freebsd-nq/sys/dev/qlnx/qlnxe/ecore_cxt.c

2634 lines
75 KiB
C
Raw Normal View History

/*
* Copyright (c) 2017-2018 Cavium, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File : ecore_cxt.c
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "bcm_osal.h"
#include "reg_addr.h"
#include "common_hsi.h"
#include "ecore_hsi_common.h"
#include "ecore_hsi_eth.h"
#include "tcp_common.h"
#include "ecore_hsi_iscsi.h"
#include "ecore_hsi_fcoe.h"
#include "ecore_hsi_roce.h"
#include "ecore_hsi_iwarp.h"
#include "ecore_rt_defs.h"
#include "ecore_status.h"
#include "ecore.h"
#include "ecore_init_ops.h"
#include "ecore_init_fw_funcs.h"
#include "ecore_cxt.h"
#include "ecore_hw.h"
#include "ecore_dev_api.h"
#include "ecore_sriov.h"
#include "ecore_roce.h"
#include "ecore_mcp.h"
/* Max number of connection types in HW (DQ/CDU etc.) */
#define MAX_CONN_TYPES PROTOCOLID_COMMON
#define NUM_TASK_TYPES 2
#define NUM_TASK_PF_SEGMENTS 4
#define NUM_TASK_VF_SEGMENTS 1
/* Doorbell-Queue constants */
#define DQ_RANGE_SHIFT 4
#define DQ_RANGE_ALIGN (1 << DQ_RANGE_SHIFT)
/* Searcher constants */
#define SRC_MIN_NUM_ELEMS 256
/* Timers constants */
#define TM_SHIFT 7
#define TM_ALIGN (1 << TM_SHIFT)
#define TM_ELEM_SIZE 4
/* ILT constants */
/* If for some reason, HW P size is modified to be less than 32K,
* special handling needs to be made for CDU initialization
*/
#ifdef CONFIG_ECORE_ROCE
/* For RoCE we configure to 64K to cover for RoCE max tasks 256K purpose. Can be
* optimized with resource management scheme
*/
#define ILT_DEFAULT_HW_P_SIZE 4
#else
#define ILT_DEFAULT_HW_P_SIZE 3
#endif
#define ILT_PAGE_IN_BYTES(hw_p_size) (1U << ((hw_p_size) + 12))
#define ILT_CFG_REG(cli, reg) PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
/* ILT entry structure */
#define ILT_ENTRY_PHY_ADDR_MASK 0x000FFFFFFFFFFFULL
#define ILT_ENTRY_PHY_ADDR_SHIFT 0
#define ILT_ENTRY_VALID_MASK 0x1ULL
#define ILT_ENTRY_VALID_SHIFT 52
#define ILT_ENTRY_IN_REGS 2
#define ILT_REG_SIZE_IN_BYTES 4
/* connection context union */
union conn_context {
struct core_conn_context core_ctx;
struct eth_conn_context eth_ctx;
struct iscsi_conn_context iscsi_ctx;
struct fcoe_conn_context fcoe_ctx;
struct roce_conn_context roce_ctx;
};
/* TYPE-0 task context - iSCSI, FCOE */
union type0_task_context {
struct iscsi_task_context iscsi_ctx;
struct fcoe_task_context fcoe_ctx;
};
/* TYPE-1 task context - ROCE */
union type1_task_context {
struct rdma_task_context roce_ctx;
};
struct src_ent {
u8 opaque[56];
u64 next;
};
#define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
#define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
#define CONN_CXT_SIZE(p_hwfn) \
ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
#define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
#define TYPE0_TASK_CXT_SIZE(p_hwfn) \
ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
/* Alignment is inherent to the type1_task_context structure */
#define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
/* PF per protocl configuration object */
#define TASK_SEGMENTS (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
#define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
struct ecore_tid_seg {
u32 count;
u8 type;
bool has_fl_mem;
};
struct ecore_conn_type_cfg {
u32 cid_count;
u32 cids_per_vf;
struct ecore_tid_seg tid_seg[TASK_SEGMENTS];
};
/* ILT Client configuration,
* Per connection type (protocol) resources (cids, tis, vf cids etc.)
* 1 - for connection context (CDUC) and for each task context we need two
* values, for regular task context and for force load memory
*/
#define ILT_CLI_PF_BLOCKS (1 + NUM_TASK_PF_SEGMENTS * 2)
#define ILT_CLI_VF_BLOCKS (1 + NUM_TASK_VF_SEGMENTS * 2)
#define CDUC_BLK (0)
#define SRQ_BLK (0)
#define CDUT_SEG_BLK(n) (1 + (u8)(n))
#define CDUT_FL_SEG_BLK(n, X) (1 + (n) + NUM_TASK_##X##_SEGMENTS)
enum ilt_clients {
ILT_CLI_CDUC,
ILT_CLI_CDUT,
ILT_CLI_QM,
ILT_CLI_TM,
ILT_CLI_SRC,
ILT_CLI_TSDM,
ILT_CLI_MAX
};
struct ilt_cfg_pair {
u32 reg;
u32 val;
};
struct ecore_ilt_cli_blk {
u32 total_size; /* 0 means not active */
u32 real_size_in_page;
u32 start_line;
u32 dynamic_line_cnt;
};
struct ecore_ilt_client_cfg {
bool active;
/* ILT boundaries */
struct ilt_cfg_pair first;
struct ilt_cfg_pair last;
struct ilt_cfg_pair p_size;
/* ILT client blocks for PF */
struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS];
u32 pf_total_lines;
/* ILT client blocks for VFs */
struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS];
u32 vf_total_lines;
};
/* Per Path -
* ILT shadow table
* Protocol acquired CID lists
* PF start line in ILT
*/
struct ecore_dma_mem {
dma_addr_t p_phys;
void *p_virt;
osal_size_t size;
};
#define MAP_WORD_SIZE sizeof(unsigned long)
#define BITS_PER_MAP_WORD (MAP_WORD_SIZE * 8)
struct ecore_cid_acquired_map {
u32 start_cid;
u32 max_count;
unsigned long *cid_map;
};
struct ecore_cxt_mngr {
/* Per protocl configuration */
struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES];
/* computed ILT structure */
struct ecore_ilt_client_cfg clients[ILT_CLI_MAX];
/* Task type sizes */
u32 task_type_size[NUM_TASK_TYPES];
/* total number of VFs for this hwfn -
* ALL VFs are symmetric in terms of HW resources
*/
u32 vf_count;
/* Acquired CIDs */
struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
/* TBD - do we want this allocated to reserve space? */
struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
/* ILT shadow table */
struct ecore_dma_mem *ilt_shadow;
u32 pf_start_line;
/* Mutex for a dynamic ILT allocation */
osal_mutex_t mutex;
/* SRC T2 */
struct ecore_dma_mem *t2;
u32 t2_num_pages;
u64 first_free;
u64 last_free;
/* The infrastructure originally was very generic and context/task
* oriented - per connection-type we would set how many of those
* are needed, and later when determining how much memory we're
* needing for a given block we'd iterate over all the relevant
* connection-types.
* But since then we've had some additional resources, some of which
* require memory which is indepent of the general context/task
* scheme. We add those here explicitly per-feature.
*/
/* total number of SRQ's for this hwfn */
u32 srq_count;
/* Maximal number of L2 steering filters */
u32 arfs_count;
/* TODO - VF arfs filters ? */
};
/* check if resources/configuration is required according to protocol type */
static bool src_proto(struct ecore_hwfn *p_hwfn,
enum protocol_type type)
{
return type == PROTOCOLID_ISCSI ||
type == PROTOCOLID_FCOE ||
type == PROTOCOLID_TOE ||
type == PROTOCOLID_IWARP;
}
static bool tm_cid_proto(enum protocol_type type)
{
return type == PROTOCOLID_ISCSI ||
type == PROTOCOLID_FCOE ||
type == PROTOCOLID_ROCE ||
type == PROTOCOLID_IWARP;
}
static bool tm_tid_proto(enum protocol_type type)
{
return type == PROTOCOLID_FCOE;
}
/* counts the iids for the CDU/CDUC ILT client configuration */
struct ecore_cdu_iids {
u32 pf_cids;
u32 per_vf_cids;
};
static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr,
struct ecore_cdu_iids *iids)
{
u32 type;
for (type = 0; type < MAX_CONN_TYPES; type++) {
iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
}
}
/* counts the iids for the Searcher block configuration */
struct ecore_src_iids {
u32 pf_cids;
u32 per_vf_cids;
};
static void ecore_cxt_src_iids(struct ecore_hwfn *p_hwfn,
struct ecore_cxt_mngr *p_mngr,
struct ecore_src_iids *iids)
{
u32 i;
for (i = 0; i < MAX_CONN_TYPES; i++) {
if (!src_proto(p_hwfn, i))
continue;
iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
}
/* Add L2 filtering filters in addition */
iids->pf_cids += p_mngr->arfs_count;
}
/* counts the iids for the Timers block configuration */
struct ecore_tm_iids {
u32 pf_cids;
u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
u32 pf_tids_total;
u32 per_vf_cids;
u32 per_vf_tids;
};
static void ecore_cxt_tm_iids(struct ecore_hwfn *p_hwfn,
struct ecore_cxt_mngr *p_mngr,
struct ecore_tm_iids *iids)
{
bool tm_vf_required = false;
bool tm_required = false;
int i, j;
/* Timers is a special case -> we don't count how many cids require
* timers but what's the max cid that will be used by the timer block.
* therefore we traverse in reverse order, and once we hit a protocol
* that requires the timers memory, we'll sum all the protocols up
* to that one.
*/
for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
if (tm_cid_proto(i) || tm_required) {
if (p_cfg->cid_count)
tm_required = true;
iids->pf_cids += p_cfg->cid_count;
}
if (tm_cid_proto(i) || tm_vf_required) {
if (p_cfg->cids_per_vf)
tm_vf_required = true;
iids->per_vf_cids += p_cfg->cids_per_vf;
}
if (tm_tid_proto(i)) {
struct ecore_tid_seg *segs = p_cfg->tid_seg;
/* for each segment there is at most one
* protocol for which count is not 0.
*/
for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
iids->pf_tids[j] += segs[j].count;
/* The last array elelment is for the VFs. As for PF
* segments there can be only one protocol for
* which this value is not 0.
*/
iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
}
}
iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
iids->pf_tids_total += iids->pf_tids[j];
}
}
static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
struct ecore_qm_iids *iids)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_tid_seg *segs;
u32 vf_cids = 0, type, j;
u32 vf_tids = 0;
for (type = 0; type < MAX_CONN_TYPES; type++) {
iids->cids += p_mngr->conn_cfg[type].cid_count;
vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
segs = p_mngr->conn_cfg[type].tid_seg;
/* for each segment there is at most one
* protocol for which count is not 0.
*/
for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
iids->tids += segs[j].count;
/* The last array elelment is for the VFs. As for PF
* segments there can be only one protocol for
* which this value is not 0.
*/
vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
}
iids->vf_cids += vf_cids * p_mngr->vf_count;
iids->tids += vf_tids * p_mngr->vf_count;
DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
"iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
iids->cids, iids->vf_cids, iids->tids, vf_tids);
}
static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn,
u32 seg)
{
struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
u32 i;
/* Find the protocol with tid count > 0 for this segment.
Note: there can only be one and this is already validated.
*/
for (i = 0; i < MAX_CONN_TYPES; i++) {
if (p_cfg->conn_cfg[i].tid_seg[seg].count)
return &p_cfg->conn_cfg[i].tid_seg[seg];
}
return OSAL_NULL;
}
/* set the iids (cid/tid) count per protocol */
static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
enum protocol_type type,
u32 cid_count, u32 vf_cid_cnt)
{
struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
if (type == PROTOCOLID_ROCE) {
u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
u32 align = elems_per_page * DQ_RANGE_ALIGN;
p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
}
}
u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn,
enum protocol_type type,
u32 *vf_cid)
{
if (vf_cid)
*vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
}
u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn,
enum protocol_type type)
{
return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
}
u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
enum protocol_type type)
{
u32 cnt = 0;
int i;
for (i = 0; i < TASK_SEGMENTS; i++)
cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
return cnt;
}
static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
enum protocol_type proto,
u8 seg,
u8 seg_type,
u32 count,
bool has_fl)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
p_seg->count = count;
p_seg->has_fl_mem = has_fl;
p_seg->type = seg_type;
}
/* the *p_line parameter must be either 0 for the first invocation or the
value returned in the previous invocation.
*/
static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli,
struct ecore_ilt_cli_blk *p_blk,
u32 start_line,
u32 total_size,
u32 elem_size)
{
u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
/* verify that it's called once for each block */
if (p_blk->total_size)
return;
p_blk->total_size = total_size;
p_blk->real_size_in_page = 0;
if (elem_size)
p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
p_blk->start_line = start_line;
}
static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn,
struct ecore_ilt_client_cfg *p_cli,
struct ecore_ilt_cli_blk *p_blk,
u32 *p_line,
enum ilt_clients client_id)
{
if (!p_blk->total_size)
return;
if (!p_cli->active)
p_cli->first.val = *p_line;
p_cli->active = true;
*p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
p_cli->last.val = *p_line-1;
DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
"ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
client_id, p_cli->first.val, p_cli->last.val,
p_blk->total_size, p_blk->real_size_in_page,
p_blk->start_line);
}
static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
enum ilt_clients ilt_client)
{
u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
struct ecore_ilt_client_cfg *p_cli;
u32 lines_to_skip = 0;
u32 cxts_per_p;
/* TBD MK: ILT code should be simplified once PROTO enum is changed */
if (ilt_client == ILT_CLI_CDUC) {
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
(u32)CONN_CXT_SIZE(p_hwfn);
lines_to_skip = cid_count / cxts_per_p;
}
return lines_to_skip;
}
static struct ecore_ilt_client_cfg *
ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
{
p_cli->active = false;
p_cli->first.val = 0;
p_cli->last.val = 0;
return p_cli;
}
static struct ecore_ilt_cli_blk *
ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
{
p_blk->total_size = 0;
return p_blk;
}
enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
u32 *line_count)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 curr_line, total, i, task_size, line;
struct ecore_ilt_client_cfg *p_cli;
struct ecore_ilt_cli_blk *p_blk;
struct ecore_cdu_iids cdu_iids;
struct ecore_src_iids src_iids;
struct ecore_qm_iids qm_iids;
struct ecore_tm_iids tm_iids;
struct ecore_tid_seg *p_seg;
OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
"hwfn [%d] - Set context manager starting line to be 0x%08x\n",
p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
/* CDUC */
p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
curr_line = p_mngr->pf_start_line;
/* CDUC PF */
p_cli->pf_total_lines = 0;
/* get the counters for the CDUC,CDUC and QM clients */
ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
total, CONN_CXT_SIZE(p_hwfn));
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
p_cli->pf_total_lines = curr_line - p_blk->start_line;
p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
ILT_CLI_CDUC);
/* CDUC VF */
p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
total, CONN_CXT_SIZE(p_hwfn));
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
p_cli->vf_total_lines = curr_line - p_blk->start_line;
for (i = 1; i < p_mngr->vf_count; i++)
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_CDUC);
/* CDUT PF */
p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
p_cli->first.val = curr_line;
/* first the 'working' task memory */
for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
if (!p_seg || p_seg->count == 0)
continue;
p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
total = p_seg->count * p_mngr->task_type_size[p_seg->type];
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
p_mngr->task_type_size[p_seg->type]);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_CDUT);
}
/* next the 'init' task memory (forced load memory) */
for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
if (!p_seg || p_seg->count == 0)
continue;
p_blk = ecore_cxt_set_blk(
&p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
if (!p_seg->has_fl_mem) {
/* The segment is active (total size pf 'working'
* memory is > 0) but has no FL (forced-load, Init)
* memory. Thus:
*
* 1. The total-size in the corrsponding FL block of
* the ILT client is set to 0 - No ILT line are
* provisioned and no ILT memory allocated.
*
* 2. The start-line of said block is set to the
* start line of the matching working memory
* block in the ILT client. This is later used to
* configure the CDU segment offset registers and
* results in an FL command for TIDs of this
* segement behaves as regular load commands
* (loading TIDs from the working memory).
*/
line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
continue;
}
total = p_seg->count * p_mngr->task_type_size[p_seg->type];
ecore_ilt_cli_blk_fill(p_cli, p_blk,
curr_line, total,
p_mngr->task_type_size[p_seg->type]);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_CDUT);
}
p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
/* CDUT VF */
p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
if (p_seg && p_seg->count) {
/* Stricly speaking we need to iterate over all VF
* task segment types, but a VF has only 1 segment
*/
/* 'working' memory */
total = p_seg->count * p_mngr->task_type_size[p_seg->type];
p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
ecore_ilt_cli_blk_fill(p_cli, p_blk,
curr_line, total,
p_mngr->task_type_size[p_seg->type]);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_CDUT);
/* 'init' memory */
p_blk = ecore_cxt_set_blk(
&p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
if (!p_seg->has_fl_mem) {
/* see comment above */
line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
} else {
task_size = p_mngr->task_type_size[p_seg->type];
ecore_ilt_cli_blk_fill(p_cli, p_blk,
curr_line, total,
task_size);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_CDUT);
}
p_cli->vf_total_lines = curr_line -
p_cli->vf_blks[0].start_line;
/* Now for the rest of the VFs */
for (i = 1; i < p_mngr->vf_count; i++) {
/* don't set p_blk i.e. don't clear total_size */
p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_CDUT);
/* don't set p_blk i.e. don't clear total_size */
p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_CDUT);
}
}
/* QM */
p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
ecore_cxt_qm_iids(p_hwfn, &qm_iids);
total = ecore_qm_pf_mem_size(p_hwfn->rel_pf_id, qm_iids.cids,
qm_iids.vf_cids, qm_iids.tids,
p_hwfn->qm_info.num_pqs,
p_hwfn->qm_info.num_vf_pqs);
DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
"QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
QM_PQ_ELEMENT_SIZE);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
p_cli->pf_total_lines = curr_line - p_blk->start_line;
/* SRC */
p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids);
/* Both the PF and VFs searcher connections are stored in the per PF
* database. Thus sum the PF searcher cids and all the VFs searcher
* cids.
*/
total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
if (total) {
u32 local_max = OSAL_MAX_T(u32, total,
SRC_MIN_NUM_ELEMS);
total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
total * sizeof(struct src_ent),
sizeof(struct src_ent));
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_SRC);
p_cli->pf_total_lines = curr_line - p_blk->start_line;
}
/* TM PF */
p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids);
total = tm_iids.pf_cids + tm_iids.pf_tids_total;
if (total) {
p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
total * TM_ELEM_SIZE,
TM_ELEM_SIZE);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_TM);
p_cli->pf_total_lines = curr_line - p_blk->start_line;
}
/* TM VF */
total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
if (total) {
p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
total * TM_ELEM_SIZE,
TM_ELEM_SIZE);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_TM);
p_cli->vf_total_lines = curr_line - p_blk->start_line;
for (i = 1; i < p_mngr->vf_count; i++) {
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_TM);
}
}
/* TSDM (SRQ CONTEXT) */
total = ecore_cxt_get_srq_count(p_hwfn);
if (total) {
p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
ILT_CLI_TSDM);
p_cli->pf_total_lines = curr_line - p_blk->start_line;
}
*line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
RESC_NUM(p_hwfn, ECORE_ILT)) {
return ECORE_INVAL;
}
return ECORE_SUCCESS;
}
u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
{
struct ecore_ilt_client_cfg *p_cli;
u32 excess_lines, available_lines;
struct ecore_cxt_mngr *p_mngr;
u32 ilt_page_size, elem_size;
struct ecore_tid_seg *p_seg;
int i;
available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
excess_lines = used_lines - available_lines;
if (!excess_lines)
return 0;
if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
return 0;
p_mngr = p_hwfn->p_cxt_mngr;
p_cli = &p_mngr->clients[ILT_CLI_CDUT];
ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
if (!p_seg || p_seg->count == 0)
continue;
elem_size = p_mngr->task_type_size[p_seg->type];
if (!elem_size)
continue;
return (ilt_page_size / elem_size) * excess_lines;
}
DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
return 0;
}
static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 i;
if (!p_mngr->t2)
return;
for (i = 0; i < p_mngr->t2_num_pages; i++)
if (p_mngr->t2[i].p_virt)
OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
p_mngr->t2[i].p_virt,
p_mngr->t2[i].p_phys,
p_mngr->t2[i].size);
OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
p_mngr->t2 = OSAL_NULL;
}
static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 conn_num, total_size, ent_per_page, psz, i;
struct ecore_ilt_client_cfg *p_src;
struct ecore_src_iids src_iids;
struct ecore_dma_mem *p_t2;
enum _ecore_status_t rc;
OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
/* if the SRC ILT client is inactive - there are no connection
* requiring the searcer, leave.
*/
p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
if (!p_src->active)
return ECORE_SUCCESS;
ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids);
conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
total_size = conn_num * sizeof(struct src_ent);
/* use the same page size as the SRC ILT client */
psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
/* allocate t2 */
p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
p_mngr->t2_num_pages *
sizeof(struct ecore_dma_mem));
if (!p_mngr->t2) {
DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n");
rc = ECORE_NOMEM;
goto t2_fail;
}
/* allocate t2 pages */
for (i = 0; i < p_mngr->t2_num_pages; i++) {
u32 size = OSAL_MIN_T(u32, total_size, psz);
void **p_virt = &p_mngr->t2[i].p_virt;
*p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
&p_mngr->t2[i].p_phys,
size);
if (!p_mngr->t2[i].p_virt) {
rc = ECORE_NOMEM;
goto t2_fail;
}
OSAL_MEM_ZERO(*p_virt, size);
p_mngr->t2[i].size = size;
total_size -= size;
}
/* Set the t2 pointers */
/* entries per page - must be a power of two */
ent_per_page = psz / sizeof(struct src_ent);
p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
p_mngr->last_free = (u64)p_t2->p_phys +
((conn_num - 1) & (ent_per_page - 1)) *
sizeof(struct src_ent);
for (i = 0; i < p_mngr->t2_num_pages; i++) {
u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
struct src_ent *entries = p_mngr->t2[i].p_virt;
u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
u32 j;
for (j = 0; j < ent_num - 1; j++) {
val = p_ent_phys +
(j + 1) * sizeof(struct src_ent);
entries[j].next = OSAL_CPU_TO_BE64(val);
}
if (i < p_mngr->t2_num_pages - 1)
val = (u64)p_mngr->t2[i + 1].p_phys;
else
val = 0;
entries[j].next = OSAL_CPU_TO_BE64(val);
conn_num -= ent_num;
}
return ECORE_SUCCESS;
t2_fail:
ecore_cxt_src_t2_free(p_hwfn);
return rc;
}
#define for_each_ilt_valid_client(pos, clients) \
for (pos = 0; pos < ILT_CLI_MAX; pos++) \
if (!clients[pos].active) { \
continue; \
} else \
/* Total number of ILT lines used by this PF */
static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
{
u32 size = 0;
u32 i;
for_each_ilt_valid_client(i, ilt_clients)
size += (ilt_clients[i].last.val -
ilt_clients[i].first.val + 1);
return size;
}
static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
{
struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 ilt_size, i;
ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
if (p_dma->p_virt)
OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
p_dma->p_virt,
p_dma->p_phys,
p_dma->size);
p_dma->p_virt = OSAL_NULL;
}
OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
}
static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
struct ecore_ilt_cli_blk *p_blk,
enum ilt_clients ilt_client,
u32 start_line_offset)
{
struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
u32 lines, line, sz_left, lines_to_skip = 0;
/* Special handling for RoCE that supports dynamic allocation */
if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
return ECORE_SUCCESS;
lines_to_skip = p_blk->dynamic_line_cnt;
if (!p_blk->total_size)
return ECORE_SUCCESS;
sz_left = p_blk->total_size;
lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
lines_to_skip;
line = p_blk->start_line + start_line_offset -
p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
for (; lines; lines--) {
dma_addr_t p_phys;
void *p_virt;
u32 size;
size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
&p_phys, size);
if (!p_virt)
return ECORE_NOMEM;
OSAL_MEM_ZERO(p_virt, size);
ilt_shadow[line].p_phys = p_phys;
ilt_shadow[line].p_virt = p_virt;
ilt_shadow[line].size = size;
DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
"ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
line, (unsigned long long)p_phys, p_virt, size);
sz_left -= size;
line++;
}
return ECORE_SUCCESS;
}
static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_ilt_client_cfg *clients = p_mngr->clients;
struct ecore_ilt_cli_blk *p_blk;
u32 size, i, j, k;
enum _ecore_status_t rc;
size = ecore_cxt_ilt_shadow_size(clients);
p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
size * sizeof(struct ecore_dma_mem));
if (!p_mngr->ilt_shadow) {
DP_NOTICE(p_hwfn, true, "Failed to allocate ilt shadow table\n");
rc = ECORE_NOMEM;
goto ilt_shadow_fail;
}
DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
"Allocated 0x%x bytes for ilt shadow\n",
(u32)(size * sizeof(struct ecore_dma_mem)));
for_each_ilt_valid_client(i, clients) {
for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
p_blk = &clients[i].pf_blks[j];
rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
if (rc != ECORE_SUCCESS)
goto ilt_shadow_fail;
}
for (k = 0; k < p_mngr->vf_count; k++) {
for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
u32 lines = clients[i].vf_total_lines * k;
p_blk = &clients[i].vf_blks[j];
rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
i, lines);
if (rc != ECORE_SUCCESS)
goto ilt_shadow_fail;
}
}
}
return ECORE_SUCCESS;
ilt_shadow_fail:
ecore_ilt_shadow_free(p_hwfn);
return rc;
}
static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 type, vf;
for (type = 0; type < MAX_CONN_TYPES; type++) {
OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
p_mngr->acquired[type].max_count = 0;
p_mngr->acquired[type].start_cid = 0;
for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
OSAL_FREE(p_hwfn->p_dev,
p_mngr->acquired_vf[type][vf].cid_map);
p_mngr->acquired_vf[type][vf].max_count = 0;
p_mngr->acquired_vf[type][vf].start_cid = 0;
}
}
}
static enum _ecore_status_t
ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
u32 cid_start, u32 cid_count,
struct ecore_cid_acquired_map *p_map)
{
u32 size;
if (!cid_count)
return ECORE_SUCCESS;
size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
if (p_map->cid_map == OSAL_NULL)
return ECORE_NOMEM;
p_map->max_count = cid_count;
p_map->start_cid = cid_start;
DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
"Type %08x start: %08x count %08x\n",
type, p_map->start_cid, p_map->max_count);
return ECORE_SUCCESS;
}
static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 start_cid = 0, vf_start_cid = 0;
u32 type, vf;
for (type = 0; type < MAX_CONN_TYPES; type++) {
struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
struct ecore_cid_acquired_map *p_map;
/* Handle PF maps */
p_map = &p_mngr->acquired[type];
if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
p_cfg->cid_count, p_map))
goto cid_map_fail;
/* Handle VF maps */
for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
p_map = &p_mngr->acquired_vf[type][vf];
if (ecore_cid_map_alloc_single(p_hwfn, type,
vf_start_cid,
p_cfg->cids_per_vf,
p_map))
goto cid_map_fail;
}
start_cid += p_cfg->cid_count;
vf_start_cid += p_cfg->cids_per_vf;
}
return ECORE_SUCCESS;
cid_map_fail:
ecore_cid_map_free(p_hwfn);
return ECORE_NOMEM;
}
enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
{
struct ecore_ilt_client_cfg *clients;
struct ecore_cxt_mngr *p_mngr;
u32 i;
p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
if (!p_mngr) {
DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_cxt_mngr'\n");
return ECORE_NOMEM;
}
/* Initialize ILT client registers */
clients = p_mngr->clients;
clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT);
clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT);
clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT);
clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE);
clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT);
clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT);
clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE);
clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT);
clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT);
clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT);
clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT);
clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
/* default ILT page size for all clients is 32K */
for (i = 0; i < ILT_CLI_MAX; i++)
p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE;
/* Initialize task sizes */
p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
if (p_hwfn->p_dev->p_iov_info)
p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
/* Initialize the dynamic ILT allocation mutex */
OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
OSAL_MUTEX_INIT(&p_mngr->mutex);
/* Set the cxt mangr pointer priori to further allocations */
p_hwfn->p_cxt_mngr = p_mngr;
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
{
enum _ecore_status_t rc;
/* Allocate the ILT shadow table */
rc = ecore_ilt_shadow_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n");
goto tables_alloc_fail;
}
/* Allocate the T2 table */
rc = ecore_cxt_src_t2_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n");
goto tables_alloc_fail;
}
/* Allocate and initialize the acquired cids bitmaps */
rc = ecore_cid_map_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n");
goto tables_alloc_fail;
}
return ECORE_SUCCESS;
tables_alloc_fail:
ecore_cxt_mngr_free(p_hwfn);
return rc;
}
void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
{
if (!p_hwfn->p_cxt_mngr)
return;
ecore_cid_map_free(p_hwfn);
ecore_cxt_src_t2_free(p_hwfn);
ecore_ilt_shadow_free(p_hwfn);
OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
p_hwfn->p_cxt_mngr = OSAL_NULL;
}
void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_cid_acquired_map *p_map;
struct ecore_conn_type_cfg *p_cfg;
int type;
u32 len;
/* Reset acquired cids */
for (type = 0; type < MAX_CONN_TYPES; type++) {
u32 vf;
p_cfg = &p_mngr->conn_cfg[type];
if (p_cfg->cid_count) {
p_map = &p_mngr->acquired[type];
len = DIV_ROUND_UP(p_map->max_count,
BITS_PER_MAP_WORD) *
MAP_WORD_SIZE;
OSAL_MEM_ZERO(p_map->cid_map, len);
}
if (!p_cfg->cids_per_vf)
continue;
for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
p_map = &p_mngr->acquired_vf[type][vf];
len = DIV_ROUND_UP(p_map->max_count,
BITS_PER_MAP_WORD) *
MAP_WORD_SIZE;
OSAL_MEM_ZERO(p_map->cid_map, len);
}
}
}
/* HW initialization helper (per Block, per phase) */
/* CDU Common */
#define CDUC_CXT_SIZE_SHIFT \
CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
#define CDUC_CXT_SIZE_MASK \
(CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
#define CDUC_BLOCK_WASTE_SHIFT \
CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
#define CDUC_BLOCK_WASTE_MASK \
(CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
#define CDUC_NCIB_SHIFT \
CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
#define CDUC_NCIB_MASK \
(CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
#define CDUT_TYPE0_CXT_SIZE_SHIFT \
CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
#define CDUT_TYPE0_CXT_SIZE_MASK \
(CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >> \
CDUT_TYPE0_CXT_SIZE_SHIFT)
#define CDUT_TYPE0_BLOCK_WASTE_SHIFT \
CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
#define CDUT_TYPE0_BLOCK_WASTE_MASK \
(CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \
CDUT_TYPE0_BLOCK_WASTE_SHIFT)
#define CDUT_TYPE0_NCIB_SHIFT \
CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
#define CDUT_TYPE0_NCIB_MASK \
(CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \
CDUT_TYPE0_NCIB_SHIFT)
#define CDUT_TYPE1_CXT_SIZE_SHIFT \
CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
#define CDUT_TYPE1_CXT_SIZE_MASK \
(CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >> \
CDUT_TYPE1_CXT_SIZE_SHIFT)
#define CDUT_TYPE1_BLOCK_WASTE_SHIFT \
CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
#define CDUT_TYPE1_BLOCK_WASTE_MASK \
(CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \
CDUT_TYPE1_BLOCK_WASTE_SHIFT)
#define CDUT_TYPE1_NCIB_SHIFT \
CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
#define CDUT_TYPE1_NCIB_MASK \
(CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \
CDUT_TYPE1_NCIB_SHIFT)
static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
{
u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0;
/* CDUC - connection configuration */
page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
cxt_size = CONN_CXT_SIZE(p_hwfn);
elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
/* CDUT - type-0 tasks configuration */
page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
/* cxt size and block-waste are multipes of 8 */
cdu_params = 0;
SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
/* CDUT - type-1 tasks configuration */
cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
/* cxt size and block-waste are multipes of 8 */
cdu_params = 0;
SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
}
/* CDU PF */
#define CDU_SEG_REG_TYPE_SHIFT CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
#define CDU_SEG_REG_TYPE_MASK 0x1
#define CDU_SEG_REG_OFFSET_SHIFT 0
#define CDU_SEG_REG_OFFSET_MASK CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
{
struct ecore_ilt_client_cfg *p_cli;
struct ecore_tid_seg *p_seg;
u32 cdu_seg_params, offset;
int i;
static const u32 rt_type_offset_arr[] = {
CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
};
static const u32 rt_type_offset_fl_arr[] = {
CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
};
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
/* There are initializations only for CDUT during pf Phase */
for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
/* Segment 0*/
p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
if (!p_seg)
continue;
/* Note: start_line is already adjusted for the CDU
* segment register granularity, so we just need to
* divide. Adjustment is implicit as we assume ILT
* Page size is larger than 32K!
*/
offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
(p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
cdu_seg_params = 0;
SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
cdu_seg_params);
offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
(p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
cdu_seg_params = 0;
SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
cdu_seg_params);
}
}
void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn)
{
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
struct ecore_qm_iids iids;
OSAL_MEM_ZERO(&iids, sizeof(iids));
ecore_cxt_qm_iids(p_hwfn, &iids);
ecore_qm_pf_rt_init(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->port_id,
p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
p_hwfn->first_on_engine,
iids.cids, iids.vf_cids, iids.tids,
qm_info->start_pq,
qm_info->num_pqs - qm_info->num_vf_pqs,
qm_info->num_vf_pqs,
qm_info->start_vport,
qm_info->num_vports, qm_info->pf_wfq, qm_info->pf_rl,
p_hwfn->qm_info.qm_pq_params,
p_hwfn->qm_info.qm_vport_params);
}
/* CM PF */
static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
{
STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
}
/* DQ PF */
static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
/* Connection types 6 & 7 are not in use, yet they must be configured
* as the highest possible connection. Not configuring them means the
* defaults will be used, and with a large number of cids a bug may
* occur, if the defaults will be smaller than dq_pf_max_cid /
* dq_vf_max_cid.
*/
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
}
static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
{
struct ecore_ilt_client_cfg *ilt_clients;
int i;
ilt_clients = p_hwfn->p_cxt_mngr->clients;
for_each_ilt_valid_client(i, ilt_clients) {
STORE_RT_REG(p_hwfn,
ilt_clients[i].first.reg,
ilt_clients[i].first.val);
STORE_RT_REG(p_hwfn,
ilt_clients[i].last.reg,
ilt_clients[i].last.val);
STORE_RT_REG(p_hwfn,
ilt_clients[i].p_size.reg,
ilt_clients[i].p_size.val);
}
}
static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
{
struct ecore_ilt_client_cfg *p_cli;
u32 blk_factor;
/* For simplicty we set the 'block' to be an ILT page */
if (p_hwfn->p_dev->p_iov_info) {
struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_VF_BASE_RT_OFFSET,
p_iov->first_vf_in_pf);
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
p_iov->first_vf_in_pf + p_iov->total_vfs);
}
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
if (p_cli->active) {
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
blk_factor);
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
p_cli->pf_total_lines);
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
p_cli->vf_total_lines);
}
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
if (p_cli->active) {
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
blk_factor);
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
p_cli->pf_total_lines);
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
p_cli->vf_total_lines);
}
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
if (p_cli->active) {
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
blk_factor);
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
p_cli->pf_total_lines);
STORE_RT_REG(p_hwfn,
PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
p_cli->vf_total_lines);
}
}
/* ILT (PSWRQ2) PF */
static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
{
struct ecore_ilt_client_cfg *clients;
struct ecore_cxt_mngr *p_mngr;
struct ecore_dma_mem *p_shdw;
u32 line, rt_offst, i;
ecore_ilt_bounds_init(p_hwfn);
ecore_ilt_vf_bounds_init(p_hwfn);
p_mngr = p_hwfn->p_cxt_mngr;
p_shdw = p_mngr->ilt_shadow;
clients = p_hwfn->p_cxt_mngr->clients;
for_each_ilt_valid_client(i, clients) {
/* Client's 1st val and RT array are absolute, ILT shadows'
* lines are relative.
*/
line = clients[i].first.val - p_mngr->pf_start_line;
rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
clients[i].first.val * ILT_ENTRY_IN_REGS;
for (; line <= clients[i].last.val - p_mngr->pf_start_line;
line++, rt_offst += ILT_ENTRY_IN_REGS) {
u64 ilt_hw_entry = 0;
/** p_virt could be OSAL_NULL incase of dynamic
* allocation
*/
if (p_shdw[line].p_virt != OSAL_NULL) {
SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
(p_shdw[line].p_phys >> 12));
DP_VERBOSE(
p_hwfn, ECORE_MSG_ILT,
"Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
rt_offst, line, i,
(unsigned long long)(p_shdw[line].p_phys >> 12));
}
STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
}
}
}
/* SRC (Searcher) PF */
static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 rounded_conn_num, conn_num, conn_max;
struct ecore_src_iids src_iids;
OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids);
conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
if (!conn_num)
return;
conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
OSAL_LOG2(rounded_conn_num));
STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
p_hwfn->p_cxt_mngr->first_free);
STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
p_hwfn->p_cxt_mngr->last_free);
DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
"Configured SEARCHER for 0x%08x connections\n",
conn_num);
}
/* Timers PF */
#define TM_CFG_NUM_IDS_SHIFT 0
#define TM_CFG_NUM_IDS_MASK 0xFFFFULL
#define TM_CFG_PRE_SCAN_OFFSET_SHIFT 16
#define TM_CFG_PRE_SCAN_OFFSET_MASK 0x1FFULL
#define TM_CFG_PARENT_PF_SHIFT 25
#define TM_CFG_PARENT_PF_MASK 0x7ULL
#define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT 30
#define TM_CFG_CID_PRE_SCAN_ROWS_MASK 0x1FFULL
#define TM_CFG_TID_OFFSET_SHIFT 30
#define TM_CFG_TID_OFFSET_MASK 0x7FFFFULL
#define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT 49
#define TM_CFG_TID_PRE_SCAN_ROWS_MASK 0x1FFULL
static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 active_seg_mask = 0, tm_offset, rt_reg;
struct ecore_tm_iids tm_iids;
u64 cfg_word;
u8 i;
OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids);
/* @@@TBD No pre-scan for now */
/* Note: We assume consecutive VFs for a PF */
for (i = 0; i < p_mngr->vf_count; i++) {
cfg_word = 0;
SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
(sizeof(cfg_word) / sizeof(u32)) *
(p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
}
cfg_word = 0;
SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); /* n/a for PF */
SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
(sizeof(cfg_word) / sizeof(u32)) *
(NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
/* enale scan */
STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
tm_iids.pf_cids ? 0x1 : 0x0);
/* @@@TBD how to enable the scan for the VFs */
tm_offset = tm_iids.per_vf_cids;
/* Note: We assume consecutive VFs for a PF */
for (i = 0; i < p_mngr->vf_count; i++) {
cfg_word = 0;
SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
(sizeof(cfg_word) / sizeof(u32)) *
(p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
}
tm_offset = tm_iids.pf_cids;
for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
cfg_word = 0;
SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
(sizeof(cfg_word) / sizeof(u32)) *
(NUM_OF_VFS(p_hwfn->p_dev) +
p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
tm_offset += tm_iids.pf_tids[i];
}
if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
active_seg_mask = 0;
STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
/* @@@TBD how to enable the scan for the VFs */
}
static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
{
if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
p_hwfn->pf_params.fcoe_pf_params.is_target)
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
}
static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_conn_type_cfg *p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
struct ecore_tid_seg *p_tid;
/* If FCoE is active set the MAX OX_ID (tid) in the Parser */
if (!p_fcoe->cid_count)
return;
p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
STORE_RT_REG_AGG(p_hwfn,
PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
p_tid->count);
} else {
STORE_RT_REG_AGG(p_hwfn,
PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
p_tid->count);
}
}
void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
{
/* CDU configuration */
ecore_cdu_init_common(p_hwfn);
ecore_prs_init_common(p_hwfn);
}
void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn)
{
ecore_qm_init_pf(p_hwfn);
ecore_cm_init_pf(p_hwfn);
ecore_dq_init_pf(p_hwfn);
ecore_cdu_init_pf(p_hwfn);
ecore_ilt_init_pf(p_hwfn);
ecore_src_init_pf(p_hwfn);
ecore_tm_init_pf(p_hwfn);
ecore_prs_init_pf(p_hwfn);
}
enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
enum protocol_type type,
u32 *p_cid, u8 vfid)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_cid_acquired_map *p_map;
u32 rel_cid;
if (type >= MAX_CONN_TYPES) {
DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
return ECORE_INVAL;
}
if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
return ECORE_INVAL;
}
/* Determine the right map to take this CID from */
if (vfid == ECORE_CXT_PF_CID)
p_map = &p_mngr->acquired[type];
else
p_map = &p_mngr->acquired_vf[type][vfid];
if (p_map->cid_map == OSAL_NULL) {
DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
return ECORE_INVAL;
}
rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
p_map->max_count);
if (rel_cid >= p_map->max_count) {
DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
type);
return ECORE_NORESOURCES;
}
OSAL_SET_BIT(rel_cid, p_map->cid_map);
*p_cid = rel_cid + p_map->start_cid;
DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
"Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
*p_cid, rel_cid, vfid, type);
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
enum protocol_type type,
u32 *p_cid)
{
return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
}
static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
u32 cid, u8 vfid,
enum protocol_type *p_type,
struct ecore_cid_acquired_map **pp_map)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 rel_cid;
/* Iterate over protocols and find matching cid range */
for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
if (vfid == ECORE_CXT_PF_CID)
*pp_map = &p_mngr->acquired[*p_type];
else
*pp_map = &p_mngr->acquired_vf[*p_type][vfid];
if (!((*pp_map)->cid_map))
continue;
if (cid >= (*pp_map)->start_cid &&
cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
break;
}
}
if (*p_type == MAX_CONN_TYPES) {
DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
goto fail;
}
rel_cid = cid - (*pp_map)->start_cid;
if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
DP_NOTICE(p_hwfn, true,
"CID %d [vifd %02x] not acquired", cid, vfid);
goto fail;
}
return true;
fail:
*p_type = MAX_CONN_TYPES;
*pp_map = OSAL_NULL;
return false;
}
void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
{
struct ecore_cid_acquired_map *p_map = OSAL_NULL;
enum protocol_type type;
bool b_acquired;
u32 rel_cid;
if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
DP_NOTICE(p_hwfn, true,
"Trying to return incorrect CID belonging to VF %02x\n",
vfid);
return;
}
/* Test acquired and find matching per-protocol map */
b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
&type, &p_map);
if (!b_acquired)
return;
rel_cid = cid - p_map->start_cid;
OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
"Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
cid, rel_cid, vfid, type);
}
void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
{
_ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
}
enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
struct ecore_cxt_info *p_info)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_cid_acquired_map *p_map = OSAL_NULL;
u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
enum protocol_type type;
bool b_acquired;
/* Test acquired and find matching per-protocol map */
b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
ECORE_CXT_PF_CID,
&type, &p_map);
if (!b_acquired)
return ECORE_INVAL;
/* set the protocl type */
p_info->type = type;
/* compute context virtual pointer */
hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
line = p_info->iid / cxts_per_p;
/* Make sure context is allocated (dynamic allocation) */
if (!p_mngr->ilt_shadow[line].p_virt)
return ECORE_INVAL;
p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
p_info->iid % cxts_per_p * conn_cxt_size;
DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
"Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
(p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
return ECORE_SUCCESS;
}
static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs)
{
struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
p_mgr->srq_count = num_srqs;
}
u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
{
struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
return p_mgr->srq_count;
}
static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
struct ecore_rdma_pf_params *p_params,
u32 num_tasks)
{
u32 num_cons, num_qps, num_srqs;
enum protocol_type proto;
/* Override personality with rdma flavor */
num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS, p_params->num_srqs);
/* The only case RDMA personality can be overridden is if NVRAM is
* configured with ETH_RDMA or if no rdma protocol was requested
*/
switch (p_params->rdma_protocol) {
case ECORE_RDMA_PROTOCOL_DEFAULT:
if (p_hwfn->mcp_info->func_info.protocol ==
ECORE_PCI_ETH_RDMA) {
DP_NOTICE(p_hwfn, false,
"Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
}
break;
case ECORE_RDMA_PROTOCOL_NONE:
p_hwfn->hw_info.personality = ECORE_PCI_ETH;
return; /* intentional... nothing left to do... */
case ECORE_RDMA_PROTOCOL_ROCE:
if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
break;
case ECORE_RDMA_PROTOCOL_IWARP:
if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
break;
}
switch (p_hwfn->hw_info.personality) {
case ECORE_PCI_ETH_IWARP:
num_qps = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
num_cons = num_qps;
proto = PROTOCOLID_IWARP;
p_params->roce_edpm_mode = false;
break;
case ECORE_PCI_ETH_ROCE:
num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
num_cons = num_qps * 2; /* each QP requires two connections */
proto = PROTOCOLID_ROCE;
break;
default:
return;
}
if (num_cons && num_tasks) {
ecore_cxt_set_proto_cid_count(p_hwfn, proto,
num_cons, 0);
/* Deliberatly passing ROCE for tasks id. This is because
* iWARP / RoCE share the task id.
*/
ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
ECORE_CXT_ROCE_TID_SEG,
1, /* RoCE segment type */
num_tasks,
false); /* !force load */
ecore_cxt_set_srq_count(p_hwfn, num_srqs);
} else {
DP_INFO(p_hwfn->p_dev,
"RDMA personality used without setting params!\n");
}
}
enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
u32 rdma_tasks)
{
/* Set the number of required CORE connections */
u32 core_cids = 1; /* SPQ */
if (p_hwfn->using_ll2)
core_cids += 4; /* @@@TBD Use the proper #define */
ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
switch (p_hwfn->hw_info.personality) {
case ECORE_PCI_ETH_RDMA:
case ECORE_PCI_ETH_IWARP:
case ECORE_PCI_ETH_ROCE:
{
ecore_rdma_set_pf_params(p_hwfn,
&p_hwfn->pf_params.rdma_pf_params,
rdma_tasks);
/* no need for break since RoCE coexist with Ethernet */
}
case ECORE_PCI_ETH:
{
struct ecore_eth_pf_params *p_params =
&p_hwfn->pf_params.eth_pf_params;
if (!p_params->num_vf_cons)
p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
p_params->num_cons,
p_params->num_vf_cons);
p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters;
break;
}
case ECORE_PCI_FCOE:
{
struct ecore_fcoe_pf_params *p_params;
p_params = &p_hwfn->pf_params.fcoe_pf_params;
if (p_params->num_cons && p_params->num_tasks) {
ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
p_params->num_cons, 0);
ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
ECORE_CXT_FCOE_TID_SEG,
0, /* segment type */
p_params->num_tasks,
true);
} else {
DP_INFO(p_hwfn->p_dev,
"Fcoe personality used without setting params!\n");
}
break;
}
case ECORE_PCI_ISCSI:
{
struct ecore_iscsi_pf_params *p_params;
p_params = &p_hwfn->pf_params.iscsi_pf_params;
if (p_params->num_cons && p_params->num_tasks) {
ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
p_params->num_cons, 0);
ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
ECORE_CXT_ISCSI_TID_SEG,
0, /* segment type */
p_params->num_tasks,
true);
} else {
DP_INFO(p_hwfn->p_dev,
"Iscsi personality used without setting params!\n");
}
break;
}
default:
return ECORE_INVAL;
}
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
struct ecore_tid_mem *p_info)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
u32 proto, seg, total_lines, i, shadow_line;
struct ecore_ilt_client_cfg *p_cli;
struct ecore_ilt_cli_blk *p_fl_seg;
struct ecore_tid_seg *p_seg_info;
/* Verify the personality */
switch (p_hwfn->hw_info.personality) {
case ECORE_PCI_FCOE:
proto = PROTOCOLID_FCOE;
seg = ECORE_CXT_FCOE_TID_SEG;
break;
case ECORE_PCI_ISCSI:
proto = PROTOCOLID_ISCSI;
seg = ECORE_CXT_ISCSI_TID_SEG;
break;
default:
return ECORE_INVAL;
}
p_cli = &p_mngr->clients[ILT_CLI_CDUT];
if (!p_cli->active) {
return ECORE_INVAL;
}
p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
if (!p_seg_info->has_fl_mem)
return ECORE_INVAL;
p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
p_fl_seg->real_size_in_page);
for (i = 0; i < total_lines; i++) {
shadow_line = i + p_fl_seg->start_line -
p_hwfn->p_cxt_mngr->pf_start_line;
p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
}
p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
p_fl_seg->real_size_in_page;
p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
p_info->tid_size;
return ECORE_SUCCESS;
}
/* This function is very RoCE oriented, if another protocol in the future
* will want this feature we'll need to modify the function to be more generic
*/
enum _ecore_status_t
ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
enum ecore_cxt_elem_type elem_type,
u32 iid)
{
u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
struct ecore_ilt_client_cfg *p_cli;
struct ecore_ilt_cli_blk *p_blk;
struct ecore_ptt *p_ptt;
dma_addr_t p_phys;
u64 ilt_hw_entry;
void *p_virt;
enum _ecore_status_t rc = ECORE_SUCCESS;
switch (elem_type) {
case ECORE_ELEM_CXT:
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
elem_size = CONN_CXT_SIZE(p_hwfn);
p_blk = &p_cli->pf_blks[CDUC_BLK];
break;
case ECORE_ELEM_SRQ:
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
elem_size = SRQ_CXT_SIZE;
p_blk = &p_cli->pf_blks[SRQ_BLK];
break;
case ECORE_ELEM_TASK:
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
break;
default:
DP_NOTICE(p_hwfn, false,
"ECORE_INVALID elem type = %d", elem_type);
return ECORE_INVAL;
}
/* Calculate line in ilt */
hw_p_size = p_cli->p_size.val;
elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
line = p_blk->start_line + (iid / elems_per_p);
shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
/* If line is already allocated, do nothing, otherwise allocate it and
* write it to the PSWRQ2 registers.
* This section can be run in parallel from different contexts and thus
* a mutex protection is needed.
*/
OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
goto out0;
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt) {
DP_NOTICE(p_hwfn, false,
"ECORE_TIME_OUT on ptt acquire - dynamic allocation");
rc = ECORE_TIMEOUT;
goto out0;
}
p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
&p_phys,
p_blk->real_size_in_page);
if (!p_virt) {
rc = ECORE_NOMEM;
goto out1;
}
OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
/* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
* to compensate for a HW bug, but it is configured even if DIF is not
* enabled. This is harmless and allows us to avoid a dedicated API. We
* configure the field for all of the contexts on the newly allocated
* page.
*/
if (elem_type == ECORE_ELEM_TASK) {
u32 elem_i;
u8 *elem_start = (u8 *)p_virt;
union type1_task_context *elem;
for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
elem = (union type1_task_context *)elem_start;
SET_FIELD(elem->roce_ctx.tdif_context.flags1,
TDIF_TASK_CONTEXT_REFTAGMASK , 0xf);
elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
}
}
p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
p_blk->real_size_in_page;
/* compute absolute offset */
reg_offset = PSWRQ2_REG_ILT_MEMORY +
(line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
ilt_hw_entry = 0;
SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
SET_FIELD(ilt_hw_entry,
ILT_ENTRY_PHY_ADDR,
(p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
0 /* no flags */);
if (elem_type == ECORE_ELEM_CXT) {
u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
elems_per_p;
/* Update the relevant register in the parser */
ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
last_cid_allocated - 1);
/* RoCE w/a -> we don't write to the prs search reg until first
* cid is allocated. This is because the prs checks
* last_cid-1 >=0 making 0 a valid value... this will cause
* the a context load to occur on a RoCE packet received with
* cid=0 even before context was initialized, can happen with a
* stray packet from switch or a packet with crc-error
*/
if (!p_hwfn->b_rdma_enabled_in_prs) {
/* Enable Rdma search */
ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
p_hwfn->b_rdma_enabled_in_prs = true;
}
}
out1:
ecore_ptt_release(p_hwfn, p_ptt);
out0:
OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
return rc;
}
/* This function is very RoCE oriented, if another protocol in the future
* will want this feature we'll need to modify the function to be more generic
*/
enum _ecore_status_t
ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
enum ecore_cxt_elem_type elem_type,
u32 start_iid, u32 count)
{
u32 start_line, end_line, shadow_start_line, shadow_end_line;
u32 reg_offset, elem_size, hw_p_size, elems_per_p;
struct ecore_ilt_client_cfg *p_cli;
struct ecore_ilt_cli_blk *p_blk;
u32 end_iid = start_iid + count;
struct ecore_ptt *p_ptt;
u64 ilt_hw_entry = 0;
u32 i;
switch (elem_type) {
case ECORE_ELEM_CXT:
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
elem_size = CONN_CXT_SIZE(p_hwfn);
p_blk = &p_cli->pf_blks[CDUC_BLK];
break;
case ECORE_ELEM_SRQ:
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
elem_size = SRQ_CXT_SIZE;
p_blk = &p_cli->pf_blks[SRQ_BLK];
break;
case ECORE_ELEM_TASK:
p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
break;
default:
DP_NOTICE(p_hwfn, false,
"ECORE_INVALID elem type = %d", elem_type);
return ECORE_INVAL;
}
/* Calculate line in ilt */
hw_p_size = p_cli->p_size.val;
elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
start_line = p_blk->start_line + (start_iid / elems_per_p);
end_line = p_blk->start_line + (end_iid / elems_per_p);
if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
end_line--;
shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt) {
DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
return ECORE_TIMEOUT;
}
for (i = shadow_start_line; i < shadow_end_line; i++) {
if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
continue;
OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
/* compute absolute offset */
reg_offset = PSWRQ2_REG_ILT_MEMORY +
((start_line++) * ILT_REG_SIZE_IN_BYTES *
ILT_ENTRY_IN_REGS);
/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
* wide-bus.
*/
ecore_dmae_host2grc(p_hwfn, p_ptt,
(u64)(osal_uintptr_t)&ilt_hw_entry,
reg_offset,
sizeof(ilt_hw_entry) / sizeof(u32),
0 /* no flags */);
}
ecore_ptt_release(p_hwfn, p_ptt);
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
u32 tid,
u8 ctx_type,
void **pp_task_ctx)
{
struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
struct ecore_ilt_client_cfg *p_cli;
struct ecore_ilt_cli_blk *p_seg;
struct ecore_tid_seg *p_seg_info;
u32 proto, seg;
u32 total_lines;
u32 tid_size, ilt_idx;
u32 num_tids_per_block;
/* Verify the personality */
switch (p_hwfn->hw_info.personality) {
case ECORE_PCI_FCOE:
proto = PROTOCOLID_FCOE;
seg = ECORE_CXT_FCOE_TID_SEG;
break;
case ECORE_PCI_ISCSI:
proto = PROTOCOLID_ISCSI;
seg = ECORE_CXT_ISCSI_TID_SEG;
break;
default:
return ECORE_INVAL;
}
p_cli = &p_mngr->clients[ILT_CLI_CDUT];
if (!p_cli->active) {
return ECORE_INVAL;
}
p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
if (ctx_type == ECORE_CTX_WORKING_MEM) {
p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
} else if (ctx_type == ECORE_CTX_FL_MEM) {
if (!p_seg_info->has_fl_mem) {
return ECORE_INVAL;
}
p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
} else {
return ECORE_INVAL;
}
total_lines = DIV_ROUND_UP(p_seg->total_size,
p_seg->real_size_in_page);
tid_size = p_mngr->task_type_size[p_seg_info->type];
num_tids_per_block = p_seg->real_size_in_page / tid_size;
if (total_lines < tid/num_tids_per_block)
return ECORE_INVAL;
ilt_idx = tid / num_tids_per_block + p_seg->start_line -
p_mngr->pf_start_line;
*pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
(tid % num_tids_per_block) * tid_size;
return ECORE_SUCCESS;
}