1994-05-24 10:09:53 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 1982, 1986, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* @(#)subr_prof.c 8.3 (Berkeley) 9/23/93
|
1999-08-28 01:08:13 +00:00
|
|
|
* $FreeBSD$
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
1995-11-12 06:43:28 +00:00
|
|
|
#include <sys/sysproto.h>
|
1999-10-12 02:54:23 +00:00
|
|
|
#include <sys/kernel.h>
|
2001-05-01 08:13:21 +00:00
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/mutex.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/proc.h>
|
1995-12-06 23:37:44 +00:00
|
|
|
#include <sys/resourcevar.h>
|
1999-10-12 02:54:23 +00:00
|
|
|
#include <sys/sysctl.h>
|
1995-03-16 18:17:34 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <machine/cpu.h>
|
|
|
|
|
|
|
|
#ifdef GPROF
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/gmon.h>
|
1999-05-06 09:44:57 +00:00
|
|
|
#undef MCOUNT
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1997-10-12 20:26:33 +00:00
|
|
|
static MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");
|
1997-10-11 18:31:40 +00:00
|
|
|
|
1995-09-09 18:10:37 +00:00
|
|
|
static void kmstartup __P((void *));
|
1995-08-28 09:19:25 +00:00
|
|
|
SYSINIT(kmem, SI_SUB_KPROF, SI_ORDER_FIRST, kmstartup, NULL)
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
struct gmonparam _gmonparam = { GMON_PROF_OFF };
|
|
|
|
|
1996-10-17 19:32:31 +00:00
|
|
|
#ifdef GUPROF
|
1999-05-06 09:44:57 +00:00
|
|
|
#include <machine/asmacros.h>
|
|
|
|
|
1996-10-17 19:32:31 +00:00
|
|
|
void
|
|
|
|
nullfunc_loop_profiled()
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
|
|
|
nullfunc_profiled();
|
|
|
|
}
|
|
|
|
|
1996-12-13 12:59:28 +00:00
|
|
|
#define nullfunc_loop_profiled_end nullfunc_profiled /* XXX */
|
|
|
|
|
1996-10-17 19:32:31 +00:00
|
|
|
void
|
|
|
|
nullfunc_profiled()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* GUPROF */
|
|
|
|
|
1995-08-29 03:09:14 +00:00
|
|
|
static void
|
1995-12-02 17:11:20 +00:00
|
|
|
kmstartup(dummy)
|
|
|
|
void *dummy;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
char *cp;
|
|
|
|
struct gmonparam *p = &_gmonparam;
|
1995-12-29 15:30:05 +00:00
|
|
|
#ifdef GUPROF
|
1996-10-17 19:32:31 +00:00
|
|
|
int cputime_overhead;
|
|
|
|
int empty_loop_time;
|
1995-12-29 15:30:05 +00:00
|
|
|
int i;
|
1996-10-17 19:32:31 +00:00
|
|
|
int mcount_overhead;
|
|
|
|
int mexitcount_overhead;
|
|
|
|
int nullfunc_loop_overhead;
|
|
|
|
int nullfunc_loop_profiled_time;
|
1998-07-14 05:09:48 +00:00
|
|
|
uintfptr_t tmp_addr;
|
2001-03-28 03:06:10 +00:00
|
|
|
critical_t savecrit;
|
2000-12-07 22:38:22 +00:00
|
|
|
#endif
|
1995-12-29 15:30:05 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Round lowpc and highpc to multiples of the density we're using
|
|
|
|
* so the rest of the scaling (here and in gprof) stays in ints.
|
|
|
|
*/
|
1995-01-29 03:03:23 +00:00
|
|
|
p->lowpc = ROUNDDOWN((u_long)btext, HISTFRACTION * sizeof(HISTCOUNTER));
|
1994-05-24 10:09:53 +00:00
|
|
|
p->highpc = ROUNDUP((u_long)etext, HISTFRACTION * sizeof(HISTCOUNTER));
|
|
|
|
p->textsize = p->highpc - p->lowpc;
|
1996-10-17 19:32:31 +00:00
|
|
|
printf("Profiling kernel, textsize=%lu [%x..%x]\n",
|
1994-05-24 10:09:53 +00:00
|
|
|
p->textsize, p->lowpc, p->highpc);
|
|
|
|
p->kcountsize = p->textsize / HISTFRACTION;
|
|
|
|
p->hashfraction = HASHFRACTION;
|
|
|
|
p->fromssize = p->textsize / HASHFRACTION;
|
|
|
|
p->tolimit = p->textsize * ARCDENSITY / 100;
|
|
|
|
if (p->tolimit < MINARCS)
|
|
|
|
p->tolimit = MINARCS;
|
|
|
|
else if (p->tolimit > MAXARCS)
|
|
|
|
p->tolimit = MAXARCS;
|
|
|
|
p->tossize = p->tolimit * sizeof(struct tostruct);
|
|
|
|
cp = (char *)malloc(p->kcountsize + p->fromssize + p->tossize,
|
2000-12-08 21:51:06 +00:00
|
|
|
M_GPROF, M_NOWAIT | M_ZERO);
|
1994-05-24 10:09:53 +00:00
|
|
|
if (cp == 0) {
|
|
|
|
printf("No memory for profiling.\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
p->tos = (struct tostruct *)cp;
|
|
|
|
cp += p->tossize;
|
1995-12-29 15:30:05 +00:00
|
|
|
p->kcount = (HISTCOUNTER *)cp;
|
1994-05-24 10:09:53 +00:00
|
|
|
cp += p->kcountsize;
|
|
|
|
p->froms = (u_short *)cp;
|
1995-12-29 15:30:05 +00:00
|
|
|
|
|
|
|
#ifdef GUPROF
|
1996-10-17 19:32:31 +00:00
|
|
|
/* Initialize pointers to overhead counters. */
|
1995-12-29 15:30:05 +00:00
|
|
|
p->cputime_count = &KCOUNT(p, PC_TO_I(p, cputime));
|
|
|
|
p->mcount_count = &KCOUNT(p, PC_TO_I(p, mcount));
|
|
|
|
p->mexitcount_count = &KCOUNT(p, PC_TO_I(p, mexitcount));
|
|
|
|
|
|
|
|
/*
|
1996-10-17 19:32:31 +00:00
|
|
|
* Disable interrupts to avoid interference while we calibrate
|
|
|
|
* things.
|
1995-12-29 15:30:05 +00:00
|
|
|
*/
|
2001-03-28 03:06:10 +00:00
|
|
|
savecrit = critical_enter();
|
1995-12-29 15:30:05 +00:00
|
|
|
|
1996-10-17 19:32:31 +00:00
|
|
|
/*
|
|
|
|
* Determine overheads.
|
|
|
|
* XXX this needs to be repeated for each useful timer/counter.
|
|
|
|
*/
|
|
|
|
cputime_overhead = 0;
|
|
|
|
startguprof(p);
|
1995-12-29 15:30:05 +00:00
|
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
1996-10-17 19:32:31 +00:00
|
|
|
cputime_overhead += cputime();
|
|
|
|
|
|
|
|
empty_loop();
|
|
|
|
startguprof(p);
|
|
|
|
empty_loop();
|
|
|
|
empty_loop_time = cputime();
|
|
|
|
|
|
|
|
nullfunc_loop_profiled();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start profiling. There won't be any normal function calls since
|
|
|
|
* interrupts are disabled, but we will call the profiling routines
|
|
|
|
* directly to determine their overheads.
|
|
|
|
*/
|
|
|
|
p->state = GMON_PROF_HIRES;
|
|
|
|
|
|
|
|
startguprof(p);
|
|
|
|
nullfunc_loop_profiled();
|
1995-12-29 15:30:05 +00:00
|
|
|
|
1996-10-17 19:32:31 +00:00
|
|
|
startguprof(p);
|
1995-12-29 15:30:05 +00:00
|
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
1998-05-01 16:40:21 +00:00
|
|
|
#if defined(__i386__) && __GNUC__ >= 2
|
1998-04-15 17:47:40 +00:00
|
|
|
__asm("pushl %0; call __mcount; popl %%ecx"
|
|
|
|
:
|
|
|
|
: "i" (profil)
|
|
|
|
: "ax", "bx", "cx", "dx", "memory");
|
1995-12-29 15:30:05 +00:00
|
|
|
#else
|
|
|
|
#error
|
|
|
|
#endif
|
1996-10-17 19:32:31 +00:00
|
|
|
mcount_overhead = KCOUNT(p, PC_TO_I(p, profil));
|
1995-12-29 15:30:05 +00:00
|
|
|
|
1996-10-17 19:32:31 +00:00
|
|
|
startguprof(p);
|
1995-12-29 15:30:05 +00:00
|
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
1998-05-01 16:40:21 +00:00
|
|
|
#if defined(__i386__) && __GNUC__ >= 2
|
1999-05-06 09:44:57 +00:00
|
|
|
__asm("call " __XSTRING(HIDENAME(mexitcount)) "; 1:"
|
1998-04-15 17:47:40 +00:00
|
|
|
: : : "ax", "bx", "cx", "dx", "memory");
|
|
|
|
__asm("movl $1b,%0" : "=rm" (tmp_addr));
|
1995-12-29 15:30:05 +00:00
|
|
|
#else
|
|
|
|
#error
|
|
|
|
#endif
|
1996-12-13 12:59:28 +00:00
|
|
|
mexitcount_overhead = KCOUNT(p, PC_TO_I(p, tmp_addr));
|
1995-12-29 15:30:05 +00:00
|
|
|
|
|
|
|
p->state = GMON_PROF_OFF;
|
1996-10-17 19:32:31 +00:00
|
|
|
stopguprof(p);
|
|
|
|
|
2001-03-28 03:06:10 +00:00
|
|
|
critical_exit(savecrit);
|
1995-12-29 15:30:05 +00:00
|
|
|
|
1996-10-17 19:32:31 +00:00
|
|
|
nullfunc_loop_profiled_time = 0;
|
1998-07-14 05:09:48 +00:00
|
|
|
for (tmp_addr = (uintfptr_t)nullfunc_loop_profiled;
|
|
|
|
tmp_addr < (uintfptr_t)nullfunc_loop_profiled_end;
|
1996-12-13 12:59:28 +00:00
|
|
|
tmp_addr += HISTFRACTION * sizeof(HISTCOUNTER))
|
|
|
|
nullfunc_loop_profiled_time += KCOUNT(p, PC_TO_I(p, tmp_addr));
|
1996-10-17 19:32:31 +00:00
|
|
|
#define CALIB_DOSCALE(count) (((count) + CALIB_SCALE / 3) / CALIB_SCALE)
|
|
|
|
#define c2n(count, freq) ((int)((count) * 1000000000LL / freq))
|
|
|
|
printf("cputime %d, empty_loop %d, nullfunc_loop_profiled %d, mcount %d, mexitcount %d\n",
|
|
|
|
CALIB_DOSCALE(c2n(cputime_overhead, p->profrate)),
|
|
|
|
CALIB_DOSCALE(c2n(empty_loop_time, p->profrate)),
|
|
|
|
CALIB_DOSCALE(c2n(nullfunc_loop_profiled_time, p->profrate)),
|
|
|
|
CALIB_DOSCALE(c2n(mcount_overhead, p->profrate)),
|
|
|
|
CALIB_DOSCALE(c2n(mexitcount_overhead, p->profrate)));
|
|
|
|
cputime_overhead -= empty_loop_time;
|
|
|
|
mcount_overhead -= empty_loop_time;
|
|
|
|
mexitcount_overhead -= empty_loop_time;
|
|
|
|
|
|
|
|
/*-
|
|
|
|
* Profiling overheads are determined by the times between the
|
|
|
|
* following events:
|
|
|
|
* MC1: mcount() is called
|
|
|
|
* MC2: cputime() (called from mcount()) latches the timer
|
|
|
|
* MC3: mcount() completes
|
|
|
|
* ME1: mexitcount() is called
|
|
|
|
* ME2: cputime() (called from mexitcount()) latches the timer
|
|
|
|
* ME3: mexitcount() completes.
|
|
|
|
* The times between the events vary slightly depending on instruction
|
|
|
|
* combination and cache misses, etc. Attempt to determine the
|
|
|
|
* minimum times. These can be subtracted from the profiling times
|
|
|
|
* without much risk of reducing the profiling times below what they
|
|
|
|
* would be when profiling is not configured. Abbreviate:
|
|
|
|
* ab = minimum time between MC1 and MC3
|
|
|
|
* a = minumum time between MC1 and MC2
|
|
|
|
* b = minimum time between MC2 and MC3
|
|
|
|
* cd = minimum time between ME1 and ME3
|
|
|
|
* c = minimum time between ME1 and ME2
|
|
|
|
* d = minimum time between ME2 and ME3.
|
|
|
|
* These satisfy the relations:
|
|
|
|
* ab <= mcount_overhead (just measured)
|
|
|
|
* a + b <= ab
|
|
|
|
* cd <= mexitcount_overhead (just measured)
|
|
|
|
* c + d <= cd
|
|
|
|
* a + d <= nullfunc_loop_profiled_time (just measured)
|
|
|
|
* a >= 0, b >= 0, c >= 0, d >= 0.
|
|
|
|
* Assume that ab and cd are equal to the minimums.
|
|
|
|
*/
|
|
|
|
p->cputime_overhead = CALIB_DOSCALE(cputime_overhead);
|
|
|
|
p->mcount_overhead = CALIB_DOSCALE(mcount_overhead - cputime_overhead);
|
|
|
|
p->mexitcount_overhead = CALIB_DOSCALE(mexitcount_overhead
|
|
|
|
- cputime_overhead);
|
|
|
|
nullfunc_loop_overhead = nullfunc_loop_profiled_time - empty_loop_time;
|
|
|
|
p->mexitcount_post_overhead = CALIB_DOSCALE((mcount_overhead
|
|
|
|
- nullfunc_loop_overhead)
|
|
|
|
/ 4);
|
|
|
|
p->mexitcount_pre_overhead = p->mexitcount_overhead
|
|
|
|
+ p->cputime_overhead
|
|
|
|
- p->mexitcount_post_overhead;
|
|
|
|
p->mcount_pre_overhead = CALIB_DOSCALE(nullfunc_loop_overhead)
|
|
|
|
- p->mexitcount_post_overhead;
|
|
|
|
p->mcount_post_overhead = p->mcount_overhead
|
|
|
|
+ p->cputime_overhead
|
|
|
|
- p->mcount_pre_overhead;
|
|
|
|
printf(
|
|
|
|
"Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d nsec\n",
|
|
|
|
c2n(p->cputime_overhead, p->profrate),
|
|
|
|
c2n(p->mcount_overhead, p->profrate),
|
|
|
|
c2n(p->mcount_pre_overhead, p->profrate),
|
|
|
|
c2n(p->mcount_post_overhead, p->profrate),
|
|
|
|
c2n(p->cputime_overhead, p->profrate),
|
|
|
|
c2n(p->mexitcount_overhead, p->profrate),
|
|
|
|
c2n(p->mexitcount_pre_overhead, p->profrate),
|
|
|
|
c2n(p->mexitcount_post_overhead, p->profrate));
|
|
|
|
printf(
|
|
|
|
"Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d cycles\n",
|
|
|
|
p->cputime_overhead, p->mcount_overhead,
|
|
|
|
p->mcount_pre_overhead, p->mcount_post_overhead,
|
|
|
|
p->cputime_overhead, p->mexitcount_overhead,
|
|
|
|
p->mexitcount_pre_overhead, p->mexitcount_post_overhead);
|
1995-12-29 15:30:05 +00:00
|
|
|
#endif /* GUPROF */
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return kernel profiling information.
|
|
|
|
*/
|
1995-11-20 12:42:39 +00:00
|
|
|
static int
|
2000-07-04 11:25:35 +00:00
|
|
|
sysctl_kern_prof(SYSCTL_HANDLER_ARGS)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1995-11-20 12:42:39 +00:00
|
|
|
int *name = (int *) arg1;
|
|
|
|
u_int namelen = arg2;
|
1994-05-24 10:09:53 +00:00
|
|
|
struct gmonparam *gp = &_gmonparam;
|
|
|
|
int error;
|
1995-12-29 15:30:05 +00:00
|
|
|
int state;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/* all sysctl names at this level are terminal */
|
|
|
|
if (namelen != 1)
|
|
|
|
return (ENOTDIR); /* overloaded */
|
|
|
|
|
|
|
|
switch (name[0]) {
|
|
|
|
case GPROF_STATE:
|
1995-12-29 15:30:05 +00:00
|
|
|
state = gp->state;
|
|
|
|
error = sysctl_handle_int(oidp, &state, 0, req);
|
1994-05-24 10:09:53 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
1995-12-29 15:30:05 +00:00
|
|
|
if (!req->newptr)
|
|
|
|
return (0);
|
|
|
|
if (state == GMON_PROF_OFF) {
|
|
|
|
gp->state = state;
|
1996-10-17 19:32:31 +00:00
|
|
|
stopprofclock(&proc0);
|
|
|
|
stopguprof(gp);
|
1995-12-29 15:30:05 +00:00
|
|
|
} else if (state == GMON_PROF_ON) {
|
1996-10-17 19:32:31 +00:00
|
|
|
gp->state = GMON_PROF_OFF;
|
|
|
|
stopguprof(gp);
|
1995-12-29 15:30:05 +00:00
|
|
|
gp->profrate = profhz;
|
1994-05-24 10:09:53 +00:00
|
|
|
startprofclock(&proc0);
|
1996-10-17 19:32:31 +00:00
|
|
|
gp->state = state;
|
1995-12-29 15:30:05 +00:00
|
|
|
#ifdef GUPROF
|
|
|
|
} else if (state == GMON_PROF_HIRES) {
|
1996-10-17 19:32:31 +00:00
|
|
|
gp->state = GMON_PROF_OFF;
|
1995-12-29 15:30:05 +00:00
|
|
|
stopprofclock(&proc0);
|
1996-10-17 19:32:31 +00:00
|
|
|
startguprof(gp);
|
1995-12-29 15:30:05 +00:00
|
|
|
gp->state = state;
|
|
|
|
#endif
|
|
|
|
} else if (state != gp->state)
|
|
|
|
return (EINVAL);
|
1994-05-24 10:09:53 +00:00
|
|
|
return (0);
|
|
|
|
case GPROF_COUNT:
|
1995-11-20 12:42:39 +00:00
|
|
|
return (sysctl_handle_opaque(oidp,
|
|
|
|
gp->kcount, gp->kcountsize, req));
|
1994-05-24 10:09:53 +00:00
|
|
|
case GPROF_FROMS:
|
1995-11-20 12:42:39 +00:00
|
|
|
return (sysctl_handle_opaque(oidp,
|
|
|
|
gp->froms, gp->fromssize, req));
|
1994-05-24 10:09:53 +00:00
|
|
|
case GPROF_TOS:
|
1995-11-20 12:42:39 +00:00
|
|
|
return (sysctl_handle_opaque(oidp,
|
|
|
|
gp->tos, gp->tossize, req));
|
1994-05-24 10:09:53 +00:00
|
|
|
case GPROF_GMONPARAM:
|
1995-11-20 12:42:39 +00:00
|
|
|
return (sysctl_handle_opaque(oidp, gp, sizeof *gp, req));
|
1994-05-24 10:09:53 +00:00
|
|
|
default:
|
|
|
|
return (EOPNOTSUPP);
|
|
|
|
}
|
|
|
|
/* NOTREACHED */
|
|
|
|
}
|
1995-11-20 12:42:39 +00:00
|
|
|
|
|
|
|
SYSCTL_NODE(_kern, KERN_PROF, prof, CTLFLAG_RW, sysctl_kern_prof, "");
|
1994-05-24 10:09:53 +00:00
|
|
|
#endif /* GPROF */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Profiling system call.
|
|
|
|
*
|
|
|
|
* The scale factor is a fixed point number with 16 bits of fraction, so that
|
|
|
|
* 1.0 is represented as 0x10000. A scale factor of 0 turns off profiling.
|
|
|
|
*/
|
1995-11-12 06:43:28 +00:00
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
1994-05-24 10:09:53 +00:00
|
|
|
struct profil_args {
|
|
|
|
caddr_t samples;
|
1998-09-05 14:30:11 +00:00
|
|
|
size_t size;
|
|
|
|
size_t offset;
|
1994-05-24 10:09:53 +00:00
|
|
|
u_int scale;
|
|
|
|
};
|
1995-11-12 06:43:28 +00:00
|
|
|
#endif
|
1994-05-24 10:09:53 +00:00
|
|
|
/* ARGSUSED */
|
1994-05-25 09:21:21 +00:00
|
|
|
int
|
1997-11-06 19:29:57 +00:00
|
|
|
profil(p, uap)
|
1994-05-24 10:09:53 +00:00
|
|
|
struct proc *p;
|
|
|
|
register struct profil_args *uap;
|
|
|
|
{
|
|
|
|
register struct uprof *upp;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
if (uap->scale > (1 << 16))
|
|
|
|
return (EINVAL);
|
|
|
|
if (uap->scale == 0) {
|
|
|
|
stopprofclock(p);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
upp = &p->p_stats->p_prof;
|
|
|
|
|
|
|
|
/* Block profile interrupts while changing state. */
|
|
|
|
s = splstatclock();
|
|
|
|
upp->pr_off = uap->offset;
|
|
|
|
upp->pr_scale = uap->scale;
|
|
|
|
upp->pr_base = uap->samples;
|
|
|
|
upp->pr_size = uap->size;
|
|
|
|
startprofclock(p);
|
|
|
|
splx(s);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Scale is a fixed-point number with the binary point 16 bits
|
|
|
|
* into the value, and is <= 1.0. pc is at most 32 bits, so the
|
|
|
|
* intermediate result is at most 48 bits.
|
|
|
|
*/
|
|
|
|
#define PC_TO_INDEX(pc, prof) \
|
|
|
|
((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
|
|
|
|
(u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Collect user-level profiling statistics; called on a profiling tick,
|
|
|
|
* when a process is running in user-mode. This routine may be called
|
|
|
|
* from an interrupt context. We try to update the user profiling buffers
|
|
|
|
* cheaply with fuswintr() and suswintr(). If that fails, we revert to
|
|
|
|
* an AST that will vector us to trap() with a context in which copyin
|
|
|
|
* and copyout will work. Trap will then call addupc_task().
|
|
|
|
*
|
|
|
|
* Note that we may (rarely) not get around to the AST soon enough, and
|
|
|
|
* lose profile ticks when the next tick overwrites this one, but in this
|
|
|
|
* case the system is overloaded and the profile is probably already
|
|
|
|
* inaccurate.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
addupc_intr(p, pc, ticks)
|
|
|
|
register struct proc *p;
|
2001-02-22 18:07:31 +00:00
|
|
|
register uintptr_t pc;
|
1994-05-24 10:09:53 +00:00
|
|
|
u_int ticks;
|
|
|
|
{
|
|
|
|
register struct uprof *prof;
|
|
|
|
register caddr_t addr;
|
|
|
|
register u_int i;
|
|
|
|
register int v;
|
|
|
|
|
|
|
|
if (ticks == 0)
|
|
|
|
return;
|
|
|
|
prof = &p->p_stats->p_prof;
|
|
|
|
if (pc < prof->pr_off ||
|
|
|
|
(i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
|
|
|
|
return; /* out of range; ignore */
|
|
|
|
|
|
|
|
addr = prof->pr_base + i;
|
|
|
|
if ((v = fuswintr(addr)) == -1 || suswintr(addr, v + ticks) == -1) {
|
|
|
|
prof->pr_addr = pc;
|
|
|
|
prof->pr_ticks = ticks;
|
|
|
|
need_proftick(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Much like before, but we can afford to take faults here. If the
|
|
|
|
* update fails, we simply turn off profiling.
|
|
|
|
*/
|
1995-12-26 01:21:39 +00:00
|
|
|
void
|
1994-05-24 10:09:53 +00:00
|
|
|
addupc_task(p, pc, ticks)
|
|
|
|
register struct proc *p;
|
2001-02-22 18:07:31 +00:00
|
|
|
register uintptr_t pc;
|
1994-05-24 10:09:53 +00:00
|
|
|
u_int ticks;
|
|
|
|
{
|
|
|
|
register struct uprof *prof;
|
|
|
|
register caddr_t addr;
|
|
|
|
register u_int i;
|
|
|
|
u_short v;
|
|
|
|
|
2001-01-24 11:11:35 +00:00
|
|
|
/* Testing PS_PROFIL may be unnecessary, but is certainly safe. */
|
Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
|
|
|
mtx_lock_spin(&sched_lock);
|
2001-01-24 11:11:35 +00:00
|
|
|
if ((p->p_sflag & PS_PROFIL) == 0 || ticks == 0) {
|
Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
1994-05-24 10:09:53 +00:00
|
|
|
return;
|
2001-01-24 11:11:35 +00:00
|
|
|
}
|
Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
prof = &p->p_stats->p_prof;
|
|
|
|
if (pc < prof->pr_off ||
|
|
|
|
(i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
|
|
|
|
return;
|
|
|
|
|
|
|
|
addr = prof->pr_base + i;
|
|
|
|
if (copyin(addr, (caddr_t)&v, sizeof(v)) == 0) {
|
|
|
|
v += ticks;
|
|
|
|
if (copyout((caddr_t)&v, addr, sizeof(v)) == 0)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
stopprofclock(p);
|
|
|
|
}
|