701 lines
16 KiB
C
Raw Normal View History

/*
* Main midi driver for FreeBSD. This file provides the main
* entry points for probe/attach and all i/o demultiplexing, including
* default routines for generic devices.
*
* (C) 1999 Seigo Tanimura
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* For each card type a template "mididev_info" structure contains
* all the relevant parameters, both for configuration and runtime.
*
* In this file we build tables of pointers to the descriptors for
* the various supported cards. The generic probe routine scans
* the table(s) looking for a matching entry, then invokes the
* board-specific probe routine. If successful, a pointer to the
* correct mididev_info is stored in mididev_last_probed, for subsequent
* use in the attach routine. The generic attach routine copies
* the template to a permanent descriptor (midi_info[unit] and
* friends), initializes all generic parameters, and calls the
* board-specific attach routine.
*
* On device calls, the generic routines do the checks on unit and
* device parameters, then call the board-specific routines if
* available, or try to perform the task using the default code.
*
* $FreeBSD$
*
*/
#include <dev/sound/midi/midi.h>
static devclass_t midi_devclass;
static d_open_t midiopen;
static d_close_t midiclose;
static d_ioctl_t midiioctl;
static d_read_t midiread;
static d_write_t midiwrite;
static d_poll_t midipoll;
/* These functions are local. */
static d_open_t midistat_open;
static d_close_t midistat_close;
static d_read_t midistat_read;
static int midi_initstatus(char *buf, int size);
static int midi_readstatus(char *buf, int *ptr, struct uio *uio);
#define CDEV_MAJOR MIDI_CDEV_MAJOR
static struct cdevsw midi_cdevsw = {
/* open */ midiopen,
/* close */ midiclose,
/* read */ midiread,
/* write */ midiwrite,
/* ioctl */ midiioctl,
/* poll */ midipoll,
/* mmap */ nommap,
/* strategy */ nostrategy,
/* name */ "midi",
/* maj */ CDEV_MAJOR,
/* dump */ nodump,
/* psize */ nopsize,
/* flags */ 0,
/* bmaj */ -1
};
/*
* descriptors for active devices. also used as the public softc
* of a device.
*/
mididev_info midi_info[NMIDI_MAX];
u_long nmidi; /* total number of midi devices, filled in by the driver */
u_long nsynth; /* total number of synthesizers, filled in by the driver */
/* These make the buffer for /dev/midistat */
static int midistatbusy;
static char midistatbuf[4096];
static int midistatptr;
/*
* This is the generic init routine
*/
int
midiinit(mididev_info *d, device_t dev)
{
int unit;
if (midi_devclass == NULL) {
midi_devclass = device_get_devclass(dev);
make_dev(&midi_cdevsw, MIDIMKMINOR(0, MIDI_DEV_STATUS),
UID_ROOT, GID_WHEEL, 0444, "midistat");
}
unit = device_get_unit(dev);
make_dev(&midi_cdevsw, MIDIMKMINOR(unit, MIDI_DEV_MIDIN),
UID_ROOT, GID_WHEEL, 0666, "midi%d", unit);
/*
* initialize standard parameters for the device. This can be
* overridden by device-specific configurations but better do
* here the generic things.
*/
d->unit = device_get_unit(dev);
d->softc = device_get_softc(dev);
d->dev = dev;
d->magic = MAGIC(d->unit); /* debugging... */
return 0 ;
}
/*
* a small utility function which, given a device number, returns
* a pointer to the associated mididev_info struct, and sets the unit
* number.
*/
mididev_info *
get_mididev_info(dev_t i_dev, int *unit)
{
int u;
mididev_info *d = NULL;
if (MIDIDEV(i_dev) != MIDI_DEV_MIDIN)
return NULL;
u = MIDIUNIT(i_dev);
if (unit)
*unit = u;
if (u >= nmidi + nsynth) {
DEB(printf("get_mididev_info: unit %d is not configured.\n", u));
return NULL;
}
d = &midi_info[u];
return d;
}
/*
* here are the switches for the main functions. The switches do
* all necessary checks on the device number to make sure
* that the device is configured. They also provide some default
* functionalities so that device-specific drivers have to deal
* only with special cases.
*/
static int
midiopen(dev_t i_dev, int flags, int mode, struct proc * p)
{
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
return midi_open(i_dev, flags, mode, p);
case MIDI_DEV_STATUS:
return midistat_open(i_dev, flags, mode, p);
}
return (ENXIO);
}
static int
midiclose(dev_t i_dev, int flags, int mode, struct proc * p)
{
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
return midi_close(i_dev, flags, mode, p);
case MIDI_DEV_STATUS:
return midistat_close(i_dev, flags, mode, p);
}
return (ENXIO);
}
static int
midiread(dev_t i_dev, struct uio * buf, int flag)
{
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
return midi_read(i_dev, buf, flag);
case MIDI_DEV_STATUS:
return midistat_read(i_dev, buf, flag);
}
return (ENXIO);
}
static int
midiwrite(dev_t i_dev, struct uio * buf, int flag)
{
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
return midi_write(i_dev, buf, flag);
}
return (ENXIO);
}
static int
midiioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct proc * p)
{
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
return midi_ioctl(i_dev, cmd, arg, mode, p);
}
return (ENXIO);
}
static int
midipoll(dev_t i_dev, int events, struct proc * p)
{
switch (MIDIDEV(i_dev)) {
case MIDI_DEV_MIDIN:
return midi_poll(i_dev, events, p);
}
return (ENXIO);
}
/*
* Followings are the generic methods in midi drivers.
*/
int
midi_open(dev_t i_dev, int flags, int mode, struct proc * p)
{
int dev, unit, s, ret;
mididev_info *d;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
DEB(printf("open midi%d subdev %d flags 0x%08x mode 0x%08x\n",
unit, dev & 0xf, flags, mode));
if (d == NULL)
return (ENXIO);
s = splmidi();
/* Mark this device busy. */
device_busy(d->dev);
if ((d->flags & MIDI_F_BUSY) != 0) {
splx(s);
DEB(printf("opl_open: unit %d is busy.\n", unit));
return (EBUSY);
}
d->flags |= MIDI_F_BUSY;
d->flags &= ~(MIDI_F_READING | MIDI_F_WRITING);
d->fflags = flags;
/* Init the queue. */
if ((d->fflags & FREAD) != 0)
midibuf_init(&d->midi_dbuf_in);
if ((d->fflags & FWRITE) != 0) {
midibuf_init(&d->midi_dbuf_out);
midibuf_init(&d->midi_dbuf_passthru);
}
if (d->open == NULL)
ret = 0;
else
ret = d->open(i_dev, flags, mode, p);
splx(s);
return (ret);
}
int
midi_close(dev_t i_dev, int flags, int mode, struct proc * p)
{
int dev, unit, s, ret;
mididev_info *d;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
DEB(printf("close midi%d subdev %d\n", unit, dev & 0xf));
if (d == NULL)
return (ENXIO);
s = splmidi();
/* Clear the queues. */
if ((d->fflags & FREAD) != 0)
midibuf_init(&d->midi_dbuf_in);
if ((d->fflags & FWRITE) != 0) {
midibuf_init(&d->midi_dbuf_out);
midibuf_init(&d->midi_dbuf_passthru);
}
/* Stop playing and unmark this device busy. */
d->flags &= ~MIDI_F_BUSY;
d->fflags = 0;
device_unbusy(d->dev);
if (d->close == NULL)
ret = 0;
else
ret = d->close(i_dev, flags, mode, p);
splx(s);
return (ret);
}
int
midi_read(dev_t i_dev, struct uio * buf, int flag)
{
int dev, unit, s, len, ret;
mididev_info *d ;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
DEB(printf("read midi%d subdev %d flag 0x%08x\n", unit, dev & 0xf, flag));
if (d == NULL)
return (ENXIO);
ret = 0;
s = splmidi();
/* Begin recording. */
d->callback(d, MIDI_CB_START | MIDI_CB_RD);
/* Have we got the data to read? */
if ((d->flags & MIDI_F_NBIO) != 0 && d->midi_dbuf_in.rl == 0)
ret = EAGAIN;
else {
len = buf->uio_resid;
ret = midibuf_uioread(&d->midi_dbuf_in, buf, len);
if (ret < 0)
ret = -ret;
else
ret = 0;
}
if (ret == 0 && d->read != NULL)
ret = d->read(i_dev, buf, flag);
splx(s);
return (ret);
}
int
midi_write(dev_t i_dev, struct uio * buf, int flag)
{
int dev, unit, s, len, ret;
mididev_info *d;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
DEB(printf("write midi%d subdev %d flag 0x%08x\n", unit, dev & 0xf, flag));
if (d == NULL)
return (ENXIO);
ret = 0;
s = splmidi();
/* Begin playing. */
d->callback(d, MIDI_CB_START | MIDI_CB_WR);
/* Have we got the data to write? */
if ((d->flags & MIDI_F_NBIO) != 0 && d->midi_dbuf_out.fl == 0)
ret = EAGAIN;
else {
len = buf->uio_resid;
if (len > d->midi_dbuf_out.fl &&
(d->flags & MIDI_F_NBIO))
len = d->midi_dbuf_out.fl;
ret = midibuf_uiowrite(&d->midi_dbuf_out, buf, len);
if (ret < 0)
ret = -ret;
else
ret = 0;
}
/* Begin playing. */
d->callback(d, MIDI_CB_START | MIDI_CB_WR);
if (ret == 0 && d->write != NULL)
ret = d->write(i_dev, buf, flag);
splx(s);
return (ret);
}
/*
* generic midi ioctl. Functions of the default driver can be
* overridden by the device-specific ioctl call.
* If a device-specific call returns ENOSYS (Function not implemented),
* the default driver is called. Otherwise, the returned value
* is passed up.
*
* The default handler, for many parameters, sets the value in the
* descriptor, sets MIDI_F_INIT, and calls the callback function with
* reason INIT. If successful, the callback returns 1 and the caller
* can update the parameter.
*/
int
midi_ioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct proc * p)
{
int ret = ENOSYS, dev, unit;
mididev_info *d;
struct snd_size *sndsize;
u_long s;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
if (d == NULL)
return (ENXIO);
if (d->ioctl)
ret = d->ioctl(i_dev, cmd, arg, mode, p);
if (ret != ENOSYS)
return ret;
/*
* pass control to the default ioctl handler. Set ret to 0 now.
*/
ret = 0;
/*
* all routines are called with int. blocked. Make sure that
* ints are re-enabled when calling slow or blocking functions!
*/
s = splmidi();
switch(cmd) {
/*
* we start with the new ioctl interface.
*/
case AIONWRITE: /* how many bytes can write ? */
*(int *)arg = d->midi_dbuf_out.fl;
break;
case AIOSSIZE: /* set the current blocksize */
sndsize = (struct snd_size *)arg;
if (sndsize->play_size <= d->midi_dbuf_out.unit_size && sndsize->rec_size <= d->midi_dbuf_in.unit_size) {
d->flags &= ~MIDI_F_HAS_SIZE;
d->midi_dbuf_out.blocksize = d->midi_dbuf_out.unit_size;
d->midi_dbuf_in.blocksize = d->midi_dbuf_in.unit_size;
}
else {
if (sndsize->play_size > d->midi_dbuf_out.bufsize / 4)
sndsize->play_size = d->midi_dbuf_out.bufsize / 4;
if (sndsize->rec_size > d->midi_dbuf_in.bufsize / 4)
sndsize->rec_size = d->midi_dbuf_in.bufsize / 4;
/* Round up the size to the multiple of EV_SZ. */
d->midi_dbuf_out.blocksize =
((sndsize->play_size + d->midi_dbuf_out.unit_size - 1)
/ d->midi_dbuf_out.unit_size) * d->midi_dbuf_out.unit_size;
d->midi_dbuf_in.blocksize =
((sndsize->rec_size + d->midi_dbuf_in.unit_size - 1)
/ d->midi_dbuf_in.unit_size) * d->midi_dbuf_in.unit_size;
d->flags |= MIDI_F_HAS_SIZE;
}
/* FALLTHROUGH */
case AIOGSIZE: /* get the current blocksize */
sndsize = (struct snd_size *)arg;
sndsize->play_size = d->midi_dbuf_out.blocksize;
sndsize->rec_size = d->midi_dbuf_in.blocksize;
ret = 0;
break;
case AIOSTOP:
if (*(int *)arg == AIOSYNC_PLAY) /* play */
*(int *)arg = d->callback(d, MIDI_CB_STOP | MIDI_CB_WR);
else if (*(int *)arg == AIOSYNC_CAPTURE)
*(int *)arg = d->callback(d, MIDI_CB_STOP | MIDI_CB_RD);
else {
splx(s);
DEB(printf("AIOSTOP: bad channel 0x%x\n", *(int *)arg));
*(int *)arg = 0 ;
}
break ;
case AIOSYNC:
DEB(printf("AIOSYNC chan 0x%03lx pos %lu unimplemented\n",
((snd_sync_parm *)arg)->chan,
((snd_sync_parm *)arg)->pos));
break;
/*
* here follow the standard ioctls (filio.h etc.)
*/
case FIONREAD: /* get # bytes to read */
*(int *)arg = d->midi_dbuf_in.rl;
break;
case FIOASYNC: /*set/clear async i/o */
DEB( printf("FIOASYNC\n") ; )
break;
case FIONBIO: /* set/clear non-blocking i/o */
if ( *(int *)arg == 0 )
d->flags &= ~MIDI_F_NBIO ;
else
d->flags |= MIDI_F_NBIO ;
break ;
case MIOSPASSTHRU: /* set/clear passthru */
if ( *(int *)arg == 0 )
d->flags &= ~MIDI_F_PASSTHRU ;
else
d->flags |= MIDI_F_PASSTHRU ;
/* Init the queue. */
midibuf_init(&d->midi_dbuf_passthru);
/* FALLTHROUGH */
case MIOGPASSTHRU: /* get passthru */
if ((d->flags & MIDI_F_PASSTHRU) != 0)
(int *)arg = 1;
else
(int *)arg = 0;
break ;
default:
DEB(printf("default ioctl midi%d subdev %d fn 0x%08x fail\n",
unit, dev & 0xf, cmd));
ret = EINVAL;
break ;
}
splx(s);
return ret ;
}
int
midi_poll(dev_t i_dev, int events, struct proc * p)
{
int unit, dev, ret, s, lim;
mididev_info *d;
dev = minor(i_dev);
d = get_mididev_info(i_dev, &unit);
if (d == NULL)
return (ENXIO);
if (d->poll)
ret = d->poll(i_dev, events, p);
ret = 0;
s = splmidi();
/* Look up the apropriate queue and select it. */
if ((events & (POLLOUT | POLLWRNORM)) != 0) {
/* Start playing. */
d->callback(d, MIDI_CB_START | MIDI_CB_WR);
/* Find out the boundary. */
if ((d->flags & MIDI_F_HAS_SIZE) != 0)
lim = d->midi_dbuf_out.blocksize;
else
lim = d->midi_dbuf_out.unit_size;
if (d->midi_dbuf_out.fl < lim)
/* No enough space, record select. */
selrecord(p, &d->midi_dbuf_out.sel);
else
/* We can write now. */
ret |= events & (POLLOUT | POLLWRNORM);
}
if ((events & (POLLIN | POLLRDNORM)) != 0) {
/* Start recording. */
d->callback(d, MIDI_CB_START | MIDI_CB_RD);
/* Find out the boundary. */
if ((d->flags & MIDI_F_HAS_SIZE) != 0)
lim = d->midi_dbuf_in.blocksize;
else
lim = d->midi_dbuf_in.unit_size;
if (d->midi_dbuf_in.rl < lim)
/* No data ready, record select. */
selrecord(p, &d->midi_dbuf_in.sel);
else
/* We can write now. */
ret |= events & (POLLIN | POLLRDNORM);
}
splx(s);
return (ret);
}
void
midi_intr(mididev_info *d)
{
if (d->intr != NULL)
d->intr(d->intrarg, d);
}
/*
* These handle the status message of the midi drivers.
*/
int
midistat_open(dev_t i_dev, int flags, int mode, struct proc * p)
{
if (midistatbusy)
return (EBUSY);
bzero(midistatbuf, sizeof(midistatbuf));
midistatptr = 0;
if (midi_initstatus(midistatbuf, sizeof(midistatbuf) - 1))
return (ENOMEM);
midistatbusy = 1;
return (0);
}
int
midistat_close(dev_t i_dev, int flags, int mode, struct proc * p)
{
midistatbusy = 0;
return (0);
}
int
midistat_read(dev_t i_dev, struct uio * buf, int flag)
{
return midi_readstatus(midistatbuf, &midistatptr, buf);
}
/*
* finally, some "libraries"
*/
/* Inits the buffer for /dev/midistat. */
static int
midi_initstatus(char *buf, int size)
{
int i, p;
device_t dev;
mididev_info *md;
p = 0;
p += snprintf(buf, size, "FreeBSD Midi Driver (newmidi) %s %s\nInstalled devices:\n", __DATE__, __TIME__);
for (i = 0 ; i < NMIDI_MAX ; i++) {
md = &midi_info[i];
if (!MIDICONFED(md))
continue;
dev = devclass_get_device(midi_devclass, i);
if (p < size)
p += snprintf(&buf[p], size - p, "midi%d: <%s> %s\n", i, device_get_desc(dev), md->midistat);
else
return (1);
}
return (0);
}
/* Reads the status message. */
static int
midi_readstatus(char *buf, int *ptr, struct uio *uio)
{
int s, len;
s = splmidi();
len = min(uio->uio_resid, strlen(&buf[*ptr]));
if (len > 0) {
uiomove(&buf[*ptr], len, uio);
*ptr += len;
}
splx(s);
return (0);
}