45a4bfa17d
syscall can interrupt other thread's syscall in sleepq_catch_signals(). Current, all callers know thread_suspend_check may suspend thread itself, so we need't to check return_instead for normal suspension flags (no P_SINGLE_EXIT set). Tested by: deischen Reported by: Maarten L. Hekkelman <m.hekkelman@cmbi.kun.nl>
1132 lines
29 KiB
C
1132 lines
29 KiB
C
/*
|
|
* Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer as
|
|
* the first lines of this file unmodified other than the possible
|
|
* addition of one or more copyright notices.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/turnstile.h>
|
|
#include <sys/ktr.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
|
|
/*
|
|
* KSEGRP related storage.
|
|
*/
|
|
static uma_zone_t ksegrp_zone;
|
|
static uma_zone_t kse_zone;
|
|
static uma_zone_t thread_zone;
|
|
|
|
/* DEBUG ONLY */
|
|
SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
|
|
static int thread_debug = 0;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
|
|
&thread_debug, 0, "thread debug");
|
|
|
|
int max_threads_per_proc = 1500;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
|
|
&max_threads_per_proc, 0, "Limit on threads per proc");
|
|
|
|
int max_groups_per_proc = 500;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
|
|
&max_groups_per_proc, 0, "Limit on thread groups per proc");
|
|
|
|
int max_threads_hits;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
|
|
&max_threads_hits, 0, "");
|
|
|
|
int virtual_cpu;
|
|
|
|
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
|
|
|
|
TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
|
|
TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
|
|
TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
|
|
struct mtx kse_zombie_lock;
|
|
MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
|
|
|
|
void kse_purge(struct proc *p, struct thread *td);
|
|
void kse_purge_group(struct thread *td);
|
|
|
|
/* move to proc.h */
|
|
extern void kseinit(void);
|
|
extern void kse_GC(void);
|
|
|
|
|
|
static int
|
|
sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, new_val;
|
|
int def_val;
|
|
|
|
def_val = mp_ncpus;
|
|
if (virtual_cpu == 0)
|
|
new_val = def_val;
|
|
else
|
|
new_val = virtual_cpu;
|
|
error = sysctl_handle_int(oidp, &new_val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (new_val < 0)
|
|
return (EINVAL);
|
|
virtual_cpu = new_val;
|
|
return (0);
|
|
}
|
|
|
|
/* DEBUG ONLY */
|
|
SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
|
|
0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
|
|
"debug virtual cpus");
|
|
|
|
/*
|
|
* Thread ID allocator. The allocator keeps track of assigned IDs by
|
|
* using a bitmap. The bitmap is created in parts. The parts are linked
|
|
* together.
|
|
*/
|
|
typedef u_long tid_bitmap_word;
|
|
|
|
#define TID_IDS_PER_PART 1024
|
|
#define TID_IDS_PER_IDX (sizeof(tid_bitmap_word) << 3)
|
|
#define TID_BITMAP_SIZE (TID_IDS_PER_PART / TID_IDS_PER_IDX)
|
|
#define TID_MIN (PID_MAX + 1)
|
|
|
|
struct tid_bitmap_part {
|
|
STAILQ_ENTRY(tid_bitmap_part) bmp_next;
|
|
tid_bitmap_word bmp_bitmap[TID_BITMAP_SIZE];
|
|
lwpid_t bmp_base;
|
|
int bmp_free;
|
|
};
|
|
|
|
static STAILQ_HEAD(, tid_bitmap_part) tid_bitmap =
|
|
STAILQ_HEAD_INITIALIZER(tid_bitmap);
|
|
static uma_zone_t tid_zone;
|
|
|
|
struct mtx tid_lock;
|
|
MTX_SYSINIT(tid_lock, &tid_lock, "TID lock", MTX_DEF);
|
|
|
|
/*
|
|
* Prepare a thread for use.
|
|
*/
|
|
static int
|
|
thread_ctor(void *mem, int size, void *arg, int flags)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
td->td_state = TDS_INACTIVE;
|
|
td->td_oncpu = NOCPU;
|
|
|
|
/*
|
|
* Note that td_critnest begins life as 1 because the thread is not
|
|
* running and is thereby implicitly waiting to be on the receiving
|
|
* end of a context switch. A context switch must occur inside a
|
|
* critical section, and in fact, includes hand-off of the sched_lock.
|
|
* After a context switch to a newly created thread, it will release
|
|
* sched_lock for the first time, and its td_critnest will hit 0 for
|
|
* the first time. This happens on the far end of a context switch,
|
|
* and when it context switches away from itself, it will in fact go
|
|
* back into a critical section, and hand off the sched lock to the
|
|
* next thread.
|
|
*/
|
|
td->td_critnest = 1;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reclaim a thread after use.
|
|
*/
|
|
static void
|
|
thread_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
|
|
#ifdef INVARIANTS
|
|
/* Verify that this thread is in a safe state to free. */
|
|
switch (td->td_state) {
|
|
case TDS_INHIBITED:
|
|
case TDS_RUNNING:
|
|
case TDS_CAN_RUN:
|
|
case TDS_RUNQ:
|
|
/*
|
|
* We must never unlink a thread that is in one of
|
|
* these states, because it is currently active.
|
|
*/
|
|
panic("bad state for thread unlinking");
|
|
/* NOTREACHED */
|
|
case TDS_INACTIVE:
|
|
break;
|
|
default:
|
|
panic("bad thread state");
|
|
/* NOTREACHED */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a thread (when newly created).
|
|
*/
|
|
static int
|
|
thread_init(void *mem, int size, int flags)
|
|
{
|
|
struct thread *td;
|
|
struct tid_bitmap_part *bmp, *new;
|
|
int bit, idx;
|
|
|
|
td = (struct thread *)mem;
|
|
|
|
mtx_lock(&tid_lock);
|
|
STAILQ_FOREACH(bmp, &tid_bitmap, bmp_next) {
|
|
if (bmp->bmp_free)
|
|
break;
|
|
}
|
|
/* Create a new bitmap if we run out of free bits. */
|
|
if (bmp == NULL) {
|
|
mtx_unlock(&tid_lock);
|
|
new = uma_zalloc(tid_zone, M_WAITOK);
|
|
mtx_lock(&tid_lock);
|
|
bmp = STAILQ_LAST(&tid_bitmap, tid_bitmap_part, bmp_next);
|
|
if (bmp == NULL || bmp->bmp_free < TID_IDS_PER_PART/2) {
|
|
/* 1=free, 0=assigned. This way we can use ffsl(). */
|
|
memset(new->bmp_bitmap, ~0U, sizeof(new->bmp_bitmap));
|
|
new->bmp_base = (bmp == NULL) ? TID_MIN :
|
|
bmp->bmp_base + TID_IDS_PER_PART;
|
|
new->bmp_free = TID_IDS_PER_PART;
|
|
STAILQ_INSERT_TAIL(&tid_bitmap, new, bmp_next);
|
|
bmp = new;
|
|
new = NULL;
|
|
}
|
|
} else
|
|
new = NULL;
|
|
/* We have a bitmap with available IDs. */
|
|
idx = 0;
|
|
while (idx < TID_BITMAP_SIZE && bmp->bmp_bitmap[idx] == 0UL)
|
|
idx++;
|
|
bit = ffsl(bmp->bmp_bitmap[idx]) - 1;
|
|
td->td_tid = bmp->bmp_base + idx * TID_IDS_PER_IDX + bit;
|
|
bmp->bmp_bitmap[idx] &= ~(1UL << bit);
|
|
bmp->bmp_free--;
|
|
mtx_unlock(&tid_lock);
|
|
if (new != NULL)
|
|
uma_zfree(tid_zone, new);
|
|
|
|
vm_thread_new(td, 0);
|
|
cpu_thread_setup(td);
|
|
td->td_sleepqueue = sleepq_alloc();
|
|
td->td_turnstile = turnstile_alloc();
|
|
td->td_sched = (struct td_sched *)&td[1];
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Tear down type-stable parts of a thread (just before being discarded).
|
|
*/
|
|
static void
|
|
thread_fini(void *mem, int size)
|
|
{
|
|
struct thread *td;
|
|
struct tid_bitmap_part *bmp;
|
|
lwpid_t tid;
|
|
int bit, idx;
|
|
|
|
td = (struct thread *)mem;
|
|
turnstile_free(td->td_turnstile);
|
|
sleepq_free(td->td_sleepqueue);
|
|
vm_thread_dispose(td);
|
|
|
|
STAILQ_FOREACH(bmp, &tid_bitmap, bmp_next) {
|
|
if (td->td_tid >= bmp->bmp_base &&
|
|
td->td_tid < bmp->bmp_base + TID_IDS_PER_PART)
|
|
break;
|
|
}
|
|
KASSERT(bmp != NULL, ("No TID bitmap?"));
|
|
mtx_lock(&tid_lock);
|
|
tid = td->td_tid - bmp->bmp_base;
|
|
idx = tid / TID_IDS_PER_IDX;
|
|
bit = 1UL << (tid % TID_IDS_PER_IDX);
|
|
bmp->bmp_bitmap[idx] |= bit;
|
|
bmp->bmp_free++;
|
|
mtx_unlock(&tid_lock);
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a kse (when newly created).
|
|
*/
|
|
static int
|
|
kse_init(void *mem, int size, int flags)
|
|
{
|
|
struct kse *ke;
|
|
|
|
ke = (struct kse *)mem;
|
|
ke->ke_sched = (struct ke_sched *)&ke[1];
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a ksegrp (when newly created).
|
|
*/
|
|
static int
|
|
ksegrp_init(void *mem, int size, int flags)
|
|
{
|
|
struct ksegrp *kg;
|
|
|
|
kg = (struct ksegrp *)mem;
|
|
kg->kg_sched = (struct kg_sched *)&kg[1];
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* KSE is linked into kse group.
|
|
*/
|
|
void
|
|
kse_link(struct kse *ke, struct ksegrp *kg)
|
|
{
|
|
struct proc *p = kg->kg_proc;
|
|
|
|
TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
|
|
kg->kg_kses++;
|
|
ke->ke_state = KES_UNQUEUED;
|
|
ke->ke_proc = p;
|
|
ke->ke_ksegrp = kg;
|
|
ke->ke_thread = NULL;
|
|
ke->ke_oncpu = NOCPU;
|
|
ke->ke_flags = 0;
|
|
}
|
|
|
|
void
|
|
kse_unlink(struct kse *ke)
|
|
{
|
|
struct ksegrp *kg;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
kg = ke->ke_ksegrp;
|
|
TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
|
|
if (ke->ke_state == KES_IDLE) {
|
|
TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
|
|
kg->kg_idle_kses--;
|
|
}
|
|
--kg->kg_kses;
|
|
/*
|
|
* Aggregate stats from the KSE
|
|
*/
|
|
kse_stash(ke);
|
|
}
|
|
|
|
void
|
|
ksegrp_link(struct ksegrp *kg, struct proc *p)
|
|
{
|
|
|
|
TAILQ_INIT(&kg->kg_threads);
|
|
TAILQ_INIT(&kg->kg_runq); /* links with td_runq */
|
|
TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */
|
|
TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */
|
|
TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */
|
|
TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */
|
|
kg->kg_proc = p;
|
|
/*
|
|
* the following counters are in the -zero- section
|
|
* and may not need clearing
|
|
*/
|
|
kg->kg_numthreads = 0;
|
|
kg->kg_runnable = 0;
|
|
kg->kg_kses = 0;
|
|
kg->kg_runq_kses = 0; /* XXXKSE change name */
|
|
kg->kg_idle_kses = 0;
|
|
kg->kg_numupcalls = 0;
|
|
/* link it in now that it's consistent */
|
|
p->p_numksegrps++;
|
|
TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
|
|
}
|
|
|
|
void
|
|
ksegrp_unlink(struct ksegrp *kg)
|
|
{
|
|
struct proc *p;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
|
|
KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
|
|
KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
|
|
|
|
p = kg->kg_proc;
|
|
TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
|
|
p->p_numksegrps--;
|
|
/*
|
|
* Aggregate stats from the KSE
|
|
*/
|
|
ksegrp_stash(kg);
|
|
}
|
|
|
|
/*
|
|
* For a newly created process,
|
|
* link up all the structures and its initial threads etc.
|
|
*/
|
|
void
|
|
proc_linkup(struct proc *p, struct ksegrp *kg,
|
|
struct kse *ke, struct thread *td)
|
|
{
|
|
|
|
TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */
|
|
TAILQ_INIT(&p->p_threads); /* all threads in proc */
|
|
TAILQ_INIT(&p->p_suspended); /* Threads suspended */
|
|
p->p_numksegrps = 0;
|
|
p->p_numthreads = 0;
|
|
|
|
ksegrp_link(kg, p);
|
|
kse_link(ke, kg);
|
|
thread_link(td, kg);
|
|
}
|
|
|
|
/*
|
|
* Initialize global thread allocation resources.
|
|
*/
|
|
void
|
|
threadinit(void)
|
|
{
|
|
|
|
thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
|
|
thread_ctor, thread_dtor, thread_init, thread_fini,
|
|
UMA_ALIGN_CACHE, 0);
|
|
tid_zone = uma_zcreate("TID", sizeof(struct tid_bitmap_part),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
|
|
ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
|
|
NULL, NULL, ksegrp_init, NULL,
|
|
UMA_ALIGN_CACHE, 0);
|
|
kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
|
|
NULL, NULL, kse_init, NULL,
|
|
UMA_ALIGN_CACHE, 0);
|
|
kseinit();
|
|
}
|
|
|
|
/*
|
|
* Stash an embarasingly extra thread into the zombie thread queue.
|
|
*/
|
|
void
|
|
thread_stash(struct thread *td)
|
|
{
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
}
|
|
|
|
/*
|
|
* Stash an embarasingly extra kse into the zombie kse queue.
|
|
*/
|
|
void
|
|
kse_stash(struct kse *ke)
|
|
{
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
}
|
|
|
|
/*
|
|
* Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
|
|
*/
|
|
void
|
|
ksegrp_stash(struct ksegrp *kg)
|
|
{
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
}
|
|
|
|
/*
|
|
* Reap zombie kse resource.
|
|
*/
|
|
void
|
|
thread_reap(void)
|
|
{
|
|
struct thread *td_first, *td_next;
|
|
struct kse *ke_first, *ke_next;
|
|
struct ksegrp *kg_first, * kg_next;
|
|
|
|
/*
|
|
* Don't even bother to lock if none at this instant,
|
|
* we really don't care about the next instant..
|
|
*/
|
|
if ((!TAILQ_EMPTY(&zombie_threads))
|
|
|| (!TAILQ_EMPTY(&zombie_kses))
|
|
|| (!TAILQ_EMPTY(&zombie_ksegrps))) {
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
td_first = TAILQ_FIRST(&zombie_threads);
|
|
ke_first = TAILQ_FIRST(&zombie_kses);
|
|
kg_first = TAILQ_FIRST(&zombie_ksegrps);
|
|
if (td_first)
|
|
TAILQ_INIT(&zombie_threads);
|
|
if (ke_first)
|
|
TAILQ_INIT(&zombie_kses);
|
|
if (kg_first)
|
|
TAILQ_INIT(&zombie_ksegrps);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
while (td_first) {
|
|
td_next = TAILQ_NEXT(td_first, td_runq);
|
|
if (td_first->td_ucred)
|
|
crfree(td_first->td_ucred);
|
|
thread_free(td_first);
|
|
td_first = td_next;
|
|
}
|
|
while (ke_first) {
|
|
ke_next = TAILQ_NEXT(ke_first, ke_procq);
|
|
kse_free(ke_first);
|
|
ke_first = ke_next;
|
|
}
|
|
while (kg_first) {
|
|
kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
|
|
ksegrp_free(kg_first);
|
|
kg_first = kg_next;
|
|
}
|
|
}
|
|
kse_GC();
|
|
}
|
|
|
|
/*
|
|
* Allocate a ksegrp.
|
|
*/
|
|
struct ksegrp *
|
|
ksegrp_alloc(void)
|
|
{
|
|
return (uma_zalloc(ksegrp_zone, M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Allocate a kse.
|
|
*/
|
|
struct kse *
|
|
kse_alloc(void)
|
|
{
|
|
return (uma_zalloc(kse_zone, M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Allocate a thread.
|
|
*/
|
|
struct thread *
|
|
thread_alloc(void)
|
|
{
|
|
thread_reap(); /* check if any zombies to get */
|
|
return (uma_zalloc(thread_zone, M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Deallocate a ksegrp.
|
|
*/
|
|
void
|
|
ksegrp_free(struct ksegrp *td)
|
|
{
|
|
uma_zfree(ksegrp_zone, td);
|
|
}
|
|
|
|
/*
|
|
* Deallocate a kse.
|
|
*/
|
|
void
|
|
kse_free(struct kse *td)
|
|
{
|
|
uma_zfree(kse_zone, td);
|
|
}
|
|
|
|
/*
|
|
* Deallocate a thread.
|
|
*/
|
|
void
|
|
thread_free(struct thread *td)
|
|
{
|
|
|
|
cpu_thread_clean(td);
|
|
uma_zfree(thread_zone, td);
|
|
}
|
|
|
|
/*
|
|
* Discard the current thread and exit from its context.
|
|
* Always called with scheduler locked.
|
|
*
|
|
* Because we can't free a thread while we're operating under its context,
|
|
* push the current thread into our CPU's deadthread holder. This means
|
|
* we needn't worry about someone else grabbing our context before we
|
|
* do a cpu_throw(). This may not be needed now as we are under schedlock.
|
|
* Maybe we can just do a thread_stash() as thr_exit1 does.
|
|
*/
|
|
/* XXX
|
|
* libthr expects its thread exit to return for the last
|
|
* thread, meaning that the program is back to non-threaded
|
|
* mode I guess. Because we do this (cpu_throw) unconditionally
|
|
* here, they have their own version of it. (thr_exit1())
|
|
* that doesn't do it all if this was the last thread.
|
|
* It is also called from thread_suspend_check().
|
|
* Of course in the end, they end up coming here through exit1
|
|
* anyhow.. After fixing 'thr' to play by the rules we should be able
|
|
* to merge these two functions together.
|
|
*/
|
|
void
|
|
thread_exit(void)
|
|
{
|
|
struct thread *td;
|
|
struct kse *ke;
|
|
struct proc *p;
|
|
struct ksegrp *kg;
|
|
|
|
td = curthread;
|
|
kg = td->td_ksegrp;
|
|
p = td->td_proc;
|
|
ke = td->td_kse;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT(p != NULL, ("thread exiting without a process"));
|
|
KASSERT(ke != NULL, ("thread exiting without a kse"));
|
|
KASSERT(kg != NULL, ("thread exiting without a kse group"));
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
|
|
(long)p->p_pid, p->p_comm);
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
|
|
if (td->td_standin != NULL) {
|
|
thread_stash(td->td_standin);
|
|
td->td_standin = NULL;
|
|
}
|
|
|
|
cpu_thread_exit(td); /* XXXSMP */
|
|
|
|
/*
|
|
* The last thread is left attached to the process
|
|
* So that the whole bundle gets recycled. Skip
|
|
* all this stuff.
|
|
*/
|
|
if (p->p_numthreads > 1) {
|
|
thread_unlink(td);
|
|
if (p->p_maxthrwaits)
|
|
wakeup(&p->p_numthreads);
|
|
/*
|
|
* The test below is NOT true if we are the
|
|
* sole exiting thread. P_STOPPED_SNGL is unset
|
|
* in exit1() after it is the only survivor.
|
|
*/
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
if (p->p_numthreads == p->p_suspcount) {
|
|
thread_unsuspend_one(p->p_singlethread);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Because each upcall structure has an owner thread,
|
|
* owner thread exits only when process is in exiting
|
|
* state, so upcall to userland is no longer needed,
|
|
* deleting upcall structure is safe here.
|
|
* So when all threads in a group is exited, all upcalls
|
|
* in the group should be automatically freed.
|
|
*/
|
|
if (td->td_upcall)
|
|
upcall_remove(td);
|
|
|
|
sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
|
|
sched_exit_kse(FIRST_KSE_IN_PROC(p), td);
|
|
ke->ke_state = KES_UNQUEUED;
|
|
ke->ke_thread = NULL;
|
|
/*
|
|
* Decide what to do with the KSE attached to this thread.
|
|
*/
|
|
if (ke->ke_flags & KEF_EXIT) {
|
|
kse_unlink(ke);
|
|
if (kg->kg_kses == 0) {
|
|
sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td);
|
|
ksegrp_unlink(kg);
|
|
}
|
|
}
|
|
else
|
|
kse_reassign(ke);
|
|
PROC_UNLOCK(p);
|
|
td->td_kse = NULL;
|
|
#if 0
|
|
td->td_proc = NULL;
|
|
#endif
|
|
td->td_ksegrp = NULL;
|
|
td->td_last_kse = NULL;
|
|
PCPU_SET(deadthread, td);
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
}
|
|
td->td_state = TDS_INACTIVE;
|
|
CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
|
|
cpu_throw(td, choosethread());
|
|
panic("I'm a teapot!");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Do any thread specific cleanups that may be needed in wait()
|
|
* called with Giant, proc and schedlock not held.
|
|
*/
|
|
void
|
|
thread_wait(struct proc *p)
|
|
{
|
|
struct thread *td;
|
|
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
|
|
KASSERT((p->p_numksegrps == 1), ("Multiple ksegrps in wait1()"));
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (td->td_standin != NULL) {
|
|
thread_free(td->td_standin);
|
|
td->td_standin = NULL;
|
|
}
|
|
cpu_thread_clean(td);
|
|
}
|
|
thread_reap(); /* check for zombie threads etc. */
|
|
}
|
|
|
|
/*
|
|
* Link a thread to a process.
|
|
* set up anything that needs to be initialized for it to
|
|
* be used by the process.
|
|
*
|
|
* Note that we do not link to the proc's ucred here.
|
|
* The thread is linked as if running but no KSE assigned.
|
|
*/
|
|
void
|
|
thread_link(struct thread *td, struct ksegrp *kg)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = kg->kg_proc;
|
|
td->td_state = TDS_INACTIVE;
|
|
td->td_proc = p;
|
|
td->td_ksegrp = kg;
|
|
td->td_last_kse = NULL;
|
|
td->td_flags = 0;
|
|
td->td_kflags = 0;
|
|
td->td_kse = NULL;
|
|
|
|
LIST_INIT(&td->td_contested);
|
|
callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
|
|
TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
|
|
TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
|
|
p->p_numthreads++;
|
|
kg->kg_numthreads++;
|
|
}
|
|
|
|
void
|
|
thread_unlink(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct ksegrp *kg = td->td_ksegrp;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
TAILQ_REMOVE(&p->p_threads, td, td_plist);
|
|
p->p_numthreads--;
|
|
TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
|
|
kg->kg_numthreads--;
|
|
/* could clear a few other things here */
|
|
}
|
|
|
|
/*
|
|
* Purge a ksegrp resource. When a ksegrp is preparing to
|
|
* exit, it calls this function.
|
|
*/
|
|
void
|
|
kse_purge_group(struct thread *td)
|
|
{
|
|
struct ksegrp *kg;
|
|
struct kse *ke;
|
|
|
|
kg = td->td_ksegrp;
|
|
KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
|
|
while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
|
|
KASSERT(ke->ke_state == KES_IDLE,
|
|
("%s: wrong idle KSE state", __func__));
|
|
kse_unlink(ke);
|
|
}
|
|
KASSERT((kg->kg_kses == 1),
|
|
("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
|
|
KASSERT((kg->kg_numupcalls == 0),
|
|
("%s: ksegrp still has %d upcall datas",
|
|
__func__, kg->kg_numupcalls));
|
|
}
|
|
|
|
/*
|
|
* Purge a process's KSE resource. When a process is preparing to
|
|
* exit, it calls kse_purge to release any extra KSE resources in
|
|
* the process.
|
|
*/
|
|
void
|
|
kse_purge(struct proc *p, struct thread *td)
|
|
{
|
|
struct ksegrp *kg;
|
|
struct kse *ke;
|
|
|
|
KASSERT(p->p_numthreads == 1, ("bad thread number"));
|
|
while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
|
|
TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
|
|
p->p_numksegrps--;
|
|
/*
|
|
* There is no ownership for KSE, after all threads
|
|
* in the group exited, it is possible that some KSEs
|
|
* were left in idle queue, gc them now.
|
|
*/
|
|
while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
|
|
KASSERT(ke->ke_state == KES_IDLE,
|
|
("%s: wrong idle KSE state", __func__));
|
|
TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
|
|
kg->kg_idle_kses--;
|
|
TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
|
|
kg->kg_kses--;
|
|
kse_stash(ke);
|
|
}
|
|
KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
|
|
((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
|
|
("ksegrp has wrong kg_kses: %d", kg->kg_kses));
|
|
KASSERT((kg->kg_numupcalls == 0),
|
|
("%s: ksegrp still has %d upcall datas",
|
|
__func__, kg->kg_numupcalls));
|
|
|
|
if (kg != td->td_ksegrp)
|
|
ksegrp_stash(kg);
|
|
}
|
|
TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
|
|
p->p_numksegrps++;
|
|
}
|
|
|
|
/*
|
|
* Enforce single-threading.
|
|
*
|
|
* Returns 1 if the caller must abort (another thread is waiting to
|
|
* exit the process or similar). Process is locked!
|
|
* Returns 0 when you are successfully the only thread running.
|
|
* A process has successfully single threaded in the suspend mode when
|
|
* There are no threads in user mode. Threads in the kernel must be
|
|
* allowed to continue until they get to the user boundary. They may even
|
|
* copy out their return values and data before suspending. They may however be
|
|
* accellerated in reaching the user boundary as we will wake up
|
|
* any sleeping threads that are interruptable. (PCATCH).
|
|
*/
|
|
int
|
|
thread_single(int force_exit)
|
|
{
|
|
struct thread *td;
|
|
struct thread *td2;
|
|
struct proc *p;
|
|
int remaining;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT((td != NULL), ("curthread is NULL"));
|
|
|
|
if ((p->p_flag & P_SA) == 0 && p->p_numthreads == 1)
|
|
return (0);
|
|
|
|
/* Is someone already single threading? */
|
|
if (p->p_singlethread)
|
|
return (1);
|
|
|
|
if (force_exit == SINGLE_EXIT) {
|
|
p->p_flag |= P_SINGLE_EXIT;
|
|
} else
|
|
p->p_flag &= ~P_SINGLE_EXIT;
|
|
p->p_flag |= P_STOPPED_SINGLE;
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_singlethread = td;
|
|
if (force_exit == SINGLE_EXIT)
|
|
remaining = p->p_numthreads;
|
|
else
|
|
remaining = p->p_numthreads - p->p_suspcount;
|
|
while (remaining != 1) {
|
|
FOREACH_THREAD_IN_PROC(p, td2) {
|
|
if (td2 == td)
|
|
continue;
|
|
td2->td_flags |= TDF_ASTPENDING;
|
|
if (TD_IS_INHIBITED(td2)) {
|
|
if (force_exit == SINGLE_EXIT) {
|
|
if (td->td_flags & TDF_DBSUSPEND)
|
|
td->td_flags &= ~TDF_DBSUSPEND;
|
|
if (TD_IS_SUSPENDED(td2)) {
|
|
thread_unsuspend_one(td2);
|
|
}
|
|
if (TD_ON_SLEEPQ(td2) &&
|
|
(td2->td_flags & TDF_SINTR)) {
|
|
sleepq_abort(td2);
|
|
}
|
|
} else {
|
|
if (TD_IS_SUSPENDED(td2))
|
|
continue;
|
|
/*
|
|
* maybe other inhibitted states too?
|
|
* XXXKSE Is it totally safe to
|
|
* suspend a non-interruptable thread?
|
|
*/
|
|
if (td2->td_inhibitors &
|
|
(TDI_SLEEPING | TDI_SWAPPED))
|
|
thread_suspend_one(td2);
|
|
}
|
|
}
|
|
}
|
|
if (force_exit == SINGLE_EXIT)
|
|
remaining = p->p_numthreads;
|
|
else
|
|
remaining = p->p_numthreads - p->p_suspcount;
|
|
|
|
/*
|
|
* Maybe we suspended some threads.. was it enough?
|
|
*/
|
|
if (remaining == 1)
|
|
break;
|
|
|
|
/*
|
|
* Wake us up when everyone else has suspended.
|
|
* In the mean time we suspend as well.
|
|
*/
|
|
thread_suspend_one(td);
|
|
PROC_UNLOCK(p);
|
|
mi_switch(SW_VOL, NULL);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
if (force_exit == SINGLE_EXIT)
|
|
remaining = p->p_numthreads;
|
|
else
|
|
remaining = p->p_numthreads - p->p_suspcount;
|
|
}
|
|
if (force_exit == SINGLE_EXIT) {
|
|
if (td->td_upcall)
|
|
upcall_remove(td);
|
|
kse_purge(p, td);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called in from locations that can safely check to see
|
|
* whether we have to suspend or at least throttle for a
|
|
* single-thread event (e.g. fork).
|
|
*
|
|
* Such locations include userret().
|
|
* If the "return_instead" argument is non zero, the thread must be able to
|
|
* accept 0 (caller may continue), or 1 (caller must abort) as a result.
|
|
*
|
|
* The 'return_instead' argument tells the function if it may do a
|
|
* thread_exit() or suspend, or whether the caller must abort and back
|
|
* out instead.
|
|
*
|
|
* If the thread that set the single_threading request has set the
|
|
* P_SINGLE_EXIT bit in the process flags then this call will never return
|
|
* if 'return_instead' is false, but will exit.
|
|
*
|
|
* P_SINGLE_EXIT | return_instead == 0| return_instead != 0
|
|
*---------------+--------------------+---------------------
|
|
* 0 | returns 0 | returns 0 or 1
|
|
* | when ST ends | immediatly
|
|
*---------------+--------------------+---------------------
|
|
* 1 | thread exits | returns 1
|
|
* | | immediatly
|
|
* 0 = thread_exit() or suspension ok,
|
|
* other = return error instead of stopping the thread.
|
|
*
|
|
* While a full suspension is under effect, even a single threading
|
|
* thread would be suspended if it made this call (but it shouldn't).
|
|
* This call should only be made from places where
|
|
* thread_exit() would be safe as that may be the outcome unless
|
|
* return_instead is set.
|
|
*/
|
|
int
|
|
thread_suspend_check(int return_instead)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
while (P_SHOULDSTOP(p) ||
|
|
((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
KASSERT(p->p_singlethread != NULL,
|
|
("singlethread not set"));
|
|
/*
|
|
* The only suspension in action is a
|
|
* single-threading. Single threader need not stop.
|
|
* XXX Should be safe to access unlocked
|
|
* as it can only be set to be true by us.
|
|
*/
|
|
if (p->p_singlethread == td)
|
|
return (0); /* Exempt from stopping. */
|
|
}
|
|
if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
|
|
return (1);
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
thread_stopped(p);
|
|
/*
|
|
* If the process is waiting for us to exit,
|
|
* this thread should just suicide.
|
|
* Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
|
|
*/
|
|
if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
|
|
if (p->p_flag & P_SA)
|
|
thread_exit();
|
|
else
|
|
thr_exit1();
|
|
}
|
|
|
|
/*
|
|
* When a thread suspends, it just
|
|
* moves to the processes's suspend queue
|
|
* and stays there.
|
|
*/
|
|
thread_suspend_one(td);
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
if (p->p_numthreads == p->p_suspcount) {
|
|
thread_unsuspend_one(p->p_singlethread);
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
mi_switch(SW_INVOL, NULL);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_LOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
thread_suspend_one(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
|
|
p->p_suspcount++;
|
|
TD_SET_SUSPENDED(td);
|
|
TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
|
|
/*
|
|
* Hack: If we are suspending but are on the sleep queue
|
|
* then we are in msleep or the cv equivalent. We
|
|
* want to look like we have two Inhibitors.
|
|
* May already be set.. doesn't matter.
|
|
*/
|
|
if (TD_ON_SLEEPQ(td))
|
|
TD_SET_SLEEPING(td);
|
|
}
|
|
|
|
void
|
|
thread_unsuspend_one(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
TAILQ_REMOVE(&p->p_suspended, td, td_runq);
|
|
TD_CLR_SUSPENDED(td);
|
|
p->p_suspcount--;
|
|
setrunnable(td);
|
|
}
|
|
|
|
/*
|
|
* Allow all threads blocked by single threading to continue running.
|
|
*/
|
|
void
|
|
thread_unsuspend(struct proc *p)
|
|
{
|
|
struct thread *td;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if (!P_SHOULDSTOP(p)) {
|
|
while ((td = TAILQ_FIRST(&p->p_suspended))) {
|
|
thread_unsuspend_one(td);
|
|
}
|
|
} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
|
|
(p->p_numthreads == p->p_suspcount)) {
|
|
/*
|
|
* Stopping everything also did the job for the single
|
|
* threading request. Now we've downgraded to single-threaded,
|
|
* let it continue.
|
|
*/
|
|
thread_unsuspend_one(p->p_singlethread);
|
|
}
|
|
}
|
|
|
|
void
|
|
thread_single_end(void)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_singlethread = NULL;
|
|
/*
|
|
* If there are other threads they mey now run,
|
|
* unless of course there is a blanket 'stop order'
|
|
* on the process. The single threader must be allowed
|
|
* to continue however as this is a bad place to stop.
|
|
*/
|
|
if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
|
|
while (( td = TAILQ_FIRST(&p->p_suspended))) {
|
|
thread_unsuspend_one(td);
|
|
}
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Called before going into an interruptible sleep to see if we have been
|
|
* interrupted or requested to exit.
|
|
*/
|
|
int
|
|
thread_sleep_check(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
if (p->p_flag & P_SA || p->p_numthreads > 1) {
|
|
if ((p->p_flag & P_SINGLE_EXIT) && p->p_singlethread != td)
|
|
return (EINTR);
|
|
if (td->td_flags & TDF_INTERRUPT)
|
|
return (td->td_intrval);
|
|
}
|
|
return (0);
|
|
}
|