freebsd-dev/sys/i386/isa/sound/pcm86.c
1999-08-28 01:08:13 +00:00

2213 lines
53 KiB
C

/*
* PC-9801-86 PCM driver for FreeBSD(98).
*
* Copyright (c) 1995 NAGAO Tadaaki (ABTK)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* !! NOTE !! :
* This file DOES NOT belong to the VoxWare distribution though it works
* as part of the VoxWare drivers. It is FreeBSD(98) original.
* -- Nagao (nagao@cs.titech.ac.jp)
*/
#include <i386/isa/sound/sound_config.h>
#ifdef CONFIGURE_SOUNDCARD
#if !defined(EXCLUDE_NSS) && !defined(EXCLUDE_AUDIO)
/*
* Constants
*/
#define YES 1
#define NO 0
#define IMODE_NONE 0
#define IMODE_INPUT 1
#define IMODE_OUTPUT 2
/* PC-9801-86 specific constants */
#define PCM86_IOBASE 0xa460 /* PCM I/O ports */
#define PCM86_FIFOSIZE 32768 /* There is a 32kB FIFO buffer on 86-board */
/* XXX -- These values should be chosen appropriately. */
#define PCM86_INTRSIZE_OUT 1024
#define PCM86_INTRSIZE_IN (PCM86_FIFOSIZE / 2 - 128)
#define DEFAULT_VOLUME 15 /* 0(min) - 15(max) */
/*
* Switches for debugging and experiments
*/
/* #define NSS_DEBUG */
#ifdef NSS_DEBUG
# ifdef DEB
# undef DEB
# endif
# define DEB(x) x
#endif
/*
* Private variables and types
*/
typedef unsigned char pcm_data;
enum board_type {
NO_SUPPORTED_BOARD = 0,
PC980186_FAMILY = 1,
PC980173_FAMILY = 2
};
static char *board_name[] = {
/* Each must be of the length less than 32 bytes. */
"No supported board",
"PC-9801-86 soundboard",
"PC-9801-73 soundboard"
};
/* Current status of the driver */
static struct {
int iobase;
int irq;
enum board_type board_type;
int opened;
int format;
int bytes;
int chipspeedno;
int chipspeed;
int speed;
int stereo;
int volume;
int intr_busy;
int intr_size;
int intr_mode;
int intr_last;
int intr_trailer;
pcm_data * pdma_buf;
int pdma_count;
int pdma_chunkcount;
int acc;
int last_l;
int last_r;
sound_os_info *osp;
} pcm_s;
static struct {
pcm_data buff[4];
int size;
} tmpbuf;
static int my_dev = 0;
static char nss_initialized = NO;
/* 86-board supports only the following rates. */
static int rates_tbl[8] = {
#ifndef WAVEMASTER_FREQ
44100, 33075, 22050, 16538, 11025, 8269, 5513, 4134
#else
/*
* It is said that Q-Vision's WaveMaster of some earlier lot(s?) has
* sampling rates incompatible with PC-9801-86.
* But I'm not sure whether the following rates are correct, especially
* 4000Hz.
*/
44100, 33075, 22050, 16000, 11025, 8000, 5510, 4000
#endif
};
/* u-law to linear translation table */
static pcm_data ulaw2linear[256] = {
130, 134, 138, 142, 146, 150, 154, 158,
162, 166, 170, 174, 178, 182, 186, 190,
193, 195, 197, 199, 201, 203, 205, 207,
209, 211, 213, 215, 217, 219, 221, 223,
225, 226, 227, 228, 229, 230, 231, 232,
233, 234, 235, 236, 237, 238, 239, 240,
240, 241, 241, 242, 242, 243, 243, 244,
244, 245, 245, 246, 246, 247, 247, 248,
248, 248, 249, 249, 249, 249, 250, 250,
250, 250, 251, 251, 251, 251, 252, 252,
252, 252, 252, 252, 253, 253, 253, 253,
253, 253, 253, 253, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254, 254,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255,
125, 121, 117, 113, 109, 105, 101, 97,
93, 89, 85, 81, 77, 73, 69, 65,
62, 60, 58, 56, 54, 52, 50, 48,
46, 44, 42, 40, 38, 36, 34, 32,
30, 29, 28, 27, 26, 25, 24, 23,
22, 21, 20, 19, 18, 17, 16, 15,
15, 14, 14, 13, 13, 12, 12, 11,
11, 10, 10, 9, 9, 8, 8, 7,
7, 7, 6, 6, 6, 6, 5, 5,
5, 5, 4, 4, 4, 4, 3, 3,
3, 3, 3, 3, 2, 2, 2, 2,
2, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
/* linear to u-law translation table */
static pcm_data linear2ulaw[256] = {
255, 231, 219, 211, 205, 201, 197, 193,
190, 188, 186, 184, 182, 180, 178, 176,
175, 174, 173, 172, 171, 170, 169, 168,
167, 166, 165, 164, 163, 162, 161, 160,
159, 159, 158, 158, 157, 157, 156, 156,
155, 155, 154, 154, 153, 153, 152, 152,
151, 151, 150, 150, 149, 149, 148, 148,
147, 147, 146, 146, 145, 145, 144, 144,
143, 143, 143, 143, 142, 142, 142, 142,
141, 141, 141, 141, 140, 140, 140, 140,
139, 139, 139, 139, 138, 138, 138, 138,
137, 137, 137, 137, 136, 136, 136, 136,
135, 135, 135, 135, 134, 134, 134, 134,
133, 133, 133, 133, 132, 132, 132, 132,
131, 131, 131, 131, 130, 130, 130, 130,
129, 129, 129, 129, 128, 128, 128, 128,
0, 0, 0, 0, 0, 1, 1, 1,
1, 2, 2, 2, 2, 3, 3, 3,
3, 4, 4, 4, 4, 5, 5, 5,
5, 6, 6, 6, 6, 7, 7, 7,
7, 8, 8, 8, 8, 9, 9, 9,
9, 10, 10, 10, 10, 11, 11, 11,
11, 12, 12, 12, 12, 13, 13, 13,
13, 14, 14, 14, 14, 15, 15, 15,
15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 21, 22, 22, 23,
23, 24, 24, 25, 25, 26, 26, 27,
27, 28, 28, 29, 29, 30, 30, 31,
31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 50, 52, 54, 56, 58, 60,
62, 65, 69, 73, 77, 83, 91, 103
};
/*
* Prototypes
*/
static int nss_detect(struct address_info *);
static int nss_open(int, int);
static void nss_close(int);
static void nss_output_block(int, unsigned long, int, int, int);
static void nss_start_input(int, unsigned long, int, int, int);
static int nss_ioctl(int, u_int, ioctl_arg, int);
static int nss_prepare_for_input(int, int, int);
static int nss_prepare_for_output(int, int, int);
static void nss_reset(int);
static void nss_halt_xfer(int);
static void dsp73_send_command(unsigned char);
static void dsp73_send_data(unsigned char);
static void dsp73_init(void);
static int set_format(int);
static int set_speed(int);
static int set_stereo(int);
static void set_volume(int);
static void fifo_start(int);
static void fifo_stop(void);
static void fifo_reset(void);
static void fifo_output_block(void);
static int fifo_send(pcm_data *, int);
static void fifo_sendtrailer(int);
static void fifo_send_stereo(pcm_data *, int);
static void fifo_send_monoral(pcm_data *, int);
static void fifo_send_stereo_ulaw(pcm_data *, int);
static void fifo_send_stereo_8(pcm_data *, int, int);
static void fifo_send_stereo_16le(pcm_data *, int, int);
static void fifo_send_stereo_16be(pcm_data *, int, int);
static void fifo_send_mono_ulaw(pcm_data *, int);
static void fifo_send_mono_8(pcm_data *, int, int);
static void fifo_send_mono_16le(pcm_data *, int, int);
static void fifo_send_mono_16be(pcm_data *, int, int);
static void fifo_input_block(void);
static void fifo_recv(pcm_data *, int);
static void fifo_recv_stereo(pcm_data *, int);
static void fifo_recv_monoral(pcm_data *, int);
static void fifo_recv_stereo_ulaw(pcm_data *, int);
static void fifo_recv_stereo_8(pcm_data *, int, int);
static void fifo_recv_stereo_16le(pcm_data *, int, int);
static void fifo_recv_stereo_16be(pcm_data *, int, int);
static void fifo_recv_mono_ulaw(pcm_data *, int);
static void fifo_recv_mono_8(pcm_data *, int, int);
static void fifo_recv_mono_16le(pcm_data *, int, int);
static void fifo_recv_mono_16be(pcm_data *, int, int);
static void nss_stop(void);
static void nss_init(void);
/*
* Identity
*/
static struct audio_operations nss_operations =
{
"PC-9801-86 SoundBoard", /* filled in properly by auto configuration */
DMA_DISABLE,
( AFMT_MU_LAW |
AFMT_U8 | AFMT_S16_LE | AFMT_S16_BE |
AFMT_S8 | AFMT_U16_LE | AFMT_U16_BE ),
NULL,
nss_open,
nss_close,
nss_output_block,
nss_start_input,
nss_ioctl,
nss_prepare_for_input,
nss_prepare_for_output,
nss_reset,
nss_halt_xfer,
NULL,
NULL
};
/*
* Codes for internal use
*/
static void
dsp73_send_command(unsigned char command)
{
/* wait for RDY */
while ((inb(pcm_s.iobase + 2) & 0x48) != 8);
/* command mode */
outb(pcm_s.iobase + 2, (inb(pcm_s.iobase + 2) & 0x20) | 3);
/* wait for RDY */
while ((inb(pcm_s.iobase + 2) & 0x48) != 8);
/* send command */
outb(pcm_s.iobase + 4, command);
}
static void
dsp73_send_data(unsigned char data)
{
/* wait for RDY */
while ((inb(pcm_s.iobase + 2) & 0x48) != 8);
/* data mode */
outb(pcm_s.iobase + 2, (inb(pcm_s.iobase + 2) & 0x20) | 0x83);
/* wait for RDY */
while ((inb(pcm_s.iobase + 2) & 0x48) != 8);
/* send command */
outb(pcm_s.iobase + 4, data);
}
static void
dsp73_init(void)
{
const unsigned char dspinst[15] = {
0x00, 0x00, 0x27,
0x3f, 0xe0, 0x01,
0x00, 0x00, 0x27,
0x36, 0x5a, 0x0d,
0x3e, 0x60, 0x04
};
unsigned char t;
int i;
/* reset DSP */
t = inb(pcm_s.iobase + 2);
outb(pcm_s.iobase + 2, (t & 0x80) | 0x23);
/* mute on */
dsp73_send_command(0x04);
dsp73_send_data(0x6f);
dsp73_send_data(0x3c);
/* write DSP instructions */
dsp73_send_command(0x01);
dsp73_send_data(0x00);
for (i = 0; i < 16; i++)
dsp73_send_data(dspinst[i]);
/* mute off */
dsp73_send_command(0x04);
dsp73_send_data(0x6f);
dsp73_send_data(0x30);
/* wait for RDY */
while ((inb(pcm_s.iobase + 2) & 0x48) != 8);
outb(pcm_s.iobase + 2, 3);
}
static int
set_format(int format)
{
switch (format) {
case AFMT_MU_LAW:
case AFMT_S8:
case AFMT_U8:
pcm_s.format = format;
pcm_s.bytes = 1; /* 8bit */
break;
case AFMT_S16_LE:
case AFMT_U16_LE:
case AFMT_S16_BE:
case AFMT_U16_BE:
pcm_s.format = format;
pcm_s.bytes = 2; /* 16bit */
break;
case AFMT_QUERY:
break;
default:
return -1;
}
return pcm_s.format;
}
static int
set_speed(int speed)
{
int i;
if (speed < 4000) /* Minimum 4000Hz */
speed = 4000;
if (speed > 44100) /* Maximum 44100Hz */
speed = 44100;
for (i = 7; i >= 0; i--) {
if (speed <= rates_tbl[i]) {
pcm_s.chipspeedno = i;
pcm_s.chipspeed = rates_tbl[i];
break;
}
}
pcm_s.speed = speed;
return speed;
}
static int
set_stereo(int stereo)
{
pcm_s.stereo = stereo ? YES : NO;
return pcm_s.stereo;
}
static void
set_volume(int volume)
{
if (volume < 0)
volume = 0;
if (volume > 15)
volume = 15;
pcm_s.volume = volume;
outb(pcm_s.iobase + 6, 0xaf - volume); /* D/A -> LINE OUT */
outb(0x5f,0);
outb(0x5f,0);
outb(0x5f,0);
outb(0x5f,0);
outb(pcm_s.iobase + 6, 0x20); /* FM -> A/D */
outb(0x5f,0);
outb(0x5f,0);
outb(0x5f,0);
outb(0x5f,0);
outb(pcm_s.iobase + 6, 0x60); /* LINE IN -> A/D */
outb(0x5f,0);
outb(0x5f,0);
outb(0x5f,0);
outb(0x5f,0);
}
static void
fifo_start(int mode)
{
unsigned char tmp;
/* Set frame length & panpot(LR). */
tmp = inb(pcm_s.iobase + 10) & 0x88;
outb(pcm_s.iobase + 10, tmp | ((pcm_s.bytes == 1) ? 0x72 : 0x32));
tmp = pcm_s.chipspeedno;
if (mode == IMODE_INPUT)
tmp |= 0x40;
/* Reset intr. flag. */
outb(pcm_s.iobase + 8, tmp);
outb(pcm_s.iobase + 8, tmp | 0x10);
/* Enable FIFO intr. */
outb(pcm_s.iobase + 8, tmp | 0x30);
/* Set intr. interval. */
outb(pcm_s.iobase + 10, pcm_s.intr_size / 128 - 1);
/* Start intr. */
outb(pcm_s.iobase + 8, tmp | 0xb0);
}
static void
fifo_stop(void)
{
unsigned char tmp;
/* Reset intr. flag, and disable FIFO intr. */
tmp = inb(pcm_s.iobase + 8) & 0x0f;
outb(pcm_s.iobase + 8, tmp);
}
static void
fifo_reset(void)
{
unsigned char tmp;
/* Reset FIFO. */
tmp = inb(pcm_s.iobase + 8) & 0x77;
outb(pcm_s.iobase + 8, tmp | 0x8);
outb(pcm_s.iobase + 8, tmp);
}
static void
fifo_output_block(void)
{
int chunksize, count;
if (pcm_s.pdma_chunkcount) {
/* Update chunksize and then send the next chunk to FIFO. */
chunksize = pcm_s.pdma_count / pcm_s.pdma_chunkcount--;
count = fifo_send(pcm_s.pdma_buf, chunksize);
} else {
/* ??? something wrong... */
printf("nss0: chunkcount overrun\n");
chunksize = count = 0;
}
if (((audio_devs[my_dev]->dmap_out->qlen < 2) && (pcm_s.pdma_chunkcount == 0))
|| (count < pcm_s.intr_size)) {
/* The sent chunk seems to be the last one. */
fifo_sendtrailer(pcm_s.intr_size);
pcm_s.intr_last = YES;
}
pcm_s.pdma_buf += chunksize;
pcm_s.pdma_count -= chunksize;
}
static int
fifo_send(pcm_data *buf, int count)
{
int i, length, r, cnt, rslt;
pcm_data *p;
/* Calculate the length of PCM frames. */
cnt = count + tmpbuf.size;
length = pcm_s.bytes << pcm_s.stereo;
r = cnt % length;
cnt -= r;
if (cnt > 0) {
if (pcm_s.stereo)
fifo_send_stereo(buf, cnt);
else
fifo_send_monoral(buf, cnt);
/* Carry over extra data which doesn't seem to be a full PCM frame. */
p = (pcm_data *)buf + count - r;
for (i = 0; i < r; i++)
tmpbuf.buff[i] = *p++;
} else {
/* Carry over extra data which doesn't seem to be a full PCM frame. */
p = (pcm_data *)buf;
for (i = tmpbuf.size; i < r; i++)
tmpbuf.buff[i] = *p++;
}
tmpbuf.size = r;
rslt = ((cnt / length) * pcm_s.chipspeed / pcm_s.speed) * pcm_s.bytes * 2;
#ifdef NSS_DEBUG
printf("fifo_send(): %d bytes sent\n", rslt);
#endif
return rslt;
}
static void
fifo_sendtrailer(int count)
{
/* Send trailing zeros to the FIFO buffer. */
int i;
for (i = 0; i < count; i++)
outb(pcm_s.iobase + 12, 0);
pcm_s.intr_trailer = YES;
#ifdef NSS_DEBUG
printf("fifo_sendtrailer(): %d bytes sent\n", count);
#endif
}
static void
fifo_send_stereo(pcm_data *buf, int count)
{
/* Convert format and sampling speed. */
switch (pcm_s.format) {
case AFMT_MU_LAW:
fifo_send_stereo_ulaw(buf, count);
break;
case AFMT_S8:
fifo_send_stereo_8(buf, count, NO);
break;
case AFMT_U8:
fifo_send_stereo_8(buf, count, YES);
break;
case AFMT_S16_LE:
fifo_send_stereo_16le(buf, count, NO);
break;
case AFMT_U16_LE:
fifo_send_stereo_16le(buf, count, YES);
break;
case AFMT_S16_BE:
fifo_send_stereo_16be(buf, count, NO);
break;
case AFMT_U16_BE:
fifo_send_stereo_16be(buf, count, YES);
break;
}
}
static void
fifo_send_monoral(pcm_data *buf, int count)
{
/* Convert format and sampling speed. */
switch (pcm_s.format) {
case AFMT_MU_LAW:
fifo_send_mono_ulaw(buf, count);
break;
case AFMT_S8:
fifo_send_mono_8(buf, count, NO);
break;
case AFMT_U8:
fifo_send_mono_8(buf, count, YES);
break;
case AFMT_S16_LE:
fifo_send_mono_16le(buf, count, NO);
break;
case AFMT_U16_LE:
fifo_send_mono_16le(buf, count, YES);
break;
case AFMT_S16_BE:
fifo_send_mono_16be(buf, count, NO);
break;
case AFMT_U16_BE:
fifo_send_mono_16be(buf, count, YES);
break;
}
}
static void
fifo_send_stereo_ulaw(pcm_data *buf, int count)
{
int i;
signed char dl, dl0, dl1, dr, dr0, dr1;
pcm_data t[2];
if (tmpbuf.size > 0)
t[0] = ulaw2linear[tmpbuf.buff[0]];
else
t[0] = ulaw2linear[*buf++];
t[1] = ulaw2linear[*buf++];
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
outb(pcm_s.iobase + 12, t[0]);
outb(pcm_s.iobase + 12, t[1]);
count -= 2;
for (i = 0; i < count; i++)
outb(pcm_s.iobase + 12, ulaw2linear[*buf++]);
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = t[0];
dr1 = t[1];
i = 0;
count /= 2;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
dl0 = dl1;
dr0 = dr1;
if (i < count) {
dl1 = ulaw2linear[*buf++];
dr1 = ulaw2linear[*buf++];
} else
dl1 = dr1 = 0;
}
dl = ((dl0 * (pcm_s.chipspeed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.chipspeed;
dr = ((dr0 * (pcm_s.chipspeed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.chipspeed;
outb(pcm_s.iobase + 12, dl);
outb(pcm_s.iobase + 12, dr);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_send_stereo_8(pcm_data *buf, int count, int uflag)
{
int i;
signed char dl, dl0, dl1, dr, dr0, dr1, zlev;
pcm_data t[2];
zlev = uflag ? -128 : 0;
if (tmpbuf.size > 0)
t[0] = tmpbuf.buff[0] + zlev;
else
t[0] = *buf++ + zlev;
t[1] = *buf++ + zlev;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
outb(pcm_s.iobase + 12, t[0]);
outb(pcm_s.iobase + 12, t[1]);
count -= 2;
for (i = 0; i < count; i++)
outb(pcm_s.iobase + 12, *buf++ + zlev);
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = t[0];
dr1 = t[1];
i = 0;
count /= 2;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
dl0 = dl1;
dr0 = dr1;
if (i < count) {
dl1 = *buf++ + zlev;
dr1 = *buf++ + zlev;
} else
dl1 = dr1 = 0;
}
dl = ((dl0 * (pcm_s.chipspeed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.chipspeed;
dr = ((dr0 * (pcm_s.chipspeed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.chipspeed;
outb(pcm_s.iobase + 12, dl);
outb(pcm_s.iobase + 12, dr);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_send_stereo_16le(pcm_data *buf, int count, int uflag)
{
int i;
short dl, dl0, dl1, dr, dr0, dr1, zlev;
pcm_data t[4];
zlev = uflag ? -128 : 0;
for (i = 0; i < 4; i++)
t[i] = (tmpbuf.size > i) ? tmpbuf.buff[i] : *buf++;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
outb(pcm_s.iobase + 12, t[1] + zlev);
outb(pcm_s.iobase + 12, t[0]);
outb(pcm_s.iobase + 12, t[3] + zlev);
outb(pcm_s.iobase + 12, t[2]);
count = count / 2 - 2;
for (i = 0; i < count; i++) {
outb(pcm_s.iobase + 12, *(buf + 1) + zlev);
outb(pcm_s.iobase + 12, *buf);
buf += 2;
}
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = t[0] + ((t[1] + zlev) << 8);
dr1 = t[2] + ((t[3] + zlev) << 8);
i = 0;
count /= 4;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
dl0 = dl1;
dr0 = dr1;
if (i < count) {
dl1 = *buf + ((*(buf + 1) + zlev) << 8);
buf += 2;
dr1 = *buf + ((*(buf + 1) + zlev) << 8);
buf += 2;
} else
dl1 = dr1 = 0;
}
dl = ((dl0 * (pcm_s.chipspeed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.chipspeed;
dr = ((dr0 * (pcm_s.chipspeed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.chipspeed;
outb(pcm_s.iobase + 12, (dl >> 8) & 0xff);
outb(pcm_s.iobase + 12, dl & 0xff);
outb(pcm_s.iobase + 12, (dr >> 8) & 0xff);
outb(pcm_s.iobase + 12, dr & 0xff);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_send_stereo_16be(pcm_data *buf, int count, int uflag)
{
int i;
short dl, dl0, dl1, dr, dr0, dr1, zlev;
pcm_data t[4];
zlev = uflag ? -128 : 0;
for (i = 0; i < 4; i++)
t[i] = (tmpbuf.size > i) ? tmpbuf.buff[i] : *buf++;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
outb(pcm_s.iobase + 12, t[0] + zlev);
outb(pcm_s.iobase + 12, t[1]);
outb(pcm_s.iobase + 12, t[2] + zlev);
outb(pcm_s.iobase + 12, t[3]);
count = count / 2 - 2;
for (i = 0; i < count; i++) {
outb(pcm_s.iobase + 12, *buf + zlev);
outb(pcm_s.iobase + 12, *(buf + 1));
buf += 2;
}
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = ((t[0] + zlev) << 8) + t[1];
dr1 = ((t[2] + zlev) << 8) + t[3];
i = 0;
count /= 4;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
dl0 = dl1;
dr0 = dr1;
if (i < count) {
dl1 = ((*buf + zlev) << 8) + *(buf + 1);
buf += 2;
dr1 = ((*buf + zlev) << 8) + *(buf + 1);
buf += 2;
} else
dl1 = dr1 = 0;
}
dl = ((dl0 * (pcm_s.chipspeed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.chipspeed;
dr = ((dr0 * (pcm_s.chipspeed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.chipspeed;
outb(pcm_s.iobase + 12, (dl >> 8) & 0xff);
outb(pcm_s.iobase + 12, dl & 0xff);
outb(pcm_s.iobase + 12, (dr >> 8) & 0xff);
outb(pcm_s.iobase + 12, dr & 0xff);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_send_mono_ulaw(pcm_data *buf, int count)
{
int i;
signed char d, d0, d1;
if (pcm_s.speed == pcm_s.chipspeed)
/* No reason to convert the pcm speed. */
for (i = 0; i < count; i++) {
d = ulaw2linear[*buf++];
outb(pcm_s.iobase + 12, d);
outb(pcm_s.iobase + 12, d);
}
else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
d1 = ulaw2linear[*buf++];
i = 0;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
d0 = d1;
d1 = (i < count) ? ulaw2linear[*buf++] : 0;
}
d = ((d0 * (pcm_s.chipspeed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.chipspeed;
outb(pcm_s.iobase + 12, d);
outb(pcm_s.iobase + 12, d);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = d0;
}
}
static void
fifo_send_mono_8(pcm_data *buf, int count, int uflag)
{
int i;
signed char d, d0, d1, zlev;
zlev = uflag ? -128 : 0;
if (pcm_s.speed == pcm_s.chipspeed)
/* No reason to convert the pcm speed. */
for (i = 0; i < count; i++) {
d = *buf++ + zlev;
outb(pcm_s.iobase + 12, d);
outb(pcm_s.iobase + 12, d);
}
else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
d1 = *buf++ + zlev;
i = 0;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
d0 = d1;
d1 = (i < count) ? *buf++ + zlev : 0;
}
d = ((d0 * (pcm_s.chipspeed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.chipspeed;
outb(pcm_s.iobase + 12, d);
outb(pcm_s.iobase + 12, d);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = d0;
}
}
static void
fifo_send_mono_16le(pcm_data *buf, int count, int uflag)
{
int i;
short d, d0, d1, zlev;
pcm_data t[2];
zlev = uflag ? -128 : 0;
for (i = 0; i < 2; i++)
t[i] = (tmpbuf.size > i) ? tmpbuf.buff[i] : *buf++;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
outb(pcm_s.iobase + 12, t[1] + zlev);
outb(pcm_s.iobase + 12, t[0]);
outb(pcm_s.iobase + 12, t[1] + zlev);
outb(pcm_s.iobase + 12, t[0]);
count = count / 2 - 1;
for (i = 0; i < count; i++) {
outb(pcm_s.iobase + 12, *(buf + 1) + zlev);
outb(pcm_s.iobase + 12, *buf);
outb(pcm_s.iobase + 12, *(buf + 1) + zlev);
outb(pcm_s.iobase + 12, *buf);
buf += 2;
}
} else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
d1 = t[0] + ((t[1] + zlev) << 8);
i = 0;
count /= 2;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
d0 = d1;
if (i < count) {
d1 = *buf + ((*(buf + 1) + zlev) << 8);
buf += 2;
} else
d1 = 0;
}
d = ((d0 * (pcm_s.chipspeed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.chipspeed;
outb(pcm_s.iobase + 12, (d >> 8) & 0xff);
outb(pcm_s.iobase + 12, d & 0xff);
outb(pcm_s.iobase + 12, (d >> 8) & 0xff);
outb(pcm_s.iobase + 12, d & 0xff);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = d0;
}
}
static void
fifo_send_mono_16be(pcm_data *buf, int count, int uflag)
{
int i;
short d, d0, d1, zlev;
pcm_data t[2];
zlev = uflag ? -128 : 0;
for (i = 0; i < 2; i++)
t[i] = (tmpbuf.size > i) ? tmpbuf.buff[i] : *buf++;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
outb(pcm_s.iobase + 12, t[0] + zlev);
outb(pcm_s.iobase + 12, t[1]);
outb(pcm_s.iobase + 12, t[0] + zlev);
outb(pcm_s.iobase + 12, t[1]);
count = count / 2 - 1;
for (i = 0; i < count; i++) {
outb(pcm_s.iobase + 12, *buf + zlev);
outb(pcm_s.iobase + 12, *(buf + 1));
outb(pcm_s.iobase + 12, *buf + zlev);
outb(pcm_s.iobase + 12, *(buf + 1));
buf += 2;
}
} else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
d1 = ((t[0] + zlev) << 8) + t[1];
i = 0;
count /= 2;
while (i < count) {
while (pcm_s.acc >= pcm_s.chipspeed) {
pcm_s.acc -= pcm_s.chipspeed;
i++;
d0 = d1;
if (i < count) {
d1 = ((*buf + zlev) << 8) + *(buf + 1);
buf += 2;
} else
d1 = 0;
}
d = ((d0 * (pcm_s.chipspeed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.chipspeed;
/* outb(pcm_s.iobase + 12, d & 0xff);
outb(pcm_s.iobase + 12, (d >> 8) & 0xff);
outb(pcm_s.iobase + 12, d & 0xff);
outb(pcm_s.iobase + 12, (d >> 8) & 0xff); */
outb(pcm_s.iobase + 12, (d >> 8) & 0xff);
outb(pcm_s.iobase + 12, d & 0xff);
outb(pcm_s.iobase + 12, (d >> 8) & 0xff);
outb(pcm_s.iobase + 12, d & 0xff);
pcm_s.acc += pcm_s.speed;
}
pcm_s.last_l = d0;
}
}
static void
fifo_input_block(void)
{
int chunksize;
if (pcm_s.pdma_chunkcount) {
/* Update chunksize and then receive the next chunk from FIFO. */
chunksize = pcm_s.pdma_count / pcm_s.pdma_chunkcount--;
fifo_recv(pcm_s.pdma_buf, chunksize);
pcm_s.pdma_buf += chunksize;
pcm_s.pdma_count -= chunksize;
} else
/* ??? something wrong... */
printf("nss0: chunkcount overrun\n");
}
static void
fifo_recv(pcm_data *buf, int count)
{
int i;
if (count > tmpbuf.size) {
for (i = 0; i < tmpbuf.size; i++)
*buf++ = tmpbuf.buff[i];
count -= tmpbuf.size;
tmpbuf.size = 0;
if (pcm_s.stereo)
fifo_recv_stereo(buf, count);
else
fifo_recv_monoral(buf, count);
} else {
for (i = 0; i < count; i++)
*buf++ = tmpbuf.buff[i];
for (i = 0; i < tmpbuf.size - count; i++)
tmpbuf.buff[i] = tmpbuf.buff[i + count];
tmpbuf.size -= count;
}
#ifdef NSS_DEBUG
printf("fifo_recv(): %d bytes received\n",
((count / (pcm_s.bytes << pcm_s.stereo)) * pcm_s.chipspeed
/ pcm_s.speed) * pcm_s.bytes * 2);
#endif
}
static void
fifo_recv_stereo(pcm_data *buf, int count)
{
/* Convert format and sampling speed. */
switch (pcm_s.format) {
case AFMT_MU_LAW:
fifo_recv_stereo_ulaw(buf, count);
break;
case AFMT_S8:
fifo_recv_stereo_8(buf, count, NO);
break;
case AFMT_U8:
fifo_recv_stereo_8(buf, count, YES);
break;
case AFMT_S16_LE:
fifo_recv_stereo_16le(buf, count, NO);
break;
case AFMT_U16_LE:
fifo_recv_stereo_16le(buf, count, YES);
break;
case AFMT_S16_BE:
fifo_recv_stereo_16be(buf, count, NO);
break;
case AFMT_U16_BE:
fifo_recv_stereo_16be(buf, count, YES);
break;
}
}
static void
fifo_recv_monoral(pcm_data *buf, int count)
{
/* Convert format and sampling speed. */
switch (pcm_s.format) {
case AFMT_MU_LAW:
fifo_recv_mono_ulaw(buf, count);
break;
case AFMT_S8:
fifo_recv_mono_8(buf, count, NO);
break;
case AFMT_U8:
fifo_recv_mono_8(buf, count, YES);
break;
case AFMT_S16_LE:
fifo_recv_mono_16le(buf, count, NO);
break;
case AFMT_U16_LE:
fifo_recv_mono_16le(buf, count, YES);
break;
case AFMT_S16_BE:
fifo_recv_mono_16be(buf, count, NO);
break;
case AFMT_U16_BE:
fifo_recv_mono_16be(buf, count, YES);
break;
}
}
static void
fifo_recv_stereo_ulaw(pcm_data *buf, int count)
{
int i, cnt;
signed char dl, dl0, dl1, dr, dr0, dr1;
cnt = count / 2;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < cnt; i++) {
*buf++ = linear2ulaw[inb(pcm_s.iobase + 12)];
*buf++ = linear2ulaw[inb(pcm_s.iobase + 12)];
}
if (count % 2) {
*buf++ = linear2ulaw[inb(pcm_s.iobase + 12)];
tmpbuf.buff[0] = linear2ulaw[inb(pcm_s.iobase + 12)];
tmpbuf.size = 1;
}
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12);
for (i = 0; i < cnt; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = linear2ulaw[dl & 0xff];
*buf++ = linear2ulaw[dr & 0xff];
pcm_s.acc += pcm_s.chipspeed;
}
if (count % 2) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = linear2ulaw[dl & 0xff];
tmpbuf.buff[0] = linear2ulaw[dr & 0xff];
tmpbuf.size = 1;
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_recv_stereo_8(pcm_data *buf, int count, int uflag)
{
int i, cnt;
signed char dl, dl0, dl1, dr, dr0, dr1, zlev;
zlev = uflag ? -128 : 0;
cnt = count / 2;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < cnt; i++) {
*buf++ = inb(pcm_s.iobase + 12) + zlev;
*buf++ = inb(pcm_s.iobase + 12) + zlev;
}
if (count % 2) {
*buf++ = inb(pcm_s.iobase + 12) + zlev;
tmpbuf.buff[0] = inb(pcm_s.iobase + 12) + zlev;
tmpbuf.size = 1;
}
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12);
for (i = 0; i < cnt; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = dl + zlev;
*buf++ = dr + zlev;
pcm_s.acc += pcm_s.chipspeed;
}
if (count % 2) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = dl + zlev;
tmpbuf.buff[0] = dr + zlev;
tmpbuf.size = 1;
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_recv_stereo_16le(pcm_data *buf, int count, int uflag)
{
int i, cnt;
short dl, dl0, dl1, dr, dr0, dr1, zlev;
pcm_data t[4];
zlev = uflag ? -128 : 0;
cnt = count / 4;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < cnt; i++) {
*(buf + 1) = inb(pcm_s.iobase + 12) + zlev;
*buf = inb(pcm_s.iobase + 12);
*(buf + 3) = inb(pcm_s.iobase + 12) + zlev;
*(buf + 2) = inb(pcm_s.iobase + 12);
buf += 4;
}
if (count % 4) {
t[1] = inb(pcm_s.iobase + 12) + zlev;
t[0] = inb(pcm_s.iobase + 12);
t[3] = inb(pcm_s.iobase + 12) + zlev;
t[2] = inb(pcm_s.iobase + 12);
tmpbuf.size = 0;
for (i = 0; i < count % 4; i++)
*buf++ = t[i];
for (i = count % 4; i < 4; i++)
tmpbuf.buff[tmpbuf.size++] = t[i];
}
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = inb(pcm_s.iobase + 12) << 8;
dl1 |= inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12) << 8;
dr1 |= inb(pcm_s.iobase + 12);
for (i = 0; i < cnt; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12) << 8;
dl1 |= inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12) << 8;
dr1 |= inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = dl & 0xff;
*buf++ = ((dl >> 8) & 0xff) + zlev;
*buf++ = dr & 0xff;
*buf++ = ((dr >> 8) & 0xff) + zlev;
pcm_s.acc += pcm_s.chipspeed;
}
if (count % 4) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12) << 8;
dl1 |= inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12) << 8;
dr1 |= inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
t[0] = dl & 0xff;
t[1] = ((dl >> 8) & 0xff) + zlev;
t[2] = dr & 0xff;
t[3] = ((dr >> 8) & 0xff) + zlev;
tmpbuf.size = 0;
for (i = 0; i < count % 4; i++)
*buf++ = t[i];
for (i = count % 4; i < 4; i++)
tmpbuf.buff[tmpbuf.size++] = t[i];
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_recv_stereo_16be(pcm_data *buf, int count, int uflag)
{
int i, cnt;
short dl, dl0, dl1, dr, dr0, dr1, zlev;
pcm_data t[4];
zlev = uflag ? -128 : 0;
cnt = count / 4;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < cnt; i++) {
*buf++ = inb(pcm_s.iobase + 12) + zlev;
*buf++ = inb(pcm_s.iobase + 12);
*buf++ = inb(pcm_s.iobase + 12) + zlev;
*buf++ = inb(pcm_s.iobase + 12);
}
if (count % 4) {
t[0] = inb(pcm_s.iobase + 12) + zlev;
t[1] = inb(pcm_s.iobase + 12);
t[2] = inb(pcm_s.iobase + 12) + zlev;
t[3] = inb(pcm_s.iobase + 12);
tmpbuf.size = 0;
for (i = 0; i < count % 4; i++)
*buf++ = t[i];
for (i = count % 4; i < 4; i++)
tmpbuf.buff[tmpbuf.size++] = t[i];
}
} else {
/* Speed conversion with linear interpolation method. */
dl0 = pcm_s.last_l;
dr0 = pcm_s.last_r;
dl1 = inb(pcm_s.iobase + 12) << 8;
dl1 |= inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12) << 8;
dr1 |= inb(pcm_s.iobase + 12);
for (i = 0; i < cnt; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12) << 8;
dl1 |= inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12) << 8;
dr1 |= inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = ((dl >> 8) & 0xff) + zlev;
*buf++ = dl & 0xff;
*buf++ = ((dr >> 8) & 0xff) + zlev;
*buf++ = dr & 0xff;
pcm_s.acc += pcm_s.chipspeed;
}
if (count % 4) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
dl0 = dl1;
dr0 = dr1;
dl1 = inb(pcm_s.iobase + 12) << 8;
dl1 |= inb(pcm_s.iobase + 12);
dr1 = inb(pcm_s.iobase + 12) << 8;
dr1 |= inb(pcm_s.iobase + 12);
}
dl = ((dl0 * (pcm_s.speed - pcm_s.acc)) + (dl1 * pcm_s.acc))
/ pcm_s.speed;
dr = ((dr0 * (pcm_s.speed - pcm_s.acc)) + (dr1 * pcm_s.acc))
/ pcm_s.speed;
t[0] = ((dl >> 8) & 0xff) + zlev;
t[1] = dl & 0xff;
t[2] = ((dr >> 8) & 0xff) + zlev;
t[3] = dr & 0xff;
tmpbuf.size = 0;
for (i = 0; i < count % 4; i++)
*buf++ = t[i];
for (i = count % 4; i < 4; i++)
tmpbuf.buff[tmpbuf.size++] = t[i];
}
pcm_s.last_l = dl0;
pcm_s.last_r = dr0;
}
}
static void
fifo_recv_mono_ulaw(pcm_data *buf, int count)
{
int i;
signed char d, d0, d1;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < count; i++) {
d = ((signed char)inb(pcm_s.iobase + 12)
+ (signed char)inb(pcm_s.iobase + 12)) >> 1;
*buf++ = linear2ulaw[d & 0xff];
}
} else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
d1 = ((signed char)inb(pcm_s.iobase + 12)
+ (signed char)inb(pcm_s.iobase + 12)) >> 1;
for (i = 0; i < count; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
d0 = d1;
d1 = ((signed char)inb(pcm_s.iobase + 12)
+ (signed char)inb(pcm_s.iobase + 12)) >> 1;
}
d = ((d0 * (pcm_s.speed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = linear2ulaw[d & 0xff];
pcm_s.acc += pcm_s.chipspeed;
}
pcm_s.last_l = d0;
}
}
static void
fifo_recv_mono_8(pcm_data *buf, int count, int uflag)
{
int i;
signed char d, d0, d1, zlev;
zlev = uflag ? -128 : 0;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < count; i++) {
d = ((signed char)inb(pcm_s.iobase + 12)
+ (signed char)inb(pcm_s.iobase + 12)) >> 1;
*buf++ = d + zlev;
}
} else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
d1 = ((signed char)inb(pcm_s.iobase + 12)
+ (signed char)inb(pcm_s.iobase + 12)) >> 1;
for (i = 0; i < count; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
d0 = d1;
d1 = ((signed char)inb(pcm_s.iobase + 12)
+ (signed char)inb(pcm_s.iobase + 12)) >> 1;
}
d = ((d0 * (pcm_s.speed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = d + zlev;
pcm_s.acc += pcm_s.chipspeed;
}
pcm_s.last_l = d0;
}
}
static void
fifo_recv_mono_16le(pcm_data *buf, int count, int uflag)
{
int i, cnt;
short d, d0, d1, el, er, zlev;
zlev = uflag ? -128 : 0;
cnt = count / 2;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < cnt; i++) {
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d = (el + er) >> 1;
*buf++ = d & 0xff;
*buf++ = ((d >> 8) & 0xff) + zlev;
}
if (count % 2) {
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d = (el + er) >> 1;
*buf++ = d & 0xff;
tmpbuf.buff[0] = ((d >> 8) & 0xff) + zlev;
tmpbuf.size = 1;
}
} else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d1 = (el + er) >> 1;
for (i = 0; i < cnt; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
d0 = d1;
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d1 = (el + er) >> 1;
}
d = ((d0 * (pcm_s.speed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = d & 0xff;
*buf++ = ((d >> 8) & 0xff) + zlev;
pcm_s.acc += pcm_s.chipspeed;
}
if (count % 2) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
d0 = d1;
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d1 = (el + er) >> 1;
}
d = ((d0 * (pcm_s.speed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = d & 0xff;
tmpbuf.buff[0] = ((d >> 8) & 0xff) + zlev;
tmpbuf.size = 1;
}
pcm_s.last_l = d0;
}
}
static void
fifo_recv_mono_16be(pcm_data *buf, int count, int uflag)
{
int i, cnt;
short d, d0, d1, el, er, zlev;
zlev = uflag ? -128 : 0;
cnt = count / 2;
if (pcm_s.speed == pcm_s.chipspeed) {
/* No reason to convert the pcm speed. */
for (i = 0; i < cnt; i++) {
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d = (el + er) >> 1;
*buf++ = ((d >> 8) & 0xff) + zlev;
*buf++ = d & 0xff;
}
if (count % 2) {
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d = (el + er) >> 1;
*buf++ = ((d >> 8) & 0xff) + zlev;
tmpbuf.buff[0] = d & 0xff;
tmpbuf.size = 1;
}
} else {
/* Speed conversion with linear interpolation method. */
d0 = pcm_s.last_l;
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d1 = (el + er) >> 1;
for (i = 0; i < cnt; i++) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
d0 = d1;
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d1 = (el + er) >> 1;
}
d = ((d0 * (pcm_s.speed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = ((d >> 8) & 0xff) + zlev;
*buf++ = d & 0xff;
pcm_s.acc += pcm_s.chipspeed;
}
if (count % 2) {
while (pcm_s.acc >= pcm_s.speed) {
pcm_s.acc -= pcm_s.speed;
d0 = d1;
el = inb(pcm_s.iobase + 12) << 8;
el |= inb(pcm_s.iobase + 12);
er = inb(pcm_s.iobase + 12) << 8;
er |= inb(pcm_s.iobase + 12);
d1 = (el + er) >> 1;
}
d = ((d0 * (pcm_s.speed - pcm_s.acc)) + (d1 * pcm_s.acc))
/ pcm_s.speed;
*buf++ = ((d >> 8) & 0xff) + zlev;
tmpbuf.buff[0] = d & 0xff;
tmpbuf.size = 1;
}
pcm_s.last_l = d0;
}
}
static void
nss_stop(void)
{
fifo_stop(); /* stop FIFO */
fifo_reset(); /* reset FIFO buffer */
/* Reset driver's status. */
pcm_s.intr_busy = NO;
pcm_s.intr_last = NO;
pcm_s.intr_trailer = NO;
pcm_s.acc = 0;
pcm_s.last_l = 0;
pcm_s.last_r = 0;
DEB(printf("nss_stop\n"));
}
static void
nss_init(void)
{
/* Initialize registers on the board. */
nss_stop();
if (pcm_s.board_type == PC980173_FAMILY)
dsp73_init();
/* Set default volume. */
set_volume(DEFAULT_VOLUME);
/* Initialize driver's status. */
pcm_s.opened = NO;
nss_initialized = YES;
}
/*
* Codes for global use
*/
int
probe_nss(struct address_info *hw_config)
{
return nss_detect(hw_config);
}
void
attach_nss(struct address_info *hw_config)
{
if (pcm_s.board_type == NO_SUPPORTED_BOARD)
return ;
/* Initialize the board. */
nss_init();
conf_printf(nss_operations.name, hw_config);
if (num_audiodevs < MAX_AUDIO_DEV) {
my_dev = num_audiodevs++;
audio_devs[my_dev] = &nss_operations;
/* audio_devs[my_dev]->buffcount = DSP_BUFFCOUNT; */
audio_devs[my_dev]->buffsize = DSP_BUFFSIZE;
#ifdef NSS_DEBUG
printf("\nbuffsize = %d", DSP_BUFFSIZE);
#endif
} else
printf("nss0: Too many PCM devices available");
return ;
}
static int
nss_detect(struct address_info *hw_config)
{
int opna_iobase = 0x188, irq = 12, i;
unsigned char tmp;
if (hw_config->io_base == -1) {
printf("nss0: iobase not specified. Assume default port(0x%x)\n",
PCM86_IOBASE);
hw_config->io_base = PCM86_IOBASE;
}
pcm_s.iobase = hw_config->io_base;
/* auto configuration */
tmp = (inb(pcm_s.iobase) & 0xf0) >> 4;
if (tmp == 0x07) {
/*
* Remap MATE-X PCM Sound ID register (0xA460 -> 0xB460)
* to avoid corrision with 86 Sound System.
*/
/*
printf("nss0: Found MATE-X PCM Sound ID\n");
printf("nss0: Remaped 0xa460 to 0xb460\n");
*/
outb(0xc24, 0xe1);
outb(0xc2b, 0x60);
outb(0xc2d, 0xb4);
}
tmp = inb(pcm_s.iobase) & 0xfc;
switch ((tmp & 0xf0) >> 4) {
case 2:
opna_iobase = 0x188;
pcm_s.board_type = PC980173_FAMILY;
break;
case 3:
opna_iobase = 0x288;
pcm_s.board_type = PC980173_FAMILY;
break;
case 4:
opna_iobase = 0x188;
pcm_s.board_type = PC980186_FAMILY;
break;
case 5:
opna_iobase = 0x288;
pcm_s.board_type = PC980186_FAMILY;
break;
default:
pcm_s.board_type = NO_SUPPORTED_BOARD;
return NO;
}
/* Enable OPNA(YM2608) facilities. */
outb(pcm_s.iobase, tmp | 0x01);
/* Wait for OPNA to be ready. */
i = 100000; /* Some large value */
while((inb(opna_iobase) & 0x80) && (i-- > 0));
/* Make IOA/IOB port ready (IOA:input, IOB:output) */
outb(opna_iobase, 0x07);
outb(0x5f, 0); /* Because OPNA ports are comparatively slow(?), */
outb(0x5f, 0); /* we'd better wait a moment. */
outb(0x5f, 0);
outb(0x5f, 0);
tmp = inb(opna_iobase + 2) & 0x3f;
outb(opna_iobase + 2, tmp | 0x80);
/* Wait for OPNA to be ready. */
i = 100000; /* Some large value */
while((inb(opna_iobase) & 0x80) && (i-- > 0));
/* Get irq number from IOA port. */
outb(opna_iobase, 0x0e);
outb(0x5f, 0);
outb(0x5f, 0);
outb(0x5f, 0);
outb(0x5f, 0);
tmp = inb(opna_iobase + 2) & 0xc0;
switch (tmp >> 6) {
case 0: /* INT0 (IRQ3)*/
irq = 3;
break;
case 1: /* INT6 (IRQ13)*/
irq = 13;
break;
case 2: /* INT4 (IRQ10)*/
irq = 10;
break;
case 3: /* INT5 (IRQ12)*/
irq = 12;
break;
default: /* error */
return NO;
}
/* Wait for OPNA to be ready. */
i = 100000; /* Some large value */
while((inb(opna_iobase) & 0x80) && (i-- > 0));
/* Reset OPNA timer register. */
outb(opna_iobase, 0x27);
outb(0x5f, 0);
outb(0x5f, 0);
outb(0x5f, 0);
outb(0x5f, 0);
outb(opna_iobase + 2, 0x30);
/* Ok. Detection finished. */
snprintf(nss_operations.name, sizeof(nss_operations.name),
"%s", board_name[pcm_s.board_type]);
nss_initialized = NO;
pcm_s.irq = irq;
if ((hw_config->irq > 0) && (hw_config->irq != irq))
printf("nss0: change irq %d -> %d\n", hw_config->irq, irq);
hw_config->irq = irq;
pcm_s.osp = hw_config->osp;
return YES;
}
static int
nss_open(int dev, int mode)
{
int err;
if (!nss_initialized)
return -(ENXIO);
if (pcm_s.intr_busy || pcm_s.opened)
return -(EBUSY);
if ((err = snd_set_irq_handler(pcm_s.irq, nssintr, pcm_s.osp)) < 0)
return err;
nss_stop();
tmpbuf.size = 0;
pcm_s.intr_mode = IMODE_NONE;
pcm_s.opened = YES;
return 0;
}
static void
nss_close(int dev)
{
/* snd_release_irq(pcm_s.irq); */
pcm_s.opened = NO;
}
static void
nss_output_block(int dev, unsigned long buf, int count, int intrflag,
int dma_restart)
{
unsigned long flags, cnt;
int maxchunksize;
#ifdef NSS_DEBUG
printf("nss_output_block():");
if (audio_devs[dev]->dmap_out->flags & DMA_BUSY)
printf(" DMA_BUSY");
if (audio_devs[dev]->dmap_out->flags & DMA_RESTART)
printf(" DMA_RESTART");
if (audio_devs[dev]->dmap_out->flags & DMA_ACTIVE)
printf(" DMA_ACTIVE");
if (audio_devs[dev]->dmap_out->flags & DMA_STARTED)
printf(" DMA_STARTED");
if (audio_devs[dev]->dmap_out->flags & DMA_ALLOC_DONE)
printf(" DMA_ALLOC_DONE");
printf("\n");
#endif
#if 0
DISABLE_INTR(flags);
#endif
#ifdef NSS_DEBUG
printf("nss_output_block(): count = %d, intrsize= %d\n",
count, pcm_s.intr_size);
#endif
pcm_s.pdma_buf = (pcm_data *)buf;
pcm_s.pdma_count = count;
pcm_s.pdma_chunkcount = 1;
maxchunksize = (((PCM86_FIFOSIZE - pcm_s.intr_size * 2)
/ (pcm_s.bytes * 2)) * pcm_s.speed
/ pcm_s.chipspeed) * (pcm_s.bytes << pcm_s.stereo);
if (count > maxchunksize)
pcm_s.pdma_chunkcount = 2 * count / maxchunksize;
/*
* Let chunksize = (float)count / (float)pcm_s.pdma_chunkcount.
* Data of size chunksize is sent to the FIFO buffer on the 86-board
* on every occuring of interrupt.
* By assuming that pcm_s.intr_size < PCM86_FIFOSIZE / 2, we can conclude
* that the FIFO buffer never overflows from the following lemma.
*
* Lemma:
* maxchunksize / 2 <= chunksize <= maxchunksize.
* (Though pcm_s.pdma_chunkcount is obtained through the flooring
* function, this inequality holds.)
* Proof) Omitted.
*/
fifo_output_block();
pcm_s.intr_last = NO;
pcm_s.intr_mode = IMODE_OUTPUT;
if (!pcm_s.intr_busy)
fifo_start(IMODE_OUTPUT);
pcm_s.intr_busy = YES;
#if 0
RESTORE_INTR(flags);
#endif
}
static void
nss_start_input(int dev, unsigned long buf, int count, int intrflag,
int dma_restart)
{
unsigned long flags, cnt;
int maxchunksize;
#ifdef NSS_DEBUG
printf("nss_start_input():");
if (audio_devs[dev]->dmap_in->flags & DMA_BUSY)
printf(" DMA_BUSY");
if (audio_devs[dev]->dmap_in->flags & DMA_RESTART)
printf(" DMA_RESTART");
if (audio_devs[dev]->dmap_in->flags & DMA_ACTIVE)
printf(" DMA_ACTIVE");
if (audio_devs[dev]->dmap_in->flags & DMA_STARTED)
printf(" DMA_STARTED");
if (audio_devs[dev]->dmap_in->flags & DMA_ALLOC_DONE)
printf(" DMA_ALLOC_DONE");
printf("\n");
#endif
#if 0
DISABLE_INTR(flags);
#endif
pcm_s.intr_size = PCM86_INTRSIZE_IN;
#ifdef NSS_DEBUG
printf("nss_start_input(): count = %d, intrsize= %d\n",
count, pcm_s.intr_size);
#endif
pcm_s.pdma_buf = (pcm_data *)buf;
pcm_s.pdma_count = count;
pcm_s.pdma_chunkcount = 1;
maxchunksize = ((pcm_s.intr_size / (pcm_s.bytes * 2)) * pcm_s.speed
/ pcm_s.chipspeed) * (pcm_s.bytes << pcm_s.stereo);
if (count > maxchunksize)
pcm_s.pdma_chunkcount = 2 * count / maxchunksize;
pcm_s.intr_mode = IMODE_INPUT;
if (!pcm_s.intr_busy)
fifo_start(IMODE_INPUT);
pcm_s.intr_busy = YES;
#if 0
RESTORE_INTR(flags);
#endif
}
static int
nss_ioctl(int dev, u_int cmd, ioctl_arg arg, int local)
{
switch (cmd) {
case SOUND_PCM_WRITE_RATE:
if (local)
return set_speed((int) arg);
return *(int *) arg = set_speed((*(int *) arg));
case SOUND_PCM_READ_RATE:
if (local)
return pcm_s.speed;
return *(int *) arg = pcm_s.speed;
case SNDCTL_DSP_STEREO:
if (local)
return set_stereo((int) arg);
return *(int *) arg = set_stereo((*(int *) arg));
case SOUND_PCM_WRITE_CHANNELS:
if (local)
return set_stereo((int) arg - 1) + 1;
return *(int *) arg = set_stereo((*(int *) arg) - 1) + 1;
case SOUND_PCM_READ_CHANNELS:
if (local)
return pcm_s.stereo + 1;
return *(int *) arg = pcm_s.stereo + 1;
case SNDCTL_DSP_SETFMT:
if (local)
return set_format((int) arg);
return *(int *) arg = set_format((*(int *) arg));
case SOUND_PCM_READ_BITS:
if (local)
return pcm_s.bytes * 8;
return *(int *) arg = pcm_s.bytes * 8;
}
/* Invalid ioctl request */
return -(EINVAL);
}
static int
nss_prepare_for_input(int dev, int bufsize, int nbufs)
{
pcm_s.intr_size = PCM86_INTRSIZE_IN;
pcm_s.intr_mode = IMODE_NONE;
pcm_s.acc = 0;
pcm_s.last_l = 0;
pcm_s.last_r = 0;
DEB(printf("nss_prepare_for_input\n"));
return 0;
}
static int
nss_prepare_for_output(int dev, int bufsize, int nbufs)
{
pcm_s.intr_size = PCM86_INTRSIZE_OUT;
pcm_s.intr_mode = IMODE_NONE;
pcm_s.acc = 0;
pcm_s.last_l = 0;
pcm_s.last_r = 0;
DEB(printf("nss_prepare_for_output\n"));
return 0;
}
static void
nss_reset(int dev)
{
nss_stop();
}
static void
nss_halt_xfer(int dev)
{
nss_stop();
DEB(printf("nss_halt_xfer\n"));
}
void
nssintr(int unit)
{
unsigned char tmp;
if ((inb(pcm_s.iobase + 8) & 0x10) == 0)
return; /* not FIFO intr. */
switch(pcm_s.intr_mode) {
case IMODE_OUTPUT:
if (pcm_s.intr_trailer) {
DEB(printf("nssintr(): fifo_reset\n"));
fifo_reset();
pcm_s.intr_trailer = NO;
pcm_s.intr_busy = NO;
}
if (pcm_s.pdma_count > 0)
fifo_output_block();
else
DMAbuf_outputintr(my_dev, 1);
/* Reset intr. flag. */
tmp = inb(pcm_s.iobase + 8);
outb(pcm_s.iobase + 8, tmp & ~0x10);
outb(pcm_s.iobase + 8, tmp | 0x10);
break;
case IMODE_INPUT:
fifo_input_block();
if (pcm_s.pdma_count == 0)
DMAbuf_inputintr(my_dev);
/* Reset intr. flag. */
tmp = inb(pcm_s.iobase + 8);
outb(pcm_s.iobase + 8, tmp & ~0x10);
outb(pcm_s.iobase + 8, tmp | 0x10);
break;
default:
nss_stop();
printf("nss0: unexpected interrupt\n");
}
}
#endif /* EXCLUDE_NSS, EXCLUDE_AUDIO */
#endif /* CONFIGURE_SOUNDCARD */