freebsd-nq/sys/rpc/clnt_dg.c

1156 lines
29 KiB
C
Raw Normal View History

Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/* $NetBSD: clnt_dg.c,v 1.4 2000/07/14 08:40:41 fvdl Exp $ */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2009, Sun Microsystems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of Sun Microsystems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#ident "@(#)clnt_dg.c 1.23 94/04/22 SMI"
static char sccsid[] = "@(#)clnt_dg.c 1.19 89/03/16 Copyr 1988 Sun Micro";
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Implements a connectionless client side RPC.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <net/vnet.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
#include <rpc/rpc.h>
#include <rpc/rpc_com.h>
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
#ifdef _FREEFALL_CONFIG
/*
* Disable RPC exponential back-off for FreeBSD.org systems.
*/
#define RPC_MAX_BACKOFF 1 /* second */
#else
#define RPC_MAX_BACKOFF 30 /* seconds */
#endif
static bool_t time_not_ok(struct timeval *);
static enum clnt_stat clnt_dg_call(CLIENT *, struct rpc_callextra *,
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
rpcproc_t, struct mbuf *, struct mbuf **, struct timeval);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
static void clnt_dg_geterr(CLIENT *, struct rpc_err *);
static bool_t clnt_dg_freeres(CLIENT *, xdrproc_t, void *);
static void clnt_dg_abort(CLIENT *);
static bool_t clnt_dg_control(CLIENT *, u_int, void *);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
static void clnt_dg_close(CLIENT *);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
static void clnt_dg_destroy(CLIENT *);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
static int clnt_dg_soupcall(struct socket *so, void *arg, int waitflag);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
static struct clnt_ops clnt_dg_ops = {
.cl_call = clnt_dg_call,
.cl_abort = clnt_dg_abort,
.cl_geterr = clnt_dg_geterr,
.cl_freeres = clnt_dg_freeres,
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
.cl_close = clnt_dg_close,
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
.cl_destroy = clnt_dg_destroy,
.cl_control = clnt_dg_control
};
static volatile uint32_t rpc_xid = 0;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* A pending RPC request which awaits a reply. Requests which have
* received their reply will have cr_xid set to zero and cr_mrep to
* the mbuf chain of the reply.
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
*/
struct cu_request {
TAILQ_ENTRY(cu_request) cr_link;
CLIENT *cr_client; /* owner */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
uint32_t cr_xid; /* XID of request */
struct mbuf *cr_mrep; /* reply received by upcall */
int cr_error; /* any error from upcall */
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
char cr_verf[MAX_AUTH_BYTES]; /* reply verf */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
};
TAILQ_HEAD(cu_request_list, cu_request);
#define MCALL_MSG_SIZE 24
/*
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
* This structure is pointed to by the socket buffer's sb_upcallarg
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
* member. It is separate from the client private data to facilitate
* multiple clients sharing the same socket. The cs_lock mutex is used
* to protect all fields of this structure, the socket's receive
* buffer SOCKBUF_LOCK is used to ensure that exactly one of these
* structures is installed on the socket.
*/
struct cu_socket {
struct mtx cs_lock;
int cs_refs; /* Count of clients */
struct cu_request_list cs_pending; /* Requests awaiting replies */
int cs_upcallrefs; /* Refcnt of upcalls in prog.*/
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
};
static void clnt_dg_upcallsdone(struct socket *, struct cu_socket *);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* Private data kept per client handle
*/
struct cu_data {
int cu_threads; /* # threads in clnt_vc_call */
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
bool_t cu_closing; /* TRUE if we are closing */
bool_t cu_closed; /* TRUE if we are closed */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
struct socket *cu_socket; /* connection socket */
bool_t cu_closeit; /* opened by library */
struct sockaddr_storage cu_raddr; /* remote address */
int cu_rlen;
struct timeval cu_wait; /* retransmit interval */
struct timeval cu_total; /* total time for the call */
struct rpc_err cu_error;
uint32_t cu_xid;
char cu_mcallc[MCALL_MSG_SIZE]; /* marshalled callmsg */
size_t cu_mcalllen;
size_t cu_sendsz; /* send size */
size_t cu_recvsz; /* recv size */
int cu_async;
int cu_connect; /* Use connect(). */
int cu_connected; /* Have done connect(). */
const char *cu_waitchan;
int cu_waitflag;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
int cu_cwnd; /* congestion window */
int cu_sent; /* number of in-flight RPCs */
bool_t cu_cwnd_wait;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
};
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
#define CWNDSCALE 256
#define MAXCWND (32 * CWNDSCALE)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* Connection less client creation returns with client handle parameters.
* Default options are set, which the user can change using clnt_control().
* fd should be open and bound.
* NB: The rpch->cl_auth is initialized to null authentication.
* Caller may wish to set this something more useful.
*
* sendsz and recvsz are the maximum allowable packet sizes that can be
* sent and received. Normally they are the same, but they can be
* changed to improve the program efficiency and buffer allocation.
* If they are 0, use the transport default.
*
* If svcaddr is NULL, returns NULL.
*/
CLIENT *
clnt_dg_create(
struct socket *so,
struct sockaddr *svcaddr, /* servers address */
rpcprog_t program, /* program number */
rpcvers_t version, /* version number */
size_t sendsz, /* buffer recv size */
size_t recvsz) /* buffer send size */
{
CLIENT *cl = NULL; /* client handle */
struct cu_data *cu = NULL; /* private data */
struct cu_socket *cs = NULL;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
struct sockbuf *sb;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
struct timeval now;
struct rpc_msg call_msg;
struct __rpc_sockinfo si;
XDR xdrs;
int error;
uint32_t newxid;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (svcaddr == NULL) {
rpc_createerr.cf_stat = RPC_UNKNOWNADDR;
return (NULL);
}
if (!__rpc_socket2sockinfo(so, &si)) {
rpc_createerr.cf_stat = RPC_TLIERROR;
rpc_createerr.cf_error.re_errno = 0;
return (NULL);
}
/*
* Find the receive and the send size
*/
sendsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsz);
recvsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsz);
if ((sendsz == 0) || (recvsz == 0)) {
rpc_createerr.cf_stat = RPC_TLIERROR; /* XXX */
rpc_createerr.cf_error.re_errno = 0;
return (NULL);
}
cl = mem_alloc(sizeof (CLIENT));
/*
* Should be multiple of 4 for XDR.
*/
sendsz = rounddown(sendsz + 3, 4);
recvsz = rounddown(recvsz + 3, 4);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cu = mem_alloc(sizeof (*cu));
cu->cu_threads = 0;
cu->cu_closing = FALSE;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_closed = FALSE;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
(void) memcpy(&cu->cu_raddr, svcaddr, (size_t)svcaddr->sa_len);
cu->cu_rlen = svcaddr->sa_len;
/* Other values can also be set through clnt_control() */
cu->cu_wait.tv_sec = 3; /* heuristically chosen */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cu->cu_wait.tv_usec = 0;
cu->cu_total.tv_sec = -1;
cu->cu_total.tv_usec = -1;
cu->cu_sendsz = sendsz;
cu->cu_recvsz = recvsz;
cu->cu_async = FALSE;
cu->cu_connect = FALSE;
cu->cu_connected = FALSE;
cu->cu_waitchan = "rpcrecv";
cu->cu_waitflag = 0;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_cwnd = MAXCWND / 2;
cu->cu_sent = 0;
cu->cu_cwnd_wait = FALSE;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
(void) getmicrotime(&now);
/* Clip at 28bits so that it will not wrap around. */
newxid = __RPC_GETXID(&now) & 0xfffffff;
atomic_cmpset_32(&rpc_xid, 0, newxid);
call_msg.rm_xid = atomic_fetchadd_32(&rpc_xid, 1);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
call_msg.rm_call.cb_prog = program;
call_msg.rm_call.cb_vers = version;
xdrmem_create(&xdrs, cu->cu_mcallc, MCALL_MSG_SIZE, XDR_ENCODE);
if (! xdr_callhdr(&xdrs, &call_msg)) {
rpc_createerr.cf_stat = RPC_CANTENCODEARGS; /* XXX */
rpc_createerr.cf_error.re_errno = 0;
goto err2;
}
cu->cu_mcalllen = XDR_GETPOS(&xdrs);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* By default, closeit is always FALSE. It is users responsibility
* to do a close on it, else the user may use clnt_control
* to let clnt_destroy do it for him/her.
*/
cu->cu_closeit = FALSE;
cu->cu_socket = so;
error = soreserve(so, (u_long)sendsz, (u_long)recvsz);
if (error != 0) {
rpc_createerr.cf_stat = RPC_FAILED;
rpc_createerr.cf_error.re_errno = error;
goto err2;
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
sb = &so->so_rcv;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
SOCKBUF_LOCK(&so->so_rcv);
recheck_socket:
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
if (sb->sb_upcall) {
if (sb->sb_upcall != clnt_dg_soupcall) {
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
SOCKBUF_UNLOCK(&so->so_rcv);
printf("clnt_dg_create(): socket already has an incompatible upcall\n");
goto err2;
}
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
cs = (struct cu_socket *) sb->sb_upcallarg;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_lock(&cs->cs_lock);
cs->cs_refs++;
mtx_unlock(&cs->cs_lock);
} else {
/*
* We are the first on this socket - allocate the
* structure and install it in the socket.
*/
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
SOCKBUF_UNLOCK(&so->so_rcv);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cs = mem_alloc(sizeof(*cs));
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
SOCKBUF_LOCK(&so->so_rcv);
if (sb->sb_upcall) {
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* We have lost a race with some other client.
*/
mem_free(cs, sizeof(*cs));
goto recheck_socket;
}
mtx_init(&cs->cs_lock, "cs->cs_lock", NULL, MTX_DEF);
cs->cs_refs = 1;
cs->cs_upcallrefs = 0;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
TAILQ_INIT(&cs->cs_pending);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
soupcall_set(so, SO_RCV, clnt_dg_soupcall, cs);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
SOCKBUF_UNLOCK(&so->so_rcv);
cl->cl_refs = 1;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cl->cl_ops = &clnt_dg_ops;
cl->cl_private = (caddr_t)(void *)cu;
cl->cl_auth = authnone_create();
cl->cl_tp = NULL;
cl->cl_netid = NULL;
return (cl);
err2:
mem_free(cl, sizeof (CLIENT));
mem_free(cu, sizeof (*cu));
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
return (NULL);
}
static enum clnt_stat
clnt_dg_call(
CLIENT *cl, /* client handle */
struct rpc_callextra *ext, /* call metadata */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
rpcproc_t proc, /* procedure number */
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
struct mbuf *args, /* pointer to args */
struct mbuf **resultsp, /* pointer to results */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
struct timeval utimeout) /* seconds to wait before giving up */
{
struct cu_data *cu = (struct cu_data *)cl->cl_private;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
struct cu_socket *cs;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
struct rpc_timers *rt;
AUTH *auth;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
struct rpc_err *errp;
enum clnt_stat stat;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
XDR xdrs;
struct rpc_msg reply_msg;
bool_t ok;
int retrans; /* number of re-transmits so far */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
int nrefreshes = 2; /* number of times to refresh cred */
struct timeval *tvp;
int timeout;
int retransmit_time;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
int next_sendtime, starttime, rtt, time_waited, tv = 0;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
struct sockaddr *sa;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
uint32_t xid = 0;
struct mbuf *mreq = NULL, *results;
struct cu_request *cr;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
int error;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
cs = cu->cu_socket->so_rcv.sb_upcallarg;
cr = malloc(sizeof(struct cu_request), M_RPC, M_WAITOK);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_lock(&cs->cs_lock);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (cu->cu_closing || cu->cu_closed) {
mtx_unlock(&cs->cs_lock);
free(cr, M_RPC);
return (RPC_CANTSEND);
}
cu->cu_threads++;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (ext) {
auth = ext->rc_auth;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp = &ext->rc_err;
} else {
auth = cl->cl_auth;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp = &cu->cu_error;
}
cr->cr_client = cl;
cr->cr_mrep = NULL;
cr->cr_error = 0;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (cu->cu_total.tv_usec == -1) {
tvp = &utimeout; /* use supplied timeout */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
} else {
tvp = &cu->cu_total; /* use default timeout */
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
if (tvp->tv_sec || tvp->tv_usec)
timeout = tvtohz(tvp);
else
timeout = 0;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (cu->cu_connect && !cu->cu_connected) {
mtx_unlock(&cs->cs_lock);
error = soconnect(cu->cu_socket,
(struct sockaddr *)&cu->cu_raddr, curthread);
mtx_lock(&cs->cs_lock);
if (error) {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_errno = error;
errp->re_status = stat = RPC_CANTSEND;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto out;
}
cu->cu_connected = 1;
}
if (cu->cu_connected)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
sa = NULL;
else
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
sa = (struct sockaddr *)&cu->cu_raddr;
time_waited = 0;
retrans = 0;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (ext && ext->rc_timers) {
rt = ext->rc_timers;
if (!rt->rt_rtxcur)
rt->rt_rtxcur = tvtohz(&cu->cu_wait);
retransmit_time = next_sendtime = rt->rt_rtxcur;
} else {
rt = NULL;
retransmit_time = next_sendtime = tvtohz(&cu->cu_wait);
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
starttime = ticks;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
call_again:
mtx_assert(&cs->cs_lock, MA_OWNED);
xid = atomic_fetchadd_32(&rpc_xid, 1);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
send_again:
mtx_unlock(&cs->cs_lock);
mreq = m_gethdr(M_WAITOK, MT_DATA);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
KASSERT(cu->cu_mcalllen <= MHLEN, ("RPC header too big"));
bcopy(cu->cu_mcallc, mreq->m_data, cu->cu_mcalllen);
mreq->m_len = cu->cu_mcalllen;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* The XID is the first thing in the request.
*/
*mtod(mreq, uint32_t *) = htonl(xid);
xdrmbuf_create(&xdrs, mreq, XDR_ENCODE);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (cu->cu_async == TRUE && args == NULL)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto get_reply;
if ((! XDR_PUTINT32(&xdrs, &proc)) ||
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
(! AUTH_MARSHALL(auth, xid, &xdrs,
m_copym(args, 0, M_COPYALL, M_WAITOK)))) {
errp->re_status = stat = RPC_CANTENCODEARGS;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_lock(&cs->cs_lock);
goto out;
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
mreq->m_pkthdr.len = m_length(mreq, NULL);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cr->cr_xid = xid;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_lock(&cs->cs_lock);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
/*
* Try to get a place in the congestion window.
*/
while (cu->cu_sent >= cu->cu_cwnd) {
cu->cu_cwnd_wait = TRUE;
error = msleep(&cu->cu_cwnd_wait, &cs->cs_lock,
cu->cu_waitflag, "rpccwnd", 0);
if (error) {
errp->re_errno = error;
if (error == EINTR || error == ERESTART)
errp->re_status = stat = RPC_INTR;
else
errp->re_status = stat = RPC_CANTSEND;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
goto out;
}
}
cu->cu_sent += CWNDSCALE;
TAILQ_INSERT_TAIL(&cs->cs_pending, cr, cr_link);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_unlock(&cs->cs_lock);
/*
* sosend consumes mreq.
*/
error = sosend(cu->cu_socket, sa, NULL, mreq, NULL, 0, curthread);
mreq = NULL;
/*
* sub-optimal code appears here because we have
* some clock time to spare while the packets are in flight.
* (We assume that this is actually only executed once.)
*/
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
reply_msg.acpted_rply.ar_verf.oa_flavor = AUTH_NULL;
reply_msg.acpted_rply.ar_verf.oa_base = cr->cr_verf;
reply_msg.acpted_rply.ar_verf.oa_length = 0;
reply_msg.acpted_rply.ar_results.where = NULL;
reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_lock(&cs->cs_lock);
if (error) {
TAILQ_REMOVE(&cs->cs_pending, cr, cr_link);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_errno = error;
errp->re_status = stat = RPC_CANTSEND;
cu->cu_sent -= CWNDSCALE;
if (cu->cu_cwnd_wait) {
cu->cu_cwnd_wait = FALSE;
wakeup(&cu->cu_cwnd_wait);
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto out;
}
/*
* Check to see if we got an upcall while waiting for the
* lock.
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
*/
if (cr->cr_error) {
TAILQ_REMOVE(&cs->cs_pending, cr, cr_link);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_errno = cr->cr_error;
errp->re_status = stat = RPC_CANTRECV;
cu->cu_sent -= CWNDSCALE;
if (cu->cu_cwnd_wait) {
cu->cu_cwnd_wait = FALSE;
wakeup(&cu->cu_cwnd_wait);
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto out;
}
if (cr->cr_mrep) {
TAILQ_REMOVE(&cs->cs_pending, cr, cr_link);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_sent -= CWNDSCALE;
if (cu->cu_cwnd_wait) {
cu->cu_cwnd_wait = FALSE;
wakeup(&cu->cu_cwnd_wait);
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto got_reply;
}
/*
* Hack to provide rpc-based message passing
*/
if (timeout == 0) {
TAILQ_REMOVE(&cs->cs_pending, cr, cr_link);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_status = stat = RPC_TIMEDOUT;
cu->cu_sent -= CWNDSCALE;
if (cu->cu_cwnd_wait) {
cu->cu_cwnd_wait = FALSE;
wakeup(&cu->cu_cwnd_wait);
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto out;
}
get_reply:
for (;;) {
/* Decide how long to wait. */
if (next_sendtime < timeout)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
tv = next_sendtime;
else
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
tv = timeout;
tv -= time_waited;
if (tv > 0) {
if (cu->cu_closing || cu->cu_closed) {
error = 0;
cr->cr_error = ESHUTDOWN;
} else {
error = msleep(cr, &cs->cs_lock,
cu->cu_waitflag, cu->cu_waitchan, tv);
}
} else {
error = EWOULDBLOCK;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
TAILQ_REMOVE(&cs->cs_pending, cr, cr_link);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_sent -= CWNDSCALE;
if (cu->cu_cwnd_wait) {
cu->cu_cwnd_wait = FALSE;
wakeup(&cu->cu_cwnd_wait);
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (!error) {
/*
* We were woken up by the upcall. If the
* upcall had a receive error, report that,
* otherwise we have a reply.
*/
if (cr->cr_error) {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_errno = cr->cr_error;
errp->re_status = stat = RPC_CANTRECV;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto out;
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_cwnd += (CWNDSCALE * CWNDSCALE
+ cu->cu_cwnd / 2) / cu->cu_cwnd;
if (cu->cu_cwnd > MAXCWND)
cu->cu_cwnd = MAXCWND;
if (rt) {
/*
* Add one to the time since a tick
* count of N means that the actual
* time taken was somewhere between N
* and N+1.
*/
rtt = ticks - starttime + 1;
/*
* Update our estimate of the round
* trip time using roughly the
* algorithm described in RFC
* 2988. Given an RTT sample R:
*
* RTTVAR = (1-beta) * RTTVAR + beta * |SRTT-R|
* SRTT = (1-alpha) * SRTT + alpha * R
*
* where alpha = 0.125 and beta = 0.25.
*
* The initial retransmit timeout is
* SRTT + 4*RTTVAR and doubles on each
* retransmision.
*/
if (rt->rt_srtt == 0) {
rt->rt_srtt = rtt;
rt->rt_deviate = rtt / 2;
} else {
int32_t error = rtt - rt->rt_srtt;
rt->rt_srtt += error / 8;
error = abs(error) - rt->rt_deviate;
rt->rt_deviate += error / 4;
}
rt->rt_rtxcur = rt->rt_srtt + 4*rt->rt_deviate;
}
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
break;
}
/*
* The sleep returned an error so our request is still
* on the list. If we got EWOULDBLOCK, we may want to
* re-send the request.
*/
if (error != EWOULDBLOCK) {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_errno = error;
if (error == EINTR || error == ERESTART)
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_status = stat = RPC_INTR;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
else
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_status = stat = RPC_CANTRECV;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto out;
}
time_waited = ticks - starttime;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/* Check for timeout. */
if (time_waited > timeout) {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_errno = EWOULDBLOCK;
errp->re_status = stat = RPC_TIMEDOUT;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto out;
}
/* Retransmit if necessary. */
if (time_waited >= next_sendtime) {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_cwnd /= 2;
if (cu->cu_cwnd < CWNDSCALE)
cu->cu_cwnd = CWNDSCALE;
if (ext && ext->rc_feedback) {
mtx_unlock(&cs->cs_lock);
if (retrans == 0)
ext->rc_feedback(FEEDBACK_REXMIT1,
proc, ext->rc_feedback_arg);
else
ext->rc_feedback(FEEDBACK_REXMIT2,
proc, ext->rc_feedback_arg);
mtx_lock(&cs->cs_lock);
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (cu->cu_closing || cu->cu_closed) {
errp->re_errno = ESHUTDOWN;
errp->re_status = stat = RPC_CANTRECV;
goto out;
}
retrans++;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/* update retransmit_time */
if (retransmit_time < RPC_MAX_BACKOFF * hz)
retransmit_time = 2 * retransmit_time;
next_sendtime += retransmit_time;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto send_again;
}
cu->cu_sent += CWNDSCALE;
TAILQ_INSERT_TAIL(&cs->cs_pending, cr, cr_link);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
got_reply:
/*
* Now decode and validate the response. We need to drop the
* lock since xdr_replymsg may end up sleeping in malloc.
*/
mtx_unlock(&cs->cs_lock);
if (ext && ext->rc_feedback)
ext->rc_feedback(FEEDBACK_OK, proc, ext->rc_feedback_arg);
xdrmbuf_create(&xdrs, cr->cr_mrep, XDR_DECODE);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
ok = xdr_replymsg(&xdrs, &reply_msg);
cr->cr_mrep = NULL;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (ok) {
if ((reply_msg.rm_reply.rp_stat == MSG_ACCEPTED) &&
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
(reply_msg.acpted_rply.ar_stat == SUCCESS))
errp->re_status = stat = RPC_SUCCESS;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
else
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
stat = _seterr_reply(&reply_msg, &(cu->cu_error));
if (errp->re_status == RPC_SUCCESS) {
results = xdrmbuf_getall(&xdrs);
if (! AUTH_VALIDATE(auth, xid,
&reply_msg.acpted_rply.ar_verf,
&results)) {
errp->re_status = stat = RPC_AUTHERROR;
errp->re_why = AUTH_INVALIDRESP;
if (retrans &&
auth->ah_cred.oa_flavor == RPCSEC_GSS) {
/*
* If we retransmitted, its
* possible that we will
* receive a reply for one of
* the earlier transmissions
* (which will use an older
* RPCSEC_GSS sequence
* number). In this case, just
* go back and listen for a
* new reply. We could keep a
* record of all the seq
* numbers we have transmitted
* so far so that we could
* accept a reply for any of
* them here.
*/
XDR_DESTROY(&xdrs);
mtx_lock(&cs->cs_lock);
cu->cu_sent += CWNDSCALE;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
TAILQ_INSERT_TAIL(&cs->cs_pending,
cr, cr_link);
cr->cr_mrep = NULL;
goto get_reply;
}
} else {
*resultsp = results;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
} /* end successful completion */
/*
* If unsuccessful AND error is an authentication error
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
* then refresh credentials and try again, else break
*/
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
else if (stat == RPC_AUTHERROR)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/* maybe our credentials need to be refreshed ... */
if (nrefreshes > 0 &&
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
AUTH_REFRESH(auth, &reply_msg)) {
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
nrefreshes--;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
XDR_DESTROY(&xdrs);
mtx_lock(&cs->cs_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
goto call_again;
}
/* end of unsuccessful completion */
} /* end of valid reply message */
else {
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
errp->re_status = stat = RPC_CANTDECODERES;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
XDR_DESTROY(&xdrs);
mtx_lock(&cs->cs_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
out:
mtx_assert(&cs->cs_lock, MA_OWNED);
if (mreq)
m_freem(mreq);
if (cr->cr_mrep)
m_freem(cr->cr_mrep);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cu->cu_threads--;
if (cu->cu_closing)
wakeup(cu);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_unlock(&cs->cs_lock);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (auth && stat != RPC_SUCCESS)
AUTH_VALIDATE(auth, xid, NULL, NULL);
free(cr, M_RPC);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
return (stat);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
static void
clnt_dg_geterr(CLIENT *cl, struct rpc_err *errp)
{
struct cu_data *cu = (struct cu_data *)cl->cl_private;
*errp = cu->cu_error;
}
static bool_t
clnt_dg_freeres(CLIENT *cl, xdrproc_t xdr_res, void *res_ptr)
{
XDR xdrs;
bool_t dummy;
xdrs.x_op = XDR_FREE;
dummy = (*xdr_res)(&xdrs, res_ptr);
return (dummy);
}
/*ARGSUSED*/
static void
clnt_dg_abort(CLIENT *h)
{
}
static bool_t
clnt_dg_control(CLIENT *cl, u_int request, void *info)
{
struct cu_data *cu = (struct cu_data *)cl->cl_private;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
struct cu_socket *cs;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
struct sockaddr *addr;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
cs = cu->cu_socket->so_rcv.sb_upcallarg;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_lock(&cs->cs_lock);
switch (request) {
case CLSET_FD_CLOSE:
cu->cu_closeit = TRUE;
mtx_unlock(&cs->cs_lock);
return (TRUE);
case CLSET_FD_NCLOSE:
cu->cu_closeit = FALSE;
mtx_unlock(&cs->cs_lock);
return (TRUE);
}
/* for other requests which use info */
if (info == NULL) {
mtx_unlock(&cs->cs_lock);
return (FALSE);
}
switch (request) {
case CLSET_TIMEOUT:
if (time_not_ok((struct timeval *)info)) {
mtx_unlock(&cs->cs_lock);
return (FALSE);
}
cu->cu_total = *(struct timeval *)info;
break;
case CLGET_TIMEOUT:
*(struct timeval *)info = cu->cu_total;
break;
case CLSET_RETRY_TIMEOUT:
if (time_not_ok((struct timeval *)info)) {
mtx_unlock(&cs->cs_lock);
return (FALSE);
}
cu->cu_wait = *(struct timeval *)info;
break;
case CLGET_RETRY_TIMEOUT:
*(struct timeval *)info = cu->cu_wait;
break;
case CLGET_SVC_ADDR:
/*
* Slightly different semantics to userland - we use
* sockaddr instead of netbuf.
*/
memcpy(info, &cu->cu_raddr, cu->cu_raddr.ss_len);
break;
case CLSET_SVC_ADDR: /* set to new address */
addr = (struct sockaddr *)info;
(void) memcpy(&cu->cu_raddr, addr, addr->sa_len);
break;
case CLGET_XID:
*(uint32_t *)info = atomic_load_32(&rpc_xid);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
break;
case CLSET_XID:
/* This will set the xid of the NEXT call */
/* decrement by 1 as clnt_dg_call() increments once */
atomic_store_32(&rpc_xid, *(uint32_t *)info - 1);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
break;
case CLGET_VERS:
/*
* This RELIES on the information that, in the call body,
* the version number field is the fifth field from the
* beginning of the RPC header. MUST be changed if the
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
* call_struct is changed
*/
*(uint32_t *)info =
ntohl(*(uint32_t *)(void *)(cu->cu_mcallc +
4 * BYTES_PER_XDR_UNIT));
break;
case CLSET_VERS:
*(uint32_t *)(void *)(cu->cu_mcallc + 4 * BYTES_PER_XDR_UNIT)
= htonl(*(uint32_t *)info);
break;
case CLGET_PROG:
/*
* This RELIES on the information that, in the call body,
* the program number field is the fourth field from the
* beginning of the RPC header. MUST be changed if the
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
* call_struct is changed
*/
*(uint32_t *)info =
ntohl(*(uint32_t *)(void *)(cu->cu_mcallc +
3 * BYTES_PER_XDR_UNIT));
break;
case CLSET_PROG:
*(uint32_t *)(void *)(cu->cu_mcallc + 3 * BYTES_PER_XDR_UNIT)
= htonl(*(uint32_t *)info);
break;
case CLSET_ASYNC:
cu->cu_async = *(int *)info;
break;
case CLSET_CONNECT:
cu->cu_connect = *(int *)info;
break;
case CLSET_WAITCHAN:
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_waitchan = (const char *)info;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
break;
case CLGET_WAITCHAN:
*(const char **) info = cu->cu_waitchan;
break;
case CLSET_INTERRUPTIBLE:
if (*(int *) info)
cu->cu_waitflag = PCATCH;
else
cu->cu_waitflag = 0;
break;
case CLGET_INTERRUPTIBLE:
if (cu->cu_waitflag)
*(int *) info = TRUE;
else
*(int *) info = FALSE;
break;
default:
mtx_unlock(&cs->cs_lock);
return (FALSE);
}
mtx_unlock(&cs->cs_lock);
return (TRUE);
}
static void
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
clnt_dg_close(CLIENT *cl)
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
{
struct cu_data *cu = (struct cu_data *)cl->cl_private;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
struct cu_socket *cs;
struct cu_request *cr;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
cs = cu->cu_socket->so_rcv.sb_upcallarg;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mtx_lock(&cs->cs_lock);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
if (cu->cu_closed) {
mtx_unlock(&cs->cs_lock);
return;
}
if (cu->cu_closing) {
while (cu->cu_closing)
msleep(cu, &cs->cs_lock, 0, "rpcclose", 0);
KASSERT(cu->cu_closed, ("client should be closed"));
mtx_unlock(&cs->cs_lock);
return;
}
/*
* Abort any pending requests and wait until everyone
* has finished with clnt_vc_call.
*/
cu->cu_closing = TRUE;
TAILQ_FOREACH(cr, &cs->cs_pending, cr_link) {
if (cr->cr_client == cl) {
cr->cr_xid = 0;
cr->cr_error = ESHUTDOWN;
wakeup(cr);
}
}
while (cu->cu_threads)
msleep(cu, &cs->cs_lock, 0, "rpcclose", 0);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
cu->cu_closing = FALSE;
cu->cu_closed = TRUE;
mtx_unlock(&cs->cs_lock);
wakeup(cu);
}
static void
clnt_dg_destroy(CLIENT *cl)
{
struct cu_data *cu = (struct cu_data *)cl->cl_private;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
struct cu_socket *cs;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
struct socket *so = NULL;
bool_t lastsocketref;
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
cs = cu->cu_socket->so_rcv.sb_upcallarg;
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
clnt_dg_close(cl);
SOCKBUF_LOCK(&cu->cu_socket->so_rcv);
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
mtx_lock(&cs->cs_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cs->cs_refs--;
if (cs->cs_refs == 0) {
mtx_unlock(&cs->cs_lock);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
soupcall_clear(cu->cu_socket, SO_RCV);
clnt_dg_upcallsdone(cu->cu_socket, cs);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
SOCKBUF_UNLOCK(&cu->cu_socket->so_rcv);
mtx_destroy(&cs->cs_lock);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
mem_free(cs, sizeof(*cs));
lastsocketref = TRUE;
} else {
mtx_unlock(&cs->cs_lock);
SOCKBUF_UNLOCK(&cu->cu_socket->so_rcv);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
lastsocketref = FALSE;
}
if (cu->cu_closeit && lastsocketref) {
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
so = cu->cu_socket;
cu->cu_socket = NULL;
}
if (so)
soclose(so);
if (cl->cl_netid && cl->cl_netid[0])
mem_free(cl->cl_netid, strlen(cl->cl_netid) +1);
if (cl->cl_tp && cl->cl_tp[0])
mem_free(cl->cl_tp, strlen(cl->cl_tp) +1);
mem_free(cu, sizeof (*cu));
mem_free(cl, sizeof (CLIENT));
}
/*
* Make sure that the time is not garbage. -1 value is allowed.
*/
static bool_t
time_not_ok(struct timeval *t)
{
return (t->tv_sec < -1 || t->tv_sec > 100000000 ||
t->tv_usec < -1 || t->tv_usec > 1000000);
}
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
int
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
clnt_dg_soupcall(struct socket *so, void *arg, int waitflag)
{
struct cu_socket *cs = (struct cu_socket *) arg;
struct uio uio;
struct mbuf *m;
struct mbuf *control;
struct cu_request *cr;
int error, rcvflag, foundreq;
uint32_t xid;
cs->cs_upcallrefs++;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
uio.uio_resid = 1000000000;
uio.uio_td = curthread;
do {
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
SOCKBUF_UNLOCK(&so->so_rcv);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
m = NULL;
control = NULL;
rcvflag = MSG_DONTWAIT;
error = soreceive(so, NULL, &uio, &m, &control, &rcvflag);
if (control)
m_freem(control);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
SOCKBUF_LOCK(&so->so_rcv);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
if (error == EWOULDBLOCK)
break;
/*
* If there was an error, wake up all pending
* requests.
*/
if (error) {
mtx_lock(&cs->cs_lock);
TAILQ_FOREACH(cr, &cs->cs_pending, cr_link) {
cr->cr_xid = 0;
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
cr->cr_error = error;
wakeup(cr);
}
mtx_unlock(&cs->cs_lock);
break;
}
/*
* The XID is in the first uint32_t of the reply.
*/
if (m->m_len < sizeof(xid) && m_length(m, NULL) < sizeof(xid)) {
/*
* Should never happen.
*/
m_freem(m);
continue;
}
m_copydata(m, 0, sizeof(xid), (char *)&xid);
xid = ntohl(xid);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
/*
* Attempt to match this reply with a pending request.
*/
mtx_lock(&cs->cs_lock);
foundreq = 0;
TAILQ_FOREACH(cr, &cs->cs_pending, cr_link) {
if (cr->cr_xid == xid) {
/*
* This one matches. We leave the
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
* reply mbuf in cr->cr_mrep. Set the
* XID to zero so that we will ignore
* any duplicated replies that arrive
* before clnt_dg_call removes it from
* the queue.
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
*/
cr->cr_xid = 0;
cr->cr_mrep = m;
cr->cr_error = 0;
foundreq = 1;
wakeup(cr);
break;
}
}
mtx_unlock(&cs->cs_lock);
/*
* If we didn't find the matching request, just drop
* it - its probably a repeated reply.
*/
if (!foundreq)
m_freem(m);
} while (m);
cs->cs_upcallrefs--;
if (cs->cs_upcallrefs < 0)
panic("rpcdg upcall refcnt");
if (cs->cs_upcallrefs == 0)
wakeup(&cs->cs_upcallrefs);
Rework socket upcalls to close some races with setup/teardown of upcalls. - Each socket upcall is now invoked with the appropriate socket buffer locked. It is not permissible to call soisconnected() with this lock held; however, so socket upcalls now return an integer value. The two possible values are SU_OK and SU_ISCONNECTED. If an upcall returns SU_ISCONNECTED, then the soisconnected() will be invoked on the socket after the socket buffer lock is dropped. - A new API is provided for setting and clearing socket upcalls. The API consists of soupcall_set() and soupcall_clear(). - To simplify locking, each socket buffer now has a separate upcall. - When a socket upcall returns SU_ISCONNECTED, the upcall is cleared from the receive socket buffer automatically. Note that a SO_SND upcall should never return SU_ISCONNECTED. - All this means that accept filters should now return SU_ISCONNECTED instead of calling soisconnected() directly. They also no longer need to explicitly clear the upcall on the new socket. - The HTTP accept filter still uses soupcall_set() to manage its internal state machine, but other accept filters no longer have any explicit knowlege of socket upcall internals aside from their return value. - The various RPC client upcalls currently drop the socket buffer lock while invoking soreceive() as a temporary band-aid. The plan for the future is to add a new flag to allow soreceive() to be called with the socket buffer locked. - The AIO callback for socket I/O is now also invoked with the socket buffer locked. Previously sowakeup() would drop the socket buffer lock only to call aio_swake() which immediately re-acquired the socket buffer lock for the duration of the function call. Discussed with: rwatson, rmacklem
2009-06-01 21:17:03 +00:00
return (SU_OK);
Add the new kernel-mode NFS Lock Manager. To use it instead of the user-mode lock manager, build a kernel with the NFSLOCKD option and add '-k' to 'rpc_lockd_flags' in rc.conf. Highlights include: * Thread-safe kernel RPC client - many threads can use the same RPC client handle safely with replies being de-multiplexed at the socket upcall (typically driven directly by the NIC interrupt) and handed off to whichever thread matches the reply. For UDP sockets, many RPC clients can share the same socket. This allows the use of a single privileged UDP port number to talk to an arbitrary number of remote hosts. * Single-threaded kernel RPC server. Adding support for multi-threaded server would be relatively straightforward and would follow approximately the Solaris KPI. A single thread should be sufficient for the NLM since it should rarely block in normal operation. * Kernel mode NLM server supporting cancel requests and granted callbacks. I've tested the NLM server reasonably extensively - it passes both my own tests and the NFS Connectathon locking tests running on Solaris, Mac OS X and Ubuntu Linux. * Userland NLM client supported. While the NLM server doesn't have support for the local NFS client's locking needs, it does have to field async replies and granted callbacks from remote NLMs that the local client has contacted. We relay these replies to the userland rpc.lockd over a local domain RPC socket. * Robust deadlock detection for the local lock manager. In particular it will detect deadlocks caused by a lock request that covers more than one blocking request. As required by the NLM protocol, all deadlock detection happens synchronously - a user is guaranteed that if a lock request isn't rejected immediately, the lock will eventually be granted. The old system allowed for a 'deferred deadlock' condition where a blocked lock request could wake up and find that some other deadlock-causing lock owner had beaten them to the lock. * Since both local and remote locks are managed by the same kernel locking code, local and remote processes can safely use file locks for mutual exclusion. Local processes have no fairness advantage compared to remote processes when contending to lock a region that has just been unlocked - the local lock manager enforces a strict first-come first-served model for both local and remote lockers. Sponsored by: Isilon Systems PR: 95247 107555 115524 116679 MFC after: 2 weeks
2008-03-26 15:23:12 +00:00
}
/*
* Wait for all upcalls in progress to complete.
*/
static void
clnt_dg_upcallsdone(struct socket *so, struct cu_socket *cs)
{
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
while (cs->cs_upcallrefs > 0)
(void) msleep(&cs->cs_upcallrefs, SOCKBUF_MTX(&so->so_rcv), 0,
"rpcdgup", 0);
}