
* However if it's due to a CSA -> RUN transition,
* force a beacon update so we pick up a lack of
* beacons from an AP in CAC and thus force a
* scan.
*/
sc->sc_syncbeacon = 1;
if (csa_run_transition)
ath_beacon_config(sc, vap);
break;
case IEEE80211_M_MONITOR:
/*
* Monitor mode vaps have only INIT->RUN and RUN->RUN
* transitions so we must re-enable interrupts here to
* handle the case of a single monitor mode vap.
*/
ath_hal_intrset(ah, sc->sc_imask);
break;
case IEEE80211_M_WDS:
break;
default:
break;
}
/*
* Let the hal process statistics collected during a
* scan so it can provide calibrated noise floor data.
*/
ath_hal_process_noisefloor(ah);
/*
* Reset rssi stats; maybe not the best place...
*/
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
/*
* Finally, start any timers and the task q thread
* (in case we didn't go through SCAN state).
*/
if (ath_longcalinterval != 0) {
/* start periodic recalibration timer */
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: calibration disabled\n", __func__);
}
taskqueue_unblock(sc->sc_tq);
} else if (nstate == IEEE80211_S_INIT) {
/*
* If there are no vaps left in RUN state then
* shutdown host/driver operation:
* o disable interrupts
* o disable the task queue thread
* o mark beacon processing as stopped
*/
if (!ath_isanyrunningvaps(vap)) {
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
/* disable interrupts */
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
taskqueue_block(sc->sc_tq);
sc->sc_beacons = 0;
}
#ifdef IEEE80211_SUPPORT_TDMA
ath_hal_setcca(ah, AH_TRUE);
#endif
}
bad:
ieee80211_free_node(ni);
return error;
}
/*
* Allocate a key cache slot to the station so we can
* setup a mapping from key index to node. The key cache
* slot is needed for managing antenna state and for
* compression when stations do not use crypto. We do
* it uniliaterally here; if crypto is employed this slot
* will be reassigned.
*/
static void
ath_setup_stationkey(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
ieee80211_keyix keyix, rxkeyix;
/* XXX should take a locked ref to vap->iv_bss */
if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
/*
* Key cache is full; we'll fall back to doing
* the more expensive lookup in software. Note
* this also means no h/w compression.
*/
/* XXX msg+statistic */
} else {
/* XXX locking? */
ni->ni_ucastkey.wk_keyix = keyix;
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
/* NB: must mark device key to get called back on delete */
ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
/* NB: this will create a pass-thru key entry */
ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
}
}
/*
* Setup driver-specific state for a newly associated node.
* Note that we're called also on a re-associate, the isnew
* param tells us if this is the first time or not.
*/
static void
ath_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ath_node *an = ATH_NODE(ni);
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
const struct ieee80211_txparam *tp = ni->ni_txparms;
an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
ath_rate_newassoc(sc, an, isnew);
if (isnew &&
(vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
ath_setup_stationkey(ni);
}
static int
ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
int nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: rd %u cc %u location %c%s\n",
__func__, reg->regdomain, reg->country, reg->location,
reg->ecm ? " ecm" : "");
status = ath_hal_set_channels(ah, chans, nchans,
reg->country, reg->regdomain);
if (status != HAL_OK) {
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
__func__, status);
return EINVAL; /* XXX */
}
return 0;
}
static void
ath_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
__func__, SKU_DEBUG, CTRY_DEFAULT);
/* XXX check return */
(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
}
static int
ath_getchannels(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
/*
* Collect channel set based on EEPROM contents.
*/
status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
&ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
if (status != HAL_OK) {
if_printf(ifp, "%s: unable to collect channel list from hal, "
"status %d\n", __func__, status);
return EINVAL;
}
(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
/* XXX map Atheros sku's to net80211 SKU's */
/* XXX net80211 types too small */
ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
ic->ic_regdomain.isocc[1] = ' ';
ic->ic_regdomain.ecm = 1;
ic->ic_regdomain.location = 'I';
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
__func__, sc->sc_eerd, sc->sc_eecc,
ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
return 0;
}
static int
ath_rate_setup(struct ath_softc *sc, u_int mode)
{
struct ath_hal *ah = sc->sc_ah;
const HAL_RATE_TABLE *rt;
switch (mode) {
case IEEE80211_MODE_11A:
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
break;
case IEEE80211_MODE_HALF:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
break;
case IEEE80211_MODE_QUARTER:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
break;
case IEEE80211_MODE_11B:
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
break;
case IEEE80211_MODE_11G:
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
break;
case IEEE80211_MODE_TURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_108A);
break;
case IEEE80211_MODE_TURBO_G:
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
break;
case IEEE80211_MODE_STURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
break;
case IEEE80211_MODE_11NA:
rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
break;
case IEEE80211_MODE_11NG:
rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
break;
default:
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
__func__, mode);
return 0;
}
sc->sc_rates[mode] = rt;
return (rt != NULL);
}
static void
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
static const struct {
u_int rate; /* tx/rx 802.11 rate */
u_int16_t timeOn; /* LED on time (ms) */
u_int16_t timeOff; /* LED off time (ms) */
} blinkrates[] = {
{ 108, 40, 10 },
{ 96, 44, 11 },
{ 72, 50, 13 },
{ 48, 57, 14 },
{ 36, 67, 16 },
{ 24, 80, 20 },
{ 22, 100, 25 },
{ 18, 133, 34 },
{ 12, 160, 40 },
{ 10, 200, 50 },
{ 6, 240, 58 },
{ 4, 267, 66 },
{ 2, 400, 100 },
{ 0, 500, 130 },
/* XXX half/quarter rates */
};
const HAL_RATE_TABLE *rt;
int i, j;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = sc->sc_rates[mode];
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
for (i = 0; i < rt->rateCount; i++) {
uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy != IEEE80211_T_HT)
sc->sc_rixmap[ieeerate] = i;
else
sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
}
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
for (i = 0; i < N(sc->sc_hwmap); i++) {
if (i >= rt->rateCount) {
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
continue;
}
sc->sc_hwmap[i].ieeerate =
rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy == IEEE80211_T_HT)
sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
if (rt->info[i].shortPreamble ||
rt->info[i].phy == IEEE80211_T_OFDM)
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
for (j = 0; j < N(blinkrates)-1; j++)
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
break;
/* NB: this uses the last entry if the rate isn't found */
/* XXX beware of overlow */
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
}
sc->sc_currates = rt;
sc->sc_curmode = mode;
/*
* All protection frames are transmited at 2Mb/s for
* 11g, otherwise at 1Mb/s.
*/
if (mode == IEEE80211_MODE_11G)
sc->sc_protrix = ath_tx_findrix(sc, 2*2);
else
sc->sc_protrix = ath_tx_findrix(sc, 2*1);
/* NB: caller is responsible for resetting rate control state */
#undef N
}
static void
ath_watchdog(void *arg)
{
struct ath_softc *sc = arg;
int do_reset = 0;
if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
struct ifnet *ifp = sc->sc_ifp;
uint32_t hangs;
if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
hangs != 0) {
if_printf(ifp, "%s hang detected (0x%x)\n",
hangs & 0xff ? "bb" : "mac", hangs);
} else
if_printf(ifp, "device timeout\n");
do_reset = 1;
ifp->if_oerrors++;
sc->sc_stats.ast_watchdog++;
}
/*
* We can't hold the lock across the ath_reset() call.
*
* And since this routine can't hold a lock and sleep,
* do the reset deferred.
*/
if (do_reset) {
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
}
callout_schedule(&sc->sc_wd_ch, hz);
}
/*
* Fetch the rate control statistics for the given node.
*/
static int
ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
{
struct ath_node *an;
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ieee80211_node *ni;
int error = 0;
/* Perform a lookup on the given node */
ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
if (ni == NULL) {
error = EINVAL;
goto bad;
}
/* Lock the ath_node */
an = ATH_NODE(ni);
ATH_NODE_LOCK(an);
/* Fetch the rate control stats for this node */
error = ath_rate_fetch_node_stats(sc, an, rs);
/* No matter what happens here, just drop through */
/* Unlock the ath_node */
ATH_NODE_UNLOCK(an);
/* Unref the node */
ieee80211_node_decref(ni);
bad:
return (error);
}
#ifdef ATH_DIAGAPI
/*
* Diagnostic interface to the HAL. This is used by various
* tools to do things like retrieve register contents for
* debugging. The mechanism is intentionally opaque so that
* it can change frequently w/o concern for compatiblity.
*/
static int
ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
{
struct ath_hal *ah = sc->sc_ah;
u_int id = ad->ad_id & ATH_DIAG_ID;
void *indata = NULL;
void *outdata = NULL;
u_int32_t insize = ad->ad_in_size;
u_int32_t outsize = ad->ad_out_size;
int error = 0;
if (ad->ad_id & ATH_DIAG_IN) {
/*
* Copy in data.
*/
indata = malloc(insize, M_TEMP, M_NOWAIT);
if (indata == NULL) {
error = ENOMEM;
goto bad;
}
error = copyin(ad->ad_in_data, indata, insize);
if (error)
goto bad;
}
if (ad->ad_id & ATH_DIAG_DYN) {
/*
* Allocate a buffer for the results (otherwise the HAL
* returns a pointer to a buffer where we can read the
* results). Note that we depend on the HAL leaving this
* pointer for us to use below in reclaiming the buffer;
* may want to be more defensive.
*/
outdata = malloc(outsize, M_TEMP, M_NOWAIT);
if (outdata == NULL) {
error = ENOMEM;
goto bad;
}
}
if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
if (outsize < ad->ad_out_size)
ad->ad_out_size = outsize;
if (outdata != NULL)
error = copyout(outdata, ad->ad_out_data,
ad->ad_out_size);
} else {
error = EINVAL;
}
bad:
if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
free(indata, M_TEMP);
if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
free(outdata, M_TEMP);
return error;
}
#endif /* ATH_DIAGAPI */
static int
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *)data;
const HAL_RATE_TABLE *rt;
int error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
ATH_LOCK(sc);
if (IS_RUNNING(ifp)) {
/*
* To avoid rescanning another access point,
* do not call ath_init() here. Instead,
* only reflect promisc mode settings.
*/
ath_mode_init(sc);
} else if (ifp->if_flags & IFF_UP) {
/*
* Beware of being called during attach/detach
* to reset promiscuous mode. In that case we
* will still be marked UP but not RUNNING.
* However trying to re-init the interface
* is the wrong thing to do as we've already
* torn down much of our state. There's
* probably a better way to deal with this.
*/
if (!sc->sc_invalid)
ath_init(sc); /* XXX lose error */
} else {
ath_stop_locked(ifp);
#ifdef notyet
/* XXX must wakeup in places like ath_vap_delete */
if (!sc->sc_invalid)
ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
#endif
}
ATH_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGATHSTATS:
/* NB: embed these numbers to get a consistent view */
sc->sc_stats.ast_tx_packets = ifp->if_opackets;
sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
#ifdef IEEE80211_SUPPORT_TDMA
sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
#endif
rt = sc->sc_currates;
sc->sc_stats.ast_tx_rate =
rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
return copyout(&sc->sc_stats,
ifr->ifr_data, sizeof (sc->sc_stats));
case SIOCGATHAGSTATS:
return copyout(&sc->sc_aggr_stats,
ifr->ifr_data, sizeof (sc->sc_aggr_stats));
case SIOCZATHSTATS:
error = priv_check(curthread, PRIV_DRIVER);
if (error == 0) {
memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
memset(&sc->sc_aggr_stats, 0,
sizeof(sc->sc_aggr_stats));
memset(&sc->sc_intr_stats, 0,
sizeof(sc->sc_intr_stats));
}
break;
#ifdef ATH_DIAGAPI
case SIOCGATHDIAG:
error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
break;
case SIOCGATHPHYERR:
error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
break;
#endif
case SIOCGATHNODERATESTATS:
error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
#undef IS_RUNNING
}
/*
* Announce various information on device/driver attach.
*/
static void
ath_announce(struct ath_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ath_hal *ah = sc->sc_ah;
if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
if (bootverbose) {
int i;
for (i = 0; i <= WME_AC_VO; i++) {
struct ath_txq *txq = sc->sc_ac2q[i];
if_printf(ifp, "Use hw queue %u for %s traffic\n",
txq->axq_qnum, ieee80211_wme_acnames[i]);
}
if_printf(ifp, "Use hw queue %u for CAB traffic\n",
sc->sc_cabq->axq_qnum);
if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
}
if (ath_rxbuf != ATH_RXBUF)
if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
if (ath_txbuf != ATH_TXBUF)
if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
if (sc->sc_mcastkey && bootverbose)
if_printf(ifp, "using multicast key search\n");
}
static void
ath_dfs_tasklet(void *p, int npending)
{
struct ath_softc *sc = (struct ath_softc *) p;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/*
* If previous processing has found a radar event,
* signal this to the net80211 layer to begin DFS
* processing.
*/
if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
/* DFS event found, initiate channel change */
/*
* XXX doesn't currently tell us whether the event
* XXX was found in the primary or extension
* XXX channel!
*/
IEEE80211_LOCK(ic);
ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
IEEE80211_UNLOCK(ic);
}
}
/*
* Enable/disable power save. This must be called with
* no TX driver locks currently held, so it should only
* be called from the RX path (which doesn't hold any
* TX driver locks.)
*/
static void
ath_node_powersave(struct ieee80211_node *ni, int enable)
{
#ifdef ATH_SW_PSQ
struct ath_node *an = ATH_NODE(ni);
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
ATH_NODE_UNLOCK_ASSERT(an);
/* XXX and no TXQ locks should be held here */
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
__func__, ni, enable);
/* Suspend or resume software queue handling */
if (enable)
ath_tx_node_sleep(sc, an);
else
ath_tx_node_wakeup(sc, an);
/* Update net80211 state */
avp->av_node_ps(ni, enable);
#else
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
/* Update net80211 state */
avp->av_node_ps(ni, enable);
#endif/* ATH_SW_PSQ */
}
/*
* Notification from net80211 that the powersave queue state has
* changed.
*
* Since the software queue also may have some frames:
*
* + if the node software queue has frames and the TID state
* is 0, we set the TIM;
* + if the node and the stack are both empty, we clear the TIM bit.
* + If the stack tries to set the bit, always set it.
* + If the stack tries to clear the bit, only clear it if the
* software queue in question is also cleared.
*
* TODO: this is called during node teardown; so let's ensure this
* is all correctly handled and that the TIM bit is cleared.
* It may be that the node flush is called _AFTER_ the net80211
* stack clears the TIM.
*
* Here is the racy part. Since it's possible >1 concurrent,
* overlapping TXes will appear complete with a TX completion in
* another thread, it's possible that the concurrent TIM calls will
* clash. We can't hold the node lock here because setting the
* TIM grabs the net80211 comlock and this may cause a LOR.
* The solution is either to totally serialise _everything_ at
* this point (ie, all TX, completion and any reset/flush go into
* one taskqueue) or a new "ath TIM lock" needs to be created that
* just wraps the driver state change and this call to avp->av_set_tim().
*
* The same race exists in the net80211 power save queue handling
* as well. Since multiple transmitting threads may queue frames
* into the driver, as well as ps-poll and the driver transmitting
* frames (and thus clearing the psq), it's quite possible that
* a packet entering the PSQ and a ps-poll being handled will
* race, causing the TIM to be cleared and not re-set.
*/
static int
ath_node_set_tim(struct ieee80211_node *ni, int enable)
{
#ifdef ATH_SW_PSQ
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_ifp->if_softc;
struct ath_node *an = ATH_NODE(ni);
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
int changed = 0;
ATH_NODE_UNLOCK_ASSERT(an);
/*
* For now, just track and then update the TIM.
*/
ATH_NODE_LOCK(an);
an->an_stack_psq = enable;
/*
* This will get called for all operating modes,
* even if avp->av_set_tim is unset.
* It's currently set for hostap/ibss modes; but
* the same infrastructure is used for both STA
* and AP/IBSS node power save.
*/
if (avp->av_set_tim == NULL) {
ATH_NODE_UNLOCK(an);
return (0);
}
/*
* If setting the bit, always set it here.
* If clearing the bit, only clear it if the
* software queue is also empty.
*
* If the node has left power save, just clear the TIM
* bit regardless of the state of the power save queue.
*
* XXX TODO: although atomics are used, it's quite possible
* that a race will occur between this and setting/clearing
* in another thread. TX completion will occur always in
* one thread, however setting/clearing the TIM bit can come
* from a variety of different process contexts!
*/
if (enable && an->an_tim_set == 1) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, tim_set=1, ignoring\n",
__func__, an, enable);
ATH_NODE_UNLOCK(an);
} else if (enable) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, enabling TIM\n",
__func__, an, enable);
an->an_tim_set = 1;
ATH_NODE_UNLOCK(an);
changed = avp->av_set_tim(ni, enable);
} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
/* disable */
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
__func__, an, enable);
an->an_tim_set = 0;
ATH_NODE_UNLOCK(an);
changed = avp->av_set_tim(ni, enable);
} else if (! an->an_is_powersave) {
/*
* disable regardless; the node isn't in powersave now
*/
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
__func__, an, enable);
an->an_tim_set = 0;
ATH_NODE_UNLOCK(an);
changed = avp->av_set_tim(ni, enable);
} else {
/*
* psq disable, node is currently in powersave, node
* software queue isn't empty, so don't clear the TIM bit
* for now.
*/
ATH_NODE_UNLOCK(an);
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: enable=%d, an_swq_depth > 0, ignoring\n",
__func__, enable);
changed = 0;
}
return (changed);
#else
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
/*
* Some operating omdes don't set av_set_tim(), so don't
* update it here.
*/
if (avp->av_set_tim == NULL)
return (0);
return (avp->av_set_tim(ni, enable));
#endif /* ATH_SW_PSQ */
}
/*
* Set or update the TIM from the software queue.
*
* Check the software queue depth before attempting to do lock
* anything; that avoids trying to obtain the lock. Then,
* re-check afterwards to ensure nothing has changed in the
* meantime.
*
* set: This is designed to be called from the TX path, after
* a frame has been queued; to see if the swq > 0.
*
* clear: This is designed to be called from the buffer completion point
* (right now it's ath_tx_default_comp()) where the state of
* a software queue has changed.
*
* It makes sense to place it at buffer free / completion rather
* than after each software queue operation, as there's no real
* point in churning the TIM bit as the last frames in the software
* queue are transmitted. If they fail and we retry them, we'd
* just be setting the TIM bit again anyway.
*/
void
ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
int enable)
{
#ifdef ATH_SW_PSQ
struct ath_node *an;
struct ath_vap *avp;
/* Don't do this for broadcast/etc frames */
if (ni == NULL)
return;
an = ATH_NODE(ni);
avp = ATH_VAP(ni->ni_vap);
/*
* And for operating modes without the TIM handler set, let's
* just skip those.
*/
if (avp->av_set_tim == NULL)
return;
ATH_NODE_UNLOCK_ASSERT(an);
if (enable) {
/*
* Don't bother grabbing the lock unless the queue is not
* empty.
*/
if (atomic_load_acq_int(&an->an_swq_depth) == 0)
return;
ATH_NODE_LOCK(an);
if (an->an_is_powersave &&
an->an_tim_set == 0 &&
atomic_load_acq_int(&an->an_swq_depth) != 0) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, swq_depth>0, tim_set=0, set!\n",
__func__, an);
an->an_tim_set = 1;
ATH_NODE_UNLOCK(an);
(void) avp->av_set_tim(ni, 1);
} else {
ATH_NODE_UNLOCK(an);
}
} else {
/*
* Don't bother grabbing the lock unless the queue is empty.
*/
if (atomic_load_acq_int(&an->an_swq_depth) != 0)
return;
ATH_NODE_LOCK(an);
if (an->an_is_powersave &&
an->an_stack_psq == 0 &&
an->an_tim_set == 1 &&
atomic_load_acq_int(&an->an_swq_depth) == 0) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
" clear!\n",
__func__, an);
an->an_tim_set = 0;
ATH_NODE_UNLOCK(an);
(void) avp->av_set_tim(ni, 0);
} else {
ATH_NODE_UNLOCK(an);
}
}
#else
return;
#endif /* ATH_SW_PSQ */
}
MODULE_VERSION(if_ath, 1);
MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */
#if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
MODULE_DEPEND(if_ath, alq, 1, 1, 1);
#endif