freebsd-nq/sys/dev/bm/if_bm.c

1296 lines
31 KiB
C
Raw Normal View History

/*-
* Copyright 2008 Nathan Whitehorn. All rights reserved.
* Copyright 2003 by Peter Grehan. All rights reserved.
* Copyright (C) 1998, 1999, 2000 Tsubai Masanari. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From:
* NetBSD: if_bm.c,v 1.9.2.1 2000/11/01 15:02:49 tv Exp
*/
/*
* BMAC/BMAC+ Macio cell 10/100 ethernet driver
* The low-cost, low-feature Apple variant of the Sun HME
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <machine/pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/openfirm.h>
#include <machine/dbdma.h>
MODULE_DEPEND(bm, ether, 1, 1, 1);
MODULE_DEPEND(bm, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#include "if_bmreg.h"
#include "if_bmvar.h"
static int bm_probe (device_t);
static int bm_attach (device_t);
static int bm_detach (device_t);
static int bm_shutdown (device_t);
static void bm_start (struct ifnet *);
static void bm_start_locked (struct ifnet *);
static int bm_encap (struct bm_softc *sc, struct mbuf **m_head);
static int bm_ioctl (struct ifnet *, u_long, caddr_t);
static void bm_init (void *);
static void bm_init_locked (struct bm_softc *sc);
static void bm_chip_setup (struct bm_softc *sc);
static void bm_stop (struct bm_softc *sc);
static void bm_setladrf (struct bm_softc *sc);
static void bm_dummypacket (struct bm_softc *sc);
static void bm_txintr (void *xsc);
static void bm_rxintr (void *xsc);
static int bm_add_rxbuf (struct bm_softc *sc, int i);
static int bm_add_rxbuf_dma (struct bm_softc *sc, int i);
static void bm_enable_interrupts (struct bm_softc *sc);
static void bm_disable_interrupts (struct bm_softc *sc);
static void bm_tick (void *xsc);
static int bm_ifmedia_upd (struct ifnet *);
static void bm_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static int bm_miibus_readreg (device_t, int, int);
static int bm_miibus_writereg (device_t, int, int, int);
static void bm_miibus_statchg (device_t);
/*
* MII bit-bang glue
*/
static uint32_t bm_mii_bitbang_read(device_t);
static void bm_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops bm_mii_bitbang_ops = {
bm_mii_bitbang_read,
bm_mii_bitbang_write,
{
BM_MII_DATAOUT, /* MII_BIT_MDO */
BM_MII_DATAIN, /* MII_BIT_MDI */
BM_MII_CLK, /* MII_BIT_MDC */
BM_MII_OENABLE, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static device_method_t bm_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bm_probe),
DEVMETHOD(device_attach, bm_attach),
DEVMETHOD(device_detach, bm_detach),
DEVMETHOD(device_shutdown, bm_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, bm_miibus_readreg),
DEVMETHOD(miibus_writereg, bm_miibus_writereg),
DEVMETHOD(miibus_statchg, bm_miibus_statchg),
DEVMETHOD_END
};
static driver_t bm_macio_driver = {
"bm",
bm_methods,
sizeof(struct bm_softc)
};
static devclass_t bm_devclass;
DRIVER_MODULE(bm, macio, bm_macio_driver, bm_devclass, 0, 0);
DRIVER_MODULE(miibus, bm, miibus_driver, miibus_devclass, 0, 0);
/*
* MII internal routines
*/
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
bm_mii_bitbang_write(device_t dev, uint32_t val)
{
struct bm_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_2(sc, BM_MII_CSR, val);
CSR_BARRIER(sc, BM_MII_CSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
bm_mii_bitbang_read(device_t dev)
{
struct bm_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
reg = CSR_READ_2(sc, BM_MII_CSR);
CSR_BARRIER(sc, BM_MII_CSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (reg);
}
/*
* MII bus i/f
*/
static int
bm_miibus_readreg(device_t dev, int phy, int reg)
{
return (mii_bitbang_readreg(dev, &bm_mii_bitbang_ops, phy, reg));
}
static int
bm_miibus_writereg(device_t dev, int phy, int reg, int data)
{
mii_bitbang_readreg(dev, &bm_mii_bitbang_ops, phy, reg);
return (0);
}
static void
bm_miibus_statchg(device_t dev)
{
struct bm_softc *sc = device_get_softc(dev);
uint16_t reg;
int new_duplex;
reg = CSR_READ_2(sc, BM_TX_CONFIG);
new_duplex = IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX;
if (new_duplex != sc->sc_duplex) {
/* Turn off TX MAC while we fiddle its settings */
reg &= ~BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
while (CSR_READ_2(sc, BM_TX_CONFIG) & BM_ENABLE)
DELAY(10);
}
if (new_duplex && !sc->sc_duplex)
reg |= BM_TX_IGNORECOLL | BM_TX_FULLDPX;
else if (!new_duplex && sc->sc_duplex)
reg &= ~(BM_TX_IGNORECOLL | BM_TX_FULLDPX);
if (new_duplex != sc->sc_duplex) {
/* Turn TX MAC back on */
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
sc->sc_duplex = new_duplex;
}
}
/*
* ifmedia/mii callbacks
*/
static int
bm_ifmedia_upd(struct ifnet *ifp)
{
struct bm_softc *sc = ifp->if_softc;
int error;
BM_LOCK(sc);
error = mii_mediachg(sc->sc_mii);
BM_UNLOCK(sc);
return (error);
}
static void
bm_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifm)
{
struct bm_softc *sc = ifp->if_softc;
BM_LOCK(sc);
mii_pollstat(sc->sc_mii);
ifm->ifm_active = sc->sc_mii->mii_media_active;
ifm->ifm_status = sc->sc_mii->mii_media_status;
BM_UNLOCK(sc);
}
/*
* Macio probe/attach
*/
static int
bm_probe(device_t dev)
{
const char *dname = ofw_bus_get_name(dev);
const char *dcompat = ofw_bus_get_compat(dev);
/*
* BMAC+ cells have a name of "ethernet" and
* a compatible property of "bmac+"
*/
if (strcmp(dname, "bmac") == 0) {
device_set_desc(dev, "Apple BMAC Ethernet Adaptor");
} else if (strcmp(dcompat, "bmac+") == 0) {
device_set_desc(dev, "Apple BMAC+ Ethernet Adaptor");
} else
return (ENXIO);
return (0);
}
static int
bm_attach(device_t dev)
{
phandle_t node;
u_char *eaddr;
struct ifnet *ifp;
int error, cellid, i;
struct bm_txsoft *txs;
struct bm_softc *sc = device_get_softc(dev);
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
ifp->if_softc = sc;
sc->sc_dev = dev;
sc->sc_duplex = ~IFM_FDX;
error = 0;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
/* Check for an improved version of Paddington */
sc->sc_streaming = 0;
cellid = -1;
node = ofw_bus_get_node(dev);
OF_getprop(node, "cell-id", &cellid, sizeof(cellid));
if (cellid >= 0xc4)
sc->sc_streaming = 1;
sc->sc_memrid = 0;
sc->sc_memr = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_memrid, RF_ACTIVE);
if (sc->sc_memr == NULL) {
device_printf(dev, "Could not alloc chip registers!\n");
return (ENXIO);
}
sc->sc_txdmarid = BM_TXDMA_REGISTERS;
sc->sc_rxdmarid = BM_RXDMA_REGISTERS;
sc->sc_txdmar = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_txdmarid, RF_ACTIVE);
sc->sc_rxdmar = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_rxdmarid, RF_ACTIVE);
if (sc->sc_txdmar == NULL || sc->sc_rxdmar == NULL) {
device_printf(dev, "Could not map DBDMA registers!\n");
return (ENXIO);
}
error = dbdma_allocate_channel(sc->sc_txdmar, 0, bus_get_dma_tag(dev),
BM_MAX_DMA_COMMANDS, &sc->sc_txdma);
error += dbdma_allocate_channel(sc->sc_rxdmar, 0, bus_get_dma_tag(dev),
BM_MAX_DMA_COMMANDS, &sc->sc_rxdma);
if (error) {
device_printf(dev,"Could not allocate DBDMA channel!\n");
return (ENXIO);
}
/* alloc DMA tags and buffers */
error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,
NULL, &sc->sc_pdma_tag);
if (error) {
device_printf(dev,"Could not allocate DMA tag!\n");
return (ENXIO);
}
error = bus_dma_tag_create(sc->sc_pdma_tag, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES,
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdma_tag);
if (error) {
device_printf(dev,"Could not allocate RX DMA channel!\n");
return (ENXIO);
}
error = bus_dma_tag_create(sc->sc_pdma_tag, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * BM_NTXSEGS, BM_NTXSEGS,
MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdma_tag);
if (error) {
device_printf(dev,"Could not allocate TX DMA tag!\n");
return (ENXIO);
}
/* init transmit descriptors */
STAILQ_INIT(&sc->sc_txfreeq);
STAILQ_INIT(&sc->sc_txdirtyq);
/* create TX DMA maps */
error = ENOMEM;
for (i = 0; i < BM_MAX_TX_PACKETS; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
error = bus_dmamap_create(sc->sc_tdma_tag, 0, &txs->txs_dmamap);
if (error) {
device_printf(sc->sc_dev,
"unable to create TX DMA map %d, error = %d\n",
i, error);
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/* Create the receive buffer DMA maps. */
for (i = 0; i < BM_MAX_RX_PACKETS; i++) {
error = bus_dmamap_create(sc->sc_rdma_tag, 0,
&sc->sc_rxsoft[i].rxs_dmamap);
if (error) {
device_printf(sc->sc_dev,
"unable to create RX DMA map %d, error = %d\n",
i, error);
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/* alloc interrupt */
bm_disable_interrupts(sc);
sc->sc_txdmairqid = BM_TXDMA_INTERRUPT;
sc->sc_txdmairq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_txdmairqid, RF_ACTIVE);
if (error) {
device_printf(dev,"Could not allocate TX interrupt!\n");
return (ENXIO);
}
bus_setup_intr(dev,sc->sc_txdmairq,
INTR_TYPE_MISC | INTR_MPSAFE | INTR_ENTROPY, NULL, bm_txintr, sc,
&sc->sc_txihtx);
sc->sc_rxdmairqid = BM_RXDMA_INTERRUPT;
sc->sc_rxdmairq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_rxdmairqid, RF_ACTIVE);
if (error) {
device_printf(dev,"Could not allocate RX interrupt!\n");
return (ENXIO);
}
bus_setup_intr(dev,sc->sc_rxdmairq,
INTR_TYPE_MISC | INTR_MPSAFE | INTR_ENTROPY, NULL, bm_rxintr, sc,
&sc->sc_rxih);
/*
* Get the ethernet address from OpenFirmware
*/
eaddr = sc->sc_enaddr;
OF_getprop(node, "local-mac-address", eaddr, ETHER_ADDR_LEN);
/*
* Setup MII
* On Apple BMAC controllers, we end up in a weird state of
* partially-completed autonegotiation on boot. So we force
* autonegotation to try again.
*/
error = mii_attach(dev, &sc->sc_miibus, ifp, bm_ifmedia_upd,
bm_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
MIIF_FORCEANEG);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
return (error);
}
/* reset the adapter */
bm_chip_setup(sc);
sc->sc_mii = device_get_softc(sc->sc_miibus);
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = bm_start;
ifp->if_ioctl = bm_ioctl;
ifp->if_init = bm_init;
IFQ_SET_MAXLEN(&ifp->if_snd, BM_MAX_TX_PACKETS);
ifp->if_snd.ifq_drv_maxlen = BM_MAX_TX_PACKETS;
IFQ_SET_READY(&ifp->if_snd);
/* Attach the interface. */
ether_ifattach(ifp, sc->sc_enaddr);
ifp->if_hwassist = 0;
return (0);
}
static int
bm_detach(device_t dev)
{
struct bm_softc *sc = device_get_softc(dev);
BM_LOCK(sc);
bm_stop(sc);
BM_UNLOCK(sc);
callout_drain(&sc->sc_tick_ch);
ether_ifdetach(sc->sc_ifp);
bus_teardown_intr(dev, sc->sc_txdmairq, sc->sc_txihtx);
bus_teardown_intr(dev, sc->sc_rxdmairq, sc->sc_rxih);
dbdma_free_channel(sc->sc_txdma);
dbdma_free_channel(sc->sc_rxdma);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_memrid, sc->sc_memr);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_txdmarid,
sc->sc_txdmar);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rxdmarid,
sc->sc_rxdmar);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_txdmairqid,
sc->sc_txdmairq);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rxdmairqid,
sc->sc_rxdmairq);
mtx_destroy(&sc->sc_mtx);
if_free(sc->sc_ifp);
return (0);
}
static int
bm_shutdown(device_t dev)
{
struct bm_softc *sc;
sc = device_get_softc(dev);
BM_LOCK(sc);
bm_stop(sc);
BM_UNLOCK(sc);
return (0);
}
static void
bm_dummypacket(struct bm_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
ifp = sc->sc_ifp;
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL)
return;
bcopy(sc->sc_enaddr,
mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
bcopy(sc->sc_enaddr,
mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
mtod(m, struct ether_header *)->ether_type = htons(3);
mtod(m, unsigned char *)[14] = 0;
mtod(m, unsigned char *)[15] = 0;
mtod(m, unsigned char *)[16] = 0xE3;
m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
IF_ENQUEUE(&ifp->if_snd, m);
bm_start_locked(ifp);
}
static void
bm_rxintr(void *xsc)
{
struct bm_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
int i, prev_stop, new_stop;
uint16_t status;
BM_LOCK(sc);
status = dbdma_get_chan_status(sc->sc_rxdma);
if (status & DBDMA_STATUS_DEAD) {
dbdma_reset(sc->sc_rxdma);
BM_UNLOCK(sc);
return;
}
if (!(status & DBDMA_STATUS_RUN)) {
device_printf(sc->sc_dev,"Bad RX Interrupt!\n");
BM_UNLOCK(sc);
return;
}
prev_stop = sc->next_rxdma_slot - 1;
if (prev_stop < 0)
prev_stop = sc->rxdma_loop_slot - 1;
if (prev_stop < 0) {
BM_UNLOCK(sc);
return;
}
new_stop = -1;
dbdma_sync_commands(sc->sc_rxdma, BUS_DMASYNC_POSTREAD);
for (i = sc->next_rxdma_slot; i < BM_MAX_RX_PACKETS; i++) {
if (i == sc->rxdma_loop_slot)
i = 0;
if (i == prev_stop)
break;
status = dbdma_get_cmd_status(sc->sc_rxdma, i);
if (status == 0)
break;
m = sc->sc_rxsoft[i].rxs_mbuf;
if (bm_add_rxbuf(sc, i)) {
ifp->if_ierrors++;
m = NULL;
continue;
}
if (m == NULL)
continue;
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_len -= (dbdma_get_residuals(sc->sc_rxdma, i) + 2);
m->m_pkthdr.len = m->m_len;
/* Send up the stack */
BM_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
BM_LOCK(sc);
/* Clear all fields on this command */
bm_add_rxbuf_dma(sc, i);
new_stop = i;
}
/* Change the last packet we processed to the ring buffer terminator,
* and restore a receive buffer to the old terminator */
if (new_stop >= 0) {
dbdma_insert_stop(sc->sc_rxdma, new_stop);
bm_add_rxbuf_dma(sc, prev_stop);
if (i < sc->rxdma_loop_slot)
sc->next_rxdma_slot = i;
else
sc->next_rxdma_slot = 0;
}
dbdma_sync_commands(sc->sc_rxdma, BUS_DMASYNC_PREWRITE);
dbdma_wake(sc->sc_rxdma);
BM_UNLOCK(sc);
}
static void
bm_txintr(void *xsc)
{
struct bm_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
struct bm_txsoft *txs;
int progress = 0;
BM_LOCK(sc);
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
if (!dbdma_get_cmd_status(sc->sc_txdma, txs->txs_lastdesc))
break;
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
bus_dmamap_unload(sc->sc_tdma_tag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
/* Set the first used TXDMA slot to the location of the
* STOP/NOP command associated with this packet. */
sc->first_used_txdma_slot = txs->txs_stopdesc;
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
ifp->if_opackets++;
progress = 1;
}
if (progress) {
/*
* We freed some descriptors, so reset IFF_DRV_OACTIVE
* and restart.
*/
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sc_wdog_timer = STAILQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bm_start_locked(ifp);
}
BM_UNLOCK(sc);
}
static void
bm_start(struct ifnet *ifp)
{
struct bm_softc *sc = ifp->if_softc;
BM_LOCK(sc);
bm_start_locked(ifp);
BM_UNLOCK(sc);
}
static void
bm_start_locked(struct ifnet *ifp)
{
struct bm_softc *sc = ifp->if_softc;
struct mbuf *mb_head;
int prev_stop;
int txqueued = 0;
/*
* We lay out our DBDMA program in the following manner:
* OUTPUT_MORE
* ...
* OUTPUT_LAST (+ Interrupt)
* STOP
*
* To extend the channel, we append a new program,
* then replace STOP with NOP and wake the channel.
* If we stalled on the STOP already, the program proceeds,
* if not it will sail through the NOP.
*/
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL)
break;
prev_stop = sc->next_txdma_slot - 1;
if (bm_encap(sc, &mb_head)) {
/* Put the packet back and stop */
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
break;
}
dbdma_insert_nop(sc->sc_txdma, prev_stop);
txqueued = 1;
BPF_MTAP(ifp, mb_head);
}
dbdma_sync_commands(sc->sc_txdma, BUS_DMASYNC_PREWRITE);
if (txqueued) {
dbdma_wake(sc->sc_txdma);
sc->sc_wdog_timer = 5;
}
}
static int
bm_encap(struct bm_softc *sc, struct mbuf **m_head)
{
bus_dma_segment_t segs[BM_NTXSEGS];
struct bm_txsoft *txs;
struct mbuf *m;
int nsegs = BM_NTXSEGS;
int error = 0;
uint8_t branch_type;
int i;
/* Limit the command size to the number of free DBDMA slots */
if (sc->next_txdma_slot >= sc->first_used_txdma_slot)
nsegs = BM_MAX_DMA_COMMANDS - 2 - sc->next_txdma_slot +
sc->first_used_txdma_slot; /* -2 for branch and indexing */
else
nsegs = sc->first_used_txdma_slot - sc->next_txdma_slot;
/* Remove one slot for the STOP/NOP terminator */
nsegs--;
if (nsegs > BM_NTXSEGS)
nsegs = BM_NTXSEGS;
/* Get a work queue entry. */
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
/* Ran out of descriptors. */
return (ENOBUFS);
}
error = bus_dmamap_load_mbuf_sg(sc->sc_tdma_tag, txs->txs_dmamap,
*m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, nsegs);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_tdma_tag,
txs->txs_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
txs->txs_ndescs = nsegs;
txs->txs_firstdesc = sc->next_txdma_slot;
for (i = 0; i < nsegs; i++) {
/* Loop back to the beginning if this is our last slot */
if (sc->next_txdma_slot == (BM_MAX_DMA_COMMANDS - 1))
branch_type = DBDMA_ALWAYS;
else
branch_type = DBDMA_NEVER;
if (i+1 == nsegs)
txs->txs_lastdesc = sc->next_txdma_slot;
dbdma_insert_command(sc->sc_txdma, sc->next_txdma_slot++,
(i + 1 < nsegs) ? DBDMA_OUTPUT_MORE : DBDMA_OUTPUT_LAST,
0, segs[i].ds_addr, segs[i].ds_len,
(i + 1 < nsegs) ? DBDMA_NEVER : DBDMA_ALWAYS,
branch_type, DBDMA_NEVER, 0);
if (branch_type == DBDMA_ALWAYS)
sc->next_txdma_slot = 0;
}
/* We have a corner case where the STOP command is the last slot,
* but you can't branch in STOP commands. So add a NOP branch here
* and the STOP in slot 0. */
if (sc->next_txdma_slot == (BM_MAX_DMA_COMMANDS - 1)) {
dbdma_insert_branch(sc->sc_txdma, sc->next_txdma_slot, 0);
sc->next_txdma_slot = 0;
}
txs->txs_stopdesc = sc->next_txdma_slot;
dbdma_insert_stop(sc->sc_txdma, sc->next_txdma_slot++);
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
txs->txs_mbuf = *m_head;
return (0);
}
static int
bm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct bm_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error;
error = 0;
switch(cmd) {
case SIOCSIFFLAGS:
BM_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sc_ifpflags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
bm_setladrf(sc);
else
bm_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
bm_stop(sc);
sc->sc_ifpflags = ifp->if_flags;
BM_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
BM_LOCK(sc);
bm_setladrf(sc);
BM_UNLOCK(sc);
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
bm_setladrf(struct bm_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ifmultiaddr *inm;
uint16_t hash[4];
uint16_t reg;
uint32_t crc;
reg = BM_CRC_ENABLE | BM_REJECT_OWN_PKTS;
/* Turn off RX MAC while we fiddle its settings */
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
while (CSR_READ_2(sc, BM_RX_CONFIG) & BM_ENABLE)
DELAY(10);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
reg |= BM_PROMISC;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
DELAY(15);
reg = CSR_READ_2(sc, BM_RX_CONFIG);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
return;
}
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
} else {
/* Clear the hash table. */
memset(hash, 0, sizeof(hash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
if (inm->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
inm->ifma_addr), ETHER_ADDR_LEN);
/* We just want the 6 most significant bits */
crc >>= 26;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (crc & 0xf);
}
if_maddr_runlock(ifp);
}
/* Write out new hash table */
CSR_WRITE_2(sc, BM_HASHTAB0, hash[0]);
CSR_WRITE_2(sc, BM_HASHTAB1, hash[1]);
CSR_WRITE_2(sc, BM_HASHTAB2, hash[2]);
CSR_WRITE_2(sc, BM_HASHTAB3, hash[3]);
/* And turn the RX MAC back on, this time with the hash bit set */
reg |= BM_HASH_FILTER_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
while (!(CSR_READ_2(sc, BM_RX_CONFIG) & BM_HASH_FILTER_ENABLE))
DELAY(10);
reg = CSR_READ_2(sc, BM_RX_CONFIG);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
}
static void
bm_init(void *xsc)
{
struct bm_softc *sc = xsc;
BM_LOCK(sc);
bm_init_locked(sc);
BM_UNLOCK(sc);
}
static void
bm_chip_setup(struct bm_softc *sc)
{
uint16_t reg;
uint16_t *eaddr_sect;
eaddr_sect = (uint16_t *)(sc->sc_enaddr);
dbdma_stop(sc->sc_txdma);
dbdma_stop(sc->sc_rxdma);
/* Reset chip */
CSR_WRITE_2(sc, BM_RX_RESET, 0x0000);
CSR_WRITE_2(sc, BM_TX_RESET, 0x0001);
do {
DELAY(10);
reg = CSR_READ_2(sc, BM_TX_RESET);
} while (reg & 0x0001);
/* Some random junk. OS X uses the system time. We use
* the low 16 bits of the MAC address. */
CSR_WRITE_2(sc, BM_TX_RANDSEED, eaddr_sect[2]);
/* Enable transmit */
reg = CSR_READ_2(sc, BM_TX_IFC);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_IFC, reg);
CSR_READ_2(sc, BM_TX_PEAKCNT);
}
static void
bm_stop(struct bm_softc *sc)
{
struct bm_txsoft *txs;
uint16_t reg;
/* Disable TX and RX MACs */
reg = CSR_READ_2(sc, BM_TX_CONFIG);
reg &= ~BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
reg = CSR_READ_2(sc, BM_RX_CONFIG);
reg &= ~BM_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
DELAY(100);
/* Stop DMA engine */
dbdma_stop(sc->sc_rxdma);
dbdma_stop(sc->sc_txdma);
sc->next_rxdma_slot = 0;
sc->rxdma_loop_slot = 0;
/* Disable interrupts */
bm_disable_interrupts(sc);
/* Don't worry about pending transmits anymore */
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_ndescs != 0) {
bus_dmamap_sync(sc->sc_tdma_tag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdma_tag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/* And we're down */
sc->sc_ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_wdog_timer = 0;
callout_stop(&sc->sc_tick_ch);
}
static void
bm_init_locked(struct bm_softc *sc)
{
uint16_t reg;
uint16_t *eaddr_sect;
struct bm_rxsoft *rxs;
int i;
eaddr_sect = (uint16_t *)(sc->sc_enaddr);
/* Zero RX slot info and stop DMA */
dbdma_stop(sc->sc_rxdma);
dbdma_stop(sc->sc_txdma);
sc->next_rxdma_slot = 0;
sc->rxdma_loop_slot = 0;
/* Initialize TX/RX DBDMA programs */
dbdma_insert_stop(sc->sc_rxdma, 0);
dbdma_insert_stop(sc->sc_txdma, 0);
dbdma_set_current_cmd(sc->sc_rxdma, 0);
dbdma_set_current_cmd(sc->sc_txdma, 0);
sc->next_rxdma_slot = 0;
sc->next_txdma_slot = 1;
sc->first_used_txdma_slot = 0;
for (i = 0; i < BM_MAX_RX_PACKETS; i++) {
rxs = &sc->sc_rxsoft[i];
rxs->dbdma_slot = i;
if (rxs->rxs_mbuf == NULL) {
bm_add_rxbuf(sc, i);
if (rxs->rxs_mbuf == NULL) {
/* If we can't add anymore, mark the problem */
rxs->dbdma_slot = -1;
break;
}
}
if (i > 0)
bm_add_rxbuf_dma(sc, i);
}
/*
* Now terminate the RX ring buffer, and follow with the loop to
* the beginning.
*/
dbdma_insert_stop(sc->sc_rxdma, i - 1);
dbdma_insert_branch(sc->sc_rxdma, i, 0);
sc->rxdma_loop_slot = i;
/* Now add in the first element of the RX DMA chain */
bm_add_rxbuf_dma(sc, 0);
dbdma_sync_commands(sc->sc_rxdma, BUS_DMASYNC_PREWRITE);
dbdma_sync_commands(sc->sc_txdma, BUS_DMASYNC_PREWRITE);
/* Zero collision counters */
CSR_WRITE_2(sc, BM_TX_NCCNT, 0);
CSR_WRITE_2(sc, BM_TX_FCCNT, 0);
CSR_WRITE_2(sc, BM_TX_EXCNT, 0);
CSR_WRITE_2(sc, BM_TX_LTCNT, 0);
/* Zero receive counters */
CSR_WRITE_2(sc, BM_RX_FRCNT, 0);
CSR_WRITE_2(sc, BM_RX_LECNT, 0);
CSR_WRITE_2(sc, BM_RX_AECNT, 0);
CSR_WRITE_2(sc, BM_RX_FECNT, 0);
CSR_WRITE_2(sc, BM_RXCV, 0);
/* Prime transmit */
CSR_WRITE_2(sc, BM_TX_THRESH, 0xff);
CSR_WRITE_2(sc, BM_TXFIFO_CSR, 0);
CSR_WRITE_2(sc, BM_TXFIFO_CSR, 0x0001);
/* Prime receive */
CSR_WRITE_2(sc, BM_RXFIFO_CSR, 0);
CSR_WRITE_2(sc, BM_RXFIFO_CSR, 0x0001);
/* Clear status reg */
CSR_READ_2(sc, BM_STATUS);
/* Zero hash filters */
CSR_WRITE_2(sc, BM_HASHTAB0, 0);
CSR_WRITE_2(sc, BM_HASHTAB1, 0);
CSR_WRITE_2(sc, BM_HASHTAB2, 0);
CSR_WRITE_2(sc, BM_HASHTAB3, 0);
/* Write MAC address to chip */
CSR_WRITE_2(sc, BM_MACADDR0, eaddr_sect[0]);
CSR_WRITE_2(sc, BM_MACADDR1, eaddr_sect[1]);
CSR_WRITE_2(sc, BM_MACADDR2, eaddr_sect[2]);
/* Final receive engine setup */
reg = BM_CRC_ENABLE | BM_REJECT_OWN_PKTS | BM_HASH_FILTER_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
/* Now turn it all on! */
dbdma_reset(sc->sc_rxdma);
dbdma_reset(sc->sc_txdma);
/* Enable RX and TX MACs. Setting the address filter has
* the side effect of enabling the RX MAC. */
bm_setladrf(sc);
reg = CSR_READ_2(sc, BM_TX_CONFIG);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
/*
* Enable interrupts, unwedge the controller with a dummy packet,
* and nudge the DMA queue.
*/
bm_enable_interrupts(sc);
bm_dummypacket(sc);
dbdma_wake(sc->sc_rxdma); /* Nudge RXDMA */
sc->sc_ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sc_ifpflags = sc->sc_ifp->if_flags;
/* Resync PHY and MAC states */
sc->sc_mii = device_get_softc(sc->sc_miibus);
sc->sc_duplex = ~IFM_FDX;
mii_mediachg(sc->sc_mii);
/* Start the one second timer. */
sc->sc_wdog_timer = 0;
callout_reset(&sc->sc_tick_ch, hz, bm_tick, sc);
}
static void
bm_tick(void *arg)
{
struct bm_softc *sc = arg;
/* Read error counters */
sc->sc_ifp->if_collisions += CSR_READ_2(sc, BM_TX_NCCNT) +
CSR_READ_2(sc, BM_TX_FCCNT) + CSR_READ_2(sc, BM_TX_EXCNT) +
CSR_READ_2(sc, BM_TX_LTCNT);
sc->sc_ifp->if_ierrors += CSR_READ_2(sc, BM_RX_LECNT) +
CSR_READ_2(sc, BM_RX_AECNT) + CSR_READ_2(sc, BM_RX_FECNT);
/* Zero collision counters */
CSR_WRITE_2(sc, BM_TX_NCCNT, 0);
CSR_WRITE_2(sc, BM_TX_FCCNT, 0);
CSR_WRITE_2(sc, BM_TX_EXCNT, 0);
CSR_WRITE_2(sc, BM_TX_LTCNT, 0);
/* Zero receive counters */
CSR_WRITE_2(sc, BM_RX_FRCNT, 0);
CSR_WRITE_2(sc, BM_RX_LECNT, 0);
CSR_WRITE_2(sc, BM_RX_AECNT, 0);
CSR_WRITE_2(sc, BM_RX_FECNT, 0);
CSR_WRITE_2(sc, BM_RXCV, 0);
/* Check for link changes and run watchdog */
mii_tick(sc->sc_mii);
bm_miibus_statchg(sc->sc_dev);
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) {
callout_reset(&sc->sc_tick_ch, hz, bm_tick, sc);
return;
}
/* Problems */
device_printf(sc->sc_dev, "device timeout\n");
bm_init_locked(sc);
}
static int
bm_add_rxbuf(struct bm_softc *sc, int idx)
{
struct bm_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
bus_dma_segment_t segs[1];
int error, nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rdma_tag, rxs->rxs_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdma_tag, rxs->rxs_dmamap);
}
error = bus_dmamap_load_mbuf_sg(sc->sc_rdma_tag, rxs->rxs_dmamap, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"cannot load RS DMA map %d, error = %d\n", idx, error);
m_freem(m);
return (error);
}
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs == 1,
("%s: too many DMA segments (%d)", __func__, nsegs));
rxs->rxs_mbuf = m;
rxs->segment = segs[0];
bus_dmamap_sync(sc->sc_rdma_tag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
return (0);
}
static int
bm_add_rxbuf_dma(struct bm_softc *sc, int idx)
{
struct bm_rxsoft *rxs = &sc->sc_rxsoft[idx];
dbdma_insert_command(sc->sc_rxdma, idx, DBDMA_INPUT_LAST, 0,
rxs->segment.ds_addr, rxs->segment.ds_len, DBDMA_ALWAYS,
DBDMA_NEVER, DBDMA_NEVER, 0);
return (0);
}
static void
bm_enable_interrupts(struct bm_softc *sc)
{
CSR_WRITE_2(sc, BM_INTR_DISABLE,
(sc->sc_streaming) ? BM_INTR_NONE : BM_INTR_NORMAL);
}
static void
bm_disable_interrupts(struct bm_softc *sc)
{
CSR_WRITE_2(sc, BM_INTR_DISABLE, BM_INTR_NONE);
}