freebsd-dev/lib/libkse/thread/thr_kern.c
Daniel Eischen fd626336fd Add a method of yielding the current thread with the scheduler
lock held (_thr_sched_switch_unlocked()) and use this to avoid
dropping the scheduler lock and having the scheduler retake the
same lock again.

Add a better way of detecting if a low-level lock is in use.

When switching out a thread due to blocking in the UTS, don't
switch to the KSE's scheduler stack only to switch back to
another thread.  If possible switch to the new thread directly
from the old thread and avoid the overhead of the extra
context switch.

Check for pending signals on a thread when entering the scheduler
and add them to the threads signal frame.  This includes some
other minor signal fixes.

Most of this was a joint effor between davidxu and myself.

Reviewed by:	davidxu
Approved by:	re@ (blanket for libpthread)
2003-05-16 19:58:30 +00:00

2127 lines
57 KiB
C

/*
* Copyright (C) 2003 Daniel M. Eischen <deischen@freebsd.org>
* Copyright (C) 2002 Jonathon Mini <mini@freebsd.org>
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/kse.h>
#include <sys/signalvar.h>
#include <sys/queue.h>
#include <machine/atomic.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ucontext.h>
#include <unistd.h>
#include "atomic_ops.h"
#include "thr_private.h"
#include "pthread_md.h"
#include "libc_private.h"
/*#define DEBUG_THREAD_KERN */
#ifdef DEBUG_THREAD_KERN
#define DBG_MSG stdout_debug
#else
#define DBG_MSG(x...)
#endif
/*
* Define a high water mark for the maximum number of threads that
* will be cached. Once this level is reached, any extra threads
* will be free()'d.
*
* XXX - It doesn't make sense to worry about the maximum number of
* KSEs that we can cache because the system will limit us to
* something *much* less than the maximum number of threads
* that we can have. Disregarding KSEs in their own group,
* the maximum number of KSEs is the number of processors in
* the system.
*/
#define MAX_CACHED_THREADS 100
#define KSE_STACKSIZE 16384
#define KSE_SET_MBOX(kse, thrd) \
(kse)->k_mbx.km_curthread = &(thrd)->tmbx
#define KSE_SET_EXITED(kse) (kse)->k_flags |= KF_EXITED
/*
* Macros for manipulating the run queues. The priority queue
* routines use the thread's pqe link and also handle the setting
* and clearing of the thread's THR_FLAGS_IN_RUNQ flag.
*/
#define KSE_RUNQ_INSERT_HEAD(kse, thrd) \
_pq_insert_head(&(kse)->k_schedq->sq_runq, thrd)
#define KSE_RUNQ_INSERT_TAIL(kse, thrd) \
_pq_insert_tail(&(kse)->k_schedq->sq_runq, thrd)
#define KSE_RUNQ_REMOVE(kse, thrd) \
_pq_remove(&(kse)->k_schedq->sq_runq, thrd)
#define KSE_RUNQ_FIRST(kse) _pq_first(&(kse)->k_schedq->sq_runq)
#define KSE_RUNQ_THREADS(kse) ((kse)->k_schedq->sq_runq.pq_threads)
/*
* We've got to keep track of everything that is allocated, not only
* to have a speedy free list, but also so they can be deallocated
* after a fork().
*/
static TAILQ_HEAD(, kse) active_kseq;
static TAILQ_HEAD(, kse) free_kseq;
static TAILQ_HEAD(, kse_group) free_kse_groupq;
static TAILQ_HEAD(, kse_group) active_kse_groupq;
static TAILQ_HEAD(, kse_group) gc_ksegq;
static struct lock kse_lock; /* also used for kseg queue */
static int free_kse_count = 0;
static int free_kseg_count = 0;
static TAILQ_HEAD(, pthread) free_threadq;
static struct lock thread_lock;
static int free_thread_count = 0;
static int inited = 0;
static int active_kse_count = 0;
static int active_kseg_count = 0;
static void kse_check_completed(struct kse *kse);
static void kse_check_waitq(struct kse *kse);
static void kse_check_signals(struct kse *kse);
static void kse_fini(struct kse *curkse);
static void kse_reinit(struct kse *kse);
static void kse_sched_multi(struct kse *curkse);
#ifdef NOT_YET
static void kse_sched_single(struct kse *curkse);
#endif
static void kse_switchout_thread(struct kse *kse, struct pthread *thread);
static void kse_wait(struct kse *kse, struct pthread *td_wait);
static void kse_free_unlocked(struct kse *kse);
static void kseg_free_unlocked(struct kse_group *kseg);
static void kseg_init(struct kse_group *kseg);
static void kseg_reinit(struct kse_group *kseg);
static void kse_waitq_insert(struct pthread *thread);
static void kse_wakeup_multi(struct kse *curkse);
static void kse_wakeup_one(struct pthread *thread);
static void thr_cleanup(struct kse *kse, struct pthread *curthread);
static void thr_resume_wrapper(int unused_1, siginfo_t *unused_2,
ucontext_t *ucp);
static void thr_resume_check(struct pthread *curthread, ucontext_t *ucp,
struct pthread_sigframe *psf);
static int thr_timedout(struct pthread *thread, struct timespec *curtime);
/*
* This is called after a fork().
* No locks need to be taken here since we are guaranteed to be
* single threaded.
*/
void
_kse_single_thread(struct pthread *curthread)
{
struct kse *kse, *kse_next;
struct kse_group *kseg, *kseg_next;
struct pthread *thread, *thread_next;
kse_critical_t crit;
int i;
/*
* Disable upcalls and clear the threaded flag.
* XXX - I don't think we need to disable upcalls after a fork().
* but it doesn't hurt.
*/
crit = _kse_critical_enter();
__isthreaded = 0;
/*
* Enter a loop to remove and free all threads other than
* the running thread from the active thread list:
*/
for (thread = TAILQ_FIRST(&_thread_list); thread != NULL;
thread = thread_next) {
/*
* Advance to the next thread before the destroying
* the current thread.
*/
thread_next = TAILQ_NEXT(thread, tle);
/*
* Remove this thread from the list (the current
* thread will be removed but re-added by libpthread
* initialization.
*/
TAILQ_REMOVE(&_thread_list, thread, tle);
/* Make sure this isn't the running thread: */
if (thread != curthread) {
_thr_stack_free(&thread->attr);
if (thread->specific != NULL)
free(thread->specific);
for (i = 0; i < MAX_THR_LOCKLEVEL; i++) {
_lockuser_destroy(&thread->lockusers[i]);
}
_lock_destroy(&thread->lock);
free(thread);
}
}
TAILQ_INIT(&curthread->mutexq); /* initialize mutex queue */
curthread->joiner = NULL; /* no joining threads yet */
sigemptyset(&curthread->sigpend); /* clear pending signals */
if (curthread->specific != NULL) {
free(curthread->specific);
curthread->specific = NULL;
curthread->specific_data_count = 0;
}
/* Free the free KSEs: */
while ((kse = TAILQ_FIRST(&free_kseq)) != NULL) {
TAILQ_REMOVE(&free_kseq, kse, k_qe);
_ksd_destroy(&kse->k_ksd);
if (kse->k_stack.ss_sp != NULL)
free(kse->k_stack.ss_sp);
free(kse);
}
free_kse_count = 0;
/* Free the active KSEs: */
for (kse = TAILQ_FIRST(&active_kseq); kse != NULL; kse = kse_next) {
kse_next = TAILQ_NEXT(kse, k_qe);
TAILQ_REMOVE(&active_kseq, kse, k_qe);
for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
_lockuser_destroy(&kse->k_lockusers[i]);
}
if (kse->k_stack.ss_sp != NULL)
free(kse->k_stack.ss_sp);
_lock_destroy(&kse->k_lock);
free(kse);
}
active_kse_count = 0;
/* Free the free KSEGs: */
while ((kseg = TAILQ_FIRST(&free_kse_groupq)) != NULL) {
TAILQ_REMOVE(&free_kse_groupq, kseg, kg_qe);
_lock_destroy(&kseg->kg_lock);
_pq_free(&kseg->kg_schedq.sq_runq);
free(kseg);
}
free_kseg_count = 0;
/* Free the active KSEGs: */
for (kseg = TAILQ_FIRST(&active_kse_groupq);
kseg != NULL; kseg = kseg_next) {
kseg_next = TAILQ_NEXT(kseg, kg_qe);
TAILQ_REMOVE(&active_kse_groupq, kseg, kg_qe);
_lock_destroy(&kseg->kg_lock);
_pq_free(&kseg->kg_schedq.sq_runq);
free(kseg);
}
active_kseg_count = 0;
/* Free the free threads. */
while ((thread = TAILQ_FIRST(&free_threadq)) != NULL) {
TAILQ_REMOVE(&free_threadq, thread, tle);
if (thread->specific != NULL)
free(thread->specific);
for (i = 0; i < MAX_THR_LOCKLEVEL; i++) {
_lockuser_destroy(&thread->lockusers[i]);
}
_lock_destroy(&thread->lock);
free(thread);
}
free_thread_count = 0;
/* Free the to-be-gc'd threads. */
while ((thread = TAILQ_FIRST(&_thread_gc_list)) != NULL) {
TAILQ_REMOVE(&_thread_gc_list, thread, gcle);
for (i = 0; i < MAX_THR_LOCKLEVEL; i++) {
_lockuser_destroy(&thread->lockusers[i]);
}
_lock_destroy(&thread->lock);
free(thread);
}
TAILQ_INIT(&gc_ksegq);
_gc_count = 0;
if (inited != 0) {
/*
* Destroy these locks; they'll be recreated to assure they
* are in the unlocked state.
*/
_lock_destroy(&kse_lock);
_lock_destroy(&thread_lock);
_lock_destroy(&_thread_list_lock);
inited = 0;
}
/*
* After a fork(), the leftover thread goes back to being
* scope process.
*/
curthread->attr.flags &= ~PTHREAD_SCOPE_SYSTEM;
curthread->attr.flags |= PTHREAD_SCOPE_PROCESS;
/*
* After a fork, we are still operating on the thread's original
* stack. Don't clear the THR_FLAGS_USER from the thread's
* attribute flags.
*/
/* Initialize the threads library. */
curthread->kse = NULL;
curthread->kseg = NULL;
_kse_initial = NULL;
_libpthread_init(curthread);
}
/*
* This is used to initialize housekeeping and to initialize the
* KSD for the KSE.
*/
void
_kse_init(void)
{
if (inited == 0) {
TAILQ_INIT(&active_kseq);
TAILQ_INIT(&active_kse_groupq);
TAILQ_INIT(&free_kseq);
TAILQ_INIT(&free_kse_groupq);
TAILQ_INIT(&free_threadq);
TAILQ_INIT(&gc_ksegq);
if (_lock_init(&kse_lock, LCK_ADAPTIVE,
_kse_lock_wait, _kse_lock_wakeup) != 0)
PANIC("Unable to initialize free KSE queue lock");
if (_lock_init(&thread_lock, LCK_ADAPTIVE,
_kse_lock_wait, _kse_lock_wakeup) != 0)
PANIC("Unable to initialize free thread queue lock");
if (_lock_init(&_thread_list_lock, LCK_ADAPTIVE,
_kse_lock_wait, _kse_lock_wakeup) != 0)
PANIC("Unable to initialize thread list lock");
active_kse_count = 0;
active_kseg_count = 0;
_gc_count = 0;
inited = 1;
}
}
int
_kse_isthreaded(void)
{
return (__isthreaded != 0);
}
/*
* This is called when the first thread (other than the initial
* thread) is created.
*/
int
_kse_setthreaded(int threaded)
{
if ((threaded != 0) && (__isthreaded == 0)) {
/*
* Locking functions in libc are required when there are
* threads other than the initial thread.
*/
__isthreaded = 1;
/*
* Tell the kernel to create a KSE for the initial thread
* and enable upcalls in it.
*/
_kse_initial->k_flags |= KF_STARTED;
if (kse_create(&_kse_initial->k_mbx, 0) != 0) {
_kse_initial->k_flags &= ~KF_STARTED;
__isthreaded = 0;
/* may abort() */
DBG_MSG("kse_create failed\n");
return (-1);
}
KSE_SET_MBOX(_kse_initial, _thr_initial);
_thr_setmaxconcurrency();
}
return (0);
}
/*
* Lock wait and wakeup handlers for KSE locks. These are only used by
* KSEs, and should never be used by threads. KSE locks include the
* KSE group lock (used for locking the scheduling queue) and the
* kse_lock defined above.
*
* When a KSE lock attempt blocks, the entire KSE blocks allowing another
* KSE to run. For the most part, it doesn't make much sense to try and
* schedule another thread because you need to lock the scheduling queue
* in order to do that. And since the KSE lock is used to lock the scheduling
* queue, you would just end up blocking again.
*/
void
_kse_lock_wait(struct lock *lock, struct lockuser *lu)
{
struct kse *curkse = (struct kse *)_LCK_GET_PRIVATE(lu);
struct timespec ts;
int saved_flags;
if (curkse->k_mbx.km_curthread != NULL)
PANIC("kse_lock_wait does not disable upcall.\n");
/*
* Enter a loop to wait until we get the lock.
*/
ts.tv_sec = 0;
ts.tv_nsec = 1000000; /* 1 sec */
while (_LCK_BUSY(lu)) {
/*
* Yield the kse and wait to be notified when the lock
* is granted.
*/
saved_flags = curkse->k_mbx.km_flags;
curkse->k_mbx.km_flags |= KMF_NOUPCALL | KMF_NOCOMPLETED;
kse_release(&ts);
curkse->k_mbx.km_flags = saved_flags;
}
}
void
_kse_lock_wakeup(struct lock *lock, struct lockuser *lu)
{
struct kse *curkse;
struct kse *kse;
struct kse_mailbox *mbx;
curkse = _get_curkse();
kse = (struct kse *)_LCK_GET_PRIVATE(lu);
if (kse == curkse)
PANIC("KSE trying to wake itself up in lock");
else {
mbx = &kse->k_mbx;
_lock_grant(lock, lu);
/*
* Notify the owning kse that it has the lock.
* It is safe to pass invalid address to kse_wakeup
* even if the mailbox is not in kernel at all,
* and waking up a wrong kse is also harmless.
*/
kse_wakeup(mbx);
}
}
/*
* Thread wait and wakeup handlers for thread locks. These are only used
* by threads, never by KSEs. Thread locks include the per-thread lock
* (defined in its structure), and condition variable and mutex locks.
*/
void
_thr_lock_wait(struct lock *lock, struct lockuser *lu)
{
struct pthread *curthread = (struct pthread *)lu->lu_private;
do {
THR_SCHED_LOCK(curthread, curthread);
THR_SET_STATE(curthread, PS_LOCKWAIT);
THR_SCHED_UNLOCK(curthread, curthread);
_thr_sched_switch(curthread);
} while _LCK_BUSY(lu);
}
void
_thr_lock_wakeup(struct lock *lock, struct lockuser *lu)
{
struct pthread *thread;
struct pthread *curthread;
curthread = _get_curthread();
thread = (struct pthread *)_LCK_GET_PRIVATE(lu);
THR_SCHED_LOCK(curthread, thread);
_lock_grant(lock, lu);
_thr_setrunnable_unlocked(thread);
THR_SCHED_UNLOCK(curthread, thread);
}
kse_critical_t
_kse_critical_enter(void)
{
kse_critical_t crit;
crit = _ksd_readandclear_tmbx;
return (crit);
}
void
_kse_critical_leave(kse_critical_t crit)
{
struct pthread *curthread;
_ksd_set_tmbx(crit);
if ((crit != NULL) && ((curthread = _get_curthread()) != NULL))
THR_YIELD_CHECK(curthread);
}
int
_kse_in_critical(void)
{
return (_ksd_get_tmbx() == NULL);
}
void
_thr_critical_enter(struct pthread *thread)
{
thread->critical_count++;
}
void
_thr_critical_leave(struct pthread *thread)
{
thread->critical_count--;
THR_YIELD_CHECK(thread);
}
void
_thr_sched_switch(struct pthread *curthread)
{
struct kse *curkse;
(void)_kse_critical_enter();
curkse = _get_curkse();
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
_thr_sched_switch_unlocked(curthread);
}
/*
* XXX - We may need to take the scheduling lock before calling
* this, or perhaps take the lock within here before
* doing anything else.
*/
void
_thr_sched_switch_unlocked(struct pthread *curthread)
{
struct pthread *td;
struct pthread_sigframe psf;
struct kse *curkse;
int ret;
volatile int uts_once;
volatile int resume_once = 0;
/* We're in the scheduler, 5 by 5: */
curkse = _get_curkse();
curthread->need_switchout = 1; /* The thread yielded on its own. */
curthread->critical_yield = 0; /* No need to yield anymore. */
curthread->slice_usec = -1; /* Restart the time slice. */
/* Thread can unlock the scheduler lock. */
curthread->lock_switch = 1;
/*
* The signal frame is allocated off the stack because
* a thread can be interrupted by other signals while
* it is running down pending signals.
*/
sigemptyset(&psf.psf_sigset);
curthread->curframe = &psf;
/*
* Enter the scheduler if any one of the following is true:
*
* o The current thread is dead; it's stack needs to be
* cleaned up and it can't be done while operating on
* it.
* o There are no runnable threads.
* o The next thread to run won't unlock the scheduler
* lock. A side note: the current thread may be run
* instead of the next thread in the run queue, but
* we don't bother checking for that.
*/
if ((curthread->state == PS_DEAD) ||
(((td = KSE_RUNQ_FIRST(curkse)) == NULL) &&
(curthread->state != PS_RUNNING)) ||
((td != NULL) && (td->lock_switch == 0)))
_thread_enter_uts(&curthread->tmbx, &curkse->k_mbx);
else {
uts_once = 0;
THR_GETCONTEXT(&curthread->tmbx.tm_context);
if (uts_once == 0) {
uts_once = 1;
/* Switchout the current thread. */
kse_switchout_thread(curkse, curthread);
/* Choose another thread to run. */
td = KSE_RUNQ_FIRST(curkse);
KSE_RUNQ_REMOVE(curkse, td);
curkse->k_curthread = td;
/*
* Make sure the current thread's kse points to
* this kse.
*/
td->kse = curkse;
/*
* Reset accounting.
*/
td->tmbx.tm_uticks = 0;
td->tmbx.tm_sticks = 0;
/*
* Reset the time slice if this thread is running
* for the first time or running again after using
* its full time slice allocation.
*/
if (td->slice_usec == -1)
td->slice_usec = 0;
/* Mark the thread active. */
td->active = 1;
/* Remove the frame reference. */
td->curframe = NULL;
/*
* Continue the thread at its current frame:
*/
ret = _thread_switch(&td->tmbx, NULL);
/* This point should not be reached. */
if (ret != 0)
PANIC("Bad return from _thread_switch");
PANIC("Thread has returned from _thread_switch");
}
}
if (curthread->lock_switch != 0) {
/*
* Unlock the scheduling queue and leave the
* critical region.
*/
/* Don't trust this after a switch! */
curkse = _get_curkse();
curthread->lock_switch = 0;
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
_kse_critical_leave(&curthread->tmbx);
}
/*
* This thread is being resumed; check for cancellations.
*/
if ((resume_once == 0) && (!THR_IN_CRITICAL(curthread))) {
resume_once = 1;
thr_resume_check(curthread, &curthread->tmbx.tm_context, &psf);
}
THR_ACTIVATE_LAST_LOCK(curthread);
}
/*
* This is the scheduler for a KSE which runs a scope system thread.
* The multi-thread KSE scheduler should also work for a single threaded
* KSE, but we use a separate scheduler so that it can be fine-tuned
* to be more efficient (and perhaps not need a separate stack for
* the KSE, allowing it to use the thread's stack).
*
* XXX - This probably needs some work.
*/
#ifdef NOT_YET
static void
kse_sched_single(struct kse *curkse)
{
struct pthread *curthread = curkse->k_curthread;
struct pthread *td_wait;
struct timespec ts;
int level;
if (curthread->active == 0) {
if (curthread->state != PS_RUNNING) {
/* Check to see if the thread has timed out. */
KSE_GET_TOD(curkse, &ts);
if (thr_timedout(curthread, &ts) != 0) {
curthread->timeout = 1;
curthread->state = PS_RUNNING;
}
}
}
/* This thread no longer needs to yield the CPU: */
curthread->critical_yield = 0;
curthread->need_switchout = 0;
/*
* Lock the scheduling queue.
*
* There is no scheduling queue for single threaded KSEs,
* but we need a lock for protection regardless.
*/
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
/*
* This has to do the job of kse_switchout_thread(), only
* for a single threaded KSE/KSEG.
*/
switch (curthread->state) {
case PS_DEAD:
/* Unlock the scheduling queue and exit the KSE. */
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
kse_fini(curkse); /* does not return */
break;
case PS_COND_WAIT:
case PS_SLEEP_WAIT:
/* Only insert threads that can timeout: */
if (curthread->wakeup_time.tv_sec != -1) {
/* Insert into the waiting queue: */
KSE_WAITQ_INSERT(curkse, curthread);
}
break;
case PS_LOCKWAIT:
level = curthread->locklevel - 1;
if (_LCK_BUSY(&curthread->lockusers[level]))
KSE_WAITQ_INSERT(curkse, curthread);
else
THR_SET_STATE(curthread, PS_RUNNING);
break;
case PS_JOIN:
case PS_MUTEX_WAIT:
case PS_RUNNING:
case PS_SIGSUSPEND:
case PS_SIGWAIT:
case PS_SUSPENDED:
case PS_DEADLOCK:
default:
/*
* These states don't timeout and don't need
* to be in the waiting queue.
*/
break;
}
while (curthread->state != PS_RUNNING) {
curthread->active = 0;
td_wait = KSE_WAITQ_FIRST(curkse);
kse_wait(curkse, td_wait);
if (td_wait != NULL) {
KSE_GET_TOD(curkse, &ts);
if (thr_timedout(curthread, &ts)) {
/* Indicate the thread timedout: */
td_wait->timeout = 1;
/* Make the thread runnable. */
THR_SET_STATE(td_wait, PS_RUNNING);
KSE_WAITQ_REMOVE(curkse, td_wait);
}
}
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
kse_check_signals(curkse);
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
}
/* Remove the frame reference. */
curthread->curframe = NULL;
/* Unlock the scheduling queue. */
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
/*
* Continue the thread at its current frame:
*/
DBG_MSG("Continuing bound thread %p\n", curthread);
_thread_switch(&curthread->tmbx, &curkse->k_mbx.km_curthread);
PANIC("Thread has returned from _thread_switch");
}
#endif
void
dump_queues(struct kse *curkse)
{
struct pthread *thread;
DBG_MSG("Threads in waiting queue:\n");
TAILQ_FOREACH(thread, &curkse->k_kseg->kg_schedq.sq_waitq, pqe) {
DBG_MSG(" thread %p, state %d, blocked %d\n",
thread, thread->state, thread->blocked);
}
}
/*
* This is the scheduler for a KSE which runs multiple threads.
*/
static void
kse_sched_multi(struct kse *curkse)
{
struct pthread *curthread, *td_wait;
struct pthread_sigframe *curframe;
int ret;
THR_ASSERT(curkse->k_mbx.km_curthread == NULL,
"Mailbox not null in kse_sched_multi");
/* Check for first time initialization: */
if ((curkse->k_flags & KF_INITIALIZED) == 0) {
/* Setup this KSEs specific data. */
_ksd_setprivate(&curkse->k_ksd);
_set_curkse(curkse);
/* Set this before grabbing the context. */
curkse->k_flags |= KF_INITIALIZED;
}
/* This may have returned from a kse_release(). */
if (KSE_WAITING(curkse)) {
DBG_MSG("Entered upcall when KSE is waiting.");
KSE_CLEAR_WAIT(curkse);
}
/* Lock the scheduling lock. */
curthread = curkse->k_curthread;
if ((curthread == NULL) || (curthread->need_switchout == 0)) {
/* This is an upcall; take the scheduler lock. */
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
}
/*
* If the current thread was completed in another KSE, then
* it will be in the run queue. Don't mark it as being blocked.
*/
if ((curthread != NULL) &&
((curthread->flags & THR_FLAGS_IN_RUNQ) == 0) &&
(curthread->need_switchout == 0)) {
/*
* Assume the current thread is blocked; when the
* completed threads are checked and if the current
* thread is among the completed, the blocked flag
* will be cleared.
*/
curthread->blocked = 1;
}
/* Check for any unblocked threads in the kernel. */
kse_check_completed(curkse);
/*
* Check for threads that have timed-out.
*/
kse_check_waitq(curkse);
/*
* Switchout the current thread, if necessary, as the last step
* so that it is inserted into the run queue (if it's runnable)
* _after_ any other threads that were added to it above.
*/
if (curthread == NULL)
; /* Nothing to do here. */
else if ((curthread->need_switchout == 0) &&
(curthread->blocked == 0) && (THR_IN_CRITICAL(curthread))) {
/*
* Resume the thread and tell it to yield when
* it leaves the critical region.
*/
curthread->critical_yield = 1;
curthread->active = 1;
if ((curthread->flags & THR_FLAGS_IN_RUNQ) != 0)
KSE_RUNQ_REMOVE(curkse, curthread);
curkse->k_curthread = curthread;
curthread->kse = curkse;
DBG_MSG("Continuing thread %p in critical region\n",
curthread);
kse_wakeup_multi(curkse);
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
ret = _thread_switch(&curthread->tmbx,
&curkse->k_mbx.km_curthread);
if (ret != 0)
PANIC("Can't resume thread in critical region\n");
}
else if ((curthread->flags & THR_FLAGS_IN_RUNQ) == 0)
kse_switchout_thread(curkse, curthread);
curkse->k_curthread = NULL;
kse_wakeup_multi(curkse);
/* This has to be done without the scheduling lock held. */
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
kse_check_signals(curkse);
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
#ifdef DEBUG_THREAD_KERN
dump_queues(curkse);
#endif
/* Check if there are no threads ready to run: */
while (((curthread = KSE_RUNQ_FIRST(curkse)) == NULL) &&
(curkse->k_kseg->kg_threadcount != 0)) {
/*
* Wait for a thread to become active or until there are
* no more threads.
*/
td_wait = KSE_WAITQ_FIRST(curkse);
kse_wait(curkse, td_wait);
kse_check_completed(curkse);
kse_check_waitq(curkse);
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
kse_check_signals(curkse);
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
}
/* Check for no more threads: */
if (curkse->k_kseg->kg_threadcount == 0) {
/*
* Normally this shouldn't return, but it will if there
* are other KSEs running that create new threads that
* are assigned to this KSE[G]. For instance, if a scope
* system thread were to create a scope process thread
* and this kse[g] is the initial kse[g], then that newly
* created thread would be assigned to us (the initial
* kse[g]).
*/
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
kse_fini(curkse);
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
curthread = KSE_RUNQ_FIRST(curkse);
}
THR_ASSERT(curthread != NULL,
"Return from kse_wait/fini without thread.");
THR_ASSERT(curthread->state != PS_DEAD,
"Trying to resume dead thread!");
KSE_RUNQ_REMOVE(curkse, curthread);
/*
* Make the selected thread the current thread.
*/
curkse->k_curthread = curthread;
/*
* Make sure the current thread's kse points to this kse.
*/
curthread->kse = curkse;
/*
* Reset accounting.
*/
curthread->tmbx.tm_uticks = 0;
curthread->tmbx.tm_sticks = 0;
/*
* Reset the time slice if this thread is running for the first
* time or running again after using its full time slice allocation.
*/
if (curthread->slice_usec == -1)
curthread->slice_usec = 0;
/* Mark the thread active. */
curthread->active = 1;
/* Remove the frame reference. */
curframe = curthread->curframe;
curthread->curframe = NULL;
kse_wakeup_multi(curkse);
/*
* The thread's current signal frame will only be NULL if it
* is being resumed after being blocked in the kernel. In
* this case, and if the thread needs to run down pending
* signals or needs a cancellation check, we need to add a
* signal frame to the thread's context.
*/
#ifdef NOT_YET
if ((curframe == NULL) && ((curthread->have_signals != 0) ||
(((curthread->cancelflags & THR_AT_CANCEL_POINT) == 0) &&
((curthread->cancelflags & PTHREAD_CANCEL_ASYNCHRONOUS) != 0))))
signalcontext(&curthread->tmbx.tm_context, 0,
(__sighandler_t *)thr_resume_wrapper);
#else
if ((curframe == NULL) && (curthread->have_signals != 0))
signalcontext(&curthread->tmbx.tm_context, 0,
(__sighandler_t *)thr_resume_wrapper);
#endif
/*
* Continue the thread at its current frame:
*/
if (curthread->lock_switch != 0) {
/*
* This thread came from a scheduler switch; it will
* unlock the scheduler lock and set the mailbox.
*/
ret = _thread_switch(&curthread->tmbx, NULL);
} else {
/* This thread won't unlock the scheduler lock. */
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
ret = _thread_switch(&curthread->tmbx,
&curkse->k_mbx.km_curthread);
}
if (ret != 0)
PANIC("Thread has returned from _thread_switch");
/* This point should not be reached. */
PANIC("Thread has returned from _thread_switch");
}
static void
kse_check_signals(struct kse *curkse)
{
sigset_t sigset;
int i;
/* Deliver posted signals. */
for (i = 0; i < _SIG_WORDS; i++) {
atomic_swap_int(&curkse->k_mbx.km_sigscaught.__bits[i],
0, &sigset.__bits[i]);
}
if (SIGNOTEMPTY(sigset)) {
/*
* Dispatch each signal.
*
* XXX - There is no siginfo for any of these.
* I think there should be, especially for
* signals from other processes (si_pid, si_uid).
*/
for (i = 1; i < NSIG; i++) {
if (sigismember(&sigset, i) != 0) {
DBG_MSG("Dispatching signal %d\n", i);
_thr_sig_dispatch(curkse, i,
NULL /* no siginfo */);
}
}
sigemptyset(&sigset);
__sys_sigprocmask(SIG_SETMASK, &sigset, NULL);
}
}
static void
thr_resume_wrapper(int unused_1, siginfo_t *unused_2, ucontext_t *ucp)
{
struct pthread *curthread = _get_curthread();
thr_resume_check(curthread, ucp, NULL);
}
static void
thr_resume_check(struct pthread *curthread, ucontext_t *ucp,
struct pthread_sigframe *psf)
{
/* Check signals before cancellations. */
while (curthread->have_signals != 0) {
/* Clear the pending flag. */
curthread->have_signals = 0;
/*
* It's perfectly valid, though not portable, for
* signal handlers to munge their interrupted context
* and expect to return to it. Ensure we use the
* correct context when running down signals.
*/
_thr_sig_rundown(curthread, ucp, psf);
}
#ifdef NOT_YET
if (((curthread->cancelflags & THR_AT_CANCEL_POINT) == 0) &&
((curthread->cancelflags & PTHREAD_CANCEL_ASYNCHRONOUS) != 0))
pthread_testcancel();
#endif
}
/*
* Clean up a thread. This must be called with the thread's KSE
* scheduling lock held. The thread must be a thread from the
* KSE's group.
*/
static void
thr_cleanup(struct kse *curkse, struct pthread *thread)
{
struct pthread *joiner;
if ((joiner = thread->joiner) != NULL) {
thread->joiner = NULL;
if ((joiner->state == PS_JOIN) &&
(joiner->join_status.thread == thread)) {
joiner->join_status.thread = NULL;
/* Set the return status for the joining thread: */
joiner->join_status.ret = thread->ret;
/* Make the thread runnable. */
if (joiner->kseg == curkse->k_kseg)
_thr_setrunnable_unlocked(joiner);
else {
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
KSE_SCHED_LOCK(curkse, joiner->kseg);
_thr_setrunnable_unlocked(joiner);
KSE_SCHED_UNLOCK(curkse, joiner->kseg);
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
}
}
thread->attr.flags |= PTHREAD_DETACHED;
}
if ((thread->attr.flags & PTHREAD_SCOPE_PROCESS) == 0) {
/*
* Remove the thread from the KSEG's list of threads.
*/
KSEG_THRQ_REMOVE(thread->kseg, thread);
/*
* Migrate the thread to the main KSE so that this
* KSE and KSEG can be cleaned when their last thread
* exits.
*/
thread->kseg = _kse_initial->k_kseg;
thread->kse = _kse_initial;
}
thread->flags |= THR_FLAGS_GC_SAFE;
/*
* We can't hold the thread list lock while holding the
* scheduler lock.
*/
KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
DBG_MSG("Adding thread %p to GC list\n", thread);
KSE_LOCK_ACQUIRE(curkse, &_thread_list_lock);
THR_GCLIST_ADD(thread);
KSE_LOCK_RELEASE(curkse, &_thread_list_lock);
KSE_SCHED_LOCK(curkse, curkse->k_kseg);
}
void
_thr_gc(struct pthread *curthread)
{
struct pthread *td, *td_next;
kse_critical_t crit;
TAILQ_HEAD(, pthread) worklist;
TAILQ_INIT(&worklist);
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &_thread_list_lock);
/* Check the threads waiting for GC. */
for (td = TAILQ_FIRST(&_thread_gc_list); td != NULL; td = td_next) {
td_next = TAILQ_NEXT(td, gcle);
if ((td->flags & THR_FLAGS_GC_SAFE) == 0)
continue;
#ifdef NOT_YET
else if (((td->attr.flags & PTHREAD_SCOPE_PROCESS) != 0) &&
(td->kse->k_mbx.km_flags == 0)) {
/*
* The thread and KSE are operating on the same
* stack. Wait for the KSE to exit before freeing
* the thread's stack as well as everything else.
*/
continue;
}
#endif
/*
* Remove the thread from the GC list. If the thread
* isn't yet detached, it will get added back to the
* GC list at a later time.
*/
THR_GCLIST_REMOVE(td);
DBG_MSG("Freeing thread %p stack\n", td);
/*
* We can free the thread stack since it's no longer
* in use.
*/
_thr_stack_free(&td->attr);
if (((td->attr.flags & PTHREAD_DETACHED) != 0) &&
(td->refcount == 0)) {
/*
* The thread has detached and is no longer
* referenced. It is safe to remove all
* remnants of the thread.
*/
THR_LIST_REMOVE(td);
TAILQ_INSERT_HEAD(&worklist, td, gcle);
}
}
KSE_LOCK_RELEASE(curthread->kse, &_thread_list_lock);
_kse_critical_leave(crit);
while ((td = TAILQ_FIRST(&worklist)) != NULL) {
TAILQ_REMOVE(&worklist, td, gcle);
if ((td->attr.flags & PTHREAD_SCOPE_PROCESS) != 0) {
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
kse_free_unlocked(td->kse);
kseg_free_unlocked(td->kseg);
KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
_kse_critical_leave(crit);
}
DBG_MSG("Freeing thread %p\n", td);
_thr_free(curthread, td);
}
}
/*
* Only new threads that are running or suspended may be scheduled.
*/
int
_thr_schedule_add(struct pthread *curthread, struct pthread *newthread)
{
struct kse *curkse;
kse_critical_t crit;
int need_start;
int ret;
/*
* If this is the first time creating a thread, make sure
* the mailbox is set for the current thread.
*/
if ((newthread->attr.flags & PTHREAD_SCOPE_SYSTEM) != 0) {
#ifdef NOT_YET
/* We use the thread's stack as the KSE's stack. */
new_thread->kse->k_mbx.km_stack.ss_sp =
new_thread->attr.stackaddr_attr;
new_thread->kse->k_mbx.km_stack.ss_size =
new_thread->attr.stacksize_attr;
#endif
/*
* No need to lock the scheduling queue since the
* KSE/KSEG pair have not yet been started.
*/
KSEG_THRQ_ADD(newthread->kseg, newthread);
TAILQ_INSERT_TAIL(&newthread->kseg->kg_kseq, newthread->kse,
k_kgqe);
newthread->kseg->kg_ksecount = 1;
if (newthread->state == PS_RUNNING)
THR_RUNQ_INSERT_TAIL(newthread);
newthread->kse->k_curthread = NULL;
newthread->kse->k_mbx.km_flags = 0;
newthread->kse->k_mbx.km_func = (kse_func_t *)kse_sched_multi;
newthread->kse->k_mbx.km_quantum = 0;
/*
* This thread needs a new KSE and KSEG.
*/
crit = _kse_critical_enter();
curkse = _get_curkse();
_ksd_setprivate(&newthread->kse->k_ksd);
newthread->kse->k_flags |= KF_INITIALIZED;
ret = kse_create(&newthread->kse->k_mbx, 1);
if (ret != 0)
ret = errno;
_ksd_setprivate(&curkse->k_ksd);
_kse_critical_leave(crit);
}
else {
/*
* Lock the KSE and add the new thread to its list of
* assigned threads. If the new thread is runnable, also
* add it to the KSE's run queue.
*/
need_start = 0;
KSE_SCHED_LOCK(curthread->kse, newthread->kseg);
KSEG_THRQ_ADD(newthread->kseg, newthread);
if (newthread->state == PS_RUNNING)
THR_RUNQ_INSERT_TAIL(newthread);
if ((newthread->kse->k_flags & KF_STARTED) == 0) {
/*
* This KSE hasn't been started yet. Start it
* outside of holding the lock.
*/
newthread->kse->k_flags |= KF_STARTED;
newthread->kse->k_mbx.km_func =
(kse_func_t *)kse_sched_multi;
newthread->kse->k_mbx.km_flags = 0;
need_start = 1;
}
KSE_SCHED_UNLOCK(curthread->kse, newthread->kseg);
if (need_start != 0)
kse_create(&newthread->kse->k_mbx, 0);
else if ((newthread->state == PS_RUNNING) &&
KSE_IS_IDLE(newthread->kse)) {
/*
* The thread is being scheduled on another KSEG.
*/
kse_wakeup_one(newthread);
}
ret = 0;
}
return (ret);
}
void
kse_waitq_insert(struct pthread *thread)
{
struct pthread *td;
if (thread->wakeup_time.tv_sec == -1)
TAILQ_INSERT_TAIL(&thread->kse->k_schedq->sq_waitq, thread,
pqe);
else {
td = TAILQ_FIRST(&thread->kse->k_schedq->sq_waitq);
while ((td != NULL) && (td->wakeup_time.tv_sec != -1) &&
((td->wakeup_time.tv_sec < thread->wakeup_time.tv_sec) ||
((td->wakeup_time.tv_sec == thread->wakeup_time.tv_sec) &&
(td->wakeup_time.tv_nsec <= thread->wakeup_time.tv_nsec))))
td = TAILQ_NEXT(td, pqe);
if (td == NULL)
TAILQ_INSERT_TAIL(&thread->kse->k_schedq->sq_waitq,
thread, pqe);
else
TAILQ_INSERT_BEFORE(td, thread, pqe);
}
thread->flags |= THR_FLAGS_IN_WAITQ;
}
/*
* This must be called with the scheduling lock held.
*/
static void
kse_check_completed(struct kse *kse)
{
struct pthread *thread;
struct kse_thr_mailbox *completed;
if ((completed = kse->k_mbx.km_completed) != NULL) {
kse->k_mbx.km_completed = NULL;
while (completed != NULL) {
thread = completed->tm_udata;
DBG_MSG("Found completed thread %p, name %s\n",
thread,
(thread->name == NULL) ? "none" : thread->name);
thread->blocked = 0;
if (thread != kse->k_curthread) {
if ((thread->flags & THR_FLAGS_SUSPENDED) != 0)
THR_SET_STATE(thread, PS_SUSPENDED);
else
KSE_RUNQ_INSERT_TAIL(kse, thread);
if ((thread->kse != kse) &&
(thread->kse->k_curthread == thread)) {
thread->kse->k_curthread = NULL;
thread->active = 0;
}
}
completed = completed->tm_next;
}
}
}
/*
* This must be called with the scheduling lock held.
*/
static void
kse_check_waitq(struct kse *kse)
{
struct pthread *pthread;
struct timespec ts;
KSE_GET_TOD(kse, &ts);
/*
* Wake up threads that have timedout. This has to be
* done before adding the current thread to the run queue
* so that a CPU intensive thread doesn't get preference
* over waiting threads.
*/
while (((pthread = KSE_WAITQ_FIRST(kse)) != NULL) &&
thr_timedout(pthread, &ts)) {
/* Remove the thread from the wait queue: */
KSE_WAITQ_REMOVE(kse, pthread);
DBG_MSG("Found timedout thread %p in waitq\n", pthread);
/* Indicate the thread timedout: */
pthread->timeout = 1;
/* Add the thread to the priority queue: */
if ((pthread->flags & THR_FLAGS_SUSPENDED) != 0)
THR_SET_STATE(pthread, PS_SUSPENDED);
else {
THR_SET_STATE(pthread, PS_RUNNING);
KSE_RUNQ_INSERT_TAIL(kse, pthread);
}
}
}
static int
thr_timedout(struct pthread *thread, struct timespec *curtime)
{
if (thread->wakeup_time.tv_sec < 0)
return (0);
else if (thread->wakeup_time.tv_sec > curtime->tv_sec)
return (0);
else if ((thread->wakeup_time.tv_sec == curtime->tv_sec) &&
(thread->wakeup_time.tv_nsec > curtime->tv_nsec))
return (0);
else
return (1);
}
/*
* This must be called with the scheduling lock held.
*
* Each thread has a time slice, a wakeup time (used when it wants
* to wait for a specified amount of time), a run state, and an
* active flag.
*
* When a thread gets run by the scheduler, the active flag is
* set to non-zero (1). When a thread performs an explicit yield
* or schedules a state change, it enters the scheduler and the
* active flag is cleared. When the active flag is still seen
* set in the scheduler, that means that the thread is blocked in
* the kernel (because it is cleared before entering the scheduler
* in all other instances).
*
* The wakeup time is only set for those states that can timeout.
* It is set to (-1, -1) for all other instances.
*
* The thread's run state, aside from being useful when debugging,
* is used to place the thread in an appropriate queue. There
* are 2 basic queues:
*
* o run queue - queue ordered by priority for all threads
* that are runnable
* o waiting queue - queue sorted by wakeup time for all threads
* that are not otherwise runnable (not blocked
* in kernel, not waiting for locks)
*
* The thread's time slice is used for round-robin scheduling
* (the default scheduling policy). While a SCHED_RR thread
* is runnable it's time slice accumulates. When it reaches
* the time slice interval, it gets reset and added to the end
* of the queue of threads at its priority. When a thread no
* longer becomes runnable (blocks in kernel, waits, etc), its
* time slice is reset.
*
* The job of kse_switchout_thread() is to handle all of the above.
*/
static void
kse_switchout_thread(struct kse *kse, struct pthread *thread)
{
int level;
int i;
/*
* Place the currently running thread into the
* appropriate queue(s).
*/
DBG_MSG("Switching out thread %p, state %d\n", thread, thread->state);
THR_DEACTIVATE_LAST_LOCK(thread);
if (thread->blocked != 0) {
thread->active = 0;
thread->need_switchout = 0;
/* This thread must have blocked in the kernel. */
/* thread->slice_usec = -1;*/ /* restart timeslice */
/*
* XXX - Check for pending signals for this thread to
* see if we need to interrupt it in the kernel.
*/
/* if (thread->check_pending != 0) */
if ((thread->slice_usec != -1) &&
(thread->attr.sched_policy != SCHED_FIFO))
thread->slice_usec += (thread->tmbx.tm_uticks
+ thread->tmbx.tm_sticks) * _clock_res_usec;
}
else {
switch (thread->state) {
case PS_DEAD:
/*
* The scheduler is operating on a different
* stack. It is safe to do garbage collecting
* here.
*/
thread->active = 0;
thread->need_switchout = 0;
thr_cleanup(kse, thread);
return;
break;
case PS_RUNNING:
if ((thread->flags & THR_FLAGS_SUSPENDED) != 0)
THR_SET_STATE(thread, PS_SUSPENDED);
break;
case PS_COND_WAIT:
case PS_SLEEP_WAIT:
/* Insert into the waiting queue: */
KSE_WAITQ_INSERT(kse, thread);
break;
case PS_LOCKWAIT:
/*
* This state doesn't timeout.
*/
thread->wakeup_time.tv_sec = -1;
thread->wakeup_time.tv_nsec = -1;
level = thread->locklevel - 1;
if (_LCK_BUSY(&thread->lockusers[level]))
KSE_WAITQ_INSERT(kse, thread);
else
THR_SET_STATE(thread, PS_RUNNING);
break;
case PS_JOIN:
case PS_MUTEX_WAIT:
case PS_SIGSUSPEND:
case PS_SIGWAIT:
case PS_SUSPENDED:
case PS_DEADLOCK:
default:
/*
* These states don't timeout.
*/
thread->wakeup_time.tv_sec = -1;
thread->wakeup_time.tv_nsec = -1;
/* Insert into the waiting queue: */
KSE_WAITQ_INSERT(kse, thread);
break;
}
if (thread->state != PS_RUNNING) {
/* Restart the time slice: */
thread->slice_usec = -1;
} else {
if (thread->need_switchout != 0)
/*
* The thread yielded on its own;
* restart the timeslice.
*/
thread->slice_usec = -1;
else if ((thread->slice_usec != -1) &&
(thread->attr.sched_policy != SCHED_FIFO)) {
thread->slice_usec += (thread->tmbx.tm_uticks
+ thread->tmbx.tm_sticks) * _clock_res_usec;
/* Check for time quantum exceeded: */
if (thread->slice_usec > TIMESLICE_USEC)
thread->slice_usec = -1;
}
if (thread->slice_usec == -1) {
/*
* The thread exceeded its time quantum or
* it yielded the CPU; place it at the tail
* of the queue for its priority.
*/
KSE_RUNQ_INSERT_TAIL(kse, thread);
} else {
/*
* The thread hasn't exceeded its interval
* Place it at the head of the queue for its
* priority.
*/
KSE_RUNQ_INSERT_HEAD(kse, thread);
}
}
}
thread->active = 0;
thread->need_switchout = 0;
if (thread->check_pending != 0) {
/* Install pending signals into the frame. */
thread->check_pending = 0;
for (i = 0; i < _SIG_MAXSIG; i++) {
if (sigismember(&thread->sigpend, i) &&
!sigismember(&thread->tmbx.tm_context.uc_sigmask, i))
_thr_sig_add(thread, i, &thread->siginfo[i]);
}
}
}
/*
* This function waits for the smallest timeout value of any waiting
* thread, or until it receives a message from another KSE.
*
* This must be called with the scheduling lock held.
*/
static void
kse_wait(struct kse *kse, struct pthread *td_wait)
{
struct timespec ts, ts_sleep;
int saved_flags;
KSE_GET_TOD(kse, &ts);
if ((td_wait == NULL) || (td_wait->wakeup_time.tv_sec < 0)) {
/* Limit sleep to no more than 1 minute. */
ts_sleep.tv_sec = 60;
ts_sleep.tv_nsec = 0;
} else {
TIMESPEC_SUB(&ts_sleep, &td_wait->wakeup_time, &ts);
if (ts_sleep.tv_sec > 60) {
ts_sleep.tv_sec = 60;
ts_sleep.tv_nsec = 0;
}
}
/* Don't sleep for negative times. */
if ((ts_sleep.tv_sec >= 0) && (ts_sleep.tv_nsec >= 0)) {
KSE_SET_IDLE(kse);
kse->k_kseg->kg_idle_kses++;
KSE_SCHED_UNLOCK(kse, kse->k_kseg);
saved_flags = kse->k_mbx.km_flags;
kse->k_mbx.km_flags |= KMF_NOUPCALL;
kse_release(&ts_sleep);
kse->k_mbx.km_flags = saved_flags;
KSE_SCHED_LOCK(kse, kse->k_kseg);
if (KSE_IS_IDLE(kse)) {
KSE_CLEAR_IDLE(kse);
kse->k_kseg->kg_idle_kses--;
}
}
}
/*
* Avoid calling this kse_exit() so as not to confuse it with the
* system call of the same name.
*/
static void
kse_fini(struct kse *kse)
{
struct timespec ts;
struct kse_group *free_kseg = NULL;
if ((kse->k_kseg->kg_flags & KGF_SINGLE_THREAD) != 0)
kse_exit();
/*
* Check to see if this is one of the main kses.
*/
else if (kse->k_kseg != _kse_initial->k_kseg) {
/* Remove this KSE from the KSEG's list of KSEs. */
KSE_SCHED_LOCK(kse, kse->k_kseg);
TAILQ_REMOVE(&kse->k_kseg->kg_kseq, kse, k_kgqe);
kse->k_kseg->kg_ksecount--;
if (TAILQ_EMPTY(&kse->k_kseg->kg_kseq))
free_kseg = kse->k_kseg;
KSE_SCHED_UNLOCK(kse, kse->k_kseg);
/*
* Add this KSE to the list of free KSEs along with
* the KSEG if is now orphaned.
*/
#ifdef NOT_YET
KSE_LOCK_ACQUIRE(kse, &kse_lock);
if (free_kseg != NULL)
kseg_free_unlocked(free_kseg);
kse_free_unlocked(kse);
KSE_LOCK_RELEASE(kse, &kse_lock);
#endif
kse_exit();
/* Never returns. */
} else {
/*
* Wait for the last KSE/thread to exit, or for more
* threads to be created (it is possible for additional
* scope process threads to be created after the main
* thread exits).
*/
ts.tv_sec = 120;
ts.tv_nsec = 0;
KSE_SET_WAIT(kse);
KSE_SCHED_LOCK(kse, kse->k_kseg);
if ((active_kse_count > 1) &&
(kse->k_kseg->kg_threadcount == 0)) {
KSE_SCHED_UNLOCK(kse, kse->k_kseg);
kse_release(&ts);
/* The above never returns. */
}
else
KSE_SCHED_UNLOCK(kse, kse->k_kseg);
/* There are no more threads; exit this process: */
if (kse->k_kseg->kg_threadcount == 0) {
/* kse_exit(); */
__isthreaded = 0;
exit(0);
}
}
}
void
_thr_set_timeout(const struct timespec *timeout)
{
struct pthread *curthread = _get_curthread();
struct timespec ts;
/* Reset the timeout flag for the running thread: */
curthread->timeout = 0;
/* Check if the thread is to wait forever: */
if (timeout == NULL) {
/*
* Set the wakeup time to something that can be recognised as
* different to an actual time of day:
*/
curthread->wakeup_time.tv_sec = -1;
curthread->wakeup_time.tv_nsec = -1;
}
/* Check if no waiting is required: */
else if ((timeout->tv_sec == 0) && (timeout->tv_nsec == 0)) {
/* Set the wake up time to 'immediately': */
curthread->wakeup_time.tv_sec = 0;
curthread->wakeup_time.tv_nsec = 0;
} else {
/* Calculate the time for the current thread to wakeup: */
KSE_GET_TOD(curthread->kse, &ts);
TIMESPEC_ADD(&curthread->wakeup_time, &ts, timeout);
}
}
void
_thr_panic_exit(char *file, int line, char *msg)
{
char buf[256];
snprintf(buf, sizeof(buf), "(%s:%d) %s\n", file, line, msg);
__sys_write(2, buf, strlen(buf));
abort();
}
void
_thr_setrunnable(struct pthread *curthread, struct pthread *thread)
{
kse_critical_t crit;
crit = _kse_critical_enter();
KSE_SCHED_LOCK(curthread->kse, thread->kseg);
_thr_setrunnable_unlocked(thread);
KSE_SCHED_UNLOCK(curthread->kse, thread->kseg);
_kse_critical_leave(crit);
}
void
_thr_setrunnable_unlocked(struct pthread *thread)
{
if ((thread->kseg->kg_flags & KGF_SINGLE_THREAD) != 0) {
/* No silly queues for these threads. */
if ((thread->flags & THR_FLAGS_SUSPENDED) != 0)
THR_SET_STATE(thread, PS_SUSPENDED);
else
THR_SET_STATE(thread, PS_RUNNING);
} else if (thread->state != PS_RUNNING) {
if ((thread->flags & THR_FLAGS_IN_WAITQ) != 0)
KSE_WAITQ_REMOVE(thread->kse, thread);
if ((thread->flags & THR_FLAGS_SUSPENDED) != 0)
THR_SET_STATE(thread, PS_SUSPENDED);
else {
THR_SET_STATE(thread, PS_RUNNING);
if ((thread->blocked == 0) && (thread->active == 0) &&
(thread->flags & THR_FLAGS_IN_RUNQ) == 0)
THR_RUNQ_INSERT_TAIL(thread);
}
}
/*
* XXX - Threads are not yet assigned to specific KSEs; they are
* assigned to the KSEG. So the fact that a thread's KSE is
* waiting doesn't necessarily mean that it will be the KSE
* that runs the thread after the lock is granted. But we
* don't know if the other KSEs within the same KSEG are
* also in a waiting state or not so we err on the side of
* caution and wakeup the thread's last known KSE. We
* ensure that the threads KSE doesn't change while it's
* scheduling lock is held so it is safe to reference it
* (the KSE). If the KSE wakes up and doesn't find any more
* work it will again go back to waiting so no harm is done.
*/
kse_wakeup_one(thread);
}
static void
kse_wakeup_one(struct pthread *thread)
{
struct kse *ke;
if (KSE_IS_IDLE(thread->kse)) {
KSE_CLEAR_IDLE(thread->kse);
thread->kseg->kg_idle_kses--;
KSE_WAKEUP(thread->kse);
} else {
TAILQ_FOREACH(ke, &thread->kseg->kg_kseq, k_kgqe) {
if (KSE_IS_IDLE(ke)) {
KSE_CLEAR_IDLE(ke);
ke->k_kseg->kg_idle_kses--;
KSE_WAKEUP(ke);
return;
}
}
}
}
static void
kse_wakeup_multi(struct kse *curkse)
{
struct kse *ke;
int tmp;
if ((tmp = KSE_RUNQ_THREADS(curkse)) && curkse->k_kseg->kg_idle_kses) {
TAILQ_FOREACH(ke, &curkse->k_kseg->kg_kseq, k_kgqe) {
if (KSE_IS_IDLE(ke)) {
KSE_CLEAR_IDLE(ke);
ke->k_kseg->kg_idle_kses--;
KSE_WAKEUP(ke);
if (--tmp == 0)
break;
}
}
}
}
struct pthread *
_get_curthread(void)
{
return (_ksd_curthread);
}
/* This assumes the caller has disabled upcalls. */
struct kse *
_get_curkse(void)
{
return (_ksd_curkse);
}
void
_set_curkse(struct kse *kse)
{
_ksd_setprivate(&kse->k_ksd);
}
/*
* Allocate a new KSEG.
*
* We allow the current thread to be NULL in the case that this
* is the first time a KSEG is being created (library initialization).
* In this case, we don't need to (and can't) take any locks.
*/
struct kse_group *
_kseg_alloc(struct pthread *curthread)
{
struct kse_group *kseg = NULL;
kse_critical_t crit;
if ((curthread != NULL) && (free_kseg_count > 0)) {
/* Use the kse lock for the kseg queue. */
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
if ((kseg = TAILQ_FIRST(&free_kse_groupq)) != NULL) {
TAILQ_REMOVE(&free_kse_groupq, kseg, kg_qe);
free_kseg_count--;
active_kseg_count++;
TAILQ_INSERT_TAIL(&active_kse_groupq, kseg, kg_qe);
}
KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
_kse_critical_leave(crit);
if (kseg)
kseg_reinit(kseg);
}
/*
* If requested, attempt to allocate a new KSE group only if the
* KSE allocation was successful and a KSE group wasn't found in
* the free list.
*/
if ((kseg == NULL) &&
((kseg = (struct kse_group *)malloc(sizeof(*kseg))) != NULL)) {
if (_pq_alloc(&kseg->kg_schedq.sq_runq,
THR_MIN_PRIORITY, THR_LAST_PRIORITY) != 0) {
free(kseg);
kseg = NULL;
} else {
kseg_init(kseg);
/* Add the KSEG to the list of active KSEGs. */
if (curthread != NULL) {
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
active_kseg_count++;
TAILQ_INSERT_TAIL(&active_kse_groupq,
kseg, kg_qe);
KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
_kse_critical_leave(crit);
} else {
active_kseg_count++;
TAILQ_INSERT_TAIL(&active_kse_groupq,
kseg, kg_qe);
}
}
}
return (kseg);
}
/*
* This must be called with the kse lock held and when there are
* no more threads that reference it.
*/
static void
kseg_free_unlocked(struct kse_group *kseg)
{
TAILQ_REMOVE(&active_kse_groupq, kseg, kg_qe);
TAILQ_INSERT_HEAD(&free_kse_groupq, kseg, kg_qe);
free_kseg_count++;
active_kseg_count--;
}
void
_kseg_free(struct kse_group *kseg)
{
struct kse *curkse;
kse_critical_t crit;
crit = _kse_critical_enter();
curkse = _get_curkse();
KSE_LOCK_ACQUIRE(curkse, &kse_lock);
kseg_free_unlocked(kseg);
KSE_LOCK_RELEASE(curkse, &kse_lock);
_kse_critical_leave(crit);
}
/*
* Allocate a new KSE.
*
* We allow the current thread to be NULL in the case that this
* is the first time a KSE is being created (library initialization).
* In this case, we don't need to (and can't) take any locks.
*/
struct kse *
_kse_alloc(struct pthread *curthread)
{
struct kse *kse = NULL;
kse_critical_t crit;
int need_ksd = 0;
int i;
if ((curthread != NULL) && (free_kse_count > 0)) {
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
/* Search for a finished KSE. */
kse = TAILQ_FIRST(&free_kseq);
#ifdef NOT_YET
#define KEMBX_DONE 0x04
while ((kse != NULL) &&
((kse->k_mbx.km_flags & KEMBX_DONE) == 0)) {
kse = TAILQ_NEXT(kse, k_qe);
}
#undef KEMBX_DONE
#endif
if (kse != NULL) {
TAILQ_REMOVE(&free_kseq, kse, k_qe);
free_kse_count--;
TAILQ_INSERT_TAIL(&active_kseq, kse, k_qe);
active_kse_count++;
}
KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
_kse_critical_leave(crit);
if (kse != NULL)
kse_reinit(kse);
}
if ((kse == NULL) &&
((kse = (struct kse *)malloc(sizeof(*kse))) != NULL)) {
bzero(kse, sizeof(*kse));
/* Initialize the lockusers. */
for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
_lockuser_init(&kse->k_lockusers[i], (void *)kse);
_LCK_SET_PRIVATE2(&kse->k_lockusers[i], NULL);
}
/* _lock_init(kse->k_lock, ...) */
/* We had to malloc a kse; mark it as needing a new ID.*/
need_ksd = 1;
/*
* Create the KSE context.
*
* XXX - For now this is done here in the allocation.
* In the future, we may want to have it done
* outside the allocation so that scope system
* threads (one thread per KSE) are not required
* to have a stack for an unneeded kse upcall.
*/
kse->k_mbx.km_func = (kse_func_t *)kse_sched_multi;
kse->k_mbx.km_stack.ss_sp = (char *)malloc(KSE_STACKSIZE);
kse->k_mbx.km_stack.ss_size = KSE_STACKSIZE;
kse->k_mbx.km_udata = (void *)kse;
kse->k_mbx.km_quantum = 20000;
/*
* We need to keep a copy of the stack in case it
* doesn't get used; a KSE running a scope system
* thread will use that thread's stack.
*/
kse->k_stack.ss_sp = kse->k_mbx.km_stack.ss_sp;
kse->k_stack.ss_size = kse->k_mbx.km_stack.ss_size;
if (kse->k_mbx.km_stack.ss_sp == NULL) {
for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
_lockuser_destroy(&kse->k_lockusers[i]);
}
/* _lock_destroy(&kse->k_lock); */
free(kse);
kse = NULL;
}
}
if ((kse != NULL) && (need_ksd != 0)) {
/* This KSE needs initialization. */
if (curthread != NULL) {
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
}
/* Initialize KSD inside of the lock. */
if (_ksd_create(&kse->k_ksd, (void *)kse, sizeof(*kse)) != 0) {
if (curthread != NULL) {
KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
_kse_critical_leave(crit);
}
free(kse->k_mbx.km_stack.ss_sp);
for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
_lockuser_destroy(&kse->k_lockusers[i]);
}
free(kse);
return (NULL);
}
kse->k_flags = 0;
TAILQ_INSERT_TAIL(&active_kseq, kse, k_qe);
active_kse_count++;
if (curthread != NULL) {
KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
_kse_critical_leave(crit);
}
}
return (kse);
}
static void
kse_reinit(struct kse *kse)
{
bzero(&kse->k_mbx, sizeof(struct kse_mailbox));
kse->k_curthread = 0;
kse->k_kseg = 0;
kse->k_schedq = 0;
kse->k_locklevel = 0;
sigemptyset(&kse->k_sigmask);
bzero(&kse->k_sigq, sizeof(kse->k_sigq));
kse->k_check_sigq = 0;
kse->k_flags = 0;
kse->k_waiting = 0;
kse->k_error = 0;
kse->k_cpu = 0;
kse->k_done = 0;
}
void
kse_free_unlocked(struct kse *kse)
{
TAILQ_REMOVE(&active_kseq, kse, k_qe);
active_kse_count--;
kse->k_kseg = NULL;
kse->k_mbx.km_quantum = 20000;
kse->k_flags &= ~KF_INITIALIZED;
TAILQ_INSERT_HEAD(&free_kseq, kse, k_qe);
free_kse_count++;
}
void
_kse_free(struct pthread *curthread, struct kse *kse)
{
kse_critical_t crit;
if (curthread == NULL)
kse_free_unlocked(kse);
else {
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
kse_free_unlocked(kse);
KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
_kse_critical_leave(crit);
}
}
static void
kseg_init(struct kse_group *kseg)
{
kseg_reinit(kseg);
_lock_init(&kseg->kg_lock, LCK_ADAPTIVE, _kse_lock_wait,
_kse_lock_wakeup);
}
static void
kseg_reinit(struct kse_group *kseg)
{
TAILQ_INIT(&kseg->kg_kseq);
TAILQ_INIT(&kseg->kg_threadq);
TAILQ_INIT(&kseg->kg_schedq.sq_waitq);
kseg->kg_threadcount = 0;
kseg->kg_ksecount = 0;
kseg->kg_idle_kses = 0;
kseg->kg_flags = 0;
}
struct pthread *
_thr_alloc(struct pthread *curthread)
{
kse_critical_t crit;
void *p;
struct pthread *thread = NULL;
if (curthread != NULL) {
if (GC_NEEDED())
_thr_gc(curthread);
if (free_thread_count > 0) {
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &thread_lock);
if ((thread = TAILQ_FIRST(&free_threadq)) != NULL) {
TAILQ_REMOVE(&free_threadq, thread, tle);
free_thread_count--;
}
KSE_LOCK_RELEASE(curthread->kse, &thread_lock);
_kse_critical_leave(crit);
}
}
if (thread == NULL) {
p = malloc(sizeof(struct pthread) + THR_ALIGNBYTES);
if (p != NULL) {
thread = (struct pthread *)THR_ALIGN(p);
thread->alloc_addr = p;
}
}
return (thread);
}
void
_thr_free(struct pthread *curthread, struct pthread *thread)
{
kse_critical_t crit;
int i;
DBG_MSG("Freeing thread %p\n", thread);
if ((curthread == NULL) || (free_thread_count >= MAX_CACHED_THREADS)) {
for (i = 0; i < MAX_THR_LOCKLEVEL; i++) {
_lockuser_destroy(&thread->lockusers[i]);
}
_lock_destroy(&thread->lock);
free(thread->alloc_addr);
}
else {
crit = _kse_critical_enter();
KSE_LOCK_ACQUIRE(curthread->kse, &thread_lock);
TAILQ_INSERT_HEAD(&free_threadq, thread, tle);
free_thread_count++;
KSE_LOCK_RELEASE(curthread->kse, &thread_lock);
_kse_critical_leave(crit);
}
}