freebsd-dev/gnu/usr.sbin
Bill Paul e1086b16a9 ypserv performance improvements:
- There are two cases where the server can potentially block for a long
  time while servicing a request: when handling a yp_all() request, which
  could take a while to complete if the map being transfered is large
  (e.g. 'ypcat passwd' where passwd.byname has 10,000 entries in it),
  and while doing DNS lookups when in SunOS compat mode (with the -dns
  flag), since some DNS lookups can take a long time to complete. While
  ypserv is blocked, other clients making requests to the server will
  also block. To fix this, we fork() ypall and DNS lookups into subprocesses
  and let the parent ypserv process go on servicing other incoming
  requests.

  We place a cap on the number of simultaneous processes that ypserv can
  fork (set at 20 for now) and go back to 'linear mode' if it hits the
  limit (which just means it won't fork() anymore until the number of
  simultaneous processes drops under 20 again). The cap does not apply
  to fork()s done as a result of ypxfr calls, since we want to do our
  best to insure that map transfers from master servers succeed.

  To make this work, we need our own special copy of svc_run() so that
  we can properly terminate child processes once the RPC dispatch
  functions have run.

  (I have no idea what SunOS does in this situation. The only other
  possibility I can think of is async socket I/O, but that seems
  like a headache and a half to implement.)

- Do the politically correct thing and use sigaction() instead of
  signal() to install the SIGCHLD handler and to ignore SIGPIPEs.

- Doing a yp_all() is sometimes slow due to the way read_database() is
  implemented. This is turn is due to a certain deficiency in the DB
  hash method: the R_CURSOR flag doesn't work, which means that when
  handed a key and asked to return the key/data pair for the _next_
  key in the map, we have to reset the DB pointer to the start of the
  database, step through until we find the requested key, step one
  space ahead to the _next_ key, and then use that. (The original ypserv
  code used GDBM has a function called gdbm_nextkey() that does
  this for you.) This can get really slow for large maps. However,
  when doing a ypall, it seems that all database access are sequential,
  so we can forgo the first step (the 'search the database until we find
  the key') since the database should remain open and the cursor
  should be positioned at the right place until the yp_all() call
  finishes. We can't make this assumption for arbitrary yp_first()s
  and yp_next()s however (since we may have requests from several clients
  for different maps all arriving at different times) so those we have
  to handle the old way.

  (This would be much easier if R_CURSOR really worked. Maybe I should
   be using something other than the hash method.)
1995-07-12 16:28:13 +00:00
..
isdn Remove trailing whitespace. 1995-05-30 05:05:38 +00:00
yp_mkdb Remove trailing whitespace. 1995-05-30 05:05:38 +00:00
yppasswdd Remove trailing whitespace. 1995-05-30 05:05:38 +00:00
ypserv ypserv performance improvements: 1995-07-12 16:28:13 +00:00
Makefile New Makefiles for YP server stuff. 1995-01-31 09:14:03 +00:00
Makefile.inc New Makefiles for YP server stuff. 1995-01-31 09:14:03 +00:00