dbb95048da
possible future I-cache coherency operation can succeed. On ARM for example the L1 cache can be (is) virtually mapped, which means that any I/O that uses temporary mappings will not see the I-cache made coherent. On ia64 a similar behaviour has been observed. By flushing the D-cache, execution of binaries backed by md(4) and/or NFS work reliably. For Book-E (powerpc), execution over NFS exhibits SIGILL once in a while as well, though cpu_flush_dcache() hasn't been implemented yet. Doing an explicit D-cache flush as part of the non-DMA based I/O read operation eliminates the need to do it as part of the I-cache coherency operation itself and as such avoids pessimizing the DMA-based I/O read operations for which D-cache are already flushed/invalidated. It also allows future optimizations whereby the bcopy() followed by the D-cache flush can be integrated in a single operation, which could be implemented using on-chips DMA engines, by-passing the D-cache altogether.
3591 lines
92 KiB
C
3591 lines
92 KiB
C
/*-
|
|
* Copyright (c) 1992 Terrence R. Lambert.
|
|
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_apic.h"
|
|
#include "opt_atalk.h"
|
|
#include "opt_compat.h"
|
|
#include "opt_cpu.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_ipx.h"
|
|
#include "opt_isa.h"
|
|
#include "opt_kstack_pages.h"
|
|
#include "opt_maxmem.h"
|
|
#include "opt_msgbuf.h"
|
|
#include "opt_npx.h"
|
|
#include "opt_perfmon.h"
|
|
#include "opt_xbox.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/memrange.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_param.h>
|
|
|
|
#ifdef DDB
|
|
#ifndef KDB
|
|
#error KDB must be enabled in order for DDB to work!
|
|
#endif
|
|
#include <ddb/ddb.h>
|
|
#include <ddb/db_sym.h>
|
|
#endif
|
|
|
|
#include <isa/rtc.h>
|
|
|
|
#include <net/netisr.h>
|
|
|
|
#include <machine/bootinfo.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/cputypes.h>
|
|
#include <machine/intr_machdep.h>
|
|
#include <machine/mca.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/metadata.h>
|
|
#include <machine/pc/bios.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/pcb_ext.h>
|
|
#include <machine/proc.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/sigframe.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/vm86.h>
|
|
#ifdef PERFMON
|
|
#include <machine/perfmon.h>
|
|
#endif
|
|
#ifdef SMP
|
|
#include <machine/smp.h>
|
|
#endif
|
|
|
|
#ifdef DEV_ISA
|
|
#include <i386/isa/icu.h>
|
|
#endif
|
|
|
|
#ifdef XBOX
|
|
#include <machine/xbox.h>
|
|
|
|
int arch_i386_is_xbox = 0;
|
|
uint32_t arch_i386_xbox_memsize = 0;
|
|
#endif
|
|
|
|
#ifdef XEN
|
|
/* XEN includes */
|
|
#include <machine/xen/xen-os.h>
|
|
#include <xen/hypervisor.h>
|
|
#include <machine/xen/xen-os.h>
|
|
#include <machine/xen/xenvar.h>
|
|
#include <machine/xen/xenfunc.h>
|
|
#include <xen/xen_intr.h>
|
|
|
|
void Xhypervisor_callback(void);
|
|
void failsafe_callback(void);
|
|
|
|
extern trap_info_t trap_table[];
|
|
struct proc_ldt default_proc_ldt;
|
|
extern int init_first;
|
|
int running_xen = 1;
|
|
extern unsigned long physfree;
|
|
#endif /* XEN */
|
|
|
|
/* Sanity check for __curthread() */
|
|
CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
|
|
|
|
extern void init386(int first);
|
|
extern void dblfault_handler(void);
|
|
|
|
extern void printcpuinfo(void); /* XXX header file */
|
|
extern void finishidentcpu(void);
|
|
extern void panicifcpuunsupported(void);
|
|
extern void initializecpu(void);
|
|
|
|
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
|
|
#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
|
|
|
|
#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
|
|
#define CPU_ENABLE_SSE
|
|
#endif
|
|
|
|
static void cpu_startup(void *);
|
|
static void fpstate_drop(struct thread *td);
|
|
static void get_fpcontext(struct thread *td, mcontext_t *mcp);
|
|
static int set_fpcontext(struct thread *td, const mcontext_t *mcp);
|
|
#ifdef CPU_ENABLE_SSE
|
|
static void set_fpregs_xmm(struct save87 *, struct savexmm *);
|
|
static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
|
|
#endif /* CPU_ENABLE_SSE */
|
|
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
|
|
|
|
#ifdef DDB
|
|
extern vm_offset_t ksym_start, ksym_end;
|
|
#endif
|
|
|
|
/* Intel ICH registers */
|
|
#define ICH_PMBASE 0x400
|
|
#define ICH_SMI_EN ICH_PMBASE + 0x30
|
|
|
|
int _udatasel, _ucodesel;
|
|
u_int basemem;
|
|
|
|
int cold = 1;
|
|
|
|
#ifdef COMPAT_43
|
|
static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
|
|
#endif
|
|
#ifdef COMPAT_FREEBSD4
|
|
static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
|
|
#endif
|
|
|
|
long Maxmem = 0;
|
|
long realmem = 0;
|
|
|
|
#ifdef PAE
|
|
FEATURE(pae, "Physical Address Extensions");
|
|
#endif
|
|
|
|
/*
|
|
* The number of PHYSMAP entries must be one less than the number of
|
|
* PHYSSEG entries because the PHYSMAP entry that spans the largest
|
|
* physical address that is accessible by ISA DMA is split into two
|
|
* PHYSSEG entries.
|
|
*/
|
|
#define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
|
|
|
|
vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
|
|
vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
|
|
|
|
/* must be 2 less so 0 0 can signal end of chunks */
|
|
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
|
|
#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
|
|
|
|
struct kva_md_info kmi;
|
|
|
|
static struct trapframe proc0_tf;
|
|
struct pcpu __pcpu[MAXCPU];
|
|
|
|
struct mtx icu_lock;
|
|
|
|
struct mem_range_softc mem_range_softc;
|
|
|
|
static void
|
|
cpu_startup(dummy)
|
|
void *dummy;
|
|
{
|
|
uintmax_t memsize;
|
|
char *sysenv;
|
|
|
|
/*
|
|
* On MacBooks, we need to disallow the legacy USB circuit to
|
|
* generate an SMI# because this can cause several problems,
|
|
* namely: incorrect CPU frequency detection and failure to
|
|
* start the APs.
|
|
* We do this by disabling a bit in the SMI_EN (SMI Control and
|
|
* Enable register) of the Intel ICH LPC Interface Bridge.
|
|
*/
|
|
sysenv = getenv("smbios.system.product");
|
|
if (sysenv != NULL) {
|
|
if (strncmp(sysenv, "MacBook", 7) == 0) {
|
|
if (bootverbose)
|
|
printf("Disabling LEGACY_USB_EN bit on "
|
|
"Intel ICH.\n");
|
|
outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
|
|
}
|
|
freeenv(sysenv);
|
|
}
|
|
|
|
/*
|
|
* Good {morning,afternoon,evening,night}.
|
|
*/
|
|
startrtclock();
|
|
printcpuinfo();
|
|
panicifcpuunsupported();
|
|
#ifdef PERFMON
|
|
perfmon_init();
|
|
#endif
|
|
sysenv = getenv("smbios.memory.enabled");
|
|
if (sysenv != NULL) {
|
|
memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10);
|
|
freeenv(sysenv);
|
|
} else
|
|
memsize = 0;
|
|
if (memsize > 0)
|
|
printf("real memory = %ju (%ju MB)\n", memsize << 10,
|
|
memsize >> 10);
|
|
else
|
|
printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
|
|
ptoa((uintmax_t)Maxmem) / 1048576);
|
|
realmem = Maxmem;
|
|
/*
|
|
* Display any holes after the first chunk of extended memory.
|
|
*/
|
|
if (bootverbose) {
|
|
int indx;
|
|
|
|
printf("Physical memory chunk(s):\n");
|
|
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
|
|
vm_paddr_t size;
|
|
|
|
size = phys_avail[indx + 1] - phys_avail[indx];
|
|
printf(
|
|
"0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
|
|
(uintmax_t)phys_avail[indx],
|
|
(uintmax_t)phys_avail[indx + 1] - 1,
|
|
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
vm_ksubmap_init(&kmi);
|
|
|
|
printf("avail memory = %ju (%ju MB)\n",
|
|
ptoa((uintmax_t)cnt.v_free_count),
|
|
ptoa((uintmax_t)cnt.v_free_count) / 1048576);
|
|
|
|
/*
|
|
* Set up buffers, so they can be used to read disk labels.
|
|
*/
|
|
bufinit();
|
|
vm_pager_bufferinit();
|
|
#ifndef XEN
|
|
cpu_setregs();
|
|
#endif
|
|
mca_init();
|
|
}
|
|
|
|
/*
|
|
* Send an interrupt to process.
|
|
*
|
|
* Stack is set up to allow sigcode stored
|
|
* at top to call routine, followed by kcall
|
|
* to sigreturn routine below. After sigreturn
|
|
* resets the signal mask, the stack, and the
|
|
* frame pointer, it returns to the user
|
|
* specified pc, psl.
|
|
*/
|
|
#ifdef COMPAT_43
|
|
static void
|
|
osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
|
|
{
|
|
struct osigframe sf, *fp;
|
|
struct proc *p;
|
|
struct thread *td;
|
|
struct sigacts *psp;
|
|
struct trapframe *regs;
|
|
int sig;
|
|
int oonstack;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
sig = ksi->ksi_signo;
|
|
psp = p->p_sigacts;
|
|
mtx_assert(&psp->ps_mtx, MA_OWNED);
|
|
regs = td->td_frame;
|
|
oonstack = sigonstack(regs->tf_esp);
|
|
|
|
/* Allocate space for the signal handler context. */
|
|
if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
|
|
SIGISMEMBER(psp->ps_sigonstack, sig)) {
|
|
fp = (struct osigframe *)(td->td_sigstk.ss_sp +
|
|
td->td_sigstk.ss_size - sizeof(struct osigframe));
|
|
#if defined(COMPAT_43)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
#endif
|
|
} else
|
|
fp = (struct osigframe *)regs->tf_esp - 1;
|
|
|
|
/* Translate the signal if appropriate. */
|
|
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
|
|
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
|
|
|
|
/* Build the argument list for the signal handler. */
|
|
sf.sf_signum = sig;
|
|
sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
|
|
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
|
|
/* Signal handler installed with SA_SIGINFO. */
|
|
sf.sf_arg2 = (register_t)&fp->sf_siginfo;
|
|
sf.sf_siginfo.si_signo = sig;
|
|
sf.sf_siginfo.si_code = ksi->ksi_code;
|
|
sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
|
|
} else {
|
|
/* Old FreeBSD-style arguments. */
|
|
sf.sf_arg2 = ksi->ksi_code;
|
|
sf.sf_addr = (register_t)ksi->ksi_addr;
|
|
sf.sf_ahu.sf_handler = catcher;
|
|
}
|
|
mtx_unlock(&psp->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
|
|
/* Save most if not all of trap frame. */
|
|
sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
|
|
sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
|
|
sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
|
|
sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
|
|
sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
|
|
sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
|
|
sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
|
|
sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
|
|
sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
|
|
sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
|
|
sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
|
|
sf.sf_siginfo.si_sc.sc_gs = rgs();
|
|
sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
|
|
|
|
/* Build the signal context to be used by osigreturn(). */
|
|
sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
|
|
SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
|
|
sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
|
|
sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
|
|
sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
|
|
sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
|
|
sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
|
|
sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
|
|
|
|
/*
|
|
* If we're a vm86 process, we want to save the segment registers.
|
|
* We also change eflags to be our emulated eflags, not the actual
|
|
* eflags.
|
|
*/
|
|
if (regs->tf_eflags & PSL_VM) {
|
|
/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
|
|
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
|
|
struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
|
|
|
|
sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
|
|
sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
|
|
sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
|
|
sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
|
|
|
|
if (vm86->vm86_has_vme == 0)
|
|
sf.sf_siginfo.si_sc.sc_ps =
|
|
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
|
|
(vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
|
|
|
|
/* See sendsig() for comments. */
|
|
tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
|
|
}
|
|
|
|
/*
|
|
* Copy the sigframe out to the user's stack.
|
|
*/
|
|
if (copyout(&sf, fp, sizeof(*fp)) != 0) {
|
|
#ifdef DEBUG
|
|
printf("process %ld has trashed its stack\n", (long)p->p_pid);
|
|
#endif
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
}
|
|
|
|
regs->tf_esp = (int)fp;
|
|
regs->tf_eip = PS_STRINGS - szosigcode;
|
|
regs->tf_eflags &= ~(PSL_T | PSL_D);
|
|
regs->tf_cs = _ucodesel;
|
|
regs->tf_ds = _udatasel;
|
|
regs->tf_es = _udatasel;
|
|
regs->tf_fs = _udatasel;
|
|
load_gs(_udatasel);
|
|
regs->tf_ss = _udatasel;
|
|
PROC_LOCK(p);
|
|
mtx_lock(&psp->ps_mtx);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
#ifdef COMPAT_FREEBSD4
|
|
static void
|
|
freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
|
|
{
|
|
struct sigframe4 sf, *sfp;
|
|
struct proc *p;
|
|
struct thread *td;
|
|
struct sigacts *psp;
|
|
struct trapframe *regs;
|
|
int sig;
|
|
int oonstack;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
sig = ksi->ksi_signo;
|
|
psp = p->p_sigacts;
|
|
mtx_assert(&psp->ps_mtx, MA_OWNED);
|
|
regs = td->td_frame;
|
|
oonstack = sigonstack(regs->tf_esp);
|
|
|
|
/* Save user context. */
|
|
bzero(&sf, sizeof(sf));
|
|
sf.sf_uc.uc_sigmask = *mask;
|
|
sf.sf_uc.uc_stack = td->td_sigstk;
|
|
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
|
|
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
|
|
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
|
|
sf.sf_uc.uc_mcontext.mc_gs = rgs();
|
|
bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
|
|
|
|
/* Allocate space for the signal handler context. */
|
|
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
|
|
SIGISMEMBER(psp->ps_sigonstack, sig)) {
|
|
sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
|
|
td->td_sigstk.ss_size - sizeof(struct sigframe4));
|
|
#if defined(COMPAT_43)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
#endif
|
|
} else
|
|
sfp = (struct sigframe4 *)regs->tf_esp - 1;
|
|
|
|
/* Translate the signal if appropriate. */
|
|
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
|
|
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
|
|
|
|
/* Build the argument list for the signal handler. */
|
|
sf.sf_signum = sig;
|
|
sf.sf_ucontext = (register_t)&sfp->sf_uc;
|
|
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
|
|
/* Signal handler installed with SA_SIGINFO. */
|
|
sf.sf_siginfo = (register_t)&sfp->sf_si;
|
|
sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
|
|
|
|
/* Fill in POSIX parts */
|
|
sf.sf_si.si_signo = sig;
|
|
sf.sf_si.si_code = ksi->ksi_code;
|
|
sf.sf_si.si_addr = ksi->ksi_addr;
|
|
} else {
|
|
/* Old FreeBSD-style arguments. */
|
|
sf.sf_siginfo = ksi->ksi_code;
|
|
sf.sf_addr = (register_t)ksi->ksi_addr;
|
|
sf.sf_ahu.sf_handler = catcher;
|
|
}
|
|
mtx_unlock(&psp->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* If we're a vm86 process, we want to save the segment registers.
|
|
* We also change eflags to be our emulated eflags, not the actual
|
|
* eflags.
|
|
*/
|
|
if (regs->tf_eflags & PSL_VM) {
|
|
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
|
|
struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
|
|
|
|
sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
|
|
sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
|
|
sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
|
|
sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
|
|
|
|
if (vm86->vm86_has_vme == 0)
|
|
sf.sf_uc.uc_mcontext.mc_eflags =
|
|
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
|
|
(vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
|
|
|
|
/*
|
|
* Clear PSL_NT to inhibit T_TSSFLT faults on return from
|
|
* syscalls made by the signal handler. This just avoids
|
|
* wasting time for our lazy fixup of such faults. PSL_NT
|
|
* does nothing in vm86 mode, but vm86 programs can set it
|
|
* almost legitimately in probes for old cpu types.
|
|
*/
|
|
tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
|
|
}
|
|
|
|
/*
|
|
* Copy the sigframe out to the user's stack.
|
|
*/
|
|
if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
|
|
#ifdef DEBUG
|
|
printf("process %ld has trashed its stack\n", (long)p->p_pid);
|
|
#endif
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
}
|
|
|
|
regs->tf_esp = (int)sfp;
|
|
regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
|
|
regs->tf_eflags &= ~(PSL_T | PSL_D);
|
|
regs->tf_cs = _ucodesel;
|
|
regs->tf_ds = _udatasel;
|
|
regs->tf_es = _udatasel;
|
|
regs->tf_fs = _udatasel;
|
|
regs->tf_ss = _udatasel;
|
|
PROC_LOCK(p);
|
|
mtx_lock(&psp->ps_mtx);
|
|
}
|
|
#endif /* COMPAT_FREEBSD4 */
|
|
|
|
void
|
|
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
|
|
{
|
|
struct sigframe sf, *sfp;
|
|
struct proc *p;
|
|
struct thread *td;
|
|
struct sigacts *psp;
|
|
char *sp;
|
|
struct trapframe *regs;
|
|
struct segment_descriptor *sdp;
|
|
int sig;
|
|
int oonstack;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
sig = ksi->ksi_signo;
|
|
psp = p->p_sigacts;
|
|
mtx_assert(&psp->ps_mtx, MA_OWNED);
|
|
#ifdef COMPAT_FREEBSD4
|
|
if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
|
|
freebsd4_sendsig(catcher, ksi, mask);
|
|
return;
|
|
}
|
|
#endif
|
|
#ifdef COMPAT_43
|
|
if (SIGISMEMBER(psp->ps_osigset, sig)) {
|
|
osendsig(catcher, ksi, mask);
|
|
return;
|
|
}
|
|
#endif
|
|
regs = td->td_frame;
|
|
oonstack = sigonstack(regs->tf_esp);
|
|
|
|
/* Save user context. */
|
|
bzero(&sf, sizeof(sf));
|
|
sf.sf_uc.uc_sigmask = *mask;
|
|
sf.sf_uc.uc_stack = td->td_sigstk;
|
|
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
|
|
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
|
|
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
|
|
sf.sf_uc.uc_mcontext.mc_gs = rgs();
|
|
bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
|
|
sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
|
|
get_fpcontext(td, &sf.sf_uc.uc_mcontext);
|
|
fpstate_drop(td);
|
|
/*
|
|
* Unconditionally fill the fsbase and gsbase into the mcontext.
|
|
*/
|
|
sdp = &td->td_pcb->pcb_gsd;
|
|
sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
|
|
sdp->sd_lobase;
|
|
sdp = &td->td_pcb->pcb_fsd;
|
|
sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
|
|
sdp->sd_lobase;
|
|
|
|
/* Allocate space for the signal handler context. */
|
|
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
|
|
SIGISMEMBER(psp->ps_sigonstack, sig)) {
|
|
sp = td->td_sigstk.ss_sp +
|
|
td->td_sigstk.ss_size - sizeof(struct sigframe);
|
|
#if defined(COMPAT_43)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
#endif
|
|
} else
|
|
sp = (char *)regs->tf_esp - sizeof(struct sigframe);
|
|
/* Align to 16 bytes. */
|
|
sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
|
|
|
|
/* Translate the signal if appropriate. */
|
|
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
|
|
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
|
|
|
|
/* Build the argument list for the signal handler. */
|
|
sf.sf_signum = sig;
|
|
sf.sf_ucontext = (register_t)&sfp->sf_uc;
|
|
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
|
|
/* Signal handler installed with SA_SIGINFO. */
|
|
sf.sf_siginfo = (register_t)&sfp->sf_si;
|
|
sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
|
|
|
|
/* Fill in POSIX parts */
|
|
sf.sf_si = ksi->ksi_info;
|
|
sf.sf_si.si_signo = sig; /* maybe a translated signal */
|
|
} else {
|
|
/* Old FreeBSD-style arguments. */
|
|
sf.sf_siginfo = ksi->ksi_code;
|
|
sf.sf_addr = (register_t)ksi->ksi_addr;
|
|
sf.sf_ahu.sf_handler = catcher;
|
|
}
|
|
mtx_unlock(&psp->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* If we're a vm86 process, we want to save the segment registers.
|
|
* We also change eflags to be our emulated eflags, not the actual
|
|
* eflags.
|
|
*/
|
|
if (regs->tf_eflags & PSL_VM) {
|
|
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
|
|
struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
|
|
|
|
sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
|
|
sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
|
|
sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
|
|
sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
|
|
|
|
if (vm86->vm86_has_vme == 0)
|
|
sf.sf_uc.uc_mcontext.mc_eflags =
|
|
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
|
|
(vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
|
|
|
|
/*
|
|
* Clear PSL_NT to inhibit T_TSSFLT faults on return from
|
|
* syscalls made by the signal handler. This just avoids
|
|
* wasting time for our lazy fixup of such faults. PSL_NT
|
|
* does nothing in vm86 mode, but vm86 programs can set it
|
|
* almost legitimately in probes for old cpu types.
|
|
*/
|
|
tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
|
|
}
|
|
|
|
/*
|
|
* Copy the sigframe out to the user's stack.
|
|
*/
|
|
if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
|
|
#ifdef DEBUG
|
|
printf("process %ld has trashed its stack\n", (long)p->p_pid);
|
|
#endif
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
}
|
|
|
|
regs->tf_esp = (int)sfp;
|
|
regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
|
|
regs->tf_eflags &= ~(PSL_T | PSL_D);
|
|
regs->tf_cs = _ucodesel;
|
|
regs->tf_ds = _udatasel;
|
|
regs->tf_es = _udatasel;
|
|
regs->tf_fs = _udatasel;
|
|
regs->tf_ss = _udatasel;
|
|
PROC_LOCK(p);
|
|
mtx_lock(&psp->ps_mtx);
|
|
}
|
|
|
|
/*
|
|
* System call to cleanup state after a signal
|
|
* has been taken. Reset signal mask and
|
|
* stack state from context left by sendsig (above).
|
|
* Return to previous pc and psl as specified by
|
|
* context left by sendsig. Check carefully to
|
|
* make sure that the user has not modified the
|
|
* state to gain improper privileges.
|
|
*
|
|
* MPSAFE
|
|
*/
|
|
#ifdef COMPAT_43
|
|
int
|
|
osigreturn(td, uap)
|
|
struct thread *td;
|
|
struct osigreturn_args /* {
|
|
struct osigcontext *sigcntxp;
|
|
} */ *uap;
|
|
{
|
|
struct osigcontext sc;
|
|
struct trapframe *regs;
|
|
struct osigcontext *scp;
|
|
struct proc *p = td->td_proc;
|
|
int eflags, error;
|
|
ksiginfo_t ksi;
|
|
|
|
regs = td->td_frame;
|
|
error = copyin(uap->sigcntxp, &sc, sizeof(sc));
|
|
if (error != 0)
|
|
return (error);
|
|
scp = ≻
|
|
eflags = scp->sc_ps;
|
|
if (eflags & PSL_VM) {
|
|
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
|
|
struct vm86_kernel *vm86;
|
|
|
|
/*
|
|
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
|
|
* set up the vm86 area, and we can't enter vm86 mode.
|
|
*/
|
|
if (td->td_pcb->pcb_ext == 0)
|
|
return (EINVAL);
|
|
vm86 = &td->td_pcb->pcb_ext->ext_vm86;
|
|
if (vm86->vm86_inited == 0)
|
|
return (EINVAL);
|
|
|
|
/* Go back to user mode if both flags are set. */
|
|
if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGBUS;
|
|
ksi.ksi_code = BUS_OBJERR;
|
|
ksi.ksi_addr = (void *)regs->tf_eip;
|
|
trapsignal(td, &ksi);
|
|
}
|
|
|
|
if (vm86->vm86_has_vme) {
|
|
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
|
|
(eflags & VME_USERCHANGE) | PSL_VM;
|
|
} else {
|
|
vm86->vm86_eflags = eflags; /* save VIF, VIP */
|
|
eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
|
|
(eflags & VM_USERCHANGE) | PSL_VM;
|
|
}
|
|
tf->tf_vm86_ds = scp->sc_ds;
|
|
tf->tf_vm86_es = scp->sc_es;
|
|
tf->tf_vm86_fs = scp->sc_fs;
|
|
tf->tf_vm86_gs = scp->sc_gs;
|
|
tf->tf_ds = _udatasel;
|
|
tf->tf_es = _udatasel;
|
|
tf->tf_fs = _udatasel;
|
|
} else {
|
|
/*
|
|
* Don't allow users to change privileged or reserved flags.
|
|
*/
|
|
/*
|
|
* XXX do allow users to change the privileged flag PSL_RF.
|
|
* The cpu sets PSL_RF in tf_eflags for faults. Debuggers
|
|
* should sometimes set it there too. tf_eflags is kept in
|
|
* the signal context during signal handling and there is no
|
|
* other place to remember it, so the PSL_RF bit may be
|
|
* corrupted by the signal handler without us knowing.
|
|
* Corruption of the PSL_RF bit at worst causes one more or
|
|
* one less debugger trap, so allowing it is fairly harmless.
|
|
*/
|
|
if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Don't allow users to load a valid privileged %cs. Let the
|
|
* hardware check for invalid selectors, excess privilege in
|
|
* other selectors, invalid %eip's and invalid %esp's.
|
|
*/
|
|
if (!CS_SECURE(scp->sc_cs)) {
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGBUS;
|
|
ksi.ksi_code = BUS_OBJERR;
|
|
ksi.ksi_trapno = T_PROTFLT;
|
|
ksi.ksi_addr = (void *)regs->tf_eip;
|
|
trapsignal(td, &ksi);
|
|
return (EINVAL);
|
|
}
|
|
regs->tf_ds = scp->sc_ds;
|
|
regs->tf_es = scp->sc_es;
|
|
regs->tf_fs = scp->sc_fs;
|
|
}
|
|
|
|
/* Restore remaining registers. */
|
|
regs->tf_eax = scp->sc_eax;
|
|
regs->tf_ebx = scp->sc_ebx;
|
|
regs->tf_ecx = scp->sc_ecx;
|
|
regs->tf_edx = scp->sc_edx;
|
|
regs->tf_esi = scp->sc_esi;
|
|
regs->tf_edi = scp->sc_edi;
|
|
regs->tf_cs = scp->sc_cs;
|
|
regs->tf_ss = scp->sc_ss;
|
|
regs->tf_isp = scp->sc_isp;
|
|
regs->tf_ebp = scp->sc_fp;
|
|
regs->tf_esp = scp->sc_sp;
|
|
regs->tf_eip = scp->sc_pc;
|
|
regs->tf_eflags = eflags;
|
|
|
|
PROC_LOCK(p);
|
|
#if defined(COMPAT_43)
|
|
if (scp->sc_onstack & 1)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
#endif
|
|
SIGSETOLD(td->td_sigmask, scp->sc_mask);
|
|
SIG_CANTMASK(td->td_sigmask);
|
|
signotify(td);
|
|
PROC_UNLOCK(p);
|
|
return (EJUSTRETURN);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
#ifdef COMPAT_FREEBSD4
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
int
|
|
freebsd4_sigreturn(td, uap)
|
|
struct thread *td;
|
|
struct freebsd4_sigreturn_args /* {
|
|
const ucontext4 *sigcntxp;
|
|
} */ *uap;
|
|
{
|
|
struct ucontext4 uc;
|
|
struct proc *p = td->td_proc;
|
|
struct trapframe *regs;
|
|
const struct ucontext4 *ucp;
|
|
int cs, eflags, error;
|
|
ksiginfo_t ksi;
|
|
|
|
error = copyin(uap->sigcntxp, &uc, sizeof(uc));
|
|
if (error != 0)
|
|
return (error);
|
|
ucp = &uc;
|
|
regs = td->td_frame;
|
|
eflags = ucp->uc_mcontext.mc_eflags;
|
|
if (eflags & PSL_VM) {
|
|
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
|
|
struct vm86_kernel *vm86;
|
|
|
|
/*
|
|
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
|
|
* set up the vm86 area, and we can't enter vm86 mode.
|
|
*/
|
|
if (td->td_pcb->pcb_ext == 0)
|
|
return (EINVAL);
|
|
vm86 = &td->td_pcb->pcb_ext->ext_vm86;
|
|
if (vm86->vm86_inited == 0)
|
|
return (EINVAL);
|
|
|
|
/* Go back to user mode if both flags are set. */
|
|
if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGBUS;
|
|
ksi.ksi_code = BUS_OBJERR;
|
|
ksi.ksi_addr = (void *)regs->tf_eip;
|
|
trapsignal(td, &ksi);
|
|
}
|
|
if (vm86->vm86_has_vme) {
|
|
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
|
|
(eflags & VME_USERCHANGE) | PSL_VM;
|
|
} else {
|
|
vm86->vm86_eflags = eflags; /* save VIF, VIP */
|
|
eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
|
|
(eflags & VM_USERCHANGE) | PSL_VM;
|
|
}
|
|
bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
|
|
tf->tf_eflags = eflags;
|
|
tf->tf_vm86_ds = tf->tf_ds;
|
|
tf->tf_vm86_es = tf->tf_es;
|
|
tf->tf_vm86_fs = tf->tf_fs;
|
|
tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
|
|
tf->tf_ds = _udatasel;
|
|
tf->tf_es = _udatasel;
|
|
tf->tf_fs = _udatasel;
|
|
} else {
|
|
/*
|
|
* Don't allow users to change privileged or reserved flags.
|
|
*/
|
|
/*
|
|
* XXX do allow users to change the privileged flag PSL_RF.
|
|
* The cpu sets PSL_RF in tf_eflags for faults. Debuggers
|
|
* should sometimes set it there too. tf_eflags is kept in
|
|
* the signal context during signal handling and there is no
|
|
* other place to remember it, so the PSL_RF bit may be
|
|
* corrupted by the signal handler without us knowing.
|
|
* Corruption of the PSL_RF bit at worst causes one more or
|
|
* one less debugger trap, so allowing it is fairly harmless.
|
|
*/
|
|
if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
|
|
printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Don't allow users to load a valid privileged %cs. Let the
|
|
* hardware check for invalid selectors, excess privilege in
|
|
* other selectors, invalid %eip's and invalid %esp's.
|
|
*/
|
|
cs = ucp->uc_mcontext.mc_cs;
|
|
if (!CS_SECURE(cs)) {
|
|
printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGBUS;
|
|
ksi.ksi_code = BUS_OBJERR;
|
|
ksi.ksi_trapno = T_PROTFLT;
|
|
ksi.ksi_addr = (void *)regs->tf_eip;
|
|
trapsignal(td, &ksi);
|
|
return (EINVAL);
|
|
}
|
|
|
|
bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
|
|
}
|
|
|
|
PROC_LOCK(p);
|
|
#if defined(COMPAT_43)
|
|
if (ucp->uc_mcontext.mc_onstack & 1)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
#endif
|
|
|
|
td->td_sigmask = ucp->uc_sigmask;
|
|
SIG_CANTMASK(td->td_sigmask);
|
|
signotify(td);
|
|
PROC_UNLOCK(p);
|
|
return (EJUSTRETURN);
|
|
}
|
|
#endif /* COMPAT_FREEBSD4 */
|
|
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
int
|
|
sigreturn(td, uap)
|
|
struct thread *td;
|
|
struct sigreturn_args /* {
|
|
const struct __ucontext *sigcntxp;
|
|
} */ *uap;
|
|
{
|
|
ucontext_t uc;
|
|
struct proc *p = td->td_proc;
|
|
struct trapframe *regs;
|
|
const ucontext_t *ucp;
|
|
int cs, eflags, error, ret;
|
|
ksiginfo_t ksi;
|
|
|
|
error = copyin(uap->sigcntxp, &uc, sizeof(uc));
|
|
if (error != 0)
|
|
return (error);
|
|
ucp = &uc;
|
|
regs = td->td_frame;
|
|
eflags = ucp->uc_mcontext.mc_eflags;
|
|
if (eflags & PSL_VM) {
|
|
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
|
|
struct vm86_kernel *vm86;
|
|
|
|
/*
|
|
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
|
|
* set up the vm86 area, and we can't enter vm86 mode.
|
|
*/
|
|
if (td->td_pcb->pcb_ext == 0)
|
|
return (EINVAL);
|
|
vm86 = &td->td_pcb->pcb_ext->ext_vm86;
|
|
if (vm86->vm86_inited == 0)
|
|
return (EINVAL);
|
|
|
|
/* Go back to user mode if both flags are set. */
|
|
if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGBUS;
|
|
ksi.ksi_code = BUS_OBJERR;
|
|
ksi.ksi_addr = (void *)regs->tf_eip;
|
|
trapsignal(td, &ksi);
|
|
}
|
|
|
|
if (vm86->vm86_has_vme) {
|
|
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
|
|
(eflags & VME_USERCHANGE) | PSL_VM;
|
|
} else {
|
|
vm86->vm86_eflags = eflags; /* save VIF, VIP */
|
|
eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
|
|
(eflags & VM_USERCHANGE) | PSL_VM;
|
|
}
|
|
bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
|
|
tf->tf_eflags = eflags;
|
|
tf->tf_vm86_ds = tf->tf_ds;
|
|
tf->tf_vm86_es = tf->tf_es;
|
|
tf->tf_vm86_fs = tf->tf_fs;
|
|
tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
|
|
tf->tf_ds = _udatasel;
|
|
tf->tf_es = _udatasel;
|
|
tf->tf_fs = _udatasel;
|
|
} else {
|
|
/*
|
|
* Don't allow users to change privileged or reserved flags.
|
|
*/
|
|
/*
|
|
* XXX do allow users to change the privileged flag PSL_RF.
|
|
* The cpu sets PSL_RF in tf_eflags for faults. Debuggers
|
|
* should sometimes set it there too. tf_eflags is kept in
|
|
* the signal context during signal handling and there is no
|
|
* other place to remember it, so the PSL_RF bit may be
|
|
* corrupted by the signal handler without us knowing.
|
|
* Corruption of the PSL_RF bit at worst causes one more or
|
|
* one less debugger trap, so allowing it is fairly harmless.
|
|
*/
|
|
if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
|
|
printf("sigreturn: eflags = 0x%x\n", eflags);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Don't allow users to load a valid privileged %cs. Let the
|
|
* hardware check for invalid selectors, excess privilege in
|
|
* other selectors, invalid %eip's and invalid %esp's.
|
|
*/
|
|
cs = ucp->uc_mcontext.mc_cs;
|
|
if (!CS_SECURE(cs)) {
|
|
printf("sigreturn: cs = 0x%x\n", cs);
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGBUS;
|
|
ksi.ksi_code = BUS_OBJERR;
|
|
ksi.ksi_trapno = T_PROTFLT;
|
|
ksi.ksi_addr = (void *)regs->tf_eip;
|
|
trapsignal(td, &ksi);
|
|
return (EINVAL);
|
|
}
|
|
|
|
ret = set_fpcontext(td, &ucp->uc_mcontext);
|
|
if (ret != 0)
|
|
return (ret);
|
|
bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
|
|
}
|
|
|
|
PROC_LOCK(p);
|
|
#if defined(COMPAT_43)
|
|
if (ucp->uc_mcontext.mc_onstack & 1)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
#endif
|
|
|
|
td->td_sigmask = ucp->uc_sigmask;
|
|
SIG_CANTMASK(td->td_sigmask);
|
|
signotify(td);
|
|
PROC_UNLOCK(p);
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* Machine dependent boot() routine
|
|
*
|
|
* I haven't seen anything to put here yet
|
|
* Possibly some stuff might be grafted back here from boot()
|
|
*/
|
|
void
|
|
cpu_boot(int howto)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Flush the D-cache for non-DMA I/O so that the I-cache can
|
|
* be made coherent later.
|
|
*/
|
|
void
|
|
cpu_flush_dcache(void *ptr, size_t len)
|
|
{
|
|
/* Not applicable */
|
|
}
|
|
|
|
/* Get current clock frequency for the given cpu id. */
|
|
int
|
|
cpu_est_clockrate(int cpu_id, uint64_t *rate)
|
|
{
|
|
register_t reg;
|
|
uint64_t tsc1, tsc2;
|
|
|
|
if (pcpu_find(cpu_id) == NULL || rate == NULL)
|
|
return (EINVAL);
|
|
if (!tsc_present)
|
|
return (EOPNOTSUPP);
|
|
|
|
/* If we're booting, trust the rate calibrated moments ago. */
|
|
if (cold) {
|
|
*rate = tsc_freq;
|
|
return (0);
|
|
}
|
|
|
|
#ifdef SMP
|
|
/* Schedule ourselves on the indicated cpu. */
|
|
thread_lock(curthread);
|
|
sched_bind(curthread, cpu_id);
|
|
thread_unlock(curthread);
|
|
#endif
|
|
|
|
/* Calibrate by measuring a short delay. */
|
|
reg = intr_disable();
|
|
tsc1 = rdtsc();
|
|
DELAY(1000);
|
|
tsc2 = rdtsc();
|
|
intr_restore(reg);
|
|
|
|
#ifdef SMP
|
|
thread_lock(curthread);
|
|
sched_unbind(curthread);
|
|
thread_unlock(curthread);
|
|
#endif
|
|
|
|
/*
|
|
* Calculate the difference in readings, convert to Mhz, and
|
|
* subtract 0.5% of the total. Empirical testing has shown that
|
|
* overhead in DELAY() works out to approximately this value.
|
|
*/
|
|
tsc2 -= tsc1;
|
|
*rate = tsc2 * 1000 - tsc2 * 5;
|
|
return (0);
|
|
}
|
|
|
|
|
|
void (*cpu_idle_hook)(void) = NULL; /* ACPI idle hook. */
|
|
|
|
#ifdef XEN
|
|
|
|
void
|
|
cpu_halt(void)
|
|
{
|
|
HYPERVISOR_shutdown(SHUTDOWN_poweroff);
|
|
}
|
|
|
|
int scheduler_running;
|
|
|
|
static void
|
|
cpu_idle_hlt(int busy)
|
|
{
|
|
|
|
scheduler_running = 1;
|
|
enable_intr();
|
|
idle_block();
|
|
}
|
|
|
|
#else
|
|
/*
|
|
* Shutdown the CPU as much as possible
|
|
*/
|
|
void
|
|
cpu_halt(void)
|
|
{
|
|
for (;;)
|
|
__asm__ ("hlt");
|
|
}
|
|
|
|
static void
|
|
cpu_idle_hlt(int busy)
|
|
{
|
|
/*
|
|
* we must absolutely guarentee that hlt is the next instruction
|
|
* after sti or we introduce a timing window.
|
|
*/
|
|
disable_intr();
|
|
if (sched_runnable())
|
|
enable_intr();
|
|
else
|
|
__asm __volatile("sti; hlt");
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
cpu_idle_acpi(int busy)
|
|
{
|
|
disable_intr();
|
|
if (sched_runnable())
|
|
enable_intr();
|
|
else if (cpu_idle_hook)
|
|
cpu_idle_hook();
|
|
else
|
|
__asm __volatile("sti; hlt");
|
|
}
|
|
|
|
static void
|
|
cpu_idle_spin(int busy)
|
|
{
|
|
return;
|
|
}
|
|
|
|
#ifdef XEN
|
|
void (*cpu_idle_fn)(int) = cpu_idle_hlt;
|
|
#else
|
|
void (*cpu_idle_fn)(int) = cpu_idle_acpi;
|
|
#endif
|
|
|
|
void
|
|
cpu_idle(int busy)
|
|
{
|
|
#if defined(SMP) && !defined(XEN)
|
|
if (mp_grab_cpu_hlt())
|
|
return;
|
|
#endif
|
|
cpu_idle_fn(busy);
|
|
}
|
|
|
|
/*
|
|
* mwait cpu power states. Lower 4 bits are sub-states.
|
|
*/
|
|
#define MWAIT_C0 0xf0
|
|
#define MWAIT_C1 0x00
|
|
#define MWAIT_C2 0x10
|
|
#define MWAIT_C3 0x20
|
|
#define MWAIT_C4 0x30
|
|
|
|
#define MWAIT_DISABLED 0x0
|
|
#define MWAIT_WOKEN 0x1
|
|
#define MWAIT_WAITING 0x2
|
|
|
|
static void
|
|
cpu_idle_mwait(int busy)
|
|
{
|
|
int *mwait;
|
|
|
|
mwait = (int *)PCPU_PTR(monitorbuf);
|
|
*mwait = MWAIT_WAITING;
|
|
if (sched_runnable())
|
|
return;
|
|
cpu_monitor(mwait, 0, 0);
|
|
if (*mwait == MWAIT_WAITING)
|
|
cpu_mwait(0, MWAIT_C1);
|
|
}
|
|
|
|
static void
|
|
cpu_idle_mwait_hlt(int busy)
|
|
{
|
|
int *mwait;
|
|
|
|
mwait = (int *)PCPU_PTR(monitorbuf);
|
|
if (busy == 0) {
|
|
*mwait = MWAIT_DISABLED;
|
|
cpu_idle_hlt(busy);
|
|
return;
|
|
}
|
|
*mwait = MWAIT_WAITING;
|
|
if (sched_runnable())
|
|
return;
|
|
cpu_monitor(mwait, 0, 0);
|
|
if (*mwait == MWAIT_WAITING)
|
|
cpu_mwait(0, MWAIT_C1);
|
|
}
|
|
|
|
int
|
|
cpu_idle_wakeup(int cpu)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int *mwait;
|
|
|
|
if (cpu_idle_fn == cpu_idle_spin)
|
|
return (1);
|
|
if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
|
|
return (0);
|
|
pcpu = pcpu_find(cpu);
|
|
mwait = (int *)pcpu->pc_monitorbuf;
|
|
/*
|
|
* This doesn't need to be atomic since missing the race will
|
|
* simply result in unnecessary IPIs.
|
|
*/
|
|
if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
|
|
return (0);
|
|
*mwait = MWAIT_WOKEN;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Ordered by speed/power consumption.
|
|
*/
|
|
struct {
|
|
void *id_fn;
|
|
char *id_name;
|
|
} idle_tbl[] = {
|
|
{ cpu_idle_spin, "spin" },
|
|
{ cpu_idle_mwait, "mwait" },
|
|
{ cpu_idle_mwait_hlt, "mwait_hlt" },
|
|
{ cpu_idle_hlt, "hlt" },
|
|
{ cpu_idle_acpi, "acpi" },
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
static int
|
|
idle_sysctl_available(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char *avail, *p;
|
|
int error;
|
|
int i;
|
|
|
|
avail = malloc(256, M_TEMP, M_WAITOK);
|
|
p = avail;
|
|
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
|
|
if (strstr(idle_tbl[i].id_name, "mwait") &&
|
|
(cpu_feature2 & CPUID2_MON) == 0)
|
|
continue;
|
|
p += sprintf(p, "%s, ", idle_tbl[i].id_name);
|
|
}
|
|
error = sysctl_handle_string(oidp, avail, 0, req);
|
|
free(avail, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
idle_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[16];
|
|
int error;
|
|
char *p;
|
|
int i;
|
|
|
|
p = "unknown";
|
|
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
|
|
if (idle_tbl[i].id_fn == cpu_idle_fn) {
|
|
p = idle_tbl[i].id_name;
|
|
break;
|
|
}
|
|
}
|
|
strncpy(buf, p, sizeof(buf));
|
|
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
|
|
if (strstr(idle_tbl[i].id_name, "mwait") &&
|
|
(cpu_feature2 & CPUID2_MON) == 0)
|
|
continue;
|
|
if (strcmp(idle_tbl[i].id_name, buf))
|
|
continue;
|
|
cpu_idle_fn = idle_tbl[i].id_fn;
|
|
return (0);
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
|
|
0, 0, idle_sysctl_available, "A", "list of available idle functions");
|
|
|
|
SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
|
|
idle_sysctl, "A", "currently selected idle function");
|
|
|
|
/*
|
|
* Reset registers to default values on exec.
|
|
*/
|
|
void
|
|
exec_setregs(td, entry, stack, ps_strings)
|
|
struct thread *td;
|
|
u_long entry;
|
|
u_long stack;
|
|
u_long ps_strings;
|
|
{
|
|
struct trapframe *regs = td->td_frame;
|
|
struct pcb *pcb = td->td_pcb;
|
|
|
|
/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
|
|
pcb->pcb_gs = _udatasel;
|
|
load_gs(_udatasel);
|
|
|
|
mtx_lock_spin(&dt_lock);
|
|
if (td->td_proc->p_md.md_ldt)
|
|
user_ldt_free(td);
|
|
else
|
|
mtx_unlock_spin(&dt_lock);
|
|
|
|
bzero((char *)regs, sizeof(struct trapframe));
|
|
regs->tf_eip = entry;
|
|
regs->tf_esp = stack;
|
|
regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
|
|
regs->tf_ss = _udatasel;
|
|
regs->tf_ds = _udatasel;
|
|
regs->tf_es = _udatasel;
|
|
regs->tf_fs = _udatasel;
|
|
regs->tf_cs = _ucodesel;
|
|
|
|
/* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
|
|
regs->tf_ebx = ps_strings;
|
|
|
|
/*
|
|
* Reset the hardware debug registers if they were in use.
|
|
* They won't have any meaning for the newly exec'd process.
|
|
*/
|
|
if (pcb->pcb_flags & PCB_DBREGS) {
|
|
pcb->pcb_dr0 = 0;
|
|
pcb->pcb_dr1 = 0;
|
|
pcb->pcb_dr2 = 0;
|
|
pcb->pcb_dr3 = 0;
|
|
pcb->pcb_dr6 = 0;
|
|
pcb->pcb_dr7 = 0;
|
|
if (pcb == PCPU_GET(curpcb)) {
|
|
/*
|
|
* Clear the debug registers on the running
|
|
* CPU, otherwise they will end up affecting
|
|
* the next process we switch to.
|
|
*/
|
|
reset_dbregs();
|
|
}
|
|
pcb->pcb_flags &= ~PCB_DBREGS;
|
|
}
|
|
|
|
/*
|
|
* Initialize the math emulator (if any) for the current process.
|
|
* Actually, just clear the bit that says that the emulator has
|
|
* been initialized. Initialization is delayed until the process
|
|
* traps to the emulator (if it is done at all) mainly because
|
|
* emulators don't provide an entry point for initialization.
|
|
*/
|
|
td->td_pcb->pcb_flags &= ~FP_SOFTFP;
|
|
pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
|
|
|
|
/*
|
|
* Drop the FP state if we hold it, so that the process gets a
|
|
* clean FP state if it uses the FPU again.
|
|
*/
|
|
fpstate_drop(td);
|
|
|
|
/*
|
|
* XXX - Linux emulator
|
|
* Make sure sure edx is 0x0 on entry. Linux binaries depend
|
|
* on it.
|
|
*/
|
|
td->td_retval[1] = 0;
|
|
}
|
|
|
|
void
|
|
cpu_setregs(void)
|
|
{
|
|
unsigned int cr0;
|
|
|
|
cr0 = rcr0();
|
|
|
|
/*
|
|
* CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
|
|
*
|
|
* Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
|
|
* instructions. We must set the CR0_MP bit and use the CR0_TS
|
|
* bit to control the trap, because setting the CR0_EM bit does
|
|
* not cause WAIT instructions to trap. It's important to trap
|
|
* WAIT instructions - otherwise the "wait" variants of no-wait
|
|
* control instructions would degenerate to the "no-wait" variants
|
|
* after FP context switches but work correctly otherwise. It's
|
|
* particularly important to trap WAITs when there is no NPX -
|
|
* otherwise the "wait" variants would always degenerate.
|
|
*
|
|
* Try setting CR0_NE to get correct error reporting on 486DX's.
|
|
* Setting it should fail or do nothing on lesser processors.
|
|
*/
|
|
cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
|
|
load_cr0(cr0);
|
|
load_gs(_udatasel);
|
|
}
|
|
|
|
u_long bootdev; /* not a struct cdev *- encoding is different */
|
|
SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
|
|
CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
|
|
|
|
/*
|
|
* Initialize 386 and configure to run kernel
|
|
*/
|
|
|
|
/*
|
|
* Initialize segments & interrupt table
|
|
*/
|
|
|
|
int _default_ldt;
|
|
|
|
#ifdef XEN
|
|
union descriptor *gdt;
|
|
union descriptor *ldt;
|
|
#else
|
|
union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
|
|
union descriptor ldt[NLDT]; /* local descriptor table */
|
|
#endif
|
|
static struct gate_descriptor idt0[NIDT];
|
|
struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
|
|
struct region_descriptor r_gdt, r_idt; /* table descriptors */
|
|
struct mtx dt_lock; /* lock for GDT and LDT */
|
|
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
extern int has_f00f_bug;
|
|
#endif
|
|
|
|
static struct i386tss dblfault_tss;
|
|
static char dblfault_stack[PAGE_SIZE];
|
|
|
|
extern vm_offset_t proc0kstack;
|
|
|
|
|
|
/*
|
|
* software prototypes -- in more palatable form.
|
|
*
|
|
* GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
|
|
* GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
|
|
*/
|
|
struct soft_segment_descriptor gdt_segs[] = {
|
|
/* GNULL_SEL 0 Null Descriptor */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0x0,
|
|
.ssd_type = 0,
|
|
.ssd_dpl = SEL_KPL,
|
|
.ssd_p = 0,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* GPRIV_SEL 1 SMP Per-Processor Private Data Descriptor */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = SEL_KPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GUFS_SEL 2 %fs Descriptor for user */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = SEL_UPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GUGS_SEL 3 %gs Descriptor for user */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = SEL_UPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GCODE_SEL 4 Code Descriptor for kernel */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMERA,
|
|
.ssd_dpl = SEL_KPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GDATA_SEL 5 Data Descriptor for kernel */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = SEL_KPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GUCODE_SEL 6 Code Descriptor for user */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMERA,
|
|
.ssd_dpl = SEL_UPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GUDATA_SEL 7 Data Descriptor for user */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = SEL_UPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
|
|
{ .ssd_base = 0x400,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = SEL_KPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
#ifndef XEN
|
|
/* GPROC0_SEL 9 Proc 0 Tss Descriptor */
|
|
{
|
|
.ssd_base = 0x0,
|
|
.ssd_limit = sizeof(struct i386tss)-1,
|
|
.ssd_type = SDT_SYS386TSS,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* GLDT_SEL 10 LDT Descriptor */
|
|
{ .ssd_base = (int) ldt,
|
|
.ssd_limit = sizeof(ldt)-1,
|
|
.ssd_type = SDT_SYSLDT,
|
|
.ssd_dpl = SEL_UPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* GUSERLDT_SEL 11 User LDT Descriptor per process */
|
|
{ .ssd_base = (int) ldt,
|
|
.ssd_limit = (512 * sizeof(union descriptor)-1),
|
|
.ssd_type = SDT_SYSLDT,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* GPANIC_SEL 12 Panic Tss Descriptor */
|
|
{ .ssd_base = (int) &dblfault_tss,
|
|
.ssd_limit = sizeof(struct i386tss)-1,
|
|
.ssd_type = SDT_SYS386TSS,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
|
|
{ .ssd_base = 0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMERA,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 1 },
|
|
/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
|
|
{ .ssd_base = 0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMERA,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 1 },
|
|
/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
|
|
{ .ssd_base = 0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
|
|
{ .ssd_base = 0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 1 },
|
|
/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
|
|
{ .ssd_base = 0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 1 },
|
|
/* GNDIS_SEL 18 NDIS Descriptor */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0x0,
|
|
.ssd_type = 0,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 0,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
#endif /* !XEN */
|
|
};
|
|
|
|
static struct soft_segment_descriptor ldt_segs[] = {
|
|
/* Null Descriptor - overwritten by call gate */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0x0,
|
|
.ssd_type = 0,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 0,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* Null Descriptor - overwritten by call gate */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0x0,
|
|
.ssd_type = 0,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 0,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* Null Descriptor - overwritten by call gate */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0x0,
|
|
.ssd_type = 0,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 0,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* Code Descriptor for user */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMERA,
|
|
.ssd_dpl = SEL_UPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
/* Null Descriptor - overwritten by call gate */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0x0,
|
|
.ssd_type = 0,
|
|
.ssd_dpl = 0,
|
|
.ssd_p = 0,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 0,
|
|
.ssd_gran = 0 },
|
|
/* Data Descriptor for user */
|
|
{ .ssd_base = 0x0,
|
|
.ssd_limit = 0xfffff,
|
|
.ssd_type = SDT_MEMRWA,
|
|
.ssd_dpl = SEL_UPL,
|
|
.ssd_p = 1,
|
|
.ssd_xx = 0, .ssd_xx1 = 0,
|
|
.ssd_def32 = 1,
|
|
.ssd_gran = 1 },
|
|
};
|
|
|
|
void
|
|
setidt(idx, func, typ, dpl, selec)
|
|
int idx;
|
|
inthand_t *func;
|
|
int typ;
|
|
int dpl;
|
|
int selec;
|
|
{
|
|
struct gate_descriptor *ip;
|
|
|
|
ip = idt + idx;
|
|
ip->gd_looffset = (int)func;
|
|
ip->gd_selector = selec;
|
|
ip->gd_stkcpy = 0;
|
|
ip->gd_xx = 0;
|
|
ip->gd_type = typ;
|
|
ip->gd_dpl = dpl;
|
|
ip->gd_p = 1;
|
|
ip->gd_hioffset = ((int)func)>>16 ;
|
|
}
|
|
|
|
extern inthand_t
|
|
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
|
|
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
|
|
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
|
|
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
|
|
IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Display the index and function name of any IDT entries that don't use
|
|
* the default 'rsvd' entry point.
|
|
*/
|
|
DB_SHOW_COMMAND(idt, db_show_idt)
|
|
{
|
|
struct gate_descriptor *ip;
|
|
int idx;
|
|
uintptr_t func;
|
|
|
|
ip = idt;
|
|
for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
|
|
func = (ip->gd_hioffset << 16 | ip->gd_looffset);
|
|
if (func != (uintptr_t)&IDTVEC(rsvd)) {
|
|
db_printf("%3d\t", idx);
|
|
db_printsym(func, DB_STGY_PROC);
|
|
db_printf("\n");
|
|
}
|
|
ip++;
|
|
}
|
|
}
|
|
|
|
/* Show privileged registers. */
|
|
DB_SHOW_COMMAND(sysregs, db_show_sysregs)
|
|
{
|
|
uint64_t idtr, gdtr;
|
|
|
|
idtr = ridt();
|
|
db_printf("idtr\t0x%08x/%04x\n",
|
|
(u_int)(idtr >> 16), (u_int)idtr & 0xffff);
|
|
gdtr = rgdt();
|
|
db_printf("gdtr\t0x%08x/%04x\n",
|
|
(u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
|
|
db_printf("ldtr\t0x%04x\n", rldt());
|
|
db_printf("tr\t0x%04x\n", rtr());
|
|
db_printf("cr0\t0x%08x\n", rcr0());
|
|
db_printf("cr2\t0x%08x\n", rcr2());
|
|
db_printf("cr3\t0x%08x\n", rcr3());
|
|
db_printf("cr4\t0x%08x\n", rcr4());
|
|
}
|
|
#endif
|
|
|
|
void
|
|
sdtossd(sd, ssd)
|
|
struct segment_descriptor *sd;
|
|
struct soft_segment_descriptor *ssd;
|
|
{
|
|
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
|
|
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
|
|
ssd->ssd_type = sd->sd_type;
|
|
ssd->ssd_dpl = sd->sd_dpl;
|
|
ssd->ssd_p = sd->sd_p;
|
|
ssd->ssd_def32 = sd->sd_def32;
|
|
ssd->ssd_gran = sd->sd_gran;
|
|
}
|
|
|
|
static int
|
|
add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
|
|
{
|
|
int i, physmap_idx;
|
|
|
|
physmap_idx = *physmap_idxp;
|
|
|
|
if (boothowto & RB_VERBOSE)
|
|
printf("SMAP type=%02x base=%016llx len=%016llx\n",
|
|
smap->type, smap->base, smap->length);
|
|
|
|
if (smap->type != SMAP_TYPE_MEMORY)
|
|
return (1);
|
|
|
|
if (smap->length == 0)
|
|
return (1);
|
|
|
|
#ifndef PAE
|
|
if (smap->base >= 0xffffffff) {
|
|
printf("%uK of memory above 4GB ignored\n",
|
|
(u_int)(smap->length / 1024));
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i <= physmap_idx; i += 2) {
|
|
if (smap->base < physmap[i + 1]) {
|
|
if (boothowto & RB_VERBOSE)
|
|
printf(
|
|
"Overlapping or non-monotonic memory region, ignoring second region\n");
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
if (smap->base == physmap[physmap_idx + 1]) {
|
|
physmap[physmap_idx + 1] += smap->length;
|
|
return (1);
|
|
}
|
|
|
|
physmap_idx += 2;
|
|
*physmap_idxp = physmap_idx;
|
|
if (physmap_idx == PHYSMAP_SIZE) {
|
|
printf(
|
|
"Too many segments in the physical address map, giving up\n");
|
|
return (0);
|
|
}
|
|
physmap[physmap_idx] = smap->base;
|
|
physmap[physmap_idx + 1] = smap->base + smap->length;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Populate the (physmap) array with base/bound pairs describing the
|
|
* available physical memory in the system, then test this memory and
|
|
* build the phys_avail array describing the actually-available memory.
|
|
*
|
|
* If we cannot accurately determine the physical memory map, then use
|
|
* value from the 0xE801 call, and failing that, the RTC.
|
|
*
|
|
* Total memory size may be set by the kernel environment variable
|
|
* hw.physmem or the compile-time define MAXMEM.
|
|
*
|
|
* XXX first should be vm_paddr_t.
|
|
*/
|
|
static void
|
|
getmemsize(int first)
|
|
{
|
|
int i, off, physmap_idx, pa_indx, da_indx;
|
|
int hasbrokenint12, has_smap;
|
|
u_long physmem_tunable;
|
|
u_int extmem;
|
|
struct vm86frame vmf;
|
|
struct vm86context vmc;
|
|
vm_paddr_t pa, physmap[PHYSMAP_SIZE];
|
|
pt_entry_t *pte;
|
|
struct bios_smap *smap, *smapbase, *smapend;
|
|
u_int32_t smapsize;
|
|
quad_t dcons_addr, dcons_size;
|
|
caddr_t kmdp;
|
|
|
|
has_smap = 0;
|
|
#ifdef XBOX
|
|
if (arch_i386_is_xbox) {
|
|
/*
|
|
* We queried the memory size before, so chop off 4MB for
|
|
* the framebuffer and inform the OS of this.
|
|
*/
|
|
physmap[0] = 0;
|
|
physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
|
|
physmap_idx = 0;
|
|
goto physmap_done;
|
|
}
|
|
#endif
|
|
#if defined(XEN)
|
|
has_smap = 0;
|
|
Maxmem = xen_start_info->nr_pages - init_first;
|
|
physmem = Maxmem;
|
|
basemem = 0;
|
|
physmap[0] = init_first << PAGE_SHIFT;
|
|
physmap[1] = ptoa(Maxmem) - round_page(MSGBUF_SIZE);
|
|
physmap_idx = 0;
|
|
goto physmap_done;
|
|
#endif
|
|
hasbrokenint12 = 0;
|
|
TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
|
|
bzero(&vmf, sizeof(vmf));
|
|
bzero(physmap, sizeof(physmap));
|
|
basemem = 0;
|
|
|
|
/*
|
|
* Some newer BIOSes has broken INT 12H implementation which cause
|
|
* kernel panic immediately. In this case, we need to scan SMAP
|
|
* with INT 15:E820 first, then determine base memory size.
|
|
*/
|
|
if (hasbrokenint12) {
|
|
goto int15e820;
|
|
}
|
|
|
|
/*
|
|
* Perform "base memory" related probes & setup
|
|
*/
|
|
vm86_intcall(0x12, &vmf);
|
|
basemem = vmf.vmf_ax;
|
|
if (basemem > 640) {
|
|
printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
|
|
basemem);
|
|
basemem = 640;
|
|
}
|
|
|
|
/*
|
|
* XXX if biosbasemem is now < 640, there is a `hole'
|
|
* between the end of base memory and the start of
|
|
* ISA memory. The hole may be empty or it may
|
|
* contain BIOS code or data. Map it read/write so
|
|
* that the BIOS can write to it. (Memory from 0 to
|
|
* the physical end of the kernel is mapped read-only
|
|
* to begin with and then parts of it are remapped.
|
|
* The parts that aren't remapped form holes that
|
|
* remain read-only and are unused by the kernel.
|
|
* The base memory area is below the physical end of
|
|
* the kernel and right now forms a read-only hole.
|
|
* The part of it from PAGE_SIZE to
|
|
* (trunc_page(biosbasemem * 1024) - 1) will be
|
|
* remapped and used by the kernel later.)
|
|
*
|
|
* This code is similar to the code used in
|
|
* pmap_mapdev, but since no memory needs to be
|
|
* allocated we simply change the mapping.
|
|
*/
|
|
for (pa = trunc_page(basemem * 1024);
|
|
pa < ISA_HOLE_START; pa += PAGE_SIZE)
|
|
pmap_kenter(KERNBASE + pa, pa);
|
|
|
|
/*
|
|
* Map pages between basemem and ISA_HOLE_START, if any, r/w into
|
|
* the vm86 page table so that vm86 can scribble on them using
|
|
* the vm86 map too. XXX: why 2 ways for this and only 1 way for
|
|
* page 0, at least as initialized here?
|
|
*/
|
|
pte = (pt_entry_t *)vm86paddr;
|
|
for (i = basemem / 4; i < 160; i++)
|
|
pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
|
|
|
|
int15e820:
|
|
/*
|
|
* Fetch the memory map with INT 15:E820. First, check to see
|
|
* if the loader supplied it and use that if so. Otherwise,
|
|
* use vm86 to invoke the BIOS call directly.
|
|
*/
|
|
physmap_idx = 0;
|
|
smapbase = NULL;
|
|
kmdp = preload_search_by_type("elf kernel");
|
|
if (kmdp == NULL)
|
|
kmdp = preload_search_by_type("elf32 kernel");
|
|
if (kmdp != NULL)
|
|
smapbase = (struct bios_smap *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_SMAP);
|
|
if (smapbase != NULL) {
|
|
/* subr_module.c says:
|
|
* "Consumer may safely assume that size value precedes data."
|
|
* ie: an int32_t immediately precedes smap.
|
|
*/
|
|
smapsize = *((u_int32_t *)smapbase - 1);
|
|
smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
|
|
has_smap = 1;
|
|
|
|
for (smap = smapbase; smap < smapend; smap++)
|
|
if (!add_smap_entry(smap, physmap, &physmap_idx))
|
|
break;
|
|
} else {
|
|
/*
|
|
* map page 1 R/W into the kernel page table so we can use it
|
|
* as a buffer. The kernel will unmap this page later.
|
|
*/
|
|
pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
|
|
vmc.npages = 0;
|
|
smap = (void *)vm86_addpage(&vmc, 1, KERNBASE +
|
|
(1 << PAGE_SHIFT));
|
|
vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
|
|
|
|
vmf.vmf_ebx = 0;
|
|
do {
|
|
vmf.vmf_eax = 0xE820;
|
|
vmf.vmf_edx = SMAP_SIG;
|
|
vmf.vmf_ecx = sizeof(struct bios_smap);
|
|
i = vm86_datacall(0x15, &vmf, &vmc);
|
|
if (i || vmf.vmf_eax != SMAP_SIG)
|
|
break;
|
|
has_smap = 1;
|
|
if (!add_smap_entry(smap, physmap, &physmap_idx))
|
|
break;
|
|
} while (vmf.vmf_ebx != 0);
|
|
}
|
|
|
|
/*
|
|
* Perform "base memory" related probes & setup based on SMAP
|
|
*/
|
|
if (basemem == 0) {
|
|
for (i = 0; i <= physmap_idx; i += 2) {
|
|
if (physmap[i] == 0x00000000) {
|
|
basemem = physmap[i + 1] / 1024;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX this function is horribly organized and has to the same
|
|
* things that it does above here.
|
|
*/
|
|
if (basemem == 0)
|
|
basemem = 640;
|
|
if (basemem > 640) {
|
|
printf(
|
|
"Preposterous BIOS basemem of %uK, truncating to 640K\n",
|
|
basemem);
|
|
basemem = 640;
|
|
}
|
|
|
|
/*
|
|
* Let vm86 scribble on pages between basemem and
|
|
* ISA_HOLE_START, as above.
|
|
*/
|
|
for (pa = trunc_page(basemem * 1024);
|
|
pa < ISA_HOLE_START; pa += PAGE_SIZE)
|
|
pmap_kenter(KERNBASE + pa, pa);
|
|
pte = (pt_entry_t *)vm86paddr;
|
|
for (i = basemem / 4; i < 160; i++)
|
|
pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
|
|
}
|
|
|
|
if (physmap[1] != 0)
|
|
goto physmap_done;
|
|
|
|
/*
|
|
* If we failed above, try memory map with INT 15:E801
|
|
*/
|
|
vmf.vmf_ax = 0xE801;
|
|
if (vm86_intcall(0x15, &vmf) == 0) {
|
|
extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
|
|
} else {
|
|
#if 0
|
|
vmf.vmf_ah = 0x88;
|
|
vm86_intcall(0x15, &vmf);
|
|
extmem = vmf.vmf_ax;
|
|
#elif !defined(XEN)
|
|
/*
|
|
* Prefer the RTC value for extended memory.
|
|
*/
|
|
extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Special hack for chipsets that still remap the 384k hole when
|
|
* there's 16MB of memory - this really confuses people that
|
|
* are trying to use bus mastering ISA controllers with the
|
|
* "16MB limit"; they only have 16MB, but the remapping puts
|
|
* them beyond the limit.
|
|
*
|
|
* If extended memory is between 15-16MB (16-17MB phys address range),
|
|
* chop it to 15MB.
|
|
*/
|
|
if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
|
|
extmem = 15 * 1024;
|
|
|
|
physmap[0] = 0;
|
|
physmap[1] = basemem * 1024;
|
|
physmap_idx = 2;
|
|
physmap[physmap_idx] = 0x100000;
|
|
physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
|
|
|
|
physmap_done:
|
|
/*
|
|
* Now, physmap contains a map of physical memory.
|
|
*/
|
|
|
|
#ifdef SMP
|
|
/* make hole for AP bootstrap code */
|
|
physmap[1] = mp_bootaddress(physmap[1]);
|
|
#endif
|
|
|
|
/*
|
|
* Maxmem isn't the "maximum memory", it's one larger than the
|
|
* highest page of the physical address space. It should be
|
|
* called something like "Maxphyspage". We may adjust this
|
|
* based on ``hw.physmem'' and the results of the memory test.
|
|
*/
|
|
Maxmem = atop(physmap[physmap_idx + 1]);
|
|
|
|
#ifdef MAXMEM
|
|
Maxmem = MAXMEM / 4;
|
|
#endif
|
|
|
|
if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
|
|
Maxmem = atop(physmem_tunable);
|
|
|
|
/*
|
|
* If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
|
|
* the amount of memory in the system.
|
|
*/
|
|
if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
|
|
Maxmem = atop(physmap[physmap_idx + 1]);
|
|
|
|
if (atop(physmap[physmap_idx + 1]) != Maxmem &&
|
|
(boothowto & RB_VERBOSE))
|
|
printf("Physical memory use set to %ldK\n", Maxmem * 4);
|
|
|
|
/*
|
|
* If Maxmem has been increased beyond what the system has detected,
|
|
* extend the last memory segment to the new limit.
|
|
*/
|
|
if (atop(physmap[physmap_idx + 1]) < Maxmem)
|
|
physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
|
|
|
|
/* call pmap initialization to make new kernel address space */
|
|
pmap_bootstrap(first);
|
|
|
|
/*
|
|
* Size up each available chunk of physical memory.
|
|
*/
|
|
physmap[0] = PAGE_SIZE; /* mask off page 0 */
|
|
pa_indx = 0;
|
|
da_indx = 1;
|
|
phys_avail[pa_indx++] = physmap[0];
|
|
phys_avail[pa_indx] = physmap[0];
|
|
dump_avail[da_indx] = physmap[0];
|
|
pte = CMAP1;
|
|
|
|
/*
|
|
* Get dcons buffer address
|
|
*/
|
|
if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
|
|
getenv_quad("dcons.size", &dcons_size) == 0)
|
|
dcons_addr = 0;
|
|
|
|
#ifndef XEN
|
|
/*
|
|
* physmap is in bytes, so when converting to page boundaries,
|
|
* round up the start address and round down the end address.
|
|
*/
|
|
for (i = 0; i <= physmap_idx; i += 2) {
|
|
vm_paddr_t end;
|
|
|
|
end = ptoa((vm_paddr_t)Maxmem);
|
|
if (physmap[i + 1] < end)
|
|
end = trunc_page(physmap[i + 1]);
|
|
for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
|
|
int tmp, page_bad, full;
|
|
int *ptr = (int *)CADDR1;
|
|
|
|
full = FALSE;
|
|
/*
|
|
* block out kernel memory as not available.
|
|
*/
|
|
if (pa >= KERNLOAD && pa < first)
|
|
goto do_dump_avail;
|
|
|
|
/*
|
|
* block out dcons buffer
|
|
*/
|
|
if (dcons_addr > 0
|
|
&& pa >= trunc_page(dcons_addr)
|
|
&& pa < dcons_addr + dcons_size)
|
|
goto do_dump_avail;
|
|
|
|
page_bad = FALSE;
|
|
|
|
/*
|
|
* map page into kernel: valid, read/write,non-cacheable
|
|
*/
|
|
*pte = pa | PG_V | PG_RW | PG_N;
|
|
invltlb();
|
|
|
|
tmp = *(int *)ptr;
|
|
/*
|
|
* Test for alternating 1's and 0's
|
|
*/
|
|
*(volatile int *)ptr = 0xaaaaaaaa;
|
|
if (*(volatile int *)ptr != 0xaaaaaaaa)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Test for alternating 0's and 1's
|
|
*/
|
|
*(volatile int *)ptr = 0x55555555;
|
|
if (*(volatile int *)ptr != 0x55555555)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Test for all 1's
|
|
*/
|
|
*(volatile int *)ptr = 0xffffffff;
|
|
if (*(volatile int *)ptr != 0xffffffff)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Test for all 0's
|
|
*/
|
|
*(volatile int *)ptr = 0x0;
|
|
if (*(volatile int *)ptr != 0x0)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Restore original value.
|
|
*/
|
|
*(int *)ptr = tmp;
|
|
|
|
/*
|
|
* Adjust array of valid/good pages.
|
|
*/
|
|
if (page_bad == TRUE)
|
|
continue;
|
|
/*
|
|
* If this good page is a continuation of the
|
|
* previous set of good pages, then just increase
|
|
* the end pointer. Otherwise start a new chunk.
|
|
* Note that "end" points one higher than end,
|
|
* making the range >= start and < end.
|
|
* If we're also doing a speculative memory
|
|
* test and we at or past the end, bump up Maxmem
|
|
* so that we keep going. The first bad page
|
|
* will terminate the loop.
|
|
*/
|
|
if (phys_avail[pa_indx] == pa) {
|
|
phys_avail[pa_indx] += PAGE_SIZE;
|
|
} else {
|
|
pa_indx++;
|
|
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
|
|
printf(
|
|
"Too many holes in the physical address space, giving up\n");
|
|
pa_indx--;
|
|
full = TRUE;
|
|
goto do_dump_avail;
|
|
}
|
|
phys_avail[pa_indx++] = pa; /* start */
|
|
phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
|
|
}
|
|
physmem++;
|
|
do_dump_avail:
|
|
if (dump_avail[da_indx] == pa) {
|
|
dump_avail[da_indx] += PAGE_SIZE;
|
|
} else {
|
|
da_indx++;
|
|
if (da_indx == DUMP_AVAIL_ARRAY_END) {
|
|
da_indx--;
|
|
goto do_next;
|
|
}
|
|
dump_avail[da_indx++] = pa; /* start */
|
|
dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
|
|
}
|
|
do_next:
|
|
if (full)
|
|
break;
|
|
}
|
|
}
|
|
*pte = 0;
|
|
invltlb();
|
|
#else
|
|
phys_avail[0] = physfree;
|
|
phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
|
|
#endif
|
|
|
|
/*
|
|
* XXX
|
|
* The last chunk must contain at least one page plus the message
|
|
* buffer to avoid complicating other code (message buffer address
|
|
* calculation, etc.).
|
|
*/
|
|
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
|
|
round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
|
|
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
|
|
phys_avail[pa_indx--] = 0;
|
|
phys_avail[pa_indx--] = 0;
|
|
}
|
|
|
|
Maxmem = atop(phys_avail[pa_indx]);
|
|
|
|
/* Trim off space for the message buffer. */
|
|
phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
|
|
|
|
/* Map the message buffer. */
|
|
for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
|
|
pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
|
|
off);
|
|
|
|
PT_UPDATES_FLUSH();
|
|
}
|
|
|
|
#ifdef XEN
|
|
#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
|
|
|
|
void
|
|
init386(first)
|
|
int first;
|
|
{
|
|
unsigned long gdtmachpfn;
|
|
int error, gsel_tss, metadata_missing, x;
|
|
struct pcpu *pc;
|
|
struct callback_register event = {
|
|
.type = CALLBACKTYPE_event,
|
|
.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
|
|
};
|
|
struct callback_register failsafe = {
|
|
.type = CALLBACKTYPE_failsafe,
|
|
.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
|
|
};
|
|
|
|
thread0.td_kstack = proc0kstack;
|
|
thread0.td_pcb = (struct pcb *)
|
|
(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
|
|
|
|
/*
|
|
* This may be done better later if it gets more high level
|
|
* components in it. If so just link td->td_proc here.
|
|
*/
|
|
proc_linkup0(&proc0, &thread0);
|
|
|
|
metadata_missing = 0;
|
|
if (xen_start_info->mod_start) {
|
|
preload_metadata = (caddr_t)xen_start_info->mod_start;
|
|
preload_bootstrap_relocate(KERNBASE);
|
|
} else {
|
|
metadata_missing = 1;
|
|
}
|
|
if (envmode == 1)
|
|
kern_envp = static_env;
|
|
else if ((caddr_t)xen_start_info->cmd_line)
|
|
kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
|
|
|
|
boothowto |= xen_boothowto(kern_envp);
|
|
|
|
/* Init basic tunables, hz etc */
|
|
init_param1();
|
|
|
|
/*
|
|
* XEN occupies a portion of the upper virtual address space
|
|
* At its base it manages an array mapping machine page frames
|
|
* to physical page frames - hence we need to be able to
|
|
* access 4GB - (64MB - 4MB + 64k)
|
|
*/
|
|
gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
|
|
|
|
pc = &__pcpu[0];
|
|
gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
|
|
gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
|
|
|
|
PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
|
|
bzero(gdt, PAGE_SIZE);
|
|
for (x = 0; x < NGDT; x++)
|
|
ssdtosd(&gdt_segs[x], &gdt[x].sd);
|
|
|
|
mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
|
|
|
|
gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
|
|
PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
|
|
PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);
|
|
lgdt(&r_gdt);
|
|
gdtset = 1;
|
|
|
|
if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
|
|
panic("set_trap_table failed - error %d\n", error);
|
|
}
|
|
|
|
error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
|
|
if (error == 0)
|
|
error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
|
|
#if CONFIG_XEN_COMPAT <= 0x030002
|
|
if (error == -ENOXENSYS)
|
|
HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
|
|
(unsigned long)Xhypervisor_callback,
|
|
GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
|
|
#endif
|
|
pcpu_init(pc, 0, sizeof(struct pcpu));
|
|
PCPU_SET(prvspace, pc);
|
|
PCPU_SET(curthread, &thread0);
|
|
PCPU_SET(curpcb, thread0.td_pcb);
|
|
|
|
/*
|
|
* Initialize mutexes.
|
|
*
|
|
* icu_lock: in order to allow an interrupt to occur in a critical
|
|
* section, to set pcpu->ipending (etc...) properly, we
|
|
* must be able to get the icu lock, so it can't be
|
|
* under witness.
|
|
*/
|
|
mutex_init();
|
|
mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
|
|
|
|
/* make ldt memory segments */
|
|
PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
|
|
bzero(ldt, PAGE_SIZE);
|
|
ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
|
|
ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
|
|
for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
|
|
ssdtosd(&ldt_segs[x], &ldt[x].sd);
|
|
|
|
default_proc_ldt.ldt_base = (caddr_t)ldt;
|
|
default_proc_ldt.ldt_len = 6;
|
|
_default_ldt = (int)&default_proc_ldt;
|
|
PCPU_SET(currentldt, _default_ldt)
|
|
PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
|
|
xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
|
|
|
|
#if defined(XEN_PRIVILEGED)
|
|
/*
|
|
* Initialize the i8254 before the console so that console
|
|
* initialization can use DELAY().
|
|
*/
|
|
i8254_init();
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the console before we print anything out.
|
|
*/
|
|
cninit();
|
|
|
|
if (metadata_missing)
|
|
printf("WARNING: loader(8) metadata is missing!\n");
|
|
|
|
#ifdef DEV_ISA
|
|
elcr_probe();
|
|
atpic_startup();
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
ksym_start = bootinfo.bi_symtab;
|
|
ksym_end = bootinfo.bi_esymtab;
|
|
#endif
|
|
|
|
kdb_init();
|
|
|
|
#ifdef KDB
|
|
if (boothowto & RB_KDB)
|
|
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
|
|
#endif
|
|
|
|
finishidentcpu(); /* Final stage of CPU initialization */
|
|
setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
initializecpu(); /* Initialize CPU registers */
|
|
|
|
/* make an initial tss so cpu can get interrupt stack on syscall! */
|
|
/* Note: -16 is so we can grow the trapframe if we came from vm86 */
|
|
PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
|
|
KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
|
|
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
|
|
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
|
|
HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
|
|
PCPU_GET(common_tss.tss_esp0));
|
|
|
|
/* pointer to selector slot for %fs/%gs */
|
|
PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
|
|
|
|
dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
|
|
dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
|
|
dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
|
|
dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
|
|
#ifdef PAE
|
|
dblfault_tss.tss_cr3 = (int)IdlePDPT;
|
|
#else
|
|
dblfault_tss.tss_cr3 = (int)IdlePTD;
|
|
#endif
|
|
dblfault_tss.tss_eip = (int)dblfault_handler;
|
|
dblfault_tss.tss_eflags = PSL_KERNEL;
|
|
dblfault_tss.tss_ds = dblfault_tss.tss_es =
|
|
dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
|
|
dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
|
|
dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
|
|
dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
|
|
|
|
vm86_initialize();
|
|
getmemsize(first);
|
|
init_param2(physmem);
|
|
|
|
/* now running on new page tables, configured,and u/iom is accessible */
|
|
|
|
msgbufinit(msgbufp, MSGBUF_SIZE);
|
|
/* transfer to user mode */
|
|
|
|
_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
|
|
_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
|
|
|
|
/* setup proc 0's pcb */
|
|
thread0.td_pcb->pcb_flags = 0;
|
|
#ifdef PAE
|
|
thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
|
|
#else
|
|
thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
|
|
#endif
|
|
thread0.td_pcb->pcb_ext = 0;
|
|
thread0.td_frame = &proc0_tf;
|
|
thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
|
|
thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
|
|
}
|
|
|
|
#else
|
|
void
|
|
init386(first)
|
|
int first;
|
|
{
|
|
struct gate_descriptor *gdp;
|
|
int gsel_tss, metadata_missing, x;
|
|
struct pcpu *pc;
|
|
|
|
thread0.td_kstack = proc0kstack;
|
|
thread0.td_pcb = (struct pcb *)
|
|
(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
|
|
|
|
/*
|
|
* This may be done better later if it gets more high level
|
|
* components in it. If so just link td->td_proc here.
|
|
*/
|
|
proc_linkup0(&proc0, &thread0);
|
|
|
|
metadata_missing = 0;
|
|
if (bootinfo.bi_modulep) {
|
|
preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
|
|
preload_bootstrap_relocate(KERNBASE);
|
|
} else {
|
|
metadata_missing = 1;
|
|
}
|
|
if (envmode == 1)
|
|
kern_envp = static_env;
|
|
else if (bootinfo.bi_envp)
|
|
kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
|
|
|
|
/* Init basic tunables, hz etc */
|
|
init_param1();
|
|
|
|
/*
|
|
* Make gdt memory segments. All segments cover the full 4GB
|
|
* of address space and permissions are enforced at page level.
|
|
*/
|
|
gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
|
|
gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
|
|
gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
|
|
gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
|
|
gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
|
|
gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
|
|
|
|
pc = &__pcpu[0];
|
|
gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
|
|
gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
|
|
gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
|
|
|
|
for (x = 0; x < NGDT; x++)
|
|
ssdtosd(&gdt_segs[x], &gdt[x].sd);
|
|
|
|
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
|
|
r_gdt.rd_base = (int) gdt;
|
|
mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
|
|
lgdt(&r_gdt);
|
|
|
|
pcpu_init(pc, 0, sizeof(struct pcpu));
|
|
PCPU_SET(prvspace, pc);
|
|
PCPU_SET(curthread, &thread0);
|
|
PCPU_SET(curpcb, thread0.td_pcb);
|
|
|
|
/*
|
|
* Initialize mutexes.
|
|
*
|
|
* icu_lock: in order to allow an interrupt to occur in a critical
|
|
* section, to set pcpu->ipending (etc...) properly, we
|
|
* must be able to get the icu lock, so it can't be
|
|
* under witness.
|
|
*/
|
|
mutex_init();
|
|
mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
|
|
|
|
/* make ldt memory segments */
|
|
ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
|
|
ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
|
|
for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
|
|
ssdtosd(&ldt_segs[x], &ldt[x].sd);
|
|
|
|
_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
|
|
lldt(_default_ldt);
|
|
PCPU_SET(currentldt, _default_ldt);
|
|
|
|
/* exceptions */
|
|
for (x = 0; x < NIDT; x++)
|
|
setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_DE, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL
|
|
, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
|
|
setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
r_idt.rd_limit = sizeof(idt0) - 1;
|
|
r_idt.rd_base = (int) idt;
|
|
lidt(&r_idt);
|
|
|
|
#ifdef XBOX
|
|
/*
|
|
* The following code queries the PCI ID of 0:0:0. For the XBOX,
|
|
* This should be 0x10de / 0x02a5.
|
|
*
|
|
* This is exactly what Linux does.
|
|
*/
|
|
outl(0xcf8, 0x80000000);
|
|
if (inl(0xcfc) == 0x02a510de) {
|
|
arch_i386_is_xbox = 1;
|
|
pic16l_setled(XBOX_LED_GREEN);
|
|
|
|
/*
|
|
* We are an XBOX, but we may have either 64MB or 128MB of
|
|
* memory. The PCI host bridge should be programmed for this,
|
|
* so we just query it.
|
|
*/
|
|
outl(0xcf8, 0x80000084);
|
|
arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
|
|
}
|
|
#endif /* XBOX */
|
|
|
|
/*
|
|
* Initialize the i8254 before the console so that console
|
|
* initialization can use DELAY().
|
|
*/
|
|
i8254_init();
|
|
|
|
/*
|
|
* Initialize the console before we print anything out.
|
|
*/
|
|
cninit();
|
|
|
|
if (metadata_missing)
|
|
printf("WARNING: loader(8) metadata is missing!\n");
|
|
|
|
#ifdef DEV_ISA
|
|
elcr_probe();
|
|
atpic_startup();
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
ksym_start = bootinfo.bi_symtab;
|
|
ksym_end = bootinfo.bi_esymtab;
|
|
#endif
|
|
|
|
kdb_init();
|
|
|
|
#ifdef KDB
|
|
if (boothowto & RB_KDB)
|
|
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
|
|
#endif
|
|
|
|
finishidentcpu(); /* Final stage of CPU initialization */
|
|
setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
initializecpu(); /* Initialize CPU registers */
|
|
|
|
/* make an initial tss so cpu can get interrupt stack on syscall! */
|
|
/* Note: -16 is so we can grow the trapframe if we came from vm86 */
|
|
PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
|
|
KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
|
|
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
|
|
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
|
|
PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
|
|
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
|
|
PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
|
|
ltr(gsel_tss);
|
|
|
|
/* pointer to selector slot for %fs/%gs */
|
|
PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
|
|
|
|
dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
|
|
dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
|
|
dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
|
|
dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
|
|
#ifdef PAE
|
|
dblfault_tss.tss_cr3 = (int)IdlePDPT;
|
|
#else
|
|
dblfault_tss.tss_cr3 = (int)IdlePTD;
|
|
#endif
|
|
dblfault_tss.tss_eip = (int)dblfault_handler;
|
|
dblfault_tss.tss_eflags = PSL_KERNEL;
|
|
dblfault_tss.tss_ds = dblfault_tss.tss_es =
|
|
dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
|
|
dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
|
|
dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
|
|
dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
|
|
|
|
vm86_initialize();
|
|
getmemsize(first);
|
|
init_param2(physmem);
|
|
|
|
/* now running on new page tables, configured,and u/iom is accessible */
|
|
|
|
msgbufinit(msgbufp, MSGBUF_SIZE);
|
|
|
|
/* make a call gate to reenter kernel with */
|
|
gdp = &ldt[LSYS5CALLS_SEL].gd;
|
|
|
|
x = (int) &IDTVEC(lcall_syscall);
|
|
gdp->gd_looffset = x;
|
|
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
|
|
gdp->gd_stkcpy = 1;
|
|
gdp->gd_type = SDT_SYS386CGT;
|
|
gdp->gd_dpl = SEL_UPL;
|
|
gdp->gd_p = 1;
|
|
gdp->gd_hioffset = x >> 16;
|
|
|
|
/* XXX does this work? */
|
|
/* XXX yes! */
|
|
ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
|
|
ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
|
|
|
|
/* transfer to user mode */
|
|
|
|
_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
|
|
_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
|
|
|
|
/* setup proc 0's pcb */
|
|
thread0.td_pcb->pcb_flags = 0;
|
|
#ifdef PAE
|
|
thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
|
|
#else
|
|
thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
|
|
#endif
|
|
thread0.td_pcb->pcb_ext = 0;
|
|
thread0.td_frame = &proc0_tf;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
|
|
{
|
|
|
|
pcpu->pc_acpi_id = 0xffffffff;
|
|
}
|
|
|
|
void
|
|
spinlock_enter(void)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
if (td->td_md.md_spinlock_count == 0)
|
|
td->td_md.md_saved_flags = intr_disable();
|
|
td->td_md.md_spinlock_count++;
|
|
critical_enter();
|
|
}
|
|
|
|
void
|
|
spinlock_exit(void)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
critical_exit();
|
|
td->td_md.md_spinlock_count--;
|
|
if (td->td_md.md_spinlock_count == 0)
|
|
intr_restore(td->td_md.md_saved_flags);
|
|
}
|
|
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
static void f00f_hack(void *unused);
|
|
SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
|
|
|
|
static void
|
|
f00f_hack(void *unused)
|
|
{
|
|
struct gate_descriptor *new_idt;
|
|
vm_offset_t tmp;
|
|
|
|
if (!has_f00f_bug)
|
|
return;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
printf("Intel Pentium detected, installing workaround for F00F bug\n");
|
|
|
|
tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
|
|
if (tmp == 0)
|
|
panic("kmem_alloc returned 0");
|
|
|
|
/* Put the problematic entry (#6) at the end of the lower page. */
|
|
new_idt = (struct gate_descriptor*)
|
|
(tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
|
|
bcopy(idt, new_idt, sizeof(idt0));
|
|
r_idt.rd_base = (u_int)new_idt;
|
|
lidt(&r_idt);
|
|
idt = new_idt;
|
|
if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
|
|
VM_PROT_READ, FALSE) != KERN_SUCCESS)
|
|
panic("vm_map_protect failed");
|
|
}
|
|
#endif /* defined(I586_CPU) && !NO_F00F_HACK */
|
|
|
|
/*
|
|
* Construct a PCB from a trapframe. This is called from kdb_trap() where
|
|
* we want to start a backtrace from the function that caused us to enter
|
|
* the debugger. We have the context in the trapframe, but base the trace
|
|
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
|
|
* enough for a backtrace.
|
|
*/
|
|
void
|
|
makectx(struct trapframe *tf, struct pcb *pcb)
|
|
{
|
|
|
|
pcb->pcb_edi = tf->tf_edi;
|
|
pcb->pcb_esi = tf->tf_esi;
|
|
pcb->pcb_ebp = tf->tf_ebp;
|
|
pcb->pcb_ebx = tf->tf_ebx;
|
|
pcb->pcb_eip = tf->tf_eip;
|
|
pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
|
|
}
|
|
|
|
int
|
|
ptrace_set_pc(struct thread *td, u_long addr)
|
|
{
|
|
|
|
td->td_frame->tf_eip = addr;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_single_step(struct thread *td)
|
|
{
|
|
td->td_frame->tf_eflags |= PSL_T;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_clear_single_step(struct thread *td)
|
|
{
|
|
td->td_frame->tf_eflags &= ~PSL_T;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct pcb *pcb;
|
|
struct trapframe *tp;
|
|
|
|
tp = td->td_frame;
|
|
pcb = td->td_pcb;
|
|
regs->r_fs = tp->tf_fs;
|
|
regs->r_es = tp->tf_es;
|
|
regs->r_ds = tp->tf_ds;
|
|
regs->r_edi = tp->tf_edi;
|
|
regs->r_esi = tp->tf_esi;
|
|
regs->r_ebp = tp->tf_ebp;
|
|
regs->r_ebx = tp->tf_ebx;
|
|
regs->r_edx = tp->tf_edx;
|
|
regs->r_ecx = tp->tf_ecx;
|
|
regs->r_eax = tp->tf_eax;
|
|
regs->r_eip = tp->tf_eip;
|
|
regs->r_cs = tp->tf_cs;
|
|
regs->r_eflags = tp->tf_eflags;
|
|
regs->r_esp = tp->tf_esp;
|
|
regs->r_ss = tp->tf_ss;
|
|
regs->r_gs = pcb->pcb_gs;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct pcb *pcb;
|
|
struct trapframe *tp;
|
|
|
|
tp = td->td_frame;
|
|
if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
|
|
!CS_SECURE(regs->r_cs))
|
|
return (EINVAL);
|
|
pcb = td->td_pcb;
|
|
tp->tf_fs = regs->r_fs;
|
|
tp->tf_es = regs->r_es;
|
|
tp->tf_ds = regs->r_ds;
|
|
tp->tf_edi = regs->r_edi;
|
|
tp->tf_esi = regs->r_esi;
|
|
tp->tf_ebp = regs->r_ebp;
|
|
tp->tf_ebx = regs->r_ebx;
|
|
tp->tf_edx = regs->r_edx;
|
|
tp->tf_ecx = regs->r_ecx;
|
|
tp->tf_eax = regs->r_eax;
|
|
tp->tf_eip = regs->r_eip;
|
|
tp->tf_cs = regs->r_cs;
|
|
tp->tf_eflags = regs->r_eflags;
|
|
tp->tf_esp = regs->r_esp;
|
|
tp->tf_ss = regs->r_ss;
|
|
pcb->pcb_gs = regs->r_gs;
|
|
return (0);
|
|
}
|
|
|
|
#ifdef CPU_ENABLE_SSE
|
|
static void
|
|
fill_fpregs_xmm(sv_xmm, sv_87)
|
|
struct savexmm *sv_xmm;
|
|
struct save87 *sv_87;
|
|
{
|
|
register struct env87 *penv_87 = &sv_87->sv_env;
|
|
register struct envxmm *penv_xmm = &sv_xmm->sv_env;
|
|
int i;
|
|
|
|
bzero(sv_87, sizeof(*sv_87));
|
|
|
|
/* FPU control/status */
|
|
penv_87->en_cw = penv_xmm->en_cw;
|
|
penv_87->en_sw = penv_xmm->en_sw;
|
|
penv_87->en_tw = penv_xmm->en_tw;
|
|
penv_87->en_fip = penv_xmm->en_fip;
|
|
penv_87->en_fcs = penv_xmm->en_fcs;
|
|
penv_87->en_opcode = penv_xmm->en_opcode;
|
|
penv_87->en_foo = penv_xmm->en_foo;
|
|
penv_87->en_fos = penv_xmm->en_fos;
|
|
|
|
/* FPU registers */
|
|
for (i = 0; i < 8; ++i)
|
|
sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
|
|
}
|
|
|
|
static void
|
|
set_fpregs_xmm(sv_87, sv_xmm)
|
|
struct save87 *sv_87;
|
|
struct savexmm *sv_xmm;
|
|
{
|
|
register struct env87 *penv_87 = &sv_87->sv_env;
|
|
register struct envxmm *penv_xmm = &sv_xmm->sv_env;
|
|
int i;
|
|
|
|
/* FPU control/status */
|
|
penv_xmm->en_cw = penv_87->en_cw;
|
|
penv_xmm->en_sw = penv_87->en_sw;
|
|
penv_xmm->en_tw = penv_87->en_tw;
|
|
penv_xmm->en_fip = penv_87->en_fip;
|
|
penv_xmm->en_fcs = penv_87->en_fcs;
|
|
penv_xmm->en_opcode = penv_87->en_opcode;
|
|
penv_xmm->en_foo = penv_87->en_foo;
|
|
penv_xmm->en_fos = penv_87->en_fos;
|
|
|
|
/* FPU registers */
|
|
for (i = 0; i < 8; ++i)
|
|
sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
|
|
}
|
|
#endif /* CPU_ENABLE_SSE */
|
|
|
|
int
|
|
fill_fpregs(struct thread *td, struct fpreg *fpregs)
|
|
{
|
|
#ifdef CPU_ENABLE_SSE
|
|
if (cpu_fxsr) {
|
|
fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
|
|
(struct save87 *)fpregs);
|
|
return (0);
|
|
}
|
|
#endif /* CPU_ENABLE_SSE */
|
|
bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_fpregs(struct thread *td, struct fpreg *fpregs)
|
|
{
|
|
#ifdef CPU_ENABLE_SSE
|
|
if (cpu_fxsr) {
|
|
set_fpregs_xmm((struct save87 *)fpregs,
|
|
&td->td_pcb->pcb_save.sv_xmm);
|
|
return (0);
|
|
}
|
|
#endif /* CPU_ENABLE_SSE */
|
|
bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get machine context.
|
|
*/
|
|
int
|
|
get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
|
|
{
|
|
struct trapframe *tp;
|
|
struct segment_descriptor *sdp;
|
|
|
|
tp = td->td_frame;
|
|
|
|
PROC_LOCK(curthread->td_proc);
|
|
mcp->mc_onstack = sigonstack(tp->tf_esp);
|
|
PROC_UNLOCK(curthread->td_proc);
|
|
mcp->mc_gs = td->td_pcb->pcb_gs;
|
|
mcp->mc_fs = tp->tf_fs;
|
|
mcp->mc_es = tp->tf_es;
|
|
mcp->mc_ds = tp->tf_ds;
|
|
mcp->mc_edi = tp->tf_edi;
|
|
mcp->mc_esi = tp->tf_esi;
|
|
mcp->mc_ebp = tp->tf_ebp;
|
|
mcp->mc_isp = tp->tf_isp;
|
|
mcp->mc_eflags = tp->tf_eflags;
|
|
if (flags & GET_MC_CLEAR_RET) {
|
|
mcp->mc_eax = 0;
|
|
mcp->mc_edx = 0;
|
|
mcp->mc_eflags &= ~PSL_C;
|
|
} else {
|
|
mcp->mc_eax = tp->tf_eax;
|
|
mcp->mc_edx = tp->tf_edx;
|
|
}
|
|
mcp->mc_ebx = tp->tf_ebx;
|
|
mcp->mc_ecx = tp->tf_ecx;
|
|
mcp->mc_eip = tp->tf_eip;
|
|
mcp->mc_cs = tp->tf_cs;
|
|
mcp->mc_esp = tp->tf_esp;
|
|
mcp->mc_ss = tp->tf_ss;
|
|
mcp->mc_len = sizeof(*mcp);
|
|
get_fpcontext(td, mcp);
|
|
sdp = &td->td_pcb->pcb_gsd;
|
|
mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
|
|
sdp = &td->td_pcb->pcb_fsd;
|
|
mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set machine context.
|
|
*
|
|
* However, we don't set any but the user modifiable flags, and we won't
|
|
* touch the cs selector.
|
|
*/
|
|
int
|
|
set_mcontext(struct thread *td, const mcontext_t *mcp)
|
|
{
|
|
struct trapframe *tp;
|
|
int eflags, ret;
|
|
|
|
tp = td->td_frame;
|
|
if (mcp->mc_len != sizeof(*mcp))
|
|
return (EINVAL);
|
|
eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
|
|
(tp->tf_eflags & ~PSL_USERCHANGE);
|
|
if ((ret = set_fpcontext(td, mcp)) == 0) {
|
|
tp->tf_fs = mcp->mc_fs;
|
|
tp->tf_es = mcp->mc_es;
|
|
tp->tf_ds = mcp->mc_ds;
|
|
tp->tf_edi = mcp->mc_edi;
|
|
tp->tf_esi = mcp->mc_esi;
|
|
tp->tf_ebp = mcp->mc_ebp;
|
|
tp->tf_ebx = mcp->mc_ebx;
|
|
tp->tf_edx = mcp->mc_edx;
|
|
tp->tf_ecx = mcp->mc_ecx;
|
|
tp->tf_eax = mcp->mc_eax;
|
|
tp->tf_eip = mcp->mc_eip;
|
|
tp->tf_eflags = eflags;
|
|
tp->tf_esp = mcp->mc_esp;
|
|
tp->tf_ss = mcp->mc_ss;
|
|
td->td_pcb->pcb_gs = mcp->mc_gs;
|
|
ret = 0;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
get_fpcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
#ifndef DEV_NPX
|
|
mcp->mc_fpformat = _MC_FPFMT_NODEV;
|
|
mcp->mc_ownedfp = _MC_FPOWNED_NONE;
|
|
#else
|
|
union savefpu *addr;
|
|
|
|
/*
|
|
* XXX mc_fpstate might be misaligned, since its declaration is not
|
|
* unportabilized using __attribute__((aligned(16))) like the
|
|
* declaration of struct savemm, and anyway, alignment doesn't work
|
|
* for auto variables since we don't use gcc's pessimal stack
|
|
* alignment. Work around this by abusing the spare fields after
|
|
* mcp->mc_fpstate.
|
|
*
|
|
* XXX unpessimize most cases by only aligning when fxsave might be
|
|
* called, although this requires knowing too much about
|
|
* npxgetregs()'s internals.
|
|
*/
|
|
addr = (union savefpu *)&mcp->mc_fpstate;
|
|
if (td == PCPU_GET(fpcurthread) &&
|
|
#ifdef CPU_ENABLE_SSE
|
|
cpu_fxsr &&
|
|
#endif
|
|
((uintptr_t)(void *)addr & 0xF)) {
|
|
do
|
|
addr = (void *)((char *)addr + 4);
|
|
while ((uintptr_t)(void *)addr & 0xF);
|
|
}
|
|
mcp->mc_ownedfp = npxgetregs(td, addr);
|
|
if (addr != (union savefpu *)&mcp->mc_fpstate) {
|
|
bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
|
|
bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
|
|
}
|
|
mcp->mc_fpformat = npxformat();
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
set_fpcontext(struct thread *td, const mcontext_t *mcp)
|
|
{
|
|
union savefpu *addr;
|
|
|
|
if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
|
|
return (0);
|
|
else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
|
|
mcp->mc_fpformat != _MC_FPFMT_XMM)
|
|
return (EINVAL);
|
|
else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
|
|
/* We don't care what state is left in the FPU or PCB. */
|
|
fpstate_drop(td);
|
|
else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
|
|
mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
|
|
/* XXX align as above. */
|
|
addr = (union savefpu *)&mcp->mc_fpstate;
|
|
if (td == PCPU_GET(fpcurthread) &&
|
|
#ifdef CPU_ENABLE_SSE
|
|
cpu_fxsr &&
|
|
#endif
|
|
((uintptr_t)(void *)addr & 0xF)) {
|
|
do
|
|
addr = (void *)((char *)addr + 4);
|
|
while ((uintptr_t)(void *)addr & 0xF);
|
|
bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
|
|
}
|
|
#ifdef DEV_NPX
|
|
#ifdef CPU_ENABLE_SSE
|
|
if (cpu_fxsr)
|
|
addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
|
|
#endif
|
|
/*
|
|
* XXX we violate the dubious requirement that npxsetregs()
|
|
* be called with interrupts disabled.
|
|
*/
|
|
npxsetregs(td, addr);
|
|
#endif
|
|
/*
|
|
* Don't bother putting things back where they were in the
|
|
* misaligned case, since we know that the caller won't use
|
|
* them again.
|
|
*/
|
|
} else
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
fpstate_drop(struct thread *td)
|
|
{
|
|
register_t s;
|
|
|
|
s = intr_disable();
|
|
#ifdef DEV_NPX
|
|
if (PCPU_GET(fpcurthread) == td)
|
|
npxdrop();
|
|
#endif
|
|
/*
|
|
* XXX force a full drop of the npx. The above only drops it if we
|
|
* owned it. npxgetregs() has the same bug in the !cpu_fxsr case.
|
|
*
|
|
* XXX I don't much like npxgetregs()'s semantics of doing a full
|
|
* drop. Dropping only to the pcb matches fnsave's behaviour.
|
|
* We only need to drop to !PCB_INITDONE in sendsig(). But
|
|
* sendsig() is the only caller of npxgetregs()... perhaps we just
|
|
* have too many layers.
|
|
*/
|
|
curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
|
|
intr_restore(s);
|
|
}
|
|
|
|
int
|
|
fill_dbregs(struct thread *td, struct dbreg *dbregs)
|
|
{
|
|
struct pcb *pcb;
|
|
|
|
if (td == NULL) {
|
|
dbregs->dr[0] = rdr0();
|
|
dbregs->dr[1] = rdr1();
|
|
dbregs->dr[2] = rdr2();
|
|
dbregs->dr[3] = rdr3();
|
|
dbregs->dr[4] = rdr4();
|
|
dbregs->dr[5] = rdr5();
|
|
dbregs->dr[6] = rdr6();
|
|
dbregs->dr[7] = rdr7();
|
|
} else {
|
|
pcb = td->td_pcb;
|
|
dbregs->dr[0] = pcb->pcb_dr0;
|
|
dbregs->dr[1] = pcb->pcb_dr1;
|
|
dbregs->dr[2] = pcb->pcb_dr2;
|
|
dbregs->dr[3] = pcb->pcb_dr3;
|
|
dbregs->dr[4] = 0;
|
|
dbregs->dr[5] = 0;
|
|
dbregs->dr[6] = pcb->pcb_dr6;
|
|
dbregs->dr[7] = pcb->pcb_dr7;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_dbregs(struct thread *td, struct dbreg *dbregs)
|
|
{
|
|
struct pcb *pcb;
|
|
int i;
|
|
|
|
if (td == NULL) {
|
|
load_dr0(dbregs->dr[0]);
|
|
load_dr1(dbregs->dr[1]);
|
|
load_dr2(dbregs->dr[2]);
|
|
load_dr3(dbregs->dr[3]);
|
|
load_dr4(dbregs->dr[4]);
|
|
load_dr5(dbregs->dr[5]);
|
|
load_dr6(dbregs->dr[6]);
|
|
load_dr7(dbregs->dr[7]);
|
|
} else {
|
|
/*
|
|
* Don't let an illegal value for dr7 get set. Specifically,
|
|
* check for undefined settings. Setting these bit patterns
|
|
* result in undefined behaviour and can lead to an unexpected
|
|
* TRCTRAP.
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
|
|
return (EINVAL);
|
|
if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
|
|
return (EINVAL);
|
|
}
|
|
|
|
pcb = td->td_pcb;
|
|
|
|
/*
|
|
* Don't let a process set a breakpoint that is not within the
|
|
* process's address space. If a process could do this, it
|
|
* could halt the system by setting a breakpoint in the kernel
|
|
* (if ddb was enabled). Thus, we need to check to make sure
|
|
* that no breakpoints are being enabled for addresses outside
|
|
* process's address space.
|
|
*
|
|
* XXX - what about when the watched area of the user's
|
|
* address space is written into from within the kernel
|
|
* ... wouldn't that still cause a breakpoint to be generated
|
|
* from within kernel mode?
|
|
*/
|
|
|
|
if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
|
|
/* dr0 is enabled */
|
|
if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
|
|
/* dr1 is enabled */
|
|
if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
|
|
/* dr2 is enabled */
|
|
if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
|
|
/* dr3 is enabled */
|
|
if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
|
|
pcb->pcb_dr0 = dbregs->dr[0];
|
|
pcb->pcb_dr1 = dbregs->dr[1];
|
|
pcb->pcb_dr2 = dbregs->dr[2];
|
|
pcb->pcb_dr3 = dbregs->dr[3];
|
|
pcb->pcb_dr6 = dbregs->dr[6];
|
|
pcb->pcb_dr7 = dbregs->dr[7];
|
|
|
|
pcb->pcb_flags |= PCB_DBREGS;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return > 0 if a hardware breakpoint has been hit, and the
|
|
* breakpoint was in user space. Return 0, otherwise.
|
|
*/
|
|
int
|
|
user_dbreg_trap(void)
|
|
{
|
|
u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
|
|
u_int32_t bp; /* breakpoint bits extracted from dr6 */
|
|
int nbp; /* number of breakpoints that triggered */
|
|
caddr_t addr[4]; /* breakpoint addresses */
|
|
int i;
|
|
|
|
dr7 = rdr7();
|
|
if ((dr7 & 0x000000ff) == 0) {
|
|
/*
|
|
* all GE and LE bits in the dr7 register are zero,
|
|
* thus the trap couldn't have been caused by the
|
|
* hardware debug registers
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
nbp = 0;
|
|
dr6 = rdr6();
|
|
bp = dr6 & 0x0000000f;
|
|
|
|
if (!bp) {
|
|
/*
|
|
* None of the breakpoint bits are set meaning this
|
|
* trap was not caused by any of the debug registers
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* at least one of the breakpoints were hit, check to see
|
|
* which ones and if any of them are user space addresses
|
|
*/
|
|
|
|
if (bp & 0x01) {
|
|
addr[nbp++] = (caddr_t)rdr0();
|
|
}
|
|
if (bp & 0x02) {
|
|
addr[nbp++] = (caddr_t)rdr1();
|
|
}
|
|
if (bp & 0x04) {
|
|
addr[nbp++] = (caddr_t)rdr2();
|
|
}
|
|
if (bp & 0x08) {
|
|
addr[nbp++] = (caddr_t)rdr3();
|
|
}
|
|
|
|
for (i = 0; i < nbp; i++) {
|
|
if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
|
|
/*
|
|
* addr[i] is in user space
|
|
*/
|
|
return nbp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* None of the breakpoints are in user space.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
#ifndef DEV_APIC
|
|
#include <machine/apicvar.h>
|
|
|
|
/*
|
|
* Provide stub functions so that the MADT APIC enumerator in the acpi
|
|
* kernel module will link against a kernel without 'device apic'.
|
|
*
|
|
* XXX - This is a gross hack.
|
|
*/
|
|
void
|
|
apic_register_enumerator(struct apic_enumerator *enumerator)
|
|
{
|
|
}
|
|
|
|
void *
|
|
ioapic_create(vm_paddr_t addr, int32_t apic_id, int intbase)
|
|
{
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
ioapic_disable_pin(void *cookie, u_int pin)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
ioapic_get_vector(void *cookie, u_int pin)
|
|
{
|
|
return (-1);
|
|
}
|
|
|
|
void
|
|
ioapic_register(void *cookie)
|
|
{
|
|
}
|
|
|
|
int
|
|
ioapic_remap_vector(void *cookie, u_int pin, int vector)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
ioapic_set_extint(void *cookie, u_int pin)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
ioapic_set_nmi(void *cookie, u_int pin)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
ioapic_set_polarity(void *cookie, u_int pin, enum intr_polarity pol)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
ioapic_set_triggermode(void *cookie, u_int pin, enum intr_trigger trigger)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
void
|
|
lapic_create(u_int apic_id, int boot_cpu)
|
|
{
|
|
}
|
|
|
|
void
|
|
lapic_init(vm_paddr_t addr)
|
|
{
|
|
}
|
|
|
|
int
|
|
lapic_set_lvt_mode(u_int apic_id, u_int lvt, u_int32_t mode)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
lapic_set_lvt_polarity(u_int apic_id, u_int lvt, enum intr_polarity pol)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
lapic_set_lvt_triggermode(u_int apic_id, u_int lvt, enum intr_trigger trigger)
|
|
{
|
|
return (ENXIO);
|
|
}
|
|
#endif
|
|
|
|
#ifdef KDB
|
|
|
|
/*
|
|
* Provide inb() and outb() as functions. They are normally only available as
|
|
* inline functions, thus cannot be called from the debugger.
|
|
*/
|
|
|
|
/* silence compiler warnings */
|
|
u_char inb_(u_short);
|
|
void outb_(u_short, u_char);
|
|
|
|
u_char
|
|
inb_(u_short port)
|
|
{
|
|
return inb(port);
|
|
}
|
|
|
|
void
|
|
outb_(u_short port, u_char data)
|
|
{
|
|
outb(port, data);
|
|
}
|
|
|
|
#endif /* KDB */
|