1181 lines
32 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2017 Ilya Bakulin. All rights reserved.
* Copyright (c) 2018-2019 The FreeBSD Foundation
*
* Portions of this software were developed by Björn Zeeb
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Portions of this software may have been developed with reference to
* the SD Simplified Specification. The following disclaimer may apply:
*
* The following conditions apply to the release of the simplified
* specification ("Simplified Specification") by the SD Card Association and
* the SD Group. The Simplified Specification is a subset of the complete SD
* Specification which is owned by the SD Card Association and the SD
* Group. This Simplified Specification is provided on a non-confidential
* basis subject to the disclaimers below. Any implementation of the
* Simplified Specification may require a license from the SD Card
* Association, SD Group, SD-3C LLC or other third parties.
*
* Disclaimers:
*
* The information contained in the Simplified Specification is presented only
* as a standard specification for SD Cards and SD Host/Ancillary products and
* is provided "AS-IS" without any representations or warranties of any
* kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD
* Card Association for any damages, any infringements of patents or other
* right of the SD Group, SD-3C LLC, the SD Card Association or any third
* parties, which may result from its use. No license is granted by
* implication, estoppel or otherwise under any patent or other rights of the
* SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing
* herein shall be construed as an obligation by the SD Group, the SD-3C LLC
* or the SD Card Association to disclose or distribute any technical
* information, know-how or other confidential information to any third party.
*/
/*
* Implements the (kernel specific) SDIO parts.
* This will hide all cam(4) functionality from the SDIO driver implementations
* which will just be newbus/device(9) and hence look like any other driver for,
* e.g., PCI.
* The sdiob(4) parts effetively "translate" between the two worlds "bridging"
* messages from MMCCAM to newbus and back.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cam.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h> /* for cam_path */
#include <cam/cam_debug.h>
#include <dev/mmc/mmcreg.h>
#include <dev/sdio/sdiob.h>
#include <dev/sdio/sdio_subr.h>
#include "sdio_if.h"
#ifdef DEBUG
#define DPRINTF(...) printf(__VA_ARGS__)
#define DPRINTFDEV(_dev, ...) device_printf((_dev), __VA_ARGS__)
#else
#define DPRINTF(...)
#define DPRINTFDEV(_dev, ...)
#endif
struct sdiob_softc {
uint32_t sdio_state;
#define SDIO_STATE_DEAD 0x0001
#define SDIO_STATE_INITIALIZING 0x0002
#define SDIO_STATE_READY 0x0004
uint32_t nb_state;
#define NB_STATE_DEAD 0x0001
#define NB_STATE_SIM_ADDED 0x0002
#define NB_STATE_READY 0x0004
/* CAM side (including sim_dev). */
struct card_info cardinfo;
struct cam_periph *periph;
union ccb *ccb;
struct task discover_task;
/* Newbus side. */
device_t dev; /* Ourselves. */
device_t child[8];
};
/* -------------------------------------------------------------------------- */
/*
* SDIO CMD52 and CM53 implementations along with wrapper functions for
* read/write and a CAM periph helper function.
* These are the backend implementations of the sdio_if.m framework talking
* through CAM to sdhci.
* Note: these functions are also called during early discovery stage when
* we are not a device(9) yet. Hence they cannot always use device_printf()
* to log errors and have to call CAM_DEBUG() during these early stages.
*/
static int
sdioerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
{
return (cam_periph_error(ccb, cam_flags, sense_flags));
}
/* CMD52: direct byte access. */
static int
sdiob_rw_direct_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr, bool wr,
uint8_t *val)
{
uint32_t arg, flags;
int error;
KASSERT((val != NULL), ("%s val passed as NULL\n", __func__));
if (sc->ccb == NULL)
sc->ccb = xpt_alloc_ccb();
else
memset(sc->ccb, 0, sizeof(*sc->ccb));
xpt_setup_ccb(&sc->ccb->ccb_h, sc->periph->path, CAM_PRIORITY_NONE);
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_TRACE,
("%s(fn=%d, addr=%#02x, wr=%d, *val=%#02x)\n", __func__,
fn, addr, wr, *val));
flags = MMC_RSP_R5 | MMC_CMD_AC;
arg = SD_IO_RW_FUNC(fn) | SD_IO_RW_ADR(addr);
if (wr)
arg |= SD_IO_RW_WR | SD_IO_RW_RAW | SD_IO_RW_DAT(*val);
cam_fill_mmcio(&sc->ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ SD_IO_RW_DIRECT,
/*mmc_arg*/ arg,
/*mmc_flags*/ flags,
/*mmc_data*/ 0,
/*timeout*/ sc->cardinfo.f[fn].timeout);
error = cam_periph_runccb(sc->ccb, sdioerror, CAM_FLAG_NONE, 0, NULL);
if (error != 0) {
if (sc->dev != NULL)
device_printf(sc->dev,
"%s: Failed to %s address %#10x error=%d\n",
__func__, (wr) ? "write" : "read", addr, error);
else
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO,
("%s: Failed to %s address: %#10x error=%d\n",
__func__, (wr) ? "write" : "read", addr, error));
return (error);
}
/* TODO: Add handling of MMC errors */
/* ccb->mmcio.cmd.error ? */
if (wr == false)
*val = sc->ccb->mmcio.cmd.resp[0] & 0xff;
return (0);
}
static int
sdio_rw_direct(device_t dev, uint8_t fn, uint32_t addr, bool wr,
uint8_t *val)
{
struct sdiob_softc *sc;
int error;
sc = device_get_softc(dev);
cam_periph_lock(sc->periph);
error = sdiob_rw_direct_sc(sc, fn, addr, wr, val);
cam_periph_unlock(sc->periph);
return (error);
}
static int
sdiob_read_direct(device_t dev, uint8_t fn, uint32_t addr, uint8_t *val)
{
int error;
uint8_t v;
error = sdio_rw_direct(dev, fn, addr, false, &v);
/* Be polite and do not touch the value on read error. */
if (error == 0 && val != NULL)
*val = v;
return (error);
}
static int
sdiob_write_direct(device_t dev, uint8_t fn, uint32_t addr, uint8_t val)
{
return (sdio_rw_direct(dev, fn, addr, true, &val));
}
/*
* CMD53: IO_RW_EXTENDED, read and write multiple I/O registers.
* Increment false gets FIFO mode (single register address).
*/
/*
* A b_count of 0 means byte mode, b_count > 0 gets block mode.
* A b_count of >= 512 would mean infinitive block transfer, which would become
* b_count = 0, is not yet supported.
* For b_count == 0, blksz is the len of bytes, otherwise it is the amount of
* full sized blocks (you must not round the blocks up and leave the last one
* partial!)
* For byte mode, the maximum of blksz is the functions cur_blksize.
* This function should ever only be called by sdio_rw_extended_sc()!
*/
static int
sdiob_rw_extended_cam(struct sdiob_softc *sc, uint8_t fn, uint32_t addr,
bool wr, uint8_t *buffer, bool incaddr, uint32_t b_count, uint16_t blksz)
{
struct mmc_data mmcd;
uint32_t arg, cam_flags, flags, len;
int error;
if (sc->ccb == NULL)
sc->ccb = xpt_alloc_ccb();
else
memset(sc->ccb, 0, sizeof(*sc->ccb));
xpt_setup_ccb(&sc->ccb->ccb_h, sc->periph->path, CAM_PRIORITY_NONE);
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_TRACE,
("%s(fn=%d addr=%#0x wr=%d b_count=%u blksz=%u buf=%p incr=%d)\n",
__func__, fn, addr, wr, b_count, blksz, buffer, incaddr));
KASSERT((b_count <= 511), ("%s: infinitive block transfer not yet "
"supported: b_count %u blksz %u, sc %p, fn %u, addr %#10x, %s, "
"buffer %p, %s\n", __func__, b_count, blksz, sc, fn, addr,
wr ? "wr" : "rd", buffer, incaddr ? "incaddr" : "fifo"));
/* Blksz needs to be within bounds for both byte and block mode! */
KASSERT((blksz <= sc->cardinfo.f[fn].cur_blksize), ("%s: blksz "
"%u > bur_blksize %u, sc %p, fn %u, addr %#10x, %s, "
"buffer %p, %s, b_count %u\n", __func__, blksz,
sc->cardinfo.f[fn].cur_blksize, sc, fn, addr,
wr ? "wr" : "rd", buffer, incaddr ? "incaddr" : "fifo",
b_count));
if (b_count == 0) {
/* Byte mode */
len = blksz;
if (blksz == 512)
blksz = 0;
arg = SD_IOE_RW_LEN(blksz);
} else {
/* Block mode. */
#ifdef __notyet__
if (b_count > 511) {
/* Infinitive block transfer. */
b_count = 0;
}
#endif
len = b_count * blksz;
arg = SD_IOE_RW_BLK | SD_IOE_RW_LEN(b_count);
}
flags = MMC_RSP_R5 | MMC_CMD_ADTC;
arg |= SD_IOE_RW_FUNC(fn) | SD_IOE_RW_ADR(addr);
if (incaddr)
arg |= SD_IOE_RW_INCR;
memset(&mmcd, 0, sizeof(mmcd));
mmcd.data = buffer;
mmcd.len = len;
if (arg & SD_IOE_RW_BLK) {
/* XXX both should be known from elsewhere, aren't they? */
mmcd.block_size = blksz;
mmcd.block_count = b_count;
}
if (wr) {
arg |= SD_IOE_RW_WR;
cam_flags = CAM_DIR_OUT;
mmcd.flags = MMC_DATA_WRITE;
} else {
cam_flags = CAM_DIR_IN;
mmcd.flags = MMC_DATA_READ;
}
#ifdef __notyet__
if (b_count == 0) {
/* XXX-BZ TODO FIXME. Cancel I/O: CCCR -> ASx */
/* Stop cmd. */
}
#endif
cam_fill_mmcio(&sc->ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ cam_flags,
/*mmc_opcode*/ SD_IO_RW_EXTENDED,
/*mmc_arg*/ arg,
/*mmc_flags*/ flags,
/*mmc_data*/ &mmcd,
/*timeout*/ sc->cardinfo.f[fn].timeout);
if (arg & SD_IOE_RW_BLK) {
mmcd.flags |= MMC_DATA_BLOCK_SIZE;
if (b_count != 1)
sc->ccb->mmcio.cmd.data->flags |= MMC_DATA_MULTI;
}
/* Execute. */
error = cam_periph_runccb(sc->ccb, sdioerror, CAM_FLAG_NONE, 0, NULL);
if (error != 0) {
if (sc->dev != NULL)
device_printf(sc->dev,
"%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error);
else
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO,
("%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error));
return (error);
}
/* TODO: Add handling of MMC errors */
/* ccb->mmcio.cmd.error ? */
error = sc->ccb->mmcio.cmd.resp[0] & 0xff;
if (error != 0) {
if (sc->dev != NULL)
device_printf(sc->dev,
"%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u mmcio resp error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error);
else
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO,
("%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u mmcio resp error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error));
}
return (error);
}
static int
sdiob_rw_extended_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr,
bool wr, uint32_t size, uint8_t *buffer, bool incaddr)
{
int error;
uint32_t len;
uint32_t b_count;
/*
* If block mode is supported and we have at least 4 bytes to write and
* the size is at least one block, then start doing blk transfers.
*/
while (sc->cardinfo.support_multiblk &&
size > 4 && size >= sc->cardinfo.f[fn].cur_blksize) {
b_count = size / sc->cardinfo.f[fn].cur_blksize;
KASSERT(b_count >= 1, ("%s: block count too small %u size %u "
"cur_blksize %u\n", __func__, b_count, size,
sc->cardinfo.f[fn].cur_blksize));
#ifdef __notyet__
/* XXX support inifinite transfer with b_count = 0. */
#else
if (b_count > 511)
b_count = 511;
#endif
len = b_count * sc->cardinfo.f[fn].cur_blksize;
error = sdiob_rw_extended_cam(sc, fn, addr, wr, buffer, incaddr,
b_count, sc->cardinfo.f[fn].cur_blksize);
if (error != 0)
return (error);
size -= len;
buffer += len;
if (incaddr)
addr += len;
}
while (size > 0) {
len = MIN(size, sc->cardinfo.f[fn].cur_blksize);
error = sdiob_rw_extended_cam(sc, fn, addr, wr, buffer, incaddr,
0, len);
if (error != 0)
return (error);
/* Prepare for next iteration. */
size -= len;
buffer += len;
if (incaddr)
addr += len;
}
return (0);
}
static int
sdiob_rw_extended(device_t dev, uint8_t fn, uint32_t addr, bool wr,
uint32_t size, uint8_t *buffer, bool incaddr)
{
struct sdiob_softc *sc;
int error;
sc = device_get_softc(dev);
cam_periph_lock(sc->periph);
error = sdiob_rw_extended_sc(sc, fn, addr, wr, size, buffer, incaddr);
cam_periph_unlock(sc->periph);
return (error);
}
static int
sdiob_read_extended(device_t dev, uint8_t fn, uint32_t addr, uint32_t size,
uint8_t *buffer, bool incaddr)
{
return (sdiob_rw_extended(dev, fn, addr, false, size, buffer, incaddr));
}
static int
sdiob_write_extended(device_t dev, uint8_t fn, uint32_t addr, uint32_t size,
uint8_t *buffer, bool incaddr)
{
return (sdiob_rw_extended(dev, fn, addr, true, size, buffer, incaddr));
}
/* -------------------------------------------------------------------------- */
/* Bus interface, ivars handling. */
static int
sdiob_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct sdiob_softc *sc;
struct sdio_func *f;
f = device_get_ivars(child);
KASSERT(f != NULL, ("%s: dev %p child %p which %d, child ivars NULL\n",
__func__, dev, child, which));
switch (which) {
case SDIOB_IVAR_SUPPORT_MULTIBLK:
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("%s: dev %p child %p which %d, sc NULL\n",
__func__, dev, child, which));
*result = sc->cardinfo.support_multiblk;
break;
case SDIOB_IVAR_FUNCTION:
*result = (uintptr_t)f;
break;
case SDIOB_IVAR_FUNCNUM:
*result = f->fn;
break;
case SDIOB_IVAR_CLASS:
*result = f->class;
break;
case SDIOB_IVAR_VENDOR:
*result = f->vendor;
break;
case SDIOB_IVAR_DEVICE:
*result = f->device;
break;
case SDIOB_IVAR_DRVDATA:
*result = f->drvdata;
break;
default:
return (ENOENT);
}
return (0);
}
static int
sdiob_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct sdio_func *f;
f = device_get_ivars(child);
KASSERT(f != NULL, ("%s: dev %p child %p which %d, child ivars NULL\n",
__func__, dev, child, which));
switch (which) {
case SDIOB_IVAR_SUPPORT_MULTIBLK:
case SDIOB_IVAR_FUNCTION:
case SDIOB_IVAR_FUNCNUM:
case SDIOB_IVAR_CLASS:
case SDIOB_IVAR_VENDOR:
case SDIOB_IVAR_DEVICE:
return (EINVAL); /* Disallowed. */
case SDIOB_IVAR_DRVDATA:
f->drvdata = value;
break;
default:
return (ENOENT);
}
return (0);
}
/* -------------------------------------------------------------------------- */
/*
* Newbus functions for ourselves to probe/attach/detach and become a proper
* device(9). Attach will also probe for child devices (another driver
* implementing SDIO).
*/
static int
sdiob_probe(device_t dev)
{
device_set_desc(dev, "SDIO CAM-Newbus bridge");
return (BUS_PROBE_DEFAULT);
}
static int
sdiob_attach(device_t dev)
{
struct sdiob_softc *sc;
int error, i;
sc = device_get_softc(dev);
if (sc == NULL)
return (ENXIO);
/*
* Now that we are a dev, create one child device per function,
* initialize the backpointer, so we can pass them around and
* call CAM operations on the parent, and also set the function
* itself as ivars, so that we can query/update them.
* Do this before any child gets a chance to attach.
*/
for (i = 0; i < sc->cardinfo.num_funcs; i++) {
sc->child[i] = device_add_child(dev, NULL, -1);
if (sc->child[i] == NULL) {
device_printf(dev, "%s: failed to add child\n", __func__);
return (ENXIO);
}
sc->cardinfo.f[i].dev = sc->child[i];
/* Set the function as ivar to the child device. */
device_set_ivars(sc->child[i], &sc->cardinfo.f[i]);
}
/*
* No one will ever attach to F0; we do the above to have a "device"
* to talk to in a general way in the code.
* Also do the probe/attach in a 2nd loop, so that all devices are
* present as we do have drivers consuming more than one device/func
* and might play "tricks" in order to do that assuming devices and
* ivars are available for all.
*/
for (i = 1; i < sc->cardinfo.num_funcs; i++) {
error = device_probe_and_attach(sc->child[i]);
if (error != 0 && bootverbose)
device_printf(dev, "%s: device_probe_and_attach(%p %s) "
"failed %d for function %d, no child yet\n",
__func__,
sc->child, device_get_nameunit(sc->child[i]),
error, i);
}
sc->nb_state = NB_STATE_READY;
cam_periph_lock(sc->periph);
xpt_announce_periph(sc->periph, NULL);
cam_periph_unlock(sc->periph);
return (0);
}
static int
sdiob_detach(device_t dev)
{
/* XXX TODO? */
return (EOPNOTSUPP);
}
/* -------------------------------------------------------------------------- */
/*
* driver(9) and device(9) "control plane".
* This is what we use when we are making ourselves a device(9) in order to
* provide a newbus interface again, as well as the implementation of the
* SDIO interface.
*/
static device_method_t sdiob_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, sdiob_probe),
DEVMETHOD(device_attach, sdiob_attach),
DEVMETHOD(device_detach, sdiob_detach),
/* Bus interface. */
DEVMETHOD(bus_add_child, bus_generic_add_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
DEVMETHOD(bus_read_ivar, sdiob_read_ivar),
DEVMETHOD(bus_write_ivar, sdiob_write_ivar),
/* SDIO interface. */
DEVMETHOD(sdio_read_direct, sdiob_read_direct),
DEVMETHOD(sdio_write_direct, sdiob_write_direct),
DEVMETHOD(sdio_read_extended, sdiob_read_extended),
DEVMETHOD(sdio_write_extended, sdiob_write_extended),
DEVMETHOD_END
};
static devclass_t sdiob_devclass;
static driver_t sdiob_driver = {
SDIOB_NAME_S,
sdiob_methods,
0
};
/* -------------------------------------------------------------------------- */
/*
* CIS related.
* Read card and function information and populate the cardinfo structure.
*/
static int
sdio_read_direct_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr,
uint8_t *val)
{
int error;
uint8_t v;
error = sdiob_rw_direct_sc(sc, fn, addr, false, &v);
if (error == 0 && val != NULL)
*val = v;
return (error);
}
static int
sdio_func_read_cis(struct sdiob_softc *sc, uint8_t fn, uint32_t cis_addr)
{
char cis1_info_buf[256];
char *cis1_info[4];
int start, i, count, ret;
uint32_t addr;
uint8_t ch, tuple_id, tuple_len, tuple_count, v;
/* If we encounter any read errors, abort and return. */
#define ERR_OUT(ret) \
if (ret != 0) \
goto err;
ret = 0;
/* Use to prevent infinite loop in case of parse errors. */
tuple_count = 0;
memset(cis1_info_buf, 0, 256);
do {
addr = cis_addr;
ret = sdio_read_direct_sc(sc, 0, addr++, &tuple_id);
ERR_OUT(ret);
if (tuple_id == SD_IO_CISTPL_END)
break;
if (tuple_id == 0) {
cis_addr++;
continue;
}
ret = sdio_read_direct_sc(sc, 0, addr++, &tuple_len);
ERR_OUT(ret);
if (tuple_len == 0) {
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: parse error: 0-length tuple %#02x\n",
__func__, tuple_id));
return (EIO);
}
switch (tuple_id) {
case SD_IO_CISTPL_VERS_1:
addr += 2;
for (count = 0, start = 0, i = 0;
(count < 4) && ((i + 4) < 256); i++) {
ret = sdio_read_direct_sc(sc, 0, addr + i, &ch);
ERR_OUT(ret);
DPRINTF("%s: count=%d, start=%d, i=%d, got "
"(%#02x)\n", __func__, count, start, i, ch);
if (ch == 0xff)
break;
cis1_info_buf[i] = ch;
if (ch == 0) {
cis1_info[count] =
cis1_info_buf + start;
start = i + 1;
count++;
}
}
DPRINTF("Card info: ");
for (i=0; i < 4; i++)
if (cis1_info[i])
DPRINTF(" %s", cis1_info[i]);
DPRINTF("\n");
break;
case SD_IO_CISTPL_MANFID:
/* TPLMID_MANF */
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].vendor = v;
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].vendor |= (v << 8);
/* TPLMID_CARD */
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].device = v;
ret = sdio_read_direct_sc(sc, 0, addr, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].device |= (v << 8);
break;
case SD_IO_CISTPL_FUNCID:
/* Not sure if we need to parse it? */
break;
case SD_IO_CISTPL_FUNCE:
if (tuple_len < 4) {
printf("%s: FUNCE is too short: %d\n",
__func__, tuple_len);
break;
}
/* TPLFE_TYPE (Extended Data) */
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
if (fn == 0) {
if (v != 0x00)
break;
} else {
if (v != 0x01)
break;
addr += 0x0b;
}
ret = sdio_read_direct_sc(sc, 0, addr, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].max_blksize = v;
ret = sdio_read_direct_sc(sc, 0, addr+1, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].max_blksize |= (v << 8);
break;
default:
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: Skipping fn %d tuple %d ID %#02x "
"len %#02x\n", __func__, fn, tuple_count,
tuple_id, tuple_len));
}
if (tuple_len == 0xff) {
/* Also marks the end of a tuple chain (E1 16.2) */
/* The tuple is valid, hence this going at the end. */
break;
}
cis_addr += 2 + tuple_len;
tuple_count++;
} while (tuple_count < 20);
err:
#undef ERR_OUT
return (ret);
}
static int
sdio_get_common_cis_addr(struct sdiob_softc *sc, uint32_t *addr)
{
int error;
uint32_t a;
uint8_t val;
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 0, &val);
if (error != 0)
goto err;
a = val;
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 1, &val);
if (error != 0)
goto err;
a |= (val << 8);
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 2, &val);
if (error != 0)
goto err;
a |= (val << 16);
if (a < SD_IO_CIS_START || a > SD_IO_CIS_START + SD_IO_CIS_SIZE) {
err:
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: bad CIS address: %#04x, error %d\n", __func__, a,
error));
} else if (error == 0 && addr != NULL)
*addr = a;
return (error);
}
static int
sdiob_get_card_info(struct sdiob_softc *sc)
{
struct mmc_params *mmcp;
uint32_t cis_addr, fbr_addr;
int fn, error;
uint8_t fn_max, val;
error = sdio_get_common_cis_addr(sc, &cis_addr);
if (error != 0)
return (-1);
memset(&sc->cardinfo, 0, sizeof(sc->cardinfo));
/* F0 must always be present. */
fn = 0;
error = sdio_func_read_cis(sc, fn, cis_addr);
if (error != 0)
return (error);
sc->cardinfo.num_funcs++;
/* Read CCCR Card Capability. */
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CARDCAP, &val);
if (error != 0)
return (error);
sc->cardinfo.support_multiblk = (val & CCCR_CC_SMB) ? true : false;
DPRINTF("%s: F%d: Vendor %#04x product %#04x max block size %d bytes "
"support_multiblk %s\n",
__func__, fn, sc->cardinfo.f[fn].vendor, sc->cardinfo.f[fn].device,
sc->cardinfo.f[fn].max_blksize,
sc->cardinfo.support_multiblk ? "yes" : "no");
/* mmcp->sdio_func_count contains the number of functions w/o F0. */
mmcp = &sc->ccb->ccb_h.path->device->mmc_ident_data;
fn_max = MIN(mmcp->sdio_func_count + 1, nitems(sc->cardinfo.f));
for (fn = 1; fn < fn_max; fn++) {
fbr_addr = SD_IO_FBR_START * fn + SD_IO_FBR_CIS_OFFSET;
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
cis_addr = val;
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
cis_addr |= (val << 8);
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
cis_addr |= (val << 16);
error = sdio_func_read_cis(sc, fn, cis_addr);
if (error != 0)
break;
/* Read the Standard SDIO Function Interface Code. */
fbr_addr = SD_IO_FBR_START * fn;
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
sc->cardinfo.f[fn].class = (val & 0x0f);
if (sc->cardinfo.f[fn].class == 0x0f) {
error = sdio_read_direct_sc(sc, 0, fbr_addr, &val);
if (error != 0)
break;
sc->cardinfo.f[fn].class = val;
}
sc->cardinfo.f[fn].fn = fn;
sc->cardinfo.f[fn].cur_blksize = sc->cardinfo.f[fn].max_blksize;
sc->cardinfo.f[fn].retries = 0;
sc->cardinfo.f[fn].timeout = 5000;
DPRINTF("%s: F%d: Class %d Vendor %#04x product %#04x "
"max_blksize %d bytes\n", __func__, fn,
sc->cardinfo.f[fn].class,
sc->cardinfo.f[fn].vendor, sc->cardinfo.f[fn].device,
sc->cardinfo.f[fn].max_blksize);
if (sc->cardinfo.f[fn].vendor == 0) {
DPRINTF("%s: F%d doesn't exist\n", __func__, fn);
break;
}
sc->cardinfo.num_funcs++;
}
return (error);
}
/* -------------------------------------------------------------------------- */
/*
* CAM periph registration, allocation, and detached from that a discovery
* task, which goes off reads cardinfo, and then adds ourselves to our SIM's
* device adding the devclass and registering the driver. This keeps the
* newbus chain connected though we will talk CAM in the middle (until one
* day CAM might be newbusyfied).
*/
static int
sdio_newbus_sim_add(struct sdiob_softc *sc)
{
device_t pdev;
devclass_t bus_devclass;
int error;
/* Add ourselves to our parent (SIM) device. */
/* Add ourselves to our parent. That way we can become a parent. */
KASSERT(sc->periph->sim->sim_dev != NULL, ("%s: sim_dev is NULL, sc %p "
"periph %p sim %p\n", __func__, sc, sc->periph, sc->periph->sim));
if (sc->dev == NULL)
sc->dev = BUS_ADD_CHILD(sc->periph->sim->sim_dev, 0,
SDIOB_NAME_S, -1);
if (sc->dev == NULL)
return (ENXIO);
device_set_softc(sc->dev, sc);
/*
* Don't set description here; devclass_add_driver() ->
* device_probe_child() -> device_set_driver() will nuke it again.
*/
pdev = device_get_parent(sc->dev);
KASSERT(pdev != NULL, ("%s: sc %p dev %p (%s) parent is NULL\n",
__func__, sc, sc->dev, device_get_nameunit(sc->dev)));
bus_devclass = device_get_devclass(pdev);
if (bus_devclass == NULL) {
printf("%s: Failed to get devclass from %s.\n", __func__,
device_get_nameunit(pdev));
return (ENXIO);
}
mtx_lock(&Giant);
error = devclass_add_driver(bus_devclass, &sdiob_driver,
BUS_PASS_DEFAULT, &sdiob_devclass);
mtx_unlock(&Giant);
if (error != 0) {
printf("%s: Failed to add driver to devclass: %d.\n",
__func__, error);
return (error);
}
/* Done. */
sc->nb_state = NB_STATE_SIM_ADDED;
return (0);
}
static void
sdiobdiscover(void *context, int pending)
{
struct cam_periph *periph;
struct sdiob_softc *sc;
int error;
KASSERT(context != NULL, ("%s: context is NULL\n", __func__));
periph = (struct cam_periph *)context;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s\n", __func__));
/* Periph was held for us when this task was enqueued. */
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
cam_periph_release(periph);
return;
}
sc = periph->softc;
sc->sdio_state = SDIO_STATE_INITIALIZING;
if (sc->ccb == NULL)
sc->ccb = xpt_alloc_ccb();
else
memset(sc->ccb, 0, sizeof(*sc->ccb));
xpt_setup_ccb(&sc->ccb->ccb_h, periph->path, CAM_PRIORITY_NONE);
/*
* Read CCCR and FBR of each function, get manufacturer and device IDs,
* max block size, and whatever else we deem necessary.
*/
cam_periph_lock(periph);
error = sdiob_get_card_info(sc);
if (error == 0)
sc->sdio_state = SDIO_STATE_READY;
else
sc->sdio_state = SDIO_STATE_DEAD;
cam_periph_unlock(periph);
if (error)
return;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: num_func %d\n",
__func__, sc->cardinfo.num_funcs));
/*
* Now CAM portion of the driver has been initialized and
* we know VID/PID of all the functions on the card.
* Time to hook into the newbus.
*/
error = sdio_newbus_sim_add(sc);
if (error != 0)
sc->nb_state = NB_STATE_DEAD;
return;
}
/* Called at the end of cam_periph_alloc() for us to finish allocation. */
static cam_status
sdiobregister(struct cam_periph *periph, void *arg)
{
struct sdiob_softc *sc;
int error;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: arg %p\n", __func__, arg));
if (arg == NULL) {
printf("%s: no getdev CCB, can't register device pariph %p\n",
__func__, periph);
return(CAM_REQ_CMP_ERR);
}
if (periph->sim == NULL || periph->sim->sim_dev == NULL) {
printf("%s: no sim %p or sim_dev %p\n", __func__, periph->sim,
(periph->sim != NULL) ? periph->sim->sim_dev : NULL);
return(CAM_REQ_CMP_ERR);
}
sc = (struct sdiob_softc *) malloc(sizeof(*sc), M_DEVBUF,
M_NOWAIT|M_ZERO);
if (sc == NULL) {
printf("%s: unable to allocate sc\n", __func__);
return (CAM_REQ_CMP_ERR);
}
sc->sdio_state = SDIO_STATE_DEAD;
sc->nb_state = NB_STATE_DEAD;
TASK_INIT(&sc->discover_task, 0, sdiobdiscover, periph);
/* Refcount until we are setup. Can't block. */
error = cam_periph_hold(periph, PRIBIO);
if (error != 0) {
printf("%s: lost periph during registration!\n", __func__);
free(sc, M_DEVBUF);
return(CAM_REQ_CMP_ERR);
}
periph->softc = sc;
sc->periph = periph;
cam_periph_unlock(periph);
error = taskqueue_enqueue(taskqueue_thread, &sc->discover_task);
cam_periph_lock(periph);
/* We will continue to hold a refcount for discover_task. */
/* cam_periph_unhold(periph); */
xpt_schedule(periph, CAM_PRIORITY_XPT);
return (CAM_REQ_CMP);
}
static void
sdioboninvalidate(struct cam_periph *periph)
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s:\n", __func__));
return;
}
static void
sdiobcleanup(struct cam_periph *periph)
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s:\n", __func__));
return;
}
static void
sdiobstart(struct cam_periph *periph, union ccb *ccb)
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: ccb %p\n", __func__, ccb));
return;
}
static void
sdiobasync(void *softc, uint32_t code, struct cam_path *path, void *arg)
{
struct cam_periph *periph;
struct ccb_getdev *cgd;
cam_status status;
periph = (struct cam_periph *)softc;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("%s(code=%d)\n", __func__, code));
switch (code) {
case AC_FOUND_DEVICE:
if (arg == NULL)
break;
cgd = (struct ccb_getdev *)arg;
if (cgd->protocol != PROTO_MMCSD)
break;
/* We do not support SD memory (Combo) Cards. */
if ((path->device->mmc_ident_data.card_features &
CARD_FEATURE_MEMORY)) {
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Memory card, not interested\n"));
break;
}
/*
* Allocate a peripheral instance for this device which starts
* the probe process.
*/
status = cam_periph_alloc(sdiobregister, sdioboninvalidate,
sdiobcleanup, sdiobstart, SDIOB_NAME_S, CAM_PERIPH_BIO, path,
sdiobasync, AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG)
CAM_DEBUG(path, CAM_DEBUG_PERIPH,
("%s: Unable to attach to new device due to "
"status %#02x\n", __func__, status));
break;
default:
CAM_DEBUG(path, CAM_DEBUG_PERIPH,
("%s: cannot handle async code %#02x\n", __func__, code));
cam_periph_async(periph, code, path, arg);
break;
}
}
static void
sdiobinit(void)
{
cam_status status;
/*
* Register for new device notification. We will be notified for all
* already existing ones.
*/
status = xpt_register_async(AC_FOUND_DEVICE, sdiobasync, NULL, NULL);
if (status != CAM_REQ_CMP)
printf("%s: Failed to attach async callback, statux %#02x",
__func__, status);
}
/* This function will allow unloading the KLD. */
static int
sdiobdeinit(void)
{
return (EOPNOTSUPP);
}
static struct periph_driver sdiobdriver =
{
.init = sdiobinit,
.driver_name = SDIOB_NAME_S,
.units = TAILQ_HEAD_INITIALIZER(sdiobdriver.units),
.generation = 0,
.flags = 0,
.deinit = sdiobdeinit,
};
PERIPHDRIVER_DECLARE(SDIOB_NAME, sdiobdriver);
MODULE_VERSION(SDIOB_NAME, 1);