freebsd-dev/usr.sbin/mptutil/mpt_config.c
2011-12-30 10:58:14 +00:00

1200 lines
28 KiB
C

/*-
* Copyright (c) 2008 Yahoo!, Inc.
* All rights reserved.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$FreeBSD$");
#include <sys/param.h>
#include <sys/errno.h>
#include <err.h>
#include <fcntl.h>
#include <libutil.h>
#include <paths.h>
#ifdef DEBUG
#include <stdint.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "mptutil.h"
#ifdef DEBUG
static void dump_config(CONFIG_PAGE_RAID_VOL_0 *vol);
#endif
static long
dehumanize(const char *value)
{
char *vtp;
long iv;
if (value == NULL)
return (0);
iv = strtoq(value, &vtp, 0);
if (vtp == value || (vtp[0] != '\0' && vtp[1] != '\0')) {
return (0);
}
switch (vtp[0]) {
case 't': case 'T':
iv *= 1024;
case 'g': case 'G':
iv *= 1024;
case 'm': case 'M':
iv *= 1024;
case 'k': case 'K':
iv *= 1024;
case '\0':
break;
default:
return (0);
}
return (iv);
}
/*
* Lock the volume by opening its /dev device read/write. This will
* only work if nothing else has it opened (including mounts). We
* leak the fd on purpose since this application is not long-running.
*/
int
mpt_lock_volume(U8 VolumeBus, U8 VolumeID)
{
char path[MAXPATHLEN];
struct mpt_query_disk qd;
int error, vfd;
error = mpt_query_disk(VolumeBus, VolumeID, &qd);
if (error == ENOENT)
/*
* This means there isn't a CAM device associated with
* the volume, and thus it is already implicitly
* locked, so just return.
*/
return (0);
if (error) {
warnc(error, "Unable to lookup volume device name");
return (error);
}
snprintf(path, sizeof(path), "%s%s", _PATH_DEV, qd.devname);
vfd = open(path, O_RDWR);
if (vfd < 0) {
error = errno;
warn("Unable to lock volume %s", qd.devname);
return (error);
}
return (0);
}
static int
mpt_lock_physdisk(struct mpt_standalone_disk *disk)
{
char path[MAXPATHLEN];
int dfd, error;
snprintf(path, sizeof(path), "%s%s", _PATH_DEV, disk->devname);
dfd = open(path, O_RDWR);
if (dfd < 0) {
error = errno;
warn("Unable to lock disk %s", disk->devname);
return (error);
}
return (0);
}
static int
mpt_lookup_standalone_disk(const char *name, struct mpt_standalone_disk *disks,
int ndisks, int *index)
{
char *cp;
long bus, id;
int i;
/* Check for a raw <bus>:<id> string. */
bus = strtol(name, &cp, 0);
if (*cp == ':') {
id = strtol(cp + 1, &cp, 0);
if (*cp == '\0') {
if (bus < 0 || bus > 0xff || id < 0 || id > 0xff) {
return (EINVAL);
}
for (i = 0; i < ndisks; i++) {
if (disks[i].bus == (U8)bus &&
disks[i].target == (U8)id) {
*index = i;
return (0);
}
}
return (ENOENT);
}
}
if (name[0] == 'd' && name[1] == 'a') {
for (i = 0; i < ndisks; i++) {
if (strcmp(name, disks[i].devname) == 0) {
*index = i;
return (0);
}
}
return (ENOENT);
}
return (EINVAL);
}
/*
* Mark a standalone disk as being a physical disk.
*/
static int
mpt_create_physdisk(int fd, struct mpt_standalone_disk *disk, U8 *PhysDiskNum)
{
CONFIG_PAGE_HEADER header;
CONFIG_PAGE_RAID_PHYS_DISK_0 *config_page;
int error;
U32 ActionData;
error = mpt_read_config_page_header(fd, MPI_CONFIG_PAGETYPE_RAID_PHYSDISK,
0, 0, &header, NULL);
if (error)
return (error);
if (header.PageVersion > MPI_RAIDPHYSDISKPAGE0_PAGEVERSION) {
warnx("Unsupported RAID physdisk page 0 version %d",
header.PageVersion);
return (EOPNOTSUPP);
}
config_page = calloc(1, sizeof(CONFIG_PAGE_RAID_PHYS_DISK_0));
config_page->Header.PageType = MPI_CONFIG_PAGETYPE_RAID_PHYSDISK;
config_page->Header.PageNumber = 0;
config_page->Header.PageLength = sizeof(CONFIG_PAGE_RAID_PHYS_DISK_0) /
4;
config_page->PhysDiskIOC = 0; /* XXX */
config_page->PhysDiskBus = disk->bus;
config_page->PhysDiskID = disk->target;
/* XXX: Enclosure info for PhysDiskSettings? */
error = mpt_raid_action(fd, MPI_RAID_ACTION_CREATE_PHYSDISK, 0, 0, 0, 0,
config_page, sizeof(CONFIG_PAGE_RAID_PHYS_DISK_0), NULL,
&ActionData, sizeof(ActionData), NULL, NULL, 1);
if (error)
return (error);
*PhysDiskNum = ActionData & 0xff;
return (0);
}
static int
mpt_delete_physdisk(int fd, U8 PhysDiskNum)
{
return (mpt_raid_action(fd, MPI_RAID_ACTION_DELETE_PHYSDISK, 0, 0,
PhysDiskNum, 0, NULL, 0, NULL, NULL, 0, NULL, NULL, 0));
}
/*
* MPT's firmware does not have a clear command. Instead, we
* implement it by deleting each array and disk by hand.
*/
static int
clear_config(int ac, char **av)
{
CONFIG_PAGE_IOC_2 *ioc2;
CONFIG_PAGE_IOC_2_RAID_VOL *vol;
CONFIG_PAGE_IOC_3 *ioc3;
IOC_3_PHYS_DISK *disk;
CONFIG_PAGE_IOC_5 *ioc5;
IOC_5_HOT_SPARE *spare;
int ch, error, fd, i;
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
ioc2 = mpt_read_ioc_page(fd, 2, NULL);
if (ioc2 == NULL) {
error = errno;
warn("Failed to fetch volume list");
return (error);
}
/* Lock all the volumes first. */
vol = ioc2->RaidVolume;
for (i = 0; i < ioc2->NumActiveVolumes; vol++, i++) {
if (mpt_lock_volume(vol->VolumeBus, vol->VolumeID) < 0) {
warnx("Volume %s is busy and cannot be deleted",
mpt_volume_name(vol->VolumeBus, vol->VolumeID));
return (EBUSY);
}
}
printf(
"Are you sure you wish to clear the configuration on mpt%u? [y/N] ",
mpt_unit);
ch = getchar();
if (ch != 'y' && ch != 'Y') {
printf("\nAborting\n");
return (0);
}
/* Delete all the volumes. */
vol = ioc2->RaidVolume;
for (i = 0; i < ioc2->NumActiveVolumes; vol++, i++) {
error = mpt_raid_action(fd, MPI_RAID_ACTION_DELETE_VOLUME,
vol->VolumeBus, vol->VolumeID, 0,
MPI_RAID_ACTION_ADATA_DEL_PHYS_DISKS |
MPI_RAID_ACTION_ADATA_ZERO_LBA0, NULL, 0, NULL, NULL, 0,
NULL, NULL, 0);
if (error)
warnc(error, "Failed to delete volume %s",
mpt_volume_name(vol->VolumeBus, vol->VolumeID));
}
free(ioc2);
/* Delete all the spares. */
ioc5 = mpt_read_ioc_page(fd, 5, NULL);
if (ioc5 == NULL)
warn("Failed to fetch spare list");
else {
spare = ioc5->HotSpare;
for (i = 0; i < ioc5->NumHotSpares; spare++, i++)
if (mpt_delete_physdisk(fd, spare->PhysDiskNum) < 0)
warn("Failed to delete physical disk %d",
spare->PhysDiskNum);
free(ioc5);
}
/* Delete any RAID physdisks that may be left. */
ioc3 = mpt_read_ioc_page(fd, 3, NULL);
if (ioc3 == NULL)
warn("Failed to fetch drive list");
else {
disk = ioc3->PhysDisk;
for (i = 0; i < ioc3->NumPhysDisks; disk++, i++)
if (mpt_delete_physdisk(fd, disk->PhysDiskNum) < 0)
warn("Failed to delete physical disk %d",
disk->PhysDiskNum);
free(ioc3);
}
printf("mpt%d: Configuration cleared\n", mpt_unit);
mpt_rescan_bus(-1, -1);
close(fd);
return (0);
}
MPT_COMMAND(top, clear, clear_config);
#define RT_RAID0 0
#define RT_RAID1 1
#define RT_RAID1E 2
static struct raid_type_entry {
const char *name;
int raid_type;
} raid_type_table[] = {
{ "raid0", RT_RAID0 },
{ "raid-0", RT_RAID0 },
{ "raid1", RT_RAID1 },
{ "raid-1", RT_RAID1 },
{ "mirror", RT_RAID1 },
{ "raid1e", RT_RAID1E },
{ "raid-1e", RT_RAID1E },
{ NULL, 0 },
};
struct config_id_state {
struct mpt_standalone_disk *sdisks;
struct mpt_drive_list *list;
CONFIG_PAGE_IOC_2 *ioc2;
U8 target_id;
int nsdisks;
};
struct drive_info {
CONFIG_PAGE_RAID_PHYS_DISK_0 *info;
struct mpt_standalone_disk *sdisk;
};
struct volume_info {
int drive_count;
struct drive_info *drives;
};
/* Parse a comma-separated list of drives for a volume. */
static int
parse_volume(int fd, int raid_type, struct config_id_state *state,
char *volume_str, struct volume_info *info)
{
struct drive_info *dinfo;
U8 PhysDiskNum;
char *cp;
int count, error, i;
cp = volume_str;
for (count = 0; cp != NULL; count++) {
cp = strchr(cp, ',');
if (cp != NULL) {
cp++;
if (*cp == ',') {
warnx("Invalid drive list '%s'", volume_str);
return (EINVAL);
}
}
}
/* Validate the number of drives for this volume. */
switch (raid_type) {
case RT_RAID0:
if (count < 2) {
warnx("RAID0 requires at least 2 drives in each "
"array");
return (EINVAL);
}
break;
case RT_RAID1:
if (count != 2) {
warnx("RAID1 requires exactly 2 drives in each "
"array");
return (EINVAL);
}
break;
case RT_RAID1E:
if (count < 3) {
warnx("RAID1E requires at least 3 drives in each "
"array");
return (EINVAL);
}
break;
}
/* Validate each drive. */
info->drives = calloc(count, sizeof(struct drive_info));
info->drive_count = count;
for (dinfo = info->drives; (cp = strsep(&volume_str, ",")) != NULL;
dinfo++) {
/* If this drive is already a RAID phys just fetch the info. */
error = mpt_lookup_drive(state->list, cp, &PhysDiskNum);
if (error == 0) {
dinfo->info = mpt_pd_info(fd, PhysDiskNum, NULL);
if (dinfo->info == NULL)
return (errno);
continue;
}
/* See if it is a standalone disk. */
if (mpt_lookup_standalone_disk(cp, state->sdisks,
state->nsdisks, &i) < 0) {
error = errno;
warn("Unable to lookup drive %s", cp);
return (error);
}
dinfo->sdisk = &state->sdisks[i];
/* Lock the disk, we will create phys disk pages later. */
if (mpt_lock_physdisk(dinfo->sdisk) < 0)
return (errno);
}
return (0);
}
/*
* Add RAID physdisk pages for any standalone disks that a volume is
* going to use.
*/
static int
add_drives(int fd, struct volume_info *info, int verbose)
{
struct drive_info *dinfo;
U8 PhysDiskNum;
int error, i;
for (i = 0, dinfo = info->drives; i < info->drive_count;
i++, dinfo++) {
if (dinfo->info == NULL) {
if (mpt_create_physdisk(fd, dinfo->sdisk,
&PhysDiskNum) < 0) {
error = errno;
warn(
"Failed to create physical disk page for %s",
dinfo->sdisk->devname);
return (error);
}
if (verbose)
printf("Added drive %s with PhysDiskNum %u\n",
dinfo->sdisk->devname, PhysDiskNum);
dinfo->info = mpt_pd_info(fd, PhysDiskNum, NULL);
if (dinfo->info == NULL)
return (errno);
}
}
return (0);
}
/*
* Find the next free target ID assuming that 'target_id' is the last
* one used. 'target_id' should be 0xff for the initial test.
*/
static U8
find_next_volume(struct config_id_state *state)
{
CONFIG_PAGE_IOC_2_RAID_VOL *vol;
int i;
restart:
/* Assume the current one is used. */
state->target_id++;
/* Search drives first. */
for (i = 0; i < state->nsdisks; i++)
if (state->sdisks[i].target == state->target_id)
goto restart;
for (i = 0; i < state->list->ndrives; i++)
if (state->list->drives[i]->PhysDiskID == state->target_id)
goto restart;
/* Search volumes second. */
vol = state->ioc2->RaidVolume;
for (i = 0; i < state->ioc2->NumActiveVolumes; vol++, i++)
if (vol->VolumeID == state->target_id)
goto restart;
return (state->target_id);
}
/* Create a volume and populate it with drives. */
static CONFIG_PAGE_RAID_VOL_0 *
build_volume(int fd, struct volume_info *info, int raid_type, long stripe_size,
struct config_id_state *state, int verbose)
{
CONFIG_PAGE_HEADER header;
CONFIG_PAGE_RAID_VOL_0 *vol;
RAID_VOL0_PHYS_DISK *rdisk;
struct drive_info *dinfo;
U32 MinLBA;
uint64_t MaxLBA;
size_t page_size;
int error, i;
error = mpt_read_config_page_header(fd, MPI_CONFIG_PAGETYPE_RAID_VOLUME,
0, 0, &header, NULL);
if (error) {
errno = error;
return (NULL);
}
if (header.PageVersion > MPI_RAIDVOLPAGE0_PAGEVERSION) {
warnx("Unsupported RAID volume page 0 version %d",
header.PageVersion);
errno = EOPNOTSUPP;
return (NULL);
}
page_size = sizeof(CONFIG_PAGE_RAID_VOL_0) +
sizeof(RAID_VOL0_PHYS_DISK) * (info->drive_count - 1);
vol = calloc(1, page_size);
if (vol == NULL)
return (NULL);
/* Header */
vol->Header.PageType = MPI_CONFIG_PAGETYPE_RAID_VOLUME;
vol->Header.PageNumber = 0;
vol->Header.PageLength = page_size / 4;
/* Properties */
vol->VolumeID = find_next_volume(state);
vol->VolumeBus = 0;
vol->VolumeIOC = 0; /* XXX */
vol->VolumeStatus.Flags = MPI_RAIDVOL0_STATUS_FLAG_ENABLED;
vol->VolumeStatus.State = MPI_RAIDVOL0_STATUS_STATE_OPTIMAL;
vol->VolumeSettings.Settings = MPI_RAIDVOL0_SETTING_USE_DEFAULTS;
vol->VolumeSettings.HotSparePool = MPI_RAID_HOT_SPARE_POOL_0;
vol->NumPhysDisks = info->drive_count;
/* Find the smallest drive. */
MinLBA = info->drives[0].info->MaxLBA;
for (i = 1; i < info->drive_count; i++)
if (info->drives[i].info->MaxLBA < MinLBA)
MinLBA = info->drives[i].info->MaxLBA;
/*
* Now chop off 512MB at the end to leave room for the
* metadata. The controller might only use 64MB, but we just
* chop off the max to be simple.
*/
MinLBA -= (512 * 1024 * 1024) / 512;
switch (raid_type) {
case RT_RAID0:
vol->VolumeType = MPI_RAID_VOL_TYPE_IS;
vol->StripeSize = stripe_size / 512;
MaxLBA = MinLBA * info->drive_count;
break;
case RT_RAID1:
vol->VolumeType = MPI_RAID_VOL_TYPE_IM;
MaxLBA = MinLBA * (info->drive_count / 2);
break;
case RT_RAID1E:
vol->VolumeType = MPI_RAID_VOL_TYPE_IME;
vol->StripeSize = stripe_size / 512;
MaxLBA = MinLBA * info->drive_count / 2;
break;
default:
/* Pacify gcc. */
abort();
}
/*
* If the controller doesn't support 64-bit addressing and the
* new volume is larger than 2^32 blocks, warn the user and
* truncate the volume.
*/
if (MaxLBA >> 32 != 0 &&
!(state->ioc2->CapabilitiesFlags &
MPI_IOCPAGE2_CAP_FLAGS_RAID_64_BIT_ADDRESSING)) {
warnx(
"Controller does not support volumes > 2TB, truncating volume.");
MaxLBA = 0xffffffff;
}
vol->MaxLBA = MaxLBA;
vol->MaxLBAHigh = MaxLBA >> 32;
/* Populate drives. */
for (i = 0, dinfo = info->drives, rdisk = vol->PhysDisk;
i < info->drive_count; i++, dinfo++, rdisk++) {
if (verbose)
printf("Adding drive %u (%u:%u) to volume %u:%u\n",
dinfo->info->PhysDiskNum, dinfo->info->PhysDiskBus,
dinfo->info->PhysDiskID, vol->VolumeBus,
vol->VolumeID);
if (raid_type == RT_RAID1) {
if (i == 0)
rdisk->PhysDiskMap =
MPI_RAIDVOL0_PHYSDISK_PRIMARY;
else
rdisk->PhysDiskMap =
MPI_RAIDVOL0_PHYSDISK_SECONDARY;
} else
rdisk->PhysDiskMap = i;
rdisk->PhysDiskNum = dinfo->info->PhysDiskNum;
}
return (vol);
}
static int
create_volume(int ac, char **av)
{
CONFIG_PAGE_RAID_VOL_0 *vol;
struct config_id_state state;
struct volume_info *info;
long stripe_size;
int ch, error, fd, i, quick, raid_type, verbose;
#ifdef DEBUG
int dump;
#endif
if (ac < 2) {
warnx("create: volume type required");
return (EINVAL);
}
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
/* Lookup the RAID type first. */
raid_type = -1;
for (i = 0; raid_type_table[i].name != NULL; i++)
if (strcasecmp(raid_type_table[i].name, av[1]) == 0) {
raid_type = raid_type_table[i].raid_type;
break;
}
if (raid_type == -1) {
warnx("Unknown or unsupported volume type %s", av[1]);
return (EINVAL);
}
/* Parse any options. */
optind = 2;
#ifdef DEBUG
dump = 0;
#endif
quick = 0;
verbose = 0;
stripe_size = 64 * 1024;
while ((ch = getopt(ac, av, "dqs:v")) != -1) {
switch (ch) {
#ifdef DEBUG
case 'd':
dump = 1;
break;
#endif
case 'q':
quick = 1;
break;
case 's':
stripe_size = dehumanize(optarg);
if ((stripe_size < 512) || (!powerof2(stripe_size))) {
warnx("Invalid stripe size %s", optarg);
return (EINVAL);
}
break;
case 'v':
verbose = 1;
break;
case '?':
default:
return (EINVAL);
}
}
ac -= optind;
av += optind;
/* Fetch existing config data. */
state.ioc2 = mpt_read_ioc_page(fd, 2, NULL);
if (state.ioc2 == NULL) {
error = errno;
warn("Failed to read volume list");
return (error);
}
state.list = mpt_pd_list(fd);
if (state.list == NULL)
return (errno);
error = mpt_fetch_disks(fd, &state.nsdisks, &state.sdisks);
if (error) {
warn("Failed to fetch standalone disk list");
return (error);
}
state.target_id = 0xff;
/* Parse the drive list. */
if (ac != 1) {
warnx("Exactly one drive list is required");
return (EINVAL);
}
info = calloc(1, sizeof(*info));
if (info == NULL)
return (ENOMEM);
error = parse_volume(fd, raid_type, &state, av[0], info);
if (error)
return (error);
/* Create RAID physdisk pages for standalone disks. */
error = add_drives(fd, info, verbose);
if (error)
return (error);
/* Build the volume. */
vol = build_volume(fd, info, raid_type, stripe_size, &state, verbose);
if (vol == NULL)
return (errno);
#ifdef DEBUG
if (dump) {
dump_config(vol);
goto skip;
}
#endif
/* Send the new volume to the controller. */
error = mpt_raid_action(fd, MPI_RAID_ACTION_CREATE_VOLUME, vol->VolumeBus,
vol->VolumeID, 0, quick ? MPI_RAID_ACTION_ADATA_DO_NOT_SYNC : 0,
vol, vol->Header.PageLength * 4, NULL, NULL, 0, NULL, NULL, 1);
if (error) {
errno = error;
warn("Failed to add volume");
return (error);
}
#ifdef DEBUG
skip:
#endif
mpt_rescan_bus(vol->VolumeBus, vol->VolumeID);
/* Clean up. */
free(vol);
free(info);
free(state.sdisks);
mpt_free_pd_list(state.list);
free(state.ioc2);
close(fd);
return (0);
}
MPT_COMMAND(top, create, create_volume);
static int
delete_volume(int ac, char **av)
{
U8 VolumeBus, VolumeID;
int error, fd;
if (ac != 2) {
warnx("delete: volume required");
return (EINVAL);
}
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
error = mpt_lookup_volume(fd, av[1], &VolumeBus, &VolumeID);
if (error) {
warnc(error, "Invalid volume %s", av[1]);
return (error);
}
if (mpt_lock_volume(VolumeBus, VolumeID) < 0)
return (errno);
error = mpt_raid_action(fd, MPI_RAID_ACTION_DELETE_VOLUME, VolumeBus,
VolumeID, 0, MPI_RAID_ACTION_ADATA_DEL_PHYS_DISKS |
MPI_RAID_ACTION_ADATA_ZERO_LBA0, NULL, 0, NULL, NULL, 0, NULL,
NULL, 0);
if (error) {
warnc(error, "Failed to delete volume");
return (error);
}
mpt_rescan_bus(-1, -1);
close(fd);
return (0);
}
MPT_COMMAND(top, delete, delete_volume);
static int
find_volume_spare_pool(int fd, const char *name, int *pool)
{
CONFIG_PAGE_RAID_VOL_0 *info;
CONFIG_PAGE_IOC_2 *ioc2;
CONFIG_PAGE_IOC_2_RAID_VOL *vol;
U8 VolumeBus, VolumeID;
int error, i, j, new_pool, pool_count[7];
error = mpt_lookup_volume(fd, name, &VolumeBus, &VolumeID);
if (error) {
warnc(error, "Invalid volume %s", name);
return (error);
}
info = mpt_vol_info(fd, VolumeBus, VolumeID, NULL);
if (info == NULL)
return (errno);
/*
* Check for an existing pool other than pool 0 (used for
* global spares).
*/
if ((info->VolumeSettings.HotSparePool & ~MPI_RAID_HOT_SPARE_POOL_0) !=
0) {
*pool = 1 << (ffs(info->VolumeSettings.HotSparePool &
~MPI_RAID_HOT_SPARE_POOL_0) - 1);
return (0);
}
free(info);
/*
* Try to find a free pool. First, figure out which pools are
* in use.
*/
ioc2 = mpt_read_ioc_page(fd, 2, NULL);
if (ioc2 == NULL) {
error = errno;
warn("Failed to fetch volume list");
return (error);
}
bzero(pool_count, sizeof(pool_count));
vol = ioc2->RaidVolume;
for (i = 0; i < ioc2->NumActiveVolumes; vol++, i++) {
info = mpt_vol_info(fd, vol->VolumeBus, vol->VolumeID, NULL);
if (info == NULL)
return (errno);
for (j = 0; j < 7; j++)
if (info->VolumeSettings.HotSparePool & (1 << (j + 1)))
pool_count[j]++;
free(info);
}
free(ioc2);
/* Find the pool with the lowest use count. */
new_pool = 0;
for (i = 1; i < 7; i++)
if (pool_count[i] < pool_count[new_pool])
new_pool = i;
new_pool++;
/* Add this pool to the volume. */
info = mpt_vol_info(fd, VolumeBus, VolumeID, NULL);
if (info == NULL)
return (error);
info->VolumeSettings.HotSparePool |= (1 << new_pool);
error = mpt_raid_action(fd, MPI_RAID_ACTION_CHANGE_VOLUME_SETTINGS,
VolumeBus, VolumeID, 0, *(U32 *)&info->VolumeSettings, NULL, 0,
NULL, NULL, 0, NULL, NULL, 0);
if (error) {
warnx("Failed to add spare pool %d to %s", new_pool,
mpt_volume_name(VolumeBus, VolumeID));
return (error);
}
free(info);
*pool = (1 << new_pool);
return (0);
}
static int
add_spare(int ac, char **av)
{
CONFIG_PAGE_RAID_PHYS_DISK_0 *info;
struct mpt_standalone_disk *sdisks;
struct mpt_drive_list *list;
U8 PhysDiskNum;
int error, fd, i, nsdisks, pool;
if (ac < 2) {
warnx("add spare: drive required");
return (EINVAL);
}
if (ac > 3) {
warnx("add spare: extra arguments");
return (EINVAL);
}
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
if (ac == 3) {
error = find_volume_spare_pool(fd, av[2], &pool);
if (error)
return (error);
} else
pool = MPI_RAID_HOT_SPARE_POOL_0;
list = mpt_pd_list(fd);
if (list == NULL)
return (errno);
error = mpt_lookup_drive(list, av[1], &PhysDiskNum);
if (error) {
error = mpt_fetch_disks(fd, &nsdisks, &sdisks);
if (error != 0) {
warn("Failed to fetch standalone disk list");
return (error);
}
if (mpt_lookup_standalone_disk(av[1], sdisks, nsdisks, &i) <
0) {
error = errno;
warn("Unable to lookup drive %s", av[1]);
return (error);
}
if (mpt_lock_physdisk(&sdisks[i]) < 0)
return (errno);
if (mpt_create_physdisk(fd, &sdisks[i], &PhysDiskNum) < 0) {
error = errno;
warn("Failed to create physical disk page");
return (error);
}
free(sdisks);
}
mpt_free_pd_list(list);
info = mpt_pd_info(fd, PhysDiskNum, NULL);
if (info == NULL) {
error = errno;
warn("Failed to fetch drive info");
return (error);
}
info->PhysDiskSettings.HotSparePool = pool;
error = mpt_raid_action(fd, MPI_RAID_ACTION_CHANGE_PHYSDISK_SETTINGS, 0,
0, PhysDiskNum, *(U32 *)&info->PhysDiskSettings, NULL, 0, NULL,
NULL, 0, NULL, NULL, 0);
if (error) {
warnc(error, "Failed to assign spare");
return (error);
}
free(info);
close(fd);
return (0);
}
MPT_COMMAND(top, add, add_spare);
static int
remove_spare(int ac, char **av)
{
CONFIG_PAGE_RAID_PHYS_DISK_0 *info;
struct mpt_drive_list *list;
U8 PhysDiskNum;
int error, fd;
if (ac != 2) {
warnx("remove spare: drive required");
return (EINVAL);
}
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
list = mpt_pd_list(fd);
if (list == NULL)
return (errno);
error = mpt_lookup_drive(list, av[1], &PhysDiskNum);
if (error) {
warn("Failed to find drive %s", av[1]);
return (error);
}
mpt_free_pd_list(list);
info = mpt_pd_info(fd, PhysDiskNum, NULL);
if (info == NULL) {
error = errno;
warn("Failed to fetch drive info");
return (error);
}
if (info->PhysDiskSettings.HotSparePool == 0) {
warnx("Drive %u is not a hot spare", PhysDiskNum);
return (EINVAL);
}
if (mpt_delete_physdisk(fd, PhysDiskNum) < 0) {
error = errno;
warn("Failed to delete physical disk page");
return (error);
}
mpt_rescan_bus(info->PhysDiskBus, info->PhysDiskID);
free(info);
close(fd);
return (0);
}
MPT_COMMAND(top, remove, remove_spare);
#ifdef DEBUG
MPT_TABLE(top, pd);
static int
pd_create(int ac, char **av)
{
struct mpt_standalone_disk *disks;
int error, fd, i, ndisks;
U8 PhysDiskNum;
if (ac != 2) {
warnx("pd create: drive required");
return (EINVAL);
}
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
error = mpt_fetch_disks(fd, &ndisks, &disks);
if (error != 0) {
warn("Failed to fetch standalone disk list");
return (error);
}
if (mpt_lookup_standalone_disk(av[1], disks, ndisks, &i) < 0) {
error = errno;
warn("Unable to lookup drive");
return (error);
}
if (mpt_lock_physdisk(&disks[i]) < 0)
return (errno);
if (mpt_create_physdisk(fd, &disks[i], &PhysDiskNum) < 0) {
error = errno;
warn("Failed to create physical disk page");
return (error);
}
free(disks);
printf("Added drive %s with PhysDiskNum %u\n", av[1], PhysDiskNum);
close(fd);
return (0);
}
MPT_COMMAND(pd, create, pd_create);
static int
pd_delete(int ac, char **av)
{
CONFIG_PAGE_RAID_PHYS_DISK_0 *info;
struct mpt_drive_list *list;
int error, fd;
U8 PhysDiskNum;
if (ac != 2) {
warnx("pd delete: drive required");
return (EINVAL);
}
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
list = mpt_pd_list(fd);
if (list == NULL)
return (errno);
if (mpt_lookup_drive(list, av[1], &PhysDiskNum) < 0) {
error = errno;
warn("Failed to find drive %s", av[1]);
return (error);
}
mpt_free_pd_list(list);
info = mpt_pd_info(fd, PhysDiskNum, NULL);
if (info == NULL) {
error = errno;
warn("Failed to fetch drive info");
return (error);
}
if (mpt_delete_physdisk(fd, PhysDiskNum) < 0) {
error = errno;
warn("Failed to delete physical disk page");
return (error);
}
mpt_rescan_bus(info->PhysDiskBus, info->PhysDiskID);
free(info);
close(fd);
return (0);
}
MPT_COMMAND(pd, delete, pd_delete);
/* Display raw data about a volume config. */
static void
dump_config(CONFIG_PAGE_RAID_VOL_0 *vol)
{
int i;
printf("Volume Configuration (Debug):\n");
printf(
" Page Header: Type 0x%02x Number 0x%02x Length 0x%02x(%u) Version 0x%02x\n",
vol->Header.PageType, vol->Header.PageNumber,
vol->Header.PageLength, vol->Header.PageLength * 4,
vol->Header.PageVersion);
printf(" Address: %d:%d IOC %d\n", vol->VolumeBus, vol->VolumeID,
vol->VolumeIOC);
printf(" Type: %d (%s)\n", vol->VolumeType,
mpt_raid_level(vol->VolumeType));
printf(" Status: %s (Flags 0x%02x)\n",
mpt_volstate(vol->VolumeStatus.State), vol->VolumeStatus.Flags);
printf(" Settings: 0x%04x (Spare Pools 0x%02x)\n",
vol->VolumeSettings.Settings, vol->VolumeSettings.HotSparePool);
printf(" MaxLBA: %ju\n", (uintmax_t)vol->MaxLBAHigh << 32 |
vol->MaxLBA);
printf(" Stripe Size: %ld\n", (long)vol->StripeSize * 512);
printf(" %d Disks:\n", vol->NumPhysDisks);
for (i = 0; i < vol->NumPhysDisks; i++)
printf(" Disk %d: Num 0x%02x Map 0x%02x\n", i,
vol->PhysDisk[i].PhysDiskNum, vol->PhysDisk[i].PhysDiskMap);
}
static int
debug_config(int ac, char **av)
{
CONFIG_PAGE_RAID_VOL_0 *vol;
U8 VolumeBus, VolumeID;
int error, fd;
if (ac != 2) {
warnx("debug: volume required");
return (EINVAL);
}
fd = mpt_open(mpt_unit);
if (fd < 0) {
error = errno;
warn("mpt_open");
return (error);
}
error = mpt_lookup_volume(fd, av[1], &VolumeBus, &VolumeID);
if (error) {
warnc(error, "Invalid volume: %s", av[1]);
return (error);
}
vol = mpt_vol_info(fd, VolumeBus, VolumeID, NULL);
if (vol == NULL) {
error = errno;
warn("Failed to get volume info");
return (error);
}
dump_config(vol);
free(vol);
close(fd);
return (0);
}
MPT_COMMAND(top, debug, debug_config);
#endif