59d1ed5b20
and preserve our customizations, where necessary.
3041 lines
109 KiB
C++
3041 lines
109 KiB
C++
//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expression parsing implementation for C++.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "RAIIObjectsForParser.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Parse/ParseDiagnostic.h"
|
|
#include "clang/Parse/Parser.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
|
|
using namespace clang;
|
|
|
|
static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
|
|
switch (Kind) {
|
|
// template name
|
|
case tok::unknown: return 0;
|
|
// casts
|
|
case tok::kw_const_cast: return 1;
|
|
case tok::kw_dynamic_cast: return 2;
|
|
case tok::kw_reinterpret_cast: return 3;
|
|
case tok::kw_static_cast: return 4;
|
|
default:
|
|
llvm_unreachable("Unknown type for digraph error message.");
|
|
}
|
|
}
|
|
|
|
// Are the two tokens adjacent in the same source file?
|
|
bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
|
|
SourceManager &SM = PP.getSourceManager();
|
|
SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
|
|
SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
|
|
return FirstEnd == SM.getSpellingLoc(Second.getLocation());
|
|
}
|
|
|
|
// Suggest fixit for "<::" after a cast.
|
|
static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
|
|
Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
|
|
// Pull '<:' and ':' off token stream.
|
|
if (!AtDigraph)
|
|
PP.Lex(DigraphToken);
|
|
PP.Lex(ColonToken);
|
|
|
|
SourceRange Range;
|
|
Range.setBegin(DigraphToken.getLocation());
|
|
Range.setEnd(ColonToken.getLocation());
|
|
P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
|
|
<< SelectDigraphErrorMessage(Kind)
|
|
<< FixItHint::CreateReplacement(Range, "< ::");
|
|
|
|
// Update token information to reflect their change in token type.
|
|
ColonToken.setKind(tok::coloncolon);
|
|
ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
|
|
ColonToken.setLength(2);
|
|
DigraphToken.setKind(tok::less);
|
|
DigraphToken.setLength(1);
|
|
|
|
// Push new tokens back to token stream.
|
|
PP.EnterToken(ColonToken);
|
|
if (!AtDigraph)
|
|
PP.EnterToken(DigraphToken);
|
|
}
|
|
|
|
// Check for '<::' which should be '< ::' instead of '[:' when following
|
|
// a template name.
|
|
void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
|
|
bool EnteringContext,
|
|
IdentifierInfo &II, CXXScopeSpec &SS) {
|
|
if (!Next.is(tok::l_square) || Next.getLength() != 2)
|
|
return;
|
|
|
|
Token SecondToken = GetLookAheadToken(2);
|
|
if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
|
|
return;
|
|
|
|
TemplateTy Template;
|
|
UnqualifiedId TemplateName;
|
|
TemplateName.setIdentifier(&II, Tok.getLocation());
|
|
bool MemberOfUnknownSpecialization;
|
|
if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
|
|
TemplateName, ObjectType, EnteringContext,
|
|
Template, MemberOfUnknownSpecialization))
|
|
return;
|
|
|
|
FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
|
|
/*AtDigraph*/false);
|
|
}
|
|
|
|
/// \brief Emits an error for a left parentheses after a double colon.
|
|
///
|
|
/// When a '(' is found after a '::', emit an error. Attempt to fix the token
|
|
/// stream by removing the '(', and the matching ')' if found.
|
|
void Parser::CheckForLParenAfterColonColon() {
|
|
if (!Tok.is(tok::l_paren))
|
|
return;
|
|
|
|
SourceLocation l_parenLoc = ConsumeParen(), r_parenLoc;
|
|
Token Tok1 = getCurToken();
|
|
if (!Tok1.is(tok::identifier) && !Tok1.is(tok::star))
|
|
return;
|
|
|
|
if (Tok1.is(tok::identifier)) {
|
|
Token Tok2 = GetLookAheadToken(1);
|
|
if (Tok2.is(tok::r_paren)) {
|
|
ConsumeToken();
|
|
PP.EnterToken(Tok1);
|
|
r_parenLoc = ConsumeParen();
|
|
}
|
|
} else if (Tok1.is(tok::star)) {
|
|
Token Tok2 = GetLookAheadToken(1);
|
|
if (Tok2.is(tok::identifier)) {
|
|
Token Tok3 = GetLookAheadToken(2);
|
|
if (Tok3.is(tok::r_paren)) {
|
|
ConsumeToken();
|
|
ConsumeToken();
|
|
PP.EnterToken(Tok2);
|
|
PP.EnterToken(Tok1);
|
|
r_parenLoc = ConsumeParen();
|
|
}
|
|
}
|
|
}
|
|
|
|
Diag(l_parenLoc, diag::err_paren_after_colon_colon)
|
|
<< FixItHint::CreateRemoval(l_parenLoc)
|
|
<< FixItHint::CreateRemoval(r_parenLoc);
|
|
}
|
|
|
|
/// \brief Parse global scope or nested-name-specifier if present.
|
|
///
|
|
/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
|
|
/// may be preceded by '::'). Note that this routine will not parse ::new or
|
|
/// ::delete; it will just leave them in the token stream.
|
|
///
|
|
/// '::'[opt] nested-name-specifier
|
|
/// '::'
|
|
///
|
|
/// nested-name-specifier:
|
|
/// type-name '::'
|
|
/// namespace-name '::'
|
|
/// nested-name-specifier identifier '::'
|
|
/// nested-name-specifier 'template'[opt] simple-template-id '::'
|
|
///
|
|
///
|
|
/// \param SS the scope specifier that will be set to the parsed
|
|
/// nested-name-specifier (or empty)
|
|
///
|
|
/// \param ObjectType if this nested-name-specifier is being parsed following
|
|
/// the "." or "->" of a member access expression, this parameter provides the
|
|
/// type of the object whose members are being accessed.
|
|
///
|
|
/// \param EnteringContext whether we will be entering into the context of
|
|
/// the nested-name-specifier after parsing it.
|
|
///
|
|
/// \param MayBePseudoDestructor When non-NULL, points to a flag that
|
|
/// indicates whether this nested-name-specifier may be part of a
|
|
/// pseudo-destructor name. In this case, the flag will be set false
|
|
/// if we don't actually end up parsing a destructor name. Moreorover,
|
|
/// if we do end up determining that we are parsing a destructor name,
|
|
/// the last component of the nested-name-specifier is not parsed as
|
|
/// part of the scope specifier.
|
|
///
|
|
/// \param IsTypename If \c true, this nested-name-specifier is known to be
|
|
/// part of a type name. This is used to improve error recovery.
|
|
///
|
|
/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
|
|
/// filled in with the leading identifier in the last component of the
|
|
/// nested-name-specifier, if any.
|
|
///
|
|
/// \returns true if there was an error parsing a scope specifier
|
|
bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext,
|
|
bool *MayBePseudoDestructor,
|
|
bool IsTypename,
|
|
IdentifierInfo **LastII) {
|
|
assert(getLangOpts().CPlusPlus &&
|
|
"Call sites of this function should be guarded by checking for C++");
|
|
|
|
if (Tok.is(tok::annot_cxxscope)) {
|
|
assert(!LastII && "want last identifier but have already annotated scope");
|
|
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
|
|
Tok.getAnnotationRange(),
|
|
SS);
|
|
ConsumeToken();
|
|
return false;
|
|
}
|
|
|
|
if (Tok.is(tok::annot_template_id)) {
|
|
// If the current token is an annotated template id, it may already have
|
|
// a scope specifier. Restore it.
|
|
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
|
|
SS = TemplateId->SS;
|
|
}
|
|
|
|
if (LastII)
|
|
*LastII = nullptr;
|
|
|
|
bool HasScopeSpecifier = false;
|
|
|
|
if (Tok.is(tok::coloncolon)) {
|
|
// ::new and ::delete aren't nested-name-specifiers.
|
|
tok::TokenKind NextKind = NextToken().getKind();
|
|
if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
|
|
return false;
|
|
|
|
// '::' - Global scope qualifier.
|
|
if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
|
|
return true;
|
|
|
|
CheckForLParenAfterColonColon();
|
|
|
|
HasScopeSpecifier = true;
|
|
}
|
|
|
|
bool CheckForDestructor = false;
|
|
if (MayBePseudoDestructor && *MayBePseudoDestructor) {
|
|
CheckForDestructor = true;
|
|
*MayBePseudoDestructor = false;
|
|
}
|
|
|
|
if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
|
|
DeclSpec DS(AttrFactory);
|
|
SourceLocation DeclLoc = Tok.getLocation();
|
|
SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
|
|
|
|
SourceLocation CCLoc;
|
|
if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
|
|
AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
|
|
return false;
|
|
}
|
|
|
|
if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
|
|
SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
|
|
|
|
HasScopeSpecifier = true;
|
|
}
|
|
|
|
while (true) {
|
|
if (HasScopeSpecifier) {
|
|
// C++ [basic.lookup.classref]p5:
|
|
// If the qualified-id has the form
|
|
//
|
|
// ::class-name-or-namespace-name::...
|
|
//
|
|
// the class-name-or-namespace-name is looked up in global scope as a
|
|
// class-name or namespace-name.
|
|
//
|
|
// To implement this, we clear out the object type as soon as we've
|
|
// seen a leading '::' or part of a nested-name-specifier.
|
|
ObjectType = ParsedType();
|
|
|
|
if (Tok.is(tok::code_completion)) {
|
|
// Code completion for a nested-name-specifier, where the code
|
|
// code completion token follows the '::'.
|
|
Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
|
|
// Include code completion token into the range of the scope otherwise
|
|
// when we try to annotate the scope tokens the dangling code completion
|
|
// token will cause assertion in
|
|
// Preprocessor::AnnotatePreviousCachedTokens.
|
|
SS.setEndLoc(Tok.getLocation());
|
|
cutOffParsing();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// nested-name-specifier:
|
|
// nested-name-specifier 'template'[opt] simple-template-id '::'
|
|
|
|
// Parse the optional 'template' keyword, then make sure we have
|
|
// 'identifier <' after it.
|
|
if (Tok.is(tok::kw_template)) {
|
|
// If we don't have a scope specifier or an object type, this isn't a
|
|
// nested-name-specifier, since they aren't allowed to start with
|
|
// 'template'.
|
|
if (!HasScopeSpecifier && !ObjectType)
|
|
break;
|
|
|
|
TentativeParsingAction TPA(*this);
|
|
SourceLocation TemplateKWLoc = ConsumeToken();
|
|
|
|
UnqualifiedId TemplateName;
|
|
if (Tok.is(tok::identifier)) {
|
|
// Consume the identifier.
|
|
TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
|
|
ConsumeToken();
|
|
} else if (Tok.is(tok::kw_operator)) {
|
|
// We don't need to actually parse the unqualified-id in this case,
|
|
// because a simple-template-id cannot start with 'operator', but
|
|
// go ahead and parse it anyway for consistency with the case where
|
|
// we already annotated the template-id.
|
|
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
|
|
TemplateName)) {
|
|
TPA.Commit();
|
|
break;
|
|
}
|
|
|
|
if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
|
|
TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
|
|
Diag(TemplateName.getSourceRange().getBegin(),
|
|
diag::err_id_after_template_in_nested_name_spec)
|
|
<< TemplateName.getSourceRange();
|
|
TPA.Commit();
|
|
break;
|
|
}
|
|
} else {
|
|
TPA.Revert();
|
|
break;
|
|
}
|
|
|
|
// If the next token is not '<', we have a qualified-id that refers
|
|
// to a template name, such as T::template apply, but is not a
|
|
// template-id.
|
|
if (Tok.isNot(tok::less)) {
|
|
TPA.Revert();
|
|
break;
|
|
}
|
|
|
|
// Commit to parsing the template-id.
|
|
TPA.Commit();
|
|
TemplateTy Template;
|
|
if (TemplateNameKind TNK
|
|
= Actions.ActOnDependentTemplateName(getCurScope(),
|
|
SS, TemplateKWLoc, TemplateName,
|
|
ObjectType, EnteringContext,
|
|
Template)) {
|
|
if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
|
|
TemplateName, false))
|
|
return true;
|
|
} else
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
|
|
// We have
|
|
//
|
|
// template-id '::'
|
|
//
|
|
// So we need to check whether the template-id is a simple-template-id of
|
|
// the right kind (it should name a type or be dependent), and then
|
|
// convert it into a type within the nested-name-specifier.
|
|
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
|
|
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
|
|
*MayBePseudoDestructor = true;
|
|
return false;
|
|
}
|
|
|
|
if (LastII)
|
|
*LastII = TemplateId->Name;
|
|
|
|
// Consume the template-id token.
|
|
ConsumeToken();
|
|
|
|
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
|
|
SourceLocation CCLoc = ConsumeToken();
|
|
|
|
HasScopeSpecifier = true;
|
|
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
|
|
TemplateId->NumArgs);
|
|
|
|
if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
|
|
SS,
|
|
TemplateId->TemplateKWLoc,
|
|
TemplateId->Template,
|
|
TemplateId->TemplateNameLoc,
|
|
TemplateId->LAngleLoc,
|
|
TemplateArgsPtr,
|
|
TemplateId->RAngleLoc,
|
|
CCLoc,
|
|
EnteringContext)) {
|
|
SourceLocation StartLoc
|
|
= SS.getBeginLoc().isValid()? SS.getBeginLoc()
|
|
: TemplateId->TemplateNameLoc;
|
|
SS.SetInvalid(SourceRange(StartLoc, CCLoc));
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// The rest of the nested-name-specifier possibilities start with
|
|
// tok::identifier.
|
|
if (Tok.isNot(tok::identifier))
|
|
break;
|
|
|
|
IdentifierInfo &II = *Tok.getIdentifierInfo();
|
|
|
|
// nested-name-specifier:
|
|
// type-name '::'
|
|
// namespace-name '::'
|
|
// nested-name-specifier identifier '::'
|
|
Token Next = NextToken();
|
|
|
|
// If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
|
|
// and emit a fixit hint for it.
|
|
if (Next.is(tok::colon) && !ColonIsSacred) {
|
|
if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
|
|
Tok.getLocation(),
|
|
Next.getLocation(), ObjectType,
|
|
EnteringContext) &&
|
|
// If the token after the colon isn't an identifier, it's still an
|
|
// error, but they probably meant something else strange so don't
|
|
// recover like this.
|
|
PP.LookAhead(1).is(tok::identifier)) {
|
|
Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
|
|
<< FixItHint::CreateReplacement(Next.getLocation(), "::");
|
|
// Recover as if the user wrote '::'.
|
|
Next.setKind(tok::coloncolon);
|
|
}
|
|
}
|
|
|
|
if (Next.is(tok::coloncolon)) {
|
|
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
|
|
!Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
|
|
II, ObjectType)) {
|
|
*MayBePseudoDestructor = true;
|
|
return false;
|
|
}
|
|
|
|
if (ColonIsSacred) {
|
|
const Token &Next2 = GetLookAheadToken(2);
|
|
if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
|
|
Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
|
|
Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
|
|
<< Next2.getName()
|
|
<< FixItHint::CreateReplacement(Next.getLocation(), ":");
|
|
Token ColonColon;
|
|
PP.Lex(ColonColon);
|
|
ColonColon.setKind(tok::colon);
|
|
PP.EnterToken(ColonColon);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (LastII)
|
|
*LastII = &II;
|
|
|
|
// We have an identifier followed by a '::'. Lookup this name
|
|
// as the name in a nested-name-specifier.
|
|
Token Identifier = Tok;
|
|
SourceLocation IdLoc = ConsumeToken();
|
|
assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
|
|
"NextToken() not working properly!");
|
|
Token ColonColon = Tok;
|
|
SourceLocation CCLoc = ConsumeToken();
|
|
|
|
CheckForLParenAfterColonColon();
|
|
|
|
bool IsCorrectedToColon = false;
|
|
bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
|
|
if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
|
|
ObjectType, EnteringContext, SS,
|
|
false, CorrectionFlagPtr)) {
|
|
// Identifier is not recognized as a nested name, but we can have
|
|
// mistyped '::' instead of ':'.
|
|
if (CorrectionFlagPtr && IsCorrectedToColon) {
|
|
ColonColon.setKind(tok::colon);
|
|
PP.EnterToken(Tok);
|
|
PP.EnterToken(ColonColon);
|
|
Tok = Identifier;
|
|
break;
|
|
}
|
|
SS.SetInvalid(SourceRange(IdLoc, CCLoc));
|
|
}
|
|
HasScopeSpecifier = true;
|
|
continue;
|
|
}
|
|
|
|
CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
|
|
|
|
// nested-name-specifier:
|
|
// type-name '<'
|
|
if (Next.is(tok::less)) {
|
|
TemplateTy Template;
|
|
UnqualifiedId TemplateName;
|
|
TemplateName.setIdentifier(&II, Tok.getLocation());
|
|
bool MemberOfUnknownSpecialization;
|
|
if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
|
|
/*hasTemplateKeyword=*/false,
|
|
TemplateName,
|
|
ObjectType,
|
|
EnteringContext,
|
|
Template,
|
|
MemberOfUnknownSpecialization)) {
|
|
// We have found a template name, so annotate this token
|
|
// with a template-id annotation. We do not permit the
|
|
// template-id to be translated into a type annotation,
|
|
// because some clients (e.g., the parsing of class template
|
|
// specializations) still want to see the original template-id
|
|
// token.
|
|
ConsumeToken();
|
|
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
|
|
TemplateName, false))
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
|
|
(IsTypename || IsTemplateArgumentList(1))) {
|
|
// We have something like t::getAs<T>, where getAs is a
|
|
// member of an unknown specialization. However, this will only
|
|
// parse correctly as a template, so suggest the keyword 'template'
|
|
// before 'getAs' and treat this as a dependent template name.
|
|
unsigned DiagID = diag::err_missing_dependent_template_keyword;
|
|
if (getLangOpts().MicrosoftExt)
|
|
DiagID = diag::warn_missing_dependent_template_keyword;
|
|
|
|
Diag(Tok.getLocation(), DiagID)
|
|
<< II.getName()
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "template ");
|
|
|
|
if (TemplateNameKind TNK
|
|
= Actions.ActOnDependentTemplateName(getCurScope(),
|
|
SS, SourceLocation(),
|
|
TemplateName, ObjectType,
|
|
EnteringContext, Template)) {
|
|
// Consume the identifier.
|
|
ConsumeToken();
|
|
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
|
|
TemplateName, false))
|
|
return true;
|
|
}
|
|
else
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We don't have any tokens that form the beginning of a
|
|
// nested-name-specifier, so we're done.
|
|
break;
|
|
}
|
|
|
|
// Even if we didn't see any pieces of a nested-name-specifier, we
|
|
// still check whether there is a tilde in this position, which
|
|
// indicates a potential pseudo-destructor.
|
|
if (CheckForDestructor && Tok.is(tok::tilde))
|
|
*MayBePseudoDestructor = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ParseCXXIdExpression - Handle id-expression.
|
|
///
|
|
/// id-expression:
|
|
/// unqualified-id
|
|
/// qualified-id
|
|
///
|
|
/// qualified-id:
|
|
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
|
|
/// '::' identifier
|
|
/// '::' operator-function-id
|
|
/// '::' template-id
|
|
///
|
|
/// NOTE: The standard specifies that, for qualified-id, the parser does not
|
|
/// expect:
|
|
///
|
|
/// '::' conversion-function-id
|
|
/// '::' '~' class-name
|
|
///
|
|
/// This may cause a slight inconsistency on diagnostics:
|
|
///
|
|
/// class C {};
|
|
/// namespace A {}
|
|
/// void f() {
|
|
/// :: A :: ~ C(); // Some Sema error about using destructor with a
|
|
/// // namespace.
|
|
/// :: ~ C(); // Some Parser error like 'unexpected ~'.
|
|
/// }
|
|
///
|
|
/// We simplify the parser a bit and make it work like:
|
|
///
|
|
/// qualified-id:
|
|
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
|
|
/// '::' unqualified-id
|
|
///
|
|
/// That way Sema can handle and report similar errors for namespaces and the
|
|
/// global scope.
|
|
///
|
|
/// The isAddressOfOperand parameter indicates that this id-expression is a
|
|
/// direct operand of the address-of operator. This is, besides member contexts,
|
|
/// the only place where a qualified-id naming a non-static class member may
|
|
/// appear.
|
|
///
|
|
ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
|
|
// qualified-id:
|
|
// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
|
|
// '::' unqualified-id
|
|
//
|
|
CXXScopeSpec SS;
|
|
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
|
|
|
|
SourceLocation TemplateKWLoc;
|
|
UnqualifiedId Name;
|
|
if (ParseUnqualifiedId(SS,
|
|
/*EnteringContext=*/false,
|
|
/*AllowDestructorName=*/false,
|
|
/*AllowConstructorName=*/false,
|
|
/*ObjectType=*/ ParsedType(),
|
|
TemplateKWLoc,
|
|
Name))
|
|
return ExprError();
|
|
|
|
// This is only the direct operand of an & operator if it is not
|
|
// followed by a postfix-expression suffix.
|
|
if (isAddressOfOperand && isPostfixExpressionSuffixStart())
|
|
isAddressOfOperand = false;
|
|
|
|
return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
|
|
Tok.is(tok::l_paren), isAddressOfOperand);
|
|
}
|
|
|
|
/// ParseLambdaExpression - Parse a C++11 lambda expression.
|
|
///
|
|
/// lambda-expression:
|
|
/// lambda-introducer lambda-declarator[opt] compound-statement
|
|
///
|
|
/// lambda-introducer:
|
|
/// '[' lambda-capture[opt] ']'
|
|
///
|
|
/// lambda-capture:
|
|
/// capture-default
|
|
/// capture-list
|
|
/// capture-default ',' capture-list
|
|
///
|
|
/// capture-default:
|
|
/// '&'
|
|
/// '='
|
|
///
|
|
/// capture-list:
|
|
/// capture
|
|
/// capture-list ',' capture
|
|
///
|
|
/// capture:
|
|
/// simple-capture
|
|
/// init-capture [C++1y]
|
|
///
|
|
/// simple-capture:
|
|
/// identifier
|
|
/// '&' identifier
|
|
/// 'this'
|
|
///
|
|
/// init-capture: [C++1y]
|
|
/// identifier initializer
|
|
/// '&' identifier initializer
|
|
///
|
|
/// lambda-declarator:
|
|
/// '(' parameter-declaration-clause ')' attribute-specifier[opt]
|
|
/// 'mutable'[opt] exception-specification[opt]
|
|
/// trailing-return-type[opt]
|
|
///
|
|
ExprResult Parser::ParseLambdaExpression() {
|
|
// Parse lambda-introducer.
|
|
LambdaIntroducer Intro;
|
|
Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
|
|
if (DiagID) {
|
|
Diag(Tok, DiagID.getValue());
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
SkipUntil(tok::l_brace, StopAtSemi);
|
|
SkipUntil(tok::r_brace, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
return ParseLambdaExpressionAfterIntroducer(Intro);
|
|
}
|
|
|
|
/// TryParseLambdaExpression - Use lookahead and potentially tentative
|
|
/// parsing to determine if we are looking at a C++0x lambda expression, and parse
|
|
/// it if we are.
|
|
///
|
|
/// If we are not looking at a lambda expression, returns ExprError().
|
|
ExprResult Parser::TryParseLambdaExpression() {
|
|
assert(getLangOpts().CPlusPlus11
|
|
&& Tok.is(tok::l_square)
|
|
&& "Not at the start of a possible lambda expression.");
|
|
|
|
const Token Next = NextToken(), After = GetLookAheadToken(2);
|
|
|
|
// If lookahead indicates this is a lambda...
|
|
if (Next.is(tok::r_square) || // []
|
|
Next.is(tok::equal) || // [=
|
|
(Next.is(tok::amp) && // [&] or [&,
|
|
(After.is(tok::r_square) ||
|
|
After.is(tok::comma))) ||
|
|
(Next.is(tok::identifier) && // [identifier]
|
|
After.is(tok::r_square))) {
|
|
return ParseLambdaExpression();
|
|
}
|
|
|
|
// If lookahead indicates an ObjC message send...
|
|
// [identifier identifier
|
|
if (Next.is(tok::identifier) && After.is(tok::identifier)) {
|
|
return ExprEmpty();
|
|
}
|
|
|
|
// Here, we're stuck: lambda introducers and Objective-C message sends are
|
|
// unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
|
|
// lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
|
|
// writing two routines to parse a lambda introducer, just try to parse
|
|
// a lambda introducer first, and fall back if that fails.
|
|
// (TryParseLambdaIntroducer never produces any diagnostic output.)
|
|
LambdaIntroducer Intro;
|
|
if (TryParseLambdaIntroducer(Intro))
|
|
return ExprEmpty();
|
|
|
|
return ParseLambdaExpressionAfterIntroducer(Intro);
|
|
}
|
|
|
|
/// \brief Parse a lambda introducer.
|
|
/// \param Intro A LambdaIntroducer filled in with information about the
|
|
/// contents of the lambda-introducer.
|
|
/// \param SkippedInits If non-null, we are disambiguating between an Obj-C
|
|
/// message send and a lambda expression. In this mode, we will
|
|
/// sometimes skip the initializers for init-captures and not fully
|
|
/// populate \p Intro. This flag will be set to \c true if we do so.
|
|
/// \return A DiagnosticID if it hit something unexpected. The location for
|
|
/// for the diagnostic is that of the current token.
|
|
Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
|
|
bool *SkippedInits) {
|
|
typedef Optional<unsigned> DiagResult;
|
|
|
|
assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
|
|
Intro.Range.setBegin(T.getOpenLocation());
|
|
|
|
bool first = true;
|
|
|
|
// Parse capture-default.
|
|
if (Tok.is(tok::amp) &&
|
|
(NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
|
|
Intro.Default = LCD_ByRef;
|
|
Intro.DefaultLoc = ConsumeToken();
|
|
first = false;
|
|
} else if (Tok.is(tok::equal)) {
|
|
Intro.Default = LCD_ByCopy;
|
|
Intro.DefaultLoc = ConsumeToken();
|
|
first = false;
|
|
}
|
|
|
|
while (Tok.isNot(tok::r_square)) {
|
|
if (!first) {
|
|
if (Tok.isNot(tok::comma)) {
|
|
// Provide a completion for a lambda introducer here. Except
|
|
// in Objective-C, where this is Almost Surely meant to be a message
|
|
// send. In that case, fail here and let the ObjC message
|
|
// expression parser perform the completion.
|
|
if (Tok.is(tok::code_completion) &&
|
|
!(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
|
|
!Intro.Captures.empty())) {
|
|
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
|
|
/*AfterAmpersand=*/false);
|
|
cutOffParsing();
|
|
break;
|
|
}
|
|
|
|
return DiagResult(diag::err_expected_comma_or_rsquare);
|
|
}
|
|
ConsumeToken();
|
|
}
|
|
|
|
if (Tok.is(tok::code_completion)) {
|
|
// If we're in Objective-C++ and we have a bare '[', then this is more
|
|
// likely to be a message receiver.
|
|
if (getLangOpts().ObjC1 && first)
|
|
Actions.CodeCompleteObjCMessageReceiver(getCurScope());
|
|
else
|
|
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
|
|
/*AfterAmpersand=*/false);
|
|
cutOffParsing();
|
|
break;
|
|
}
|
|
|
|
first = false;
|
|
|
|
// Parse capture.
|
|
LambdaCaptureKind Kind = LCK_ByCopy;
|
|
SourceLocation Loc;
|
|
IdentifierInfo *Id = nullptr;
|
|
SourceLocation EllipsisLoc;
|
|
ExprResult Init;
|
|
|
|
if (Tok.is(tok::kw_this)) {
|
|
Kind = LCK_This;
|
|
Loc = ConsumeToken();
|
|
} else {
|
|
if (Tok.is(tok::amp)) {
|
|
Kind = LCK_ByRef;
|
|
ConsumeToken();
|
|
|
|
if (Tok.is(tok::code_completion)) {
|
|
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
|
|
/*AfterAmpersand=*/true);
|
|
cutOffParsing();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Tok.is(tok::identifier)) {
|
|
Id = Tok.getIdentifierInfo();
|
|
Loc = ConsumeToken();
|
|
} else if (Tok.is(tok::kw_this)) {
|
|
// FIXME: If we want to suggest a fixit here, will need to return more
|
|
// than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
|
|
// Clear()ed to prevent emission in case of tentative parsing?
|
|
return DiagResult(diag::err_this_captured_by_reference);
|
|
} else {
|
|
return DiagResult(diag::err_expected_capture);
|
|
}
|
|
|
|
if (Tok.is(tok::l_paren)) {
|
|
BalancedDelimiterTracker Parens(*this, tok::l_paren);
|
|
Parens.consumeOpen();
|
|
|
|
ExprVector Exprs;
|
|
CommaLocsTy Commas;
|
|
if (SkippedInits) {
|
|
Parens.skipToEnd();
|
|
*SkippedInits = true;
|
|
} else if (ParseExpressionList(Exprs, Commas)) {
|
|
Parens.skipToEnd();
|
|
Init = ExprError();
|
|
} else {
|
|
Parens.consumeClose();
|
|
Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
|
|
Parens.getCloseLocation(),
|
|
Exprs);
|
|
}
|
|
} else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) {
|
|
// Each lambda init-capture forms its own full expression, which clears
|
|
// Actions.MaybeODRUseExprs. So create an expression evaluation context
|
|
// to save the necessary state, and restore it later.
|
|
EnterExpressionEvaluationContext EC(Actions,
|
|
Sema::PotentiallyEvaluated);
|
|
TryConsumeToken(tok::equal);
|
|
|
|
if (!SkippedInits)
|
|
Init = ParseInitializer();
|
|
else if (Tok.is(tok::l_brace)) {
|
|
BalancedDelimiterTracker Braces(*this, tok::l_brace);
|
|
Braces.consumeOpen();
|
|
Braces.skipToEnd();
|
|
*SkippedInits = true;
|
|
} else {
|
|
// We're disambiguating this:
|
|
//
|
|
// [..., x = expr
|
|
//
|
|
// We need to find the end of the following expression in order to
|
|
// determine whether this is an Obj-C message send's receiver, a
|
|
// C99 designator, or a lambda init-capture.
|
|
//
|
|
// Parse the expression to find where it ends, and annotate it back
|
|
// onto the tokens. We would have parsed this expression the same way
|
|
// in either case: both the RHS of an init-capture and the RHS of an
|
|
// assignment expression are parsed as an initializer-clause, and in
|
|
// neither case can anything be added to the scope between the '[' and
|
|
// here.
|
|
//
|
|
// FIXME: This is horrible. Adding a mechanism to skip an expression
|
|
// would be much cleaner.
|
|
// FIXME: If there is a ',' before the next ']' or ':', we can skip to
|
|
// that instead. (And if we see a ':' with no matching '?', we can
|
|
// classify this as an Obj-C message send.)
|
|
SourceLocation StartLoc = Tok.getLocation();
|
|
InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
|
|
Init = ParseInitializer();
|
|
|
|
if (Tok.getLocation() != StartLoc) {
|
|
// Back out the lexing of the token after the initializer.
|
|
PP.RevertCachedTokens(1);
|
|
|
|
// Replace the consumed tokens with an appropriate annotation.
|
|
Tok.setLocation(StartLoc);
|
|
Tok.setKind(tok::annot_primary_expr);
|
|
setExprAnnotation(Tok, Init);
|
|
Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
|
|
PP.AnnotateCachedTokens(Tok);
|
|
|
|
// Consume the annotated initializer.
|
|
ConsumeToken();
|
|
}
|
|
}
|
|
} else
|
|
TryConsumeToken(tok::ellipsis, EllipsisLoc);
|
|
}
|
|
// If this is an init capture, process the initialization expression
|
|
// right away. For lambda init-captures such as the following:
|
|
// const int x = 10;
|
|
// auto L = [i = x+1](int a) {
|
|
// return [j = x+2,
|
|
// &k = x](char b) { };
|
|
// };
|
|
// keep in mind that each lambda init-capture has to have:
|
|
// - its initialization expression executed in the context
|
|
// of the enclosing/parent decl-context.
|
|
// - but the variable itself has to be 'injected' into the
|
|
// decl-context of its lambda's call-operator (which has
|
|
// not yet been created).
|
|
// Each init-expression is a full-expression that has to get
|
|
// Sema-analyzed (for capturing etc.) before its lambda's
|
|
// call-operator's decl-context, scope & scopeinfo are pushed on their
|
|
// respective stacks. Thus if any variable is odr-used in the init-capture
|
|
// it will correctly get captured in the enclosing lambda, if one exists.
|
|
// The init-variables above are created later once the lambdascope and
|
|
// call-operators decl-context is pushed onto its respective stack.
|
|
|
|
// Since the lambda init-capture's initializer expression occurs in the
|
|
// context of the enclosing function or lambda, therefore we can not wait
|
|
// till a lambda scope has been pushed on before deciding whether the
|
|
// variable needs to be captured. We also need to process all
|
|
// lvalue-to-rvalue conversions and discarded-value conversions,
|
|
// so that we can avoid capturing certain constant variables.
|
|
// For e.g.,
|
|
// void test() {
|
|
// const int x = 10;
|
|
// auto L = [&z = x](char a) { <-- don't capture by the current lambda
|
|
// return [y = x](int i) { <-- don't capture by enclosing lambda
|
|
// return y;
|
|
// }
|
|
// };
|
|
// If x was not const, the second use would require 'L' to capture, and
|
|
// that would be an error.
|
|
|
|
ParsedType InitCaptureParsedType;
|
|
if (Init.isUsable()) {
|
|
// Get the pointer and store it in an lvalue, so we can use it as an
|
|
// out argument.
|
|
Expr *InitExpr = Init.get();
|
|
// This performs any lvalue-to-rvalue conversions if necessary, which
|
|
// can affect what gets captured in the containing decl-context.
|
|
QualType InitCaptureType = Actions.performLambdaInitCaptureInitialization(
|
|
Loc, Kind == LCK_ByRef, Id, InitExpr);
|
|
Init = InitExpr;
|
|
InitCaptureParsedType.set(InitCaptureType);
|
|
}
|
|
Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init, InitCaptureParsedType);
|
|
}
|
|
|
|
T.consumeClose();
|
|
Intro.Range.setEnd(T.getCloseLocation());
|
|
return DiagResult();
|
|
}
|
|
|
|
/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
|
|
///
|
|
/// Returns true if it hit something unexpected.
|
|
bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
|
|
TentativeParsingAction PA(*this);
|
|
|
|
bool SkippedInits = false;
|
|
Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
|
|
|
|
if (DiagID) {
|
|
PA.Revert();
|
|
return true;
|
|
}
|
|
|
|
if (SkippedInits) {
|
|
// Parse it again, but this time parse the init-captures too.
|
|
PA.Revert();
|
|
Intro = LambdaIntroducer();
|
|
DiagID = ParseLambdaIntroducer(Intro);
|
|
assert(!DiagID && "parsing lambda-introducer failed on reparse");
|
|
return false;
|
|
}
|
|
|
|
PA.Commit();
|
|
return false;
|
|
}
|
|
|
|
/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
|
|
/// expression.
|
|
ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
|
|
LambdaIntroducer &Intro) {
|
|
SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
|
|
Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
|
|
|
|
PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
|
|
"lambda expression parsing");
|
|
|
|
|
|
|
|
// FIXME: Call into Actions to add any init-capture declarations to the
|
|
// scope while parsing the lambda-declarator and compound-statement.
|
|
|
|
// Parse lambda-declarator[opt].
|
|
DeclSpec DS(AttrFactory);
|
|
Declarator D(DS, Declarator::LambdaExprContext);
|
|
TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
|
|
Actions.PushLambdaScope();
|
|
|
|
if (Tok.is(tok::l_paren)) {
|
|
ParseScope PrototypeScope(this,
|
|
Scope::FunctionPrototypeScope |
|
|
Scope::FunctionDeclarationScope |
|
|
Scope::DeclScope);
|
|
|
|
SourceLocation DeclEndLoc;
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
SourceLocation LParenLoc = T.getOpenLocation();
|
|
|
|
// Parse parameter-declaration-clause.
|
|
ParsedAttributes Attr(AttrFactory);
|
|
SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
|
|
SourceLocation EllipsisLoc;
|
|
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
|
|
ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
|
|
// For a generic lambda, each 'auto' within the parameter declaration
|
|
// clause creates a template type parameter, so increment the depth.
|
|
if (Actions.getCurGenericLambda())
|
|
++CurTemplateDepthTracker;
|
|
}
|
|
T.consumeClose();
|
|
SourceLocation RParenLoc = T.getCloseLocation();
|
|
DeclEndLoc = RParenLoc;
|
|
|
|
// GNU-style attributes must be parsed before the mutable specifier to be
|
|
// compatible with GCC.
|
|
MaybeParseGNUAttributes(Attr, &DeclEndLoc);
|
|
|
|
// Parse 'mutable'[opt].
|
|
SourceLocation MutableLoc;
|
|
if (TryConsumeToken(tok::kw_mutable, MutableLoc))
|
|
DeclEndLoc = MutableLoc;
|
|
|
|
// Parse exception-specification[opt].
|
|
ExceptionSpecificationType ESpecType = EST_None;
|
|
SourceRange ESpecRange;
|
|
SmallVector<ParsedType, 2> DynamicExceptions;
|
|
SmallVector<SourceRange, 2> DynamicExceptionRanges;
|
|
ExprResult NoexceptExpr;
|
|
ESpecType = tryParseExceptionSpecification(ESpecRange,
|
|
DynamicExceptions,
|
|
DynamicExceptionRanges,
|
|
NoexceptExpr);
|
|
|
|
if (ESpecType != EST_None)
|
|
DeclEndLoc = ESpecRange.getEnd();
|
|
|
|
// Parse attribute-specifier[opt].
|
|
MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
|
|
|
|
SourceLocation FunLocalRangeEnd = DeclEndLoc;
|
|
|
|
// Parse trailing-return-type[opt].
|
|
TypeResult TrailingReturnType;
|
|
if (Tok.is(tok::arrow)) {
|
|
FunLocalRangeEnd = Tok.getLocation();
|
|
SourceRange Range;
|
|
TrailingReturnType = ParseTrailingReturnType(Range);
|
|
if (Range.getEnd().isValid())
|
|
DeclEndLoc = Range.getEnd();
|
|
}
|
|
|
|
PrototypeScope.Exit();
|
|
|
|
SourceLocation NoLoc;
|
|
D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
|
|
/*isAmbiguous=*/false,
|
|
LParenLoc,
|
|
ParamInfo.data(), ParamInfo.size(),
|
|
EllipsisLoc, RParenLoc,
|
|
DS.getTypeQualifiers(),
|
|
/*RefQualifierIsLValueRef=*/true,
|
|
/*RefQualifierLoc=*/NoLoc,
|
|
/*ConstQualifierLoc=*/NoLoc,
|
|
/*VolatileQualifierLoc=*/NoLoc,
|
|
MutableLoc,
|
|
ESpecType, ESpecRange.getBegin(),
|
|
DynamicExceptions.data(),
|
|
DynamicExceptionRanges.data(),
|
|
DynamicExceptions.size(),
|
|
NoexceptExpr.isUsable() ?
|
|
NoexceptExpr.get() : nullptr,
|
|
LParenLoc, FunLocalRangeEnd, D,
|
|
TrailingReturnType),
|
|
Attr, DeclEndLoc);
|
|
} else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow) ||
|
|
Tok.is(tok::kw___attribute) ||
|
|
(Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
|
|
// It's common to forget that one needs '()' before 'mutable', an attribute
|
|
// specifier, or the result type. Deal with this.
|
|
unsigned TokKind = 0;
|
|
switch (Tok.getKind()) {
|
|
case tok::kw_mutable: TokKind = 0; break;
|
|
case tok::arrow: TokKind = 1; break;
|
|
case tok::kw___attribute:
|
|
case tok::l_square: TokKind = 2; break;
|
|
default: llvm_unreachable("Unknown token kind");
|
|
}
|
|
|
|
Diag(Tok, diag::err_lambda_missing_parens)
|
|
<< TokKind
|
|
<< FixItHint::CreateInsertion(Tok.getLocation(), "() ");
|
|
SourceLocation DeclLoc = Tok.getLocation();
|
|
SourceLocation DeclEndLoc = DeclLoc;
|
|
|
|
// GNU-style attributes must be parsed before the mutable specifier to be
|
|
// compatible with GCC.
|
|
ParsedAttributes Attr(AttrFactory);
|
|
MaybeParseGNUAttributes(Attr, &DeclEndLoc);
|
|
|
|
// Parse 'mutable', if it's there.
|
|
SourceLocation MutableLoc;
|
|
if (Tok.is(tok::kw_mutable)) {
|
|
MutableLoc = ConsumeToken();
|
|
DeclEndLoc = MutableLoc;
|
|
}
|
|
|
|
// Parse attribute-specifier[opt].
|
|
MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
|
|
|
|
// Parse the return type, if there is one.
|
|
TypeResult TrailingReturnType;
|
|
if (Tok.is(tok::arrow)) {
|
|
SourceRange Range;
|
|
TrailingReturnType = ParseTrailingReturnType(Range);
|
|
if (Range.getEnd().isValid())
|
|
DeclEndLoc = Range.getEnd();
|
|
}
|
|
|
|
SourceLocation NoLoc;
|
|
D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
|
|
/*isAmbiguous=*/false,
|
|
/*LParenLoc=*/NoLoc,
|
|
/*Params=*/nullptr,
|
|
/*NumParams=*/0,
|
|
/*EllipsisLoc=*/NoLoc,
|
|
/*RParenLoc=*/NoLoc,
|
|
/*TypeQuals=*/0,
|
|
/*RefQualifierIsLValueRef=*/true,
|
|
/*RefQualifierLoc=*/NoLoc,
|
|
/*ConstQualifierLoc=*/NoLoc,
|
|
/*VolatileQualifierLoc=*/NoLoc,
|
|
MutableLoc,
|
|
EST_None,
|
|
/*ESpecLoc=*/NoLoc,
|
|
/*Exceptions=*/nullptr,
|
|
/*ExceptionRanges=*/nullptr,
|
|
/*NumExceptions=*/0,
|
|
/*NoexceptExpr=*/nullptr,
|
|
DeclLoc, DeclEndLoc, D,
|
|
TrailingReturnType),
|
|
Attr, DeclEndLoc);
|
|
}
|
|
|
|
|
|
// FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
|
|
// it.
|
|
unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
|
|
ParseScope BodyScope(this, ScopeFlags);
|
|
|
|
Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
|
|
|
|
// Parse compound-statement.
|
|
if (!Tok.is(tok::l_brace)) {
|
|
Diag(Tok, diag::err_expected_lambda_body);
|
|
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
|
|
return ExprError();
|
|
}
|
|
|
|
StmtResult Stmt(ParseCompoundStatementBody());
|
|
BodyScope.Exit();
|
|
|
|
if (!Stmt.isInvalid())
|
|
return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
|
|
|
|
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
|
|
return ExprError();
|
|
}
|
|
|
|
/// ParseCXXCasts - This handles the various ways to cast expressions to another
|
|
/// type.
|
|
///
|
|
/// postfix-expression: [C++ 5.2p1]
|
|
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
|
|
/// 'static_cast' '<' type-name '>' '(' expression ')'
|
|
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
|
|
/// 'const_cast' '<' type-name '>' '(' expression ')'
|
|
///
|
|
ExprResult Parser::ParseCXXCasts() {
|
|
tok::TokenKind Kind = Tok.getKind();
|
|
const char *CastName = nullptr; // For error messages
|
|
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unknown C++ cast!");
|
|
case tok::kw_const_cast: CastName = "const_cast"; break;
|
|
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
|
|
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
|
|
case tok::kw_static_cast: CastName = "static_cast"; break;
|
|
}
|
|
|
|
SourceLocation OpLoc = ConsumeToken();
|
|
SourceLocation LAngleBracketLoc = Tok.getLocation();
|
|
|
|
// Check for "<::" which is parsed as "[:". If found, fix token stream,
|
|
// diagnose error, suggest fix, and recover parsing.
|
|
if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
|
|
Token Next = NextToken();
|
|
if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
|
|
FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
|
|
}
|
|
|
|
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
|
|
return ExprError();
|
|
|
|
// Parse the common declaration-specifiers piece.
|
|
DeclSpec DS(AttrFactory);
|
|
ParseSpecifierQualifierList(DS);
|
|
|
|
// Parse the abstract-declarator, if present.
|
|
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
|
|
ParseDeclarator(DeclaratorInfo);
|
|
|
|
SourceLocation RAngleBracketLoc = Tok.getLocation();
|
|
|
|
if (ExpectAndConsume(tok::greater))
|
|
return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
|
|
|
|
SourceLocation LParenLoc, RParenLoc;
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
|
|
if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
|
|
return ExprError();
|
|
|
|
ExprResult Result = ParseExpression();
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
|
|
if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
|
|
Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
|
|
LAngleBracketLoc, DeclaratorInfo,
|
|
RAngleBracketLoc,
|
|
T.getOpenLocation(), Result.get(),
|
|
T.getCloseLocation());
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// ParseCXXTypeid - This handles the C++ typeid expression.
|
|
///
|
|
/// postfix-expression: [C++ 5.2p1]
|
|
/// 'typeid' '(' expression ')'
|
|
/// 'typeid' '(' type-id ')'
|
|
///
|
|
ExprResult Parser::ParseCXXTypeid() {
|
|
assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
|
|
|
|
SourceLocation OpLoc = ConsumeToken();
|
|
SourceLocation LParenLoc, RParenLoc;
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
|
|
// typeid expressions are always parenthesized.
|
|
if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
|
|
return ExprError();
|
|
LParenLoc = T.getOpenLocation();
|
|
|
|
ExprResult Result;
|
|
|
|
// C++0x [expr.typeid]p3:
|
|
// When typeid is applied to an expression other than an lvalue of a
|
|
// polymorphic class type [...] The expression is an unevaluated
|
|
// operand (Clause 5).
|
|
//
|
|
// Note that we can't tell whether the expression is an lvalue of a
|
|
// polymorphic class type until after we've parsed the expression; we
|
|
// speculatively assume the subexpression is unevaluated, and fix it up
|
|
// later.
|
|
//
|
|
// We enter the unevaluated context before trying to determine whether we
|
|
// have a type-id, because the tentative parse logic will try to resolve
|
|
// names, and must treat them as unevaluated.
|
|
EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
|
|
Sema::ReuseLambdaContextDecl);
|
|
|
|
if (isTypeIdInParens()) {
|
|
TypeResult Ty = ParseTypeName();
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
RParenLoc = T.getCloseLocation();
|
|
if (Ty.isInvalid() || RParenLoc.isInvalid())
|
|
return ExprError();
|
|
|
|
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
|
|
Ty.get().getAsOpaquePtr(), RParenLoc);
|
|
} else {
|
|
Result = ParseExpression();
|
|
|
|
// Match the ')'.
|
|
if (Result.isInvalid())
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
else {
|
|
T.consumeClose();
|
|
RParenLoc = T.getCloseLocation();
|
|
if (RParenLoc.isInvalid())
|
|
return ExprError();
|
|
|
|
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
|
|
Result.get(), RParenLoc);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
|
|
///
|
|
/// '__uuidof' '(' expression ')'
|
|
/// '__uuidof' '(' type-id ')'
|
|
///
|
|
ExprResult Parser::ParseCXXUuidof() {
|
|
assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
|
|
|
|
SourceLocation OpLoc = ConsumeToken();
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
|
|
// __uuidof expressions are always parenthesized.
|
|
if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
|
|
return ExprError();
|
|
|
|
ExprResult Result;
|
|
|
|
if (isTypeIdInParens()) {
|
|
TypeResult Ty = ParseTypeName();
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
|
|
if (Ty.isInvalid())
|
|
return ExprError();
|
|
|
|
Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
|
|
Ty.get().getAsOpaquePtr(),
|
|
T.getCloseLocation());
|
|
} else {
|
|
EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
|
|
Result = ParseExpression();
|
|
|
|
// Match the ')'.
|
|
if (Result.isInvalid())
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
else {
|
|
T.consumeClose();
|
|
|
|
Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
|
|
/*isType=*/false,
|
|
Result.get(), T.getCloseLocation());
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Parse a C++ pseudo-destructor expression after the base,
|
|
/// . or -> operator, and nested-name-specifier have already been
|
|
/// parsed.
|
|
///
|
|
/// postfix-expression: [C++ 5.2]
|
|
/// postfix-expression . pseudo-destructor-name
|
|
/// postfix-expression -> pseudo-destructor-name
|
|
///
|
|
/// pseudo-destructor-name:
|
|
/// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
|
|
/// ::[opt] nested-name-specifier template simple-template-id ::
|
|
/// ~type-name
|
|
/// ::[opt] nested-name-specifier[opt] ~type-name
|
|
///
|
|
ExprResult
|
|
Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS,
|
|
ParsedType ObjectType) {
|
|
// We're parsing either a pseudo-destructor-name or a dependent
|
|
// member access that has the same form as a
|
|
// pseudo-destructor-name. We parse both in the same way and let
|
|
// the action model sort them out.
|
|
//
|
|
// Note that the ::[opt] nested-name-specifier[opt] has already
|
|
// been parsed, and if there was a simple-template-id, it has
|
|
// been coalesced into a template-id annotation token.
|
|
UnqualifiedId FirstTypeName;
|
|
SourceLocation CCLoc;
|
|
if (Tok.is(tok::identifier)) {
|
|
FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
|
|
ConsumeToken();
|
|
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
|
|
CCLoc = ConsumeToken();
|
|
} else if (Tok.is(tok::annot_template_id)) {
|
|
// FIXME: retrieve TemplateKWLoc from template-id annotation and
|
|
// store it in the pseudo-dtor node (to be used when instantiating it).
|
|
FirstTypeName.setTemplateId(
|
|
(TemplateIdAnnotation *)Tok.getAnnotationValue());
|
|
ConsumeToken();
|
|
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
|
|
CCLoc = ConsumeToken();
|
|
} else {
|
|
FirstTypeName.setIdentifier(nullptr, SourceLocation());
|
|
}
|
|
|
|
// Parse the tilde.
|
|
assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
|
|
SourceLocation TildeLoc = ConsumeToken();
|
|
|
|
if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
|
|
DeclSpec DS(AttrFactory);
|
|
ParseDecltypeSpecifier(DS);
|
|
if (DS.getTypeSpecType() == TST_error)
|
|
return ExprError();
|
|
return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
|
|
OpKind, TildeLoc, DS,
|
|
Tok.is(tok::l_paren));
|
|
}
|
|
|
|
if (!Tok.is(tok::identifier)) {
|
|
Diag(Tok, diag::err_destructor_tilde_identifier);
|
|
return ExprError();
|
|
}
|
|
|
|
// Parse the second type.
|
|
UnqualifiedId SecondTypeName;
|
|
IdentifierInfo *Name = Tok.getIdentifierInfo();
|
|
SourceLocation NameLoc = ConsumeToken();
|
|
SecondTypeName.setIdentifier(Name, NameLoc);
|
|
|
|
// If there is a '<', the second type name is a template-id. Parse
|
|
// it as such.
|
|
if (Tok.is(tok::less) &&
|
|
ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
|
|
Name, NameLoc,
|
|
false, ObjectType, SecondTypeName,
|
|
/*AssumeTemplateName=*/true))
|
|
return ExprError();
|
|
|
|
return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
|
|
OpLoc, OpKind,
|
|
SS, FirstTypeName, CCLoc,
|
|
TildeLoc, SecondTypeName,
|
|
Tok.is(tok::l_paren));
|
|
}
|
|
|
|
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
|
|
///
|
|
/// boolean-literal: [C++ 2.13.5]
|
|
/// 'true'
|
|
/// 'false'
|
|
ExprResult Parser::ParseCXXBoolLiteral() {
|
|
tok::TokenKind Kind = Tok.getKind();
|
|
return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
|
|
}
|
|
|
|
/// ParseThrowExpression - This handles the C++ throw expression.
|
|
///
|
|
/// throw-expression: [C++ 15]
|
|
/// 'throw' assignment-expression[opt]
|
|
ExprResult Parser::ParseThrowExpression() {
|
|
assert(Tok.is(tok::kw_throw) && "Not throw!");
|
|
SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
|
|
|
|
// If the current token isn't the start of an assignment-expression,
|
|
// then the expression is not present. This handles things like:
|
|
// "C ? throw : (void)42", which is crazy but legal.
|
|
switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
|
|
case tok::semi:
|
|
case tok::r_paren:
|
|
case tok::r_square:
|
|
case tok::r_brace:
|
|
case tok::colon:
|
|
case tok::comma:
|
|
return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
|
|
|
|
default:
|
|
ExprResult Expr(ParseAssignmentExpression());
|
|
if (Expr.isInvalid()) return Expr;
|
|
return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
|
|
}
|
|
}
|
|
|
|
/// ParseCXXThis - This handles the C++ 'this' pointer.
|
|
///
|
|
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
|
|
/// a non-lvalue expression whose value is the address of the object for which
|
|
/// the function is called.
|
|
ExprResult Parser::ParseCXXThis() {
|
|
assert(Tok.is(tok::kw_this) && "Not 'this'!");
|
|
SourceLocation ThisLoc = ConsumeToken();
|
|
return Actions.ActOnCXXThis(ThisLoc);
|
|
}
|
|
|
|
/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
|
|
/// Can be interpreted either as function-style casting ("int(x)")
|
|
/// or class type construction ("ClassType(x,y,z)")
|
|
/// or creation of a value-initialized type ("int()").
|
|
/// See [C++ 5.2.3].
|
|
///
|
|
/// postfix-expression: [C++ 5.2p1]
|
|
/// simple-type-specifier '(' expression-list[opt] ')'
|
|
/// [C++0x] simple-type-specifier braced-init-list
|
|
/// typename-specifier '(' expression-list[opt] ')'
|
|
/// [C++0x] typename-specifier braced-init-list
|
|
///
|
|
ExprResult
|
|
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
|
|
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
|
|
ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
|
|
|
|
assert((Tok.is(tok::l_paren) ||
|
|
(getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
|
|
&& "Expected '(' or '{'!");
|
|
|
|
if (Tok.is(tok::l_brace)) {
|
|
ExprResult Init = ParseBraceInitializer();
|
|
if (Init.isInvalid())
|
|
return Init;
|
|
Expr *InitList = Init.get();
|
|
return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
|
|
MultiExprArg(&InitList, 1),
|
|
SourceLocation());
|
|
} else {
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
|
|
ExprVector Exprs;
|
|
CommaLocsTy CommaLocs;
|
|
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
if (ParseExpressionList(Exprs, CommaLocs)) {
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Match the ')'.
|
|
T.consumeClose();
|
|
|
|
// TypeRep could be null, if it references an invalid typedef.
|
|
if (!TypeRep)
|
|
return ExprError();
|
|
|
|
assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
|
|
"Unexpected number of commas!");
|
|
return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
|
|
Exprs,
|
|
T.getCloseLocation());
|
|
}
|
|
}
|
|
|
|
/// ParseCXXCondition - if/switch/while condition expression.
|
|
///
|
|
/// condition:
|
|
/// expression
|
|
/// type-specifier-seq declarator '=' assignment-expression
|
|
/// [C++11] type-specifier-seq declarator '=' initializer-clause
|
|
/// [C++11] type-specifier-seq declarator braced-init-list
|
|
/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
|
|
/// '=' assignment-expression
|
|
///
|
|
/// \param ExprOut if the condition was parsed as an expression, the parsed
|
|
/// expression.
|
|
///
|
|
/// \param DeclOut if the condition was parsed as a declaration, the parsed
|
|
/// declaration.
|
|
///
|
|
/// \param Loc The location of the start of the statement that requires this
|
|
/// condition, e.g., the "for" in a for loop.
|
|
///
|
|
/// \param ConvertToBoolean Whether the condition expression should be
|
|
/// converted to a boolean value.
|
|
///
|
|
/// \returns true if there was a parsing, false otherwise.
|
|
bool Parser::ParseCXXCondition(ExprResult &ExprOut,
|
|
Decl *&DeclOut,
|
|
SourceLocation Loc,
|
|
bool ConvertToBoolean) {
|
|
if (Tok.is(tok::code_completion)) {
|
|
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
|
|
cutOffParsing();
|
|
return true;
|
|
}
|
|
|
|
ParsedAttributesWithRange attrs(AttrFactory);
|
|
MaybeParseCXX11Attributes(attrs);
|
|
|
|
if (!isCXXConditionDeclaration()) {
|
|
ProhibitAttributes(attrs);
|
|
|
|
// Parse the expression.
|
|
ExprOut = ParseExpression(); // expression
|
|
DeclOut = nullptr;
|
|
if (ExprOut.isInvalid())
|
|
return true;
|
|
|
|
// If required, convert to a boolean value.
|
|
if (ConvertToBoolean)
|
|
ExprOut
|
|
= Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
|
|
return ExprOut.isInvalid();
|
|
}
|
|
|
|
// type-specifier-seq
|
|
DeclSpec DS(AttrFactory);
|
|
DS.takeAttributesFrom(attrs);
|
|
ParseSpecifierQualifierList(DS);
|
|
|
|
// declarator
|
|
Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
|
|
ParseDeclarator(DeclaratorInfo);
|
|
|
|
// simple-asm-expr[opt]
|
|
if (Tok.is(tok::kw_asm)) {
|
|
SourceLocation Loc;
|
|
ExprResult AsmLabel(ParseSimpleAsm(&Loc));
|
|
if (AsmLabel.isInvalid()) {
|
|
SkipUntil(tok::semi, StopAtSemi);
|
|
return true;
|
|
}
|
|
DeclaratorInfo.setAsmLabel(AsmLabel.get());
|
|
DeclaratorInfo.SetRangeEnd(Loc);
|
|
}
|
|
|
|
// If attributes are present, parse them.
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
|
|
// Type-check the declaration itself.
|
|
DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
|
|
DeclaratorInfo);
|
|
DeclOut = Dcl.get();
|
|
ExprOut = ExprError();
|
|
|
|
// '=' assignment-expression
|
|
// If a '==' or '+=' is found, suggest a fixit to '='.
|
|
bool CopyInitialization = isTokenEqualOrEqualTypo();
|
|
if (CopyInitialization)
|
|
ConsumeToken();
|
|
|
|
ExprResult InitExpr = ExprError();
|
|
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
|
|
Diag(Tok.getLocation(),
|
|
diag::warn_cxx98_compat_generalized_initializer_lists);
|
|
InitExpr = ParseBraceInitializer();
|
|
} else if (CopyInitialization) {
|
|
InitExpr = ParseAssignmentExpression();
|
|
} else if (Tok.is(tok::l_paren)) {
|
|
// This was probably an attempt to initialize the variable.
|
|
SourceLocation LParen = ConsumeParen(), RParen = LParen;
|
|
if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
|
|
RParen = ConsumeParen();
|
|
Diag(DeclOut ? DeclOut->getLocation() : LParen,
|
|
diag::err_expected_init_in_condition_lparen)
|
|
<< SourceRange(LParen, RParen);
|
|
} else {
|
|
Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
|
|
diag::err_expected_init_in_condition);
|
|
}
|
|
|
|
if (!InitExpr.isInvalid())
|
|
Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization,
|
|
DS.containsPlaceholderType());
|
|
else
|
|
Actions.ActOnInitializerError(DeclOut);
|
|
|
|
// FIXME: Build a reference to this declaration? Convert it to bool?
|
|
// (This is currently handled by Sema).
|
|
|
|
Actions.FinalizeDeclaration(DeclOut);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
|
|
/// This should only be called when the current token is known to be part of
|
|
/// simple-type-specifier.
|
|
///
|
|
/// simple-type-specifier:
|
|
/// '::'[opt] nested-name-specifier[opt] type-name
|
|
/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
|
|
/// char
|
|
/// wchar_t
|
|
/// bool
|
|
/// short
|
|
/// int
|
|
/// long
|
|
/// signed
|
|
/// unsigned
|
|
/// float
|
|
/// double
|
|
/// void
|
|
/// [GNU] typeof-specifier
|
|
/// [C++0x] auto [TODO]
|
|
///
|
|
/// type-name:
|
|
/// class-name
|
|
/// enum-name
|
|
/// typedef-name
|
|
///
|
|
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
|
|
DS.SetRangeStart(Tok.getLocation());
|
|
const char *PrevSpec;
|
|
unsigned DiagID;
|
|
SourceLocation Loc = Tok.getLocation();
|
|
const clang::PrintingPolicy &Policy =
|
|
Actions.getASTContext().getPrintingPolicy();
|
|
|
|
switch (Tok.getKind()) {
|
|
case tok::identifier: // foo::bar
|
|
case tok::coloncolon: // ::foo::bar
|
|
llvm_unreachable("Annotation token should already be formed!");
|
|
default:
|
|
llvm_unreachable("Not a simple-type-specifier token!");
|
|
|
|
// type-name
|
|
case tok::annot_typename: {
|
|
if (getTypeAnnotation(Tok))
|
|
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
|
|
getTypeAnnotation(Tok), Policy);
|
|
else
|
|
DS.SetTypeSpecError();
|
|
|
|
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
|
|
ConsumeToken();
|
|
|
|
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
|
|
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
|
|
// Objective-C interface. If we don't have Objective-C or a '<', this is
|
|
// just a normal reference to a typedef name.
|
|
if (Tok.is(tok::less) && getLangOpts().ObjC1)
|
|
ParseObjCProtocolQualifiers(DS);
|
|
|
|
DS.Finish(Diags, PP, Policy);
|
|
return;
|
|
}
|
|
|
|
// builtin types
|
|
case tok::kw_short:
|
|
DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_long:
|
|
DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw___int64:
|
|
DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_signed:
|
|
DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
|
|
break;
|
|
case tok::kw_unsigned:
|
|
DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
|
|
break;
|
|
case tok::kw_void:
|
|
DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_char:
|
|
DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_int:
|
|
DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw___int128:
|
|
DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_half:
|
|
DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_float:
|
|
DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_double:
|
|
DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_wchar_t:
|
|
DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_char16_t:
|
|
DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_char32_t:
|
|
DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::kw_bool:
|
|
DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
|
|
break;
|
|
case tok::annot_decltype:
|
|
case tok::kw_decltype:
|
|
DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
|
|
return DS.Finish(Diags, PP, Policy);
|
|
|
|
// GNU typeof support.
|
|
case tok::kw_typeof:
|
|
ParseTypeofSpecifier(DS);
|
|
DS.Finish(Diags, PP, Policy);
|
|
return;
|
|
}
|
|
if (Tok.is(tok::annot_typename))
|
|
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
|
|
else
|
|
DS.SetRangeEnd(Tok.getLocation());
|
|
ConsumeToken();
|
|
DS.Finish(Diags, PP, Policy);
|
|
}
|
|
|
|
/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
|
|
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
|
|
/// e.g., "const short int". Note that the DeclSpec is *not* finished
|
|
/// by parsing the type-specifier-seq, because these sequences are
|
|
/// typically followed by some form of declarator. Returns true and
|
|
/// emits diagnostics if this is not a type-specifier-seq, false
|
|
/// otherwise.
|
|
///
|
|
/// type-specifier-seq: [C++ 8.1]
|
|
/// type-specifier type-specifier-seq[opt]
|
|
///
|
|
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
|
|
ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
|
|
DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
|
|
return false;
|
|
}
|
|
|
|
/// \brief Finish parsing a C++ unqualified-id that is a template-id of
|
|
/// some form.
|
|
///
|
|
/// This routine is invoked when a '<' is encountered after an identifier or
|
|
/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
|
|
/// whether the unqualified-id is actually a template-id. This routine will
|
|
/// then parse the template arguments and form the appropriate template-id to
|
|
/// return to the caller.
|
|
///
|
|
/// \param SS the nested-name-specifier that precedes this template-id, if
|
|
/// we're actually parsing a qualified-id.
|
|
///
|
|
/// \param Name for constructor and destructor names, this is the actual
|
|
/// identifier that may be a template-name.
|
|
///
|
|
/// \param NameLoc the location of the class-name in a constructor or
|
|
/// destructor.
|
|
///
|
|
/// \param EnteringContext whether we're entering the scope of the
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param ObjectType if this unqualified-id occurs within a member access
|
|
/// expression, the type of the base object whose member is being accessed.
|
|
///
|
|
/// \param Id as input, describes the template-name or operator-function-id
|
|
/// that precedes the '<'. If template arguments were parsed successfully,
|
|
/// will be updated with the template-id.
|
|
///
|
|
/// \param AssumeTemplateId When true, this routine will assume that the name
|
|
/// refers to a template without performing name lookup to verify.
|
|
///
|
|
/// \returns true if a parse error occurred, false otherwise.
|
|
bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
bool EnteringContext,
|
|
ParsedType ObjectType,
|
|
UnqualifiedId &Id,
|
|
bool AssumeTemplateId) {
|
|
assert((AssumeTemplateId || Tok.is(tok::less)) &&
|
|
"Expected '<' to finish parsing a template-id");
|
|
|
|
TemplateTy Template;
|
|
TemplateNameKind TNK = TNK_Non_template;
|
|
switch (Id.getKind()) {
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
if (AssumeTemplateId) {
|
|
TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
|
|
Id, ObjectType, EnteringContext,
|
|
Template);
|
|
if (TNK == TNK_Non_template)
|
|
return true;
|
|
} else {
|
|
bool MemberOfUnknownSpecialization;
|
|
TNK = Actions.isTemplateName(getCurScope(), SS,
|
|
TemplateKWLoc.isValid(), Id,
|
|
ObjectType, EnteringContext, Template,
|
|
MemberOfUnknownSpecialization);
|
|
|
|
if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
|
|
ObjectType && IsTemplateArgumentList()) {
|
|
// We have something like t->getAs<T>(), where getAs is a
|
|
// member of an unknown specialization. However, this will only
|
|
// parse correctly as a template, so suggest the keyword 'template'
|
|
// before 'getAs' and treat this as a dependent template name.
|
|
std::string Name;
|
|
if (Id.getKind() == UnqualifiedId::IK_Identifier)
|
|
Name = Id.Identifier->getName();
|
|
else {
|
|
Name = "operator ";
|
|
if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
|
|
Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
|
|
else
|
|
Name += Id.Identifier->getName();
|
|
}
|
|
Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
|
|
<< Name
|
|
<< FixItHint::CreateInsertion(Id.StartLocation, "template ");
|
|
TNK = Actions.ActOnDependentTemplateName(getCurScope(),
|
|
SS, TemplateKWLoc, Id,
|
|
ObjectType, EnteringContext,
|
|
Template);
|
|
if (TNK == TNK_Non_template)
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConstructorName: {
|
|
UnqualifiedId TemplateName;
|
|
bool MemberOfUnknownSpecialization;
|
|
TemplateName.setIdentifier(Name, NameLoc);
|
|
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
|
|
TemplateName, ObjectType,
|
|
EnteringContext, Template,
|
|
MemberOfUnknownSpecialization);
|
|
break;
|
|
}
|
|
|
|
case UnqualifiedId::IK_DestructorName: {
|
|
UnqualifiedId TemplateName;
|
|
bool MemberOfUnknownSpecialization;
|
|
TemplateName.setIdentifier(Name, NameLoc);
|
|
if (ObjectType) {
|
|
TNK = Actions.ActOnDependentTemplateName(getCurScope(),
|
|
SS, TemplateKWLoc, TemplateName,
|
|
ObjectType, EnteringContext,
|
|
Template);
|
|
if (TNK == TNK_Non_template)
|
|
return true;
|
|
} else {
|
|
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
|
|
TemplateName, ObjectType,
|
|
EnteringContext, Template,
|
|
MemberOfUnknownSpecialization);
|
|
|
|
if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
|
|
Diag(NameLoc, diag::err_destructor_template_id)
|
|
<< Name << SS.getRange();
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (TNK == TNK_Non_template)
|
|
return false;
|
|
|
|
// Parse the enclosed template argument list.
|
|
SourceLocation LAngleLoc, RAngleLoc;
|
|
TemplateArgList TemplateArgs;
|
|
if (Tok.is(tok::less) &&
|
|
ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
|
|
SS, true, LAngleLoc,
|
|
TemplateArgs,
|
|
RAngleLoc))
|
|
return true;
|
|
|
|
if (Id.getKind() == UnqualifiedId::IK_Identifier ||
|
|
Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
|
|
Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
|
|
// Form a parsed representation of the template-id to be stored in the
|
|
// UnqualifiedId.
|
|
TemplateIdAnnotation *TemplateId
|
|
= TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
|
|
|
|
// FIXME: Store name for literal operator too.
|
|
if (Id.getKind() == UnqualifiedId::IK_Identifier) {
|
|
TemplateId->Name = Id.Identifier;
|
|
TemplateId->Operator = OO_None;
|
|
TemplateId->TemplateNameLoc = Id.StartLocation;
|
|
} else {
|
|
TemplateId->Name = nullptr;
|
|
TemplateId->Operator = Id.OperatorFunctionId.Operator;
|
|
TemplateId->TemplateNameLoc = Id.StartLocation;
|
|
}
|
|
|
|
TemplateId->SS = SS;
|
|
TemplateId->TemplateKWLoc = TemplateKWLoc;
|
|
TemplateId->Template = Template;
|
|
TemplateId->Kind = TNK;
|
|
TemplateId->LAngleLoc = LAngleLoc;
|
|
TemplateId->RAngleLoc = RAngleLoc;
|
|
ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
|
|
for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
|
|
Arg != ArgEnd; ++Arg)
|
|
Args[Arg] = TemplateArgs[Arg];
|
|
|
|
Id.setTemplateId(TemplateId);
|
|
return false;
|
|
}
|
|
|
|
// Bundle the template arguments together.
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
|
|
|
|
// Constructor and destructor names.
|
|
TypeResult Type
|
|
= Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
|
|
Template, NameLoc,
|
|
LAngleLoc, TemplateArgsPtr, RAngleLoc,
|
|
/*IsCtorOrDtorName=*/true);
|
|
if (Type.isInvalid())
|
|
return true;
|
|
|
|
if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
|
|
Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
|
|
else
|
|
Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Parse an operator-function-id or conversion-function-id as part
|
|
/// of a C++ unqualified-id.
|
|
///
|
|
/// This routine is responsible only for parsing the operator-function-id or
|
|
/// conversion-function-id; it does not handle template arguments in any way.
|
|
///
|
|
/// \code
|
|
/// operator-function-id: [C++ 13.5]
|
|
/// 'operator' operator
|
|
///
|
|
/// operator: one of
|
|
/// new delete new[] delete[]
|
|
/// + - * / % ^ & | ~
|
|
/// ! = < > += -= *= /= %=
|
|
/// ^= &= |= << >> >>= <<= == !=
|
|
/// <= >= && || ++ -- , ->* ->
|
|
/// () []
|
|
///
|
|
/// conversion-function-id: [C++ 12.3.2]
|
|
/// operator conversion-type-id
|
|
///
|
|
/// conversion-type-id:
|
|
/// type-specifier-seq conversion-declarator[opt]
|
|
///
|
|
/// conversion-declarator:
|
|
/// ptr-operator conversion-declarator[opt]
|
|
/// \endcode
|
|
///
|
|
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
|
|
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
|
|
///
|
|
/// \param EnteringContext whether we are entering the scope of the
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param ObjectType if this unqualified-id occurs within a member access
|
|
/// expression, the type of the base object whose member is being accessed.
|
|
///
|
|
/// \param Result on a successful parse, contains the parsed unqualified-id.
|
|
///
|
|
/// \returns true if parsing fails, false otherwise.
|
|
bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
|
|
ParsedType ObjectType,
|
|
UnqualifiedId &Result) {
|
|
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
|
|
|
|
// Consume the 'operator' keyword.
|
|
SourceLocation KeywordLoc = ConsumeToken();
|
|
|
|
// Determine what kind of operator name we have.
|
|
unsigned SymbolIdx = 0;
|
|
SourceLocation SymbolLocations[3];
|
|
OverloadedOperatorKind Op = OO_None;
|
|
switch (Tok.getKind()) {
|
|
case tok::kw_new:
|
|
case tok::kw_delete: {
|
|
bool isNew = Tok.getKind() == tok::kw_new;
|
|
// Consume the 'new' or 'delete'.
|
|
SymbolLocations[SymbolIdx++] = ConsumeToken();
|
|
// Check for array new/delete.
|
|
if (Tok.is(tok::l_square) &&
|
|
(!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
|
|
// Consume the '[' and ']'.
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return true;
|
|
|
|
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
|
|
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
|
|
Op = isNew? OO_Array_New : OO_Array_Delete;
|
|
} else {
|
|
Op = isNew? OO_New : OO_Delete;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
|
case tok::Token: \
|
|
SymbolLocations[SymbolIdx++] = ConsumeToken(); \
|
|
Op = OO_##Name; \
|
|
break;
|
|
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
|
|
#include "clang/Basic/OperatorKinds.def"
|
|
|
|
case tok::l_paren: {
|
|
// Consume the '(' and ')'.
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return true;
|
|
|
|
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
|
|
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
|
|
Op = OO_Call;
|
|
break;
|
|
}
|
|
|
|
case tok::l_square: {
|
|
// Consume the '[' and ']'.
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return true;
|
|
|
|
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
|
|
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
|
|
Op = OO_Subscript;
|
|
break;
|
|
}
|
|
|
|
case tok::code_completion: {
|
|
// Code completion for the operator name.
|
|
Actions.CodeCompleteOperatorName(getCurScope());
|
|
cutOffParsing();
|
|
// Don't try to parse any further.
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (Op != OO_None) {
|
|
// We have parsed an operator-function-id.
|
|
Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
|
|
return false;
|
|
}
|
|
|
|
// Parse a literal-operator-id.
|
|
//
|
|
// literal-operator-id: C++11 [over.literal]
|
|
// operator string-literal identifier
|
|
// operator user-defined-string-literal
|
|
|
|
if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
|
|
Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
|
|
|
|
SourceLocation DiagLoc;
|
|
unsigned DiagId = 0;
|
|
|
|
// We're past translation phase 6, so perform string literal concatenation
|
|
// before checking for "".
|
|
SmallVector<Token, 4> Toks;
|
|
SmallVector<SourceLocation, 4> TokLocs;
|
|
while (isTokenStringLiteral()) {
|
|
if (!Tok.is(tok::string_literal) && !DiagId) {
|
|
// C++11 [over.literal]p1:
|
|
// The string-literal or user-defined-string-literal in a
|
|
// literal-operator-id shall have no encoding-prefix [...].
|
|
DiagLoc = Tok.getLocation();
|
|
DiagId = diag::err_literal_operator_string_prefix;
|
|
}
|
|
Toks.push_back(Tok);
|
|
TokLocs.push_back(ConsumeStringToken());
|
|
}
|
|
|
|
StringLiteralParser Literal(Toks, PP);
|
|
if (Literal.hadError)
|
|
return true;
|
|
|
|
// Grab the literal operator's suffix, which will be either the next token
|
|
// or a ud-suffix from the string literal.
|
|
IdentifierInfo *II = nullptr;
|
|
SourceLocation SuffixLoc;
|
|
if (!Literal.getUDSuffix().empty()) {
|
|
II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
|
|
SuffixLoc =
|
|
Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
|
|
Literal.getUDSuffixOffset(),
|
|
PP.getSourceManager(), getLangOpts());
|
|
} else if (Tok.is(tok::identifier)) {
|
|
II = Tok.getIdentifierInfo();
|
|
SuffixLoc = ConsumeToken();
|
|
TokLocs.push_back(SuffixLoc);
|
|
} else {
|
|
Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
|
|
return true;
|
|
}
|
|
|
|
// The string literal must be empty.
|
|
if (!Literal.GetString().empty() || Literal.Pascal) {
|
|
// C++11 [over.literal]p1:
|
|
// The string-literal or user-defined-string-literal in a
|
|
// literal-operator-id shall [...] contain no characters
|
|
// other than the implicit terminating '\0'.
|
|
DiagLoc = TokLocs.front();
|
|
DiagId = diag::err_literal_operator_string_not_empty;
|
|
}
|
|
|
|
if (DiagId) {
|
|
// This isn't a valid literal-operator-id, but we think we know
|
|
// what the user meant. Tell them what they should have written.
|
|
SmallString<32> Str;
|
|
Str += "\"\" ";
|
|
Str += II->getName();
|
|
Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
|
|
SourceRange(TokLocs.front(), TokLocs.back()), Str);
|
|
}
|
|
|
|
Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
|
|
|
|
return Actions.checkLiteralOperatorId(SS, Result);
|
|
}
|
|
|
|
// Parse a conversion-function-id.
|
|
//
|
|
// conversion-function-id: [C++ 12.3.2]
|
|
// operator conversion-type-id
|
|
//
|
|
// conversion-type-id:
|
|
// type-specifier-seq conversion-declarator[opt]
|
|
//
|
|
// conversion-declarator:
|
|
// ptr-operator conversion-declarator[opt]
|
|
|
|
// Parse the type-specifier-seq.
|
|
DeclSpec DS(AttrFactory);
|
|
if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
|
|
return true;
|
|
|
|
// Parse the conversion-declarator, which is merely a sequence of
|
|
// ptr-operators.
|
|
Declarator D(DS, Declarator::ConversionIdContext);
|
|
ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
|
|
|
|
// Finish up the type.
|
|
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
|
|
if (Ty.isInvalid())
|
|
return true;
|
|
|
|
// Note that this is a conversion-function-id.
|
|
Result.setConversionFunctionId(KeywordLoc, Ty.get(),
|
|
D.getSourceRange().getEnd());
|
|
return false;
|
|
}
|
|
|
|
/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
|
|
/// name of an entity.
|
|
///
|
|
/// \code
|
|
/// unqualified-id: [C++ expr.prim.general]
|
|
/// identifier
|
|
/// operator-function-id
|
|
/// conversion-function-id
|
|
/// [C++0x] literal-operator-id [TODO]
|
|
/// ~ class-name
|
|
/// template-id
|
|
///
|
|
/// \endcode
|
|
///
|
|
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
|
|
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
|
|
///
|
|
/// \param EnteringContext whether we are entering the scope of the
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param AllowDestructorName whether we allow parsing of a destructor name.
|
|
///
|
|
/// \param AllowConstructorName whether we allow parsing a constructor name.
|
|
///
|
|
/// \param ObjectType if this unqualified-id occurs within a member access
|
|
/// expression, the type of the base object whose member is being accessed.
|
|
///
|
|
/// \param Result on a successful parse, contains the parsed unqualified-id.
|
|
///
|
|
/// \returns true if parsing fails, false otherwise.
|
|
bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
|
|
bool AllowDestructorName,
|
|
bool AllowConstructorName,
|
|
ParsedType ObjectType,
|
|
SourceLocation& TemplateKWLoc,
|
|
UnqualifiedId &Result) {
|
|
|
|
// Handle 'A::template B'. This is for template-ids which have not
|
|
// already been annotated by ParseOptionalCXXScopeSpecifier().
|
|
bool TemplateSpecified = false;
|
|
if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
|
|
(ObjectType || SS.isSet())) {
|
|
TemplateSpecified = true;
|
|
TemplateKWLoc = ConsumeToken();
|
|
}
|
|
|
|
// unqualified-id:
|
|
// identifier
|
|
// template-id (when it hasn't already been annotated)
|
|
if (Tok.is(tok::identifier)) {
|
|
// Consume the identifier.
|
|
IdentifierInfo *Id = Tok.getIdentifierInfo();
|
|
SourceLocation IdLoc = ConsumeToken();
|
|
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// If we're not in C++, only identifiers matter. Record the
|
|
// identifier and return.
|
|
Result.setIdentifier(Id, IdLoc);
|
|
return false;
|
|
}
|
|
|
|
if (AllowConstructorName &&
|
|
Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
|
|
// We have parsed a constructor name.
|
|
ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
|
|
&SS, false, false,
|
|
ParsedType(),
|
|
/*IsCtorOrDtorName=*/true,
|
|
/*NonTrivialTypeSourceInfo=*/true);
|
|
Result.setConstructorName(Ty, IdLoc, IdLoc);
|
|
} else {
|
|
// We have parsed an identifier.
|
|
Result.setIdentifier(Id, IdLoc);
|
|
}
|
|
|
|
// If the next token is a '<', we may have a template.
|
|
if (TemplateSpecified || Tok.is(tok::less))
|
|
return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
|
|
EnteringContext, ObjectType,
|
|
Result, TemplateSpecified);
|
|
|
|
return false;
|
|
}
|
|
|
|
// unqualified-id:
|
|
// template-id (already parsed and annotated)
|
|
if (Tok.is(tok::annot_template_id)) {
|
|
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
|
|
|
|
// If the template-name names the current class, then this is a constructor
|
|
if (AllowConstructorName && TemplateId->Name &&
|
|
Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
|
|
if (SS.isSet()) {
|
|
// C++ [class.qual]p2 specifies that a qualified template-name
|
|
// is taken as the constructor name where a constructor can be
|
|
// declared. Thus, the template arguments are extraneous, so
|
|
// complain about them and remove them entirely.
|
|
Diag(TemplateId->TemplateNameLoc,
|
|
diag::err_out_of_line_constructor_template_id)
|
|
<< TemplateId->Name
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
|
|
ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
|
|
TemplateId->TemplateNameLoc,
|
|
getCurScope(),
|
|
&SS, false, false,
|
|
ParsedType(),
|
|
/*IsCtorOrDtorName=*/true,
|
|
/*NontrivialTypeSourceInfo=*/true);
|
|
Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
|
|
TemplateId->RAngleLoc);
|
|
ConsumeToken();
|
|
return false;
|
|
}
|
|
|
|
Result.setConstructorTemplateId(TemplateId);
|
|
ConsumeToken();
|
|
return false;
|
|
}
|
|
|
|
// We have already parsed a template-id; consume the annotation token as
|
|
// our unqualified-id.
|
|
Result.setTemplateId(TemplateId);
|
|
TemplateKWLoc = TemplateId->TemplateKWLoc;
|
|
ConsumeToken();
|
|
return false;
|
|
}
|
|
|
|
// unqualified-id:
|
|
// operator-function-id
|
|
// conversion-function-id
|
|
if (Tok.is(tok::kw_operator)) {
|
|
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
|
|
return true;
|
|
|
|
// If we have an operator-function-id or a literal-operator-id and the next
|
|
// token is a '<', we may have a
|
|
//
|
|
// template-id:
|
|
// operator-function-id < template-argument-list[opt] >
|
|
if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
|
|
Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
|
|
(TemplateSpecified || Tok.is(tok::less)))
|
|
return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
|
|
nullptr, SourceLocation(),
|
|
EnteringContext, ObjectType,
|
|
Result, TemplateSpecified);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus &&
|
|
(AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
|
|
// C++ [expr.unary.op]p10:
|
|
// There is an ambiguity in the unary-expression ~X(), where X is a
|
|
// class-name. The ambiguity is resolved in favor of treating ~ as a
|
|
// unary complement rather than treating ~X as referring to a destructor.
|
|
|
|
// Parse the '~'.
|
|
SourceLocation TildeLoc = ConsumeToken();
|
|
|
|
if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
|
|
DeclSpec DS(AttrFactory);
|
|
SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
|
|
if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
|
|
Result.setDestructorName(TildeLoc, Type, EndLoc);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Parse the class-name.
|
|
if (Tok.isNot(tok::identifier)) {
|
|
Diag(Tok, diag::err_destructor_tilde_identifier);
|
|
return true;
|
|
}
|
|
|
|
// Parse the class-name (or template-name in a simple-template-id).
|
|
IdentifierInfo *ClassName = Tok.getIdentifierInfo();
|
|
SourceLocation ClassNameLoc = ConsumeToken();
|
|
|
|
if (TemplateSpecified || Tok.is(tok::less)) {
|
|
Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
|
|
return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
|
|
ClassName, ClassNameLoc,
|
|
EnteringContext, ObjectType,
|
|
Result, TemplateSpecified);
|
|
}
|
|
|
|
// Note that this is a destructor name.
|
|
ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
|
|
ClassNameLoc, getCurScope(),
|
|
SS, ObjectType,
|
|
EnteringContext);
|
|
if (!Ty)
|
|
return true;
|
|
|
|
Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
|
|
return false;
|
|
}
|
|
|
|
Diag(Tok, diag::err_expected_unqualified_id)
|
|
<< getLangOpts().CPlusPlus;
|
|
return true;
|
|
}
|
|
|
|
/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
|
|
/// memory in a typesafe manner and call constructors.
|
|
///
|
|
/// This method is called to parse the new expression after the optional :: has
|
|
/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
|
|
/// is its location. Otherwise, "Start" is the location of the 'new' token.
|
|
///
|
|
/// new-expression:
|
|
/// '::'[opt] 'new' new-placement[opt] new-type-id
|
|
/// new-initializer[opt]
|
|
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
|
|
/// new-initializer[opt]
|
|
///
|
|
/// new-placement:
|
|
/// '(' expression-list ')'
|
|
///
|
|
/// new-type-id:
|
|
/// type-specifier-seq new-declarator[opt]
|
|
/// [GNU] attributes type-specifier-seq new-declarator[opt]
|
|
///
|
|
/// new-declarator:
|
|
/// ptr-operator new-declarator[opt]
|
|
/// direct-new-declarator
|
|
///
|
|
/// new-initializer:
|
|
/// '(' expression-list[opt] ')'
|
|
/// [C++0x] braced-init-list
|
|
///
|
|
ExprResult
|
|
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
|
|
assert(Tok.is(tok::kw_new) && "expected 'new' token");
|
|
ConsumeToken(); // Consume 'new'
|
|
|
|
// A '(' now can be a new-placement or the '(' wrapping the type-id in the
|
|
// second form of new-expression. It can't be a new-type-id.
|
|
|
|
ExprVector PlacementArgs;
|
|
SourceLocation PlacementLParen, PlacementRParen;
|
|
|
|
SourceRange TypeIdParens;
|
|
DeclSpec DS(AttrFactory);
|
|
Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
|
|
if (Tok.is(tok::l_paren)) {
|
|
// If it turns out to be a placement, we change the type location.
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
PlacementLParen = T.getOpenLocation();
|
|
if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
|
|
T.consumeClose();
|
|
PlacementRParen = T.getCloseLocation();
|
|
if (PlacementRParen.isInvalid()) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
|
|
if (PlacementArgs.empty()) {
|
|
// Reset the placement locations. There was no placement.
|
|
TypeIdParens = T.getRange();
|
|
PlacementLParen = PlacementRParen = SourceLocation();
|
|
} else {
|
|
// We still need the type.
|
|
if (Tok.is(tok::l_paren)) {
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
ParseSpecifierQualifierList(DS);
|
|
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
|
|
ParseDeclarator(DeclaratorInfo);
|
|
T.consumeClose();
|
|
TypeIdParens = T.getRange();
|
|
} else {
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
if (ParseCXXTypeSpecifierSeq(DS))
|
|
DeclaratorInfo.setInvalidType(true);
|
|
else {
|
|
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
|
|
ParseDeclaratorInternal(DeclaratorInfo,
|
|
&Parser::ParseDirectNewDeclarator);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// A new-type-id is a simplified type-id, where essentially the
|
|
// direct-declarator is replaced by a direct-new-declarator.
|
|
MaybeParseGNUAttributes(DeclaratorInfo);
|
|
if (ParseCXXTypeSpecifierSeq(DS))
|
|
DeclaratorInfo.setInvalidType(true);
|
|
else {
|
|
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
|
|
ParseDeclaratorInternal(DeclaratorInfo,
|
|
&Parser::ParseDirectNewDeclarator);
|
|
}
|
|
}
|
|
if (DeclaratorInfo.isInvalidType()) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult Initializer;
|
|
|
|
if (Tok.is(tok::l_paren)) {
|
|
SourceLocation ConstructorLParen, ConstructorRParen;
|
|
ExprVector ConstructorArgs;
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
T.consumeOpen();
|
|
ConstructorLParen = T.getOpenLocation();
|
|
if (Tok.isNot(tok::r_paren)) {
|
|
CommaLocsTy CommaLocs;
|
|
if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
}
|
|
T.consumeClose();
|
|
ConstructorRParen = T.getCloseLocation();
|
|
if (ConstructorRParen.isInvalid()) {
|
|
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
|
|
return ExprError();
|
|
}
|
|
Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
|
|
ConstructorRParen,
|
|
ConstructorArgs);
|
|
} else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
|
|
Diag(Tok.getLocation(),
|
|
diag::warn_cxx98_compat_generalized_initializer_lists);
|
|
Initializer = ParseBraceInitializer();
|
|
}
|
|
if (Initializer.isInvalid())
|
|
return Initializer;
|
|
|
|
return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
|
|
PlacementArgs, PlacementRParen,
|
|
TypeIdParens, DeclaratorInfo, Initializer.get());
|
|
}
|
|
|
|
/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
|
|
/// passed to ParseDeclaratorInternal.
|
|
///
|
|
/// direct-new-declarator:
|
|
/// '[' expression ']'
|
|
/// direct-new-declarator '[' constant-expression ']'
|
|
///
|
|
void Parser::ParseDirectNewDeclarator(Declarator &D) {
|
|
// Parse the array dimensions.
|
|
bool first = true;
|
|
while (Tok.is(tok::l_square)) {
|
|
// An array-size expression can't start with a lambda.
|
|
if (CheckProhibitedCXX11Attribute())
|
|
continue;
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
T.consumeOpen();
|
|
|
|
ExprResult Size(first ? ParseExpression()
|
|
: ParseConstantExpression());
|
|
if (Size.isInvalid()) {
|
|
// Recover
|
|
SkipUntil(tok::r_square, StopAtSemi);
|
|
return;
|
|
}
|
|
first = false;
|
|
|
|
T.consumeClose();
|
|
|
|
// Attributes here appertain to the array type. C++11 [expr.new]p5.
|
|
ParsedAttributes Attrs(AttrFactory);
|
|
MaybeParseCXX11Attributes(Attrs);
|
|
|
|
D.AddTypeInfo(DeclaratorChunk::getArray(0,
|
|
/*static=*/false, /*star=*/false,
|
|
Size.get(),
|
|
T.getOpenLocation(),
|
|
T.getCloseLocation()),
|
|
Attrs, T.getCloseLocation());
|
|
|
|
if (T.getCloseLocation().isInvalid())
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
|
|
/// This ambiguity appears in the syntax of the C++ new operator.
|
|
///
|
|
/// new-expression:
|
|
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
|
|
/// new-initializer[opt]
|
|
///
|
|
/// new-placement:
|
|
/// '(' expression-list ')'
|
|
///
|
|
bool Parser::ParseExpressionListOrTypeId(
|
|
SmallVectorImpl<Expr*> &PlacementArgs,
|
|
Declarator &D) {
|
|
// The '(' was already consumed.
|
|
if (isTypeIdInParens()) {
|
|
ParseSpecifierQualifierList(D.getMutableDeclSpec());
|
|
D.SetSourceRange(D.getDeclSpec().getSourceRange());
|
|
ParseDeclarator(D);
|
|
return D.isInvalidType();
|
|
}
|
|
|
|
// It's not a type, it has to be an expression list.
|
|
// Discard the comma locations - ActOnCXXNew has enough parameters.
|
|
CommaLocsTy CommaLocs;
|
|
return ParseExpressionList(PlacementArgs, CommaLocs);
|
|
}
|
|
|
|
/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
|
|
/// to free memory allocated by new.
|
|
///
|
|
/// This method is called to parse the 'delete' expression after the optional
|
|
/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
|
|
/// and "Start" is its location. Otherwise, "Start" is the location of the
|
|
/// 'delete' token.
|
|
///
|
|
/// delete-expression:
|
|
/// '::'[opt] 'delete' cast-expression
|
|
/// '::'[opt] 'delete' '[' ']' cast-expression
|
|
ExprResult
|
|
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
|
|
assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
|
|
ConsumeToken(); // Consume 'delete'
|
|
|
|
// Array delete?
|
|
bool ArrayDelete = false;
|
|
if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
|
|
// C++11 [expr.delete]p1:
|
|
// Whenever the delete keyword is followed by empty square brackets, it
|
|
// shall be interpreted as [array delete].
|
|
// [Footnote: A lambda expression with a lambda-introducer that consists
|
|
// of empty square brackets can follow the delete keyword if
|
|
// the lambda expression is enclosed in parentheses.]
|
|
// FIXME: Produce a better diagnostic if the '[]' is unambiguously a
|
|
// lambda-introducer.
|
|
ArrayDelete = true;
|
|
BalancedDelimiterTracker T(*this, tok::l_square);
|
|
|
|
T.consumeOpen();
|
|
T.consumeClose();
|
|
if (T.getCloseLocation().isInvalid())
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult Operand(ParseCastExpression(false));
|
|
if (Operand.isInvalid())
|
|
return Operand;
|
|
|
|
return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
|
|
}
|
|
|
|
static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
|
|
switch (kind) {
|
|
default: llvm_unreachable("Not a known type trait");
|
|
#define TYPE_TRAIT_1(Spelling, Name, Key) \
|
|
case tok::kw_ ## Spelling: return UTT_ ## Name;
|
|
#define TYPE_TRAIT_2(Spelling, Name, Key) \
|
|
case tok::kw_ ## Spelling: return BTT_ ## Name;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
#define TYPE_TRAIT_N(Spelling, Name, Key) \
|
|
case tok::kw_ ## Spelling: return TT_ ## Name;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
}
|
|
}
|
|
|
|
static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
|
|
switch(kind) {
|
|
default: llvm_unreachable("Not a known binary type trait");
|
|
case tok::kw___array_rank: return ATT_ArrayRank;
|
|
case tok::kw___array_extent: return ATT_ArrayExtent;
|
|
}
|
|
}
|
|
|
|
static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
|
|
switch(kind) {
|
|
default: llvm_unreachable("Not a known unary expression trait.");
|
|
case tok::kw___is_lvalue_expr: return ET_IsLValueExpr;
|
|
case tok::kw___is_rvalue_expr: return ET_IsRValueExpr;
|
|
}
|
|
}
|
|
|
|
static unsigned TypeTraitArity(tok::TokenKind kind) {
|
|
switch (kind) {
|
|
default: llvm_unreachable("Not a known type trait");
|
|
#define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
|
|
#include "clang/Basic/TokenKinds.def"
|
|
}
|
|
}
|
|
|
|
/// \brief Parse the built-in type-trait pseudo-functions that allow
|
|
/// implementation of the TR1/C++11 type traits templates.
|
|
///
|
|
/// primary-expression:
|
|
/// unary-type-trait '(' type-id ')'
|
|
/// binary-type-trait '(' type-id ',' type-id ')'
|
|
/// type-trait '(' type-id-seq ')'
|
|
///
|
|
/// type-id-seq:
|
|
/// type-id ...[opt] type-id-seq[opt]
|
|
///
|
|
ExprResult Parser::ParseTypeTrait() {
|
|
tok::TokenKind Kind = Tok.getKind();
|
|
unsigned Arity = TypeTraitArity(Kind);
|
|
|
|
SourceLocation Loc = ConsumeToken();
|
|
|
|
BalancedDelimiterTracker Parens(*this, tok::l_paren);
|
|
if (Parens.expectAndConsume())
|
|
return ExprError();
|
|
|
|
SmallVector<ParsedType, 2> Args;
|
|
do {
|
|
// Parse the next type.
|
|
TypeResult Ty = ParseTypeName();
|
|
if (Ty.isInvalid()) {
|
|
Parens.skipToEnd();
|
|
return ExprError();
|
|
}
|
|
|
|
// Parse the ellipsis, if present.
|
|
if (Tok.is(tok::ellipsis)) {
|
|
Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
|
|
if (Ty.isInvalid()) {
|
|
Parens.skipToEnd();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Add this type to the list of arguments.
|
|
Args.push_back(Ty.get());
|
|
} while (TryConsumeToken(tok::comma));
|
|
|
|
if (Parens.consumeClose())
|
|
return ExprError();
|
|
|
|
SourceLocation EndLoc = Parens.getCloseLocation();
|
|
|
|
if (Arity && Args.size() != Arity) {
|
|
Diag(EndLoc, diag::err_type_trait_arity)
|
|
<< Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
|
|
return ExprError();
|
|
}
|
|
|
|
if (!Arity && Args.empty()) {
|
|
Diag(EndLoc, diag::err_type_trait_arity)
|
|
<< 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
|
|
return ExprError();
|
|
}
|
|
|
|
return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
|
|
}
|
|
|
|
/// ParseArrayTypeTrait - Parse the built-in array type-trait
|
|
/// pseudo-functions.
|
|
///
|
|
/// primary-expression:
|
|
/// [Embarcadero] '__array_rank' '(' type-id ')'
|
|
/// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
|
|
///
|
|
ExprResult Parser::ParseArrayTypeTrait() {
|
|
ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
|
|
SourceLocation Loc = ConsumeToken();
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
if (T.expectAndConsume())
|
|
return ExprError();
|
|
|
|
TypeResult Ty = ParseTypeName();
|
|
if (Ty.isInvalid()) {
|
|
SkipUntil(tok::comma, StopAtSemi);
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
switch (ATT) {
|
|
case ATT_ArrayRank: {
|
|
T.consumeClose();
|
|
return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
|
|
T.getCloseLocation());
|
|
}
|
|
case ATT_ArrayExtent: {
|
|
if (ExpectAndConsume(tok::comma)) {
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult DimExpr = ParseExpression();
|
|
T.consumeClose();
|
|
|
|
return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
|
|
T.getCloseLocation());
|
|
}
|
|
}
|
|
llvm_unreachable("Invalid ArrayTypeTrait!");
|
|
}
|
|
|
|
/// ParseExpressionTrait - Parse built-in expression-trait
|
|
/// pseudo-functions like __is_lvalue_expr( xxx ).
|
|
///
|
|
/// primary-expression:
|
|
/// [Embarcadero] expression-trait '(' expression ')'
|
|
///
|
|
ExprResult Parser::ParseExpressionTrait() {
|
|
ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
|
|
SourceLocation Loc = ConsumeToken();
|
|
|
|
BalancedDelimiterTracker T(*this, tok::l_paren);
|
|
if (T.expectAndConsume())
|
|
return ExprError();
|
|
|
|
ExprResult Expr = ParseExpression();
|
|
|
|
T.consumeClose();
|
|
|
|
return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
|
|
T.getCloseLocation());
|
|
}
|
|
|
|
|
|
/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
|
|
/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
|
|
/// based on the context past the parens.
|
|
ExprResult
|
|
Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
|
|
ParsedType &CastTy,
|
|
BalancedDelimiterTracker &Tracker,
|
|
ColonProtectionRAIIObject &ColonProt) {
|
|
assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
|
|
assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
|
|
assert(isTypeIdInParens() && "Not a type-id!");
|
|
|
|
ExprResult Result(true);
|
|
CastTy = ParsedType();
|
|
|
|
// We need to disambiguate a very ugly part of the C++ syntax:
|
|
//
|
|
// (T())x; - type-id
|
|
// (T())*x; - type-id
|
|
// (T())/x; - expression
|
|
// (T()); - expression
|
|
//
|
|
// The bad news is that we cannot use the specialized tentative parser, since
|
|
// it can only verify that the thing inside the parens can be parsed as
|
|
// type-id, it is not useful for determining the context past the parens.
|
|
//
|
|
// The good news is that the parser can disambiguate this part without
|
|
// making any unnecessary Action calls.
|
|
//
|
|
// It uses a scheme similar to parsing inline methods. The parenthesized
|
|
// tokens are cached, the context that follows is determined (possibly by
|
|
// parsing a cast-expression), and then we re-introduce the cached tokens
|
|
// into the token stream and parse them appropriately.
|
|
|
|
ParenParseOption ParseAs;
|
|
CachedTokens Toks;
|
|
|
|
// Store the tokens of the parentheses. We will parse them after we determine
|
|
// the context that follows them.
|
|
if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
|
|
// We didn't find the ')' we expected.
|
|
Tracker.consumeClose();
|
|
return ExprError();
|
|
}
|
|
|
|
if (Tok.is(tok::l_brace)) {
|
|
ParseAs = CompoundLiteral;
|
|
} else {
|
|
bool NotCastExpr;
|
|
if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
|
|
NotCastExpr = true;
|
|
} else {
|
|
// Try parsing the cast-expression that may follow.
|
|
// If it is not a cast-expression, NotCastExpr will be true and no token
|
|
// will be consumed.
|
|
ColonProt.restore();
|
|
Result = ParseCastExpression(false/*isUnaryExpression*/,
|
|
false/*isAddressofOperand*/,
|
|
NotCastExpr,
|
|
// type-id has priority.
|
|
IsTypeCast);
|
|
}
|
|
|
|
// If we parsed a cast-expression, it's really a type-id, otherwise it's
|
|
// an expression.
|
|
ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
|
|
}
|
|
|
|
// The current token should go after the cached tokens.
|
|
Toks.push_back(Tok);
|
|
// Re-enter the stored parenthesized tokens into the token stream, so we may
|
|
// parse them now.
|
|
PP.EnterTokenStream(Toks.data(), Toks.size(),
|
|
true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
|
|
// Drop the current token and bring the first cached one. It's the same token
|
|
// as when we entered this function.
|
|
ConsumeAnyToken();
|
|
|
|
if (ParseAs >= CompoundLiteral) {
|
|
// Parse the type declarator.
|
|
DeclSpec DS(AttrFactory);
|
|
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
|
|
{
|
|
ColonProtectionRAIIObject InnerColonProtection(*this);
|
|
ParseSpecifierQualifierList(DS);
|
|
ParseDeclarator(DeclaratorInfo);
|
|
}
|
|
|
|
// Match the ')'.
|
|
Tracker.consumeClose();
|
|
ColonProt.restore();
|
|
|
|
if (ParseAs == CompoundLiteral) {
|
|
ExprType = CompoundLiteral;
|
|
if (DeclaratorInfo.isInvalidType())
|
|
return ExprError();
|
|
|
|
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
|
|
return ParseCompoundLiteralExpression(Ty.get(),
|
|
Tracker.getOpenLocation(),
|
|
Tracker.getCloseLocation());
|
|
}
|
|
|
|
// We parsed '(' type-id ')' and the thing after it wasn't a '{'.
|
|
assert(ParseAs == CastExpr);
|
|
|
|
if (DeclaratorInfo.isInvalidType())
|
|
return ExprError();
|
|
|
|
// Result is what ParseCastExpression returned earlier.
|
|
if (!Result.isInvalid())
|
|
Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
|
|
DeclaratorInfo, CastTy,
|
|
Tracker.getCloseLocation(), Result.get());
|
|
return Result;
|
|
}
|
|
|
|
// Not a compound literal, and not followed by a cast-expression.
|
|
assert(ParseAs == SimpleExpr);
|
|
|
|
ExprType = SimpleExpr;
|
|
Result = ParseExpression();
|
|
if (!Result.isInvalid() && Tok.is(tok::r_paren))
|
|
Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
|
|
Tok.getLocation(), Result.get());
|
|
|
|
// Match the ')'.
|
|
if (Result.isInvalid()) {
|
|
SkipUntil(tok::r_paren, StopAtSemi);
|
|
return ExprError();
|
|
}
|
|
|
|
Tracker.consumeClose();
|
|
return Result;
|
|
}
|