freebsd-nq/module/zfs/zfs_replay.c

937 lines
25 KiB
C
Raw Normal View History

2008-11-20 20:01:55 +00:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
2008-11-20 20:01:55 +00:00
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/thread.h>
#include <sys/file.h>
#include <sys/fcntl.h>
#include <sys/vfs.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_fuid.h>
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
#include <sys/zfs_vnops.h>
2008-11-20 20:01:55 +00:00
#include <sys/spa.h>
#include <sys/zil.h>
#include <sys/byteorder.h>
#include <sys/stat.h>
#include <sys/mode.h>
#include <sys/acl.h>
#include <sys/atomic.h>
#include <sys/cred.h>
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
#include <sys/zpl.h>
2008-11-20 20:01:55 +00:00
/*
* Functions to replay ZFS intent log (ZIL) records
* The functions are called through a function vector (zfs_replay_vector)
* which is indexed by the transaction type.
*/
static void
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
zfs_init_vattr(vattr_t *vap, uint64_t mask, uint64_t mode,
uint64_t uid, uint64_t gid, uint64_t rdev, uint64_t nodeid)
2008-11-20 20:01:55 +00:00
{
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
bzero(vap, sizeof (*vap));
vap->va_mask = (uint_t)mask;
vap->va_type = IFTOVT(mode);
vap->va_mode = mode;
vap->va_uid = (uid_t)(IS_EPHEMERAL(uid)) ? -1 : uid;
vap->va_gid = (gid_t)(IS_EPHEMERAL(gid)) ? -1 : gid;
vap->va_rdev = rdev;
vap->va_nodeid = nodeid;
2008-11-20 20:01:55 +00:00
}
/* ARGSUSED */
static int
zfs_replay_error(zfs_sb_t *zsb, lr_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
return (ENOTSUP);
}
static void
zfs_replay_xvattr(lr_attr_t *lrattr, xvattr_t *xvap)
{
xoptattr_t *xoap = NULL;
uint64_t *attrs;
uint64_t *crtime;
uint32_t *bitmap;
void *scanstamp;
int i;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
xvap->xva_vattr.va_mask |= ATTR_XVATTR;
2008-11-20 20:01:55 +00:00
if ((xoap = xva_getxoptattr(xvap)) == NULL) {
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
xvap->xva_vattr.va_mask &= ~ATTR_XVATTR; /* shouldn't happen */
2008-11-20 20:01:55 +00:00
return;
}
ASSERT(lrattr->lr_attr_masksize == xvap->xva_mapsize);
bitmap = &lrattr->lr_attr_bitmap;
for (i = 0; i != lrattr->lr_attr_masksize; i++, bitmap++)
xvap->xva_reqattrmap[i] = *bitmap;
attrs = (uint64_t *)(lrattr + lrattr->lr_attr_masksize - 1);
crtime = attrs + 1;
scanstamp = (caddr_t)(crtime + 2);
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN))
xoap->xoa_hidden = ((*attrs & XAT0_HIDDEN) != 0);
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM))
xoap->xoa_system = ((*attrs & XAT0_SYSTEM) != 0);
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE))
xoap->xoa_archive = ((*attrs & XAT0_ARCHIVE) != 0);
if (XVA_ISSET_REQ(xvap, XAT_READONLY))
xoap->xoa_readonly = ((*attrs & XAT0_READONLY) != 0);
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE))
xoap->xoa_immutable = ((*attrs & XAT0_IMMUTABLE) != 0);
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK))
xoap->xoa_nounlink = ((*attrs & XAT0_NOUNLINK) != 0);
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY))
xoap->xoa_appendonly = ((*attrs & XAT0_APPENDONLY) != 0);
if (XVA_ISSET_REQ(xvap, XAT_NODUMP))
xoap->xoa_nodump = ((*attrs & XAT0_NODUMP) != 0);
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE))
xoap->xoa_opaque = ((*attrs & XAT0_OPAQUE) != 0);
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED))
xoap->xoa_av_modified = ((*attrs & XAT0_AV_MODIFIED) != 0);
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED))
xoap->xoa_av_quarantined =
((*attrs & XAT0_AV_QUARANTINED) != 0);
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME))
ZFS_TIME_DECODE(&xoap->xoa_createtime, crtime);
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
bcopy(scanstamp, xoap->xoa_av_scanstamp, AV_SCANSTAMP_SZ);
if (XVA_ISSET_REQ(xvap, XAT_REPARSE))
xoap->xoa_reparse = ((*attrs & XAT0_REPARSE) != 0);
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE))
xoap->xoa_offline = ((*attrs & XAT0_OFFLINE) != 0);
if (XVA_ISSET_REQ(xvap, XAT_SPARSE))
xoap->xoa_sparse = ((*attrs & XAT0_SPARSE) != 0);
2008-11-20 20:01:55 +00:00
}
static int
zfs_replay_domain_cnt(uint64_t uid, uint64_t gid)
{
uint64_t uid_idx;
uint64_t gid_idx;
int domcnt = 0;
uid_idx = FUID_INDEX(uid);
gid_idx = FUID_INDEX(gid);
if (uid_idx)
domcnt++;
if (gid_idx > 0 && gid_idx != uid_idx)
domcnt++;
return (domcnt);
}
static void *
zfs_replay_fuid_domain_common(zfs_fuid_info_t *fuid_infop, void *start,
int domcnt)
{
int i;
for (i = 0; i != domcnt; i++) {
fuid_infop->z_domain_table[i] = start;
start = (caddr_t)start + strlen(start) + 1;
}
return (start);
}
/*
* Set the uid/gid in the fuid_info structure.
*/
static void
zfs_replay_fuid_ugid(zfs_fuid_info_t *fuid_infop, uint64_t uid, uint64_t gid)
{
/*
* If owner or group are log specific FUIDs then slurp up
* domain information and build zfs_fuid_info_t
*/
if (IS_EPHEMERAL(uid))
fuid_infop->z_fuid_owner = uid;
if (IS_EPHEMERAL(gid))
fuid_infop->z_fuid_group = gid;
}
/*
* Load fuid domains into fuid_info_t
*/
static zfs_fuid_info_t *
zfs_replay_fuid_domain(void *buf, void **end, uint64_t uid, uint64_t gid)
{
int domcnt;
zfs_fuid_info_t *fuid_infop;
fuid_infop = zfs_fuid_info_alloc();
domcnt = zfs_replay_domain_cnt(uid, gid);
if (domcnt == 0)
return (fuid_infop);
fuid_infop->z_domain_table =
kmem_zalloc(domcnt * sizeof (char **), KM_SLEEP);
zfs_replay_fuid_ugid(fuid_infop, uid, gid);
fuid_infop->z_domain_cnt = domcnt;
*end = zfs_replay_fuid_domain_common(fuid_infop, buf, domcnt);
return (fuid_infop);
}
/*
* load zfs_fuid_t's and fuid_domains into fuid_info_t
*/
static zfs_fuid_info_t *
zfs_replay_fuids(void *start, void **end, int idcnt, int domcnt, uint64_t uid,
uint64_t gid)
{
uint64_t *log_fuid = (uint64_t *)start;
zfs_fuid_info_t *fuid_infop;
int i;
fuid_infop = zfs_fuid_info_alloc();
fuid_infop->z_domain_cnt = domcnt;
fuid_infop->z_domain_table =
kmem_zalloc(domcnt * sizeof (char **), KM_SLEEP);
for (i = 0; i != idcnt; i++) {
zfs_fuid_t *zfuid;
zfuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
zfuid->z_logfuid = *log_fuid;
zfuid->z_id = -1;
zfuid->z_domidx = 0;
list_insert_tail(&fuid_infop->z_fuids, zfuid);
log_fuid++;
}
zfs_replay_fuid_ugid(fuid_infop, uid, gid);
*end = zfs_replay_fuid_domain_common(fuid_infop, log_fuid, domcnt);
return (fuid_infop);
}
static void
zfs_replay_swap_attrs(lr_attr_t *lrattr)
{
/* swap the lr_attr structure */
byteswap_uint32_array(lrattr, sizeof (*lrattr));
/* swap the bitmap */
byteswap_uint32_array(lrattr + 1, (lrattr->lr_attr_masksize - 1) *
sizeof (uint32_t));
/* swap the attributes, create time + 64 bit word for attributes */
byteswap_uint64_array((caddr_t)(lrattr + 1) + (sizeof (uint32_t) *
(lrattr->lr_attr_masksize - 1)), 3 * sizeof (uint64_t));
}
/*
* Replay file create with optional ACL, xvattr information as well
* as option FUID information.
*/
static int
zfs_replay_create_acl(zfs_sb_t *zsb, lr_acl_create_t *lracl, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
char *name = NULL; /* location determined later */
lr_create_t *lr = (lr_create_t *)lracl;
znode_t *dzp;
struct inode *ip = NULL;
2008-11-20 20:01:55 +00:00
xvattr_t xva;
int vflg = 0;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vsecattr_t vsec = { 0 };
2008-11-20 20:01:55 +00:00
lr_attr_t *lrattr;
void *aclstart;
void *fuidstart;
size_t xvatlen = 0;
uint64_t txtype;
int error;
txtype = (lr->lr_common.lrc_txtype & ~TX_CI);
2008-11-20 20:01:55 +00:00
if (byteswap) {
byteswap_uint64_array(lracl, sizeof (*lracl));
if (txtype == TX_CREATE_ACL_ATTR ||
txtype == TX_MKDIR_ACL_ATTR) {
lrattr = (lr_attr_t *)(caddr_t)(lracl + 1);
zfs_replay_swap_attrs(lrattr);
xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize);
}
aclstart = (caddr_t)(lracl + 1) + xvatlen;
zfs_ace_byteswap(aclstart, lracl->lr_acl_bytes, B_FALSE);
/* swap fuids */
if (lracl->lr_fuidcnt) {
byteswap_uint64_array((caddr_t)aclstart +
ZIL_ACE_LENGTH(lracl->lr_acl_bytes),
lracl->lr_fuidcnt * sizeof (uint64_t));
}
}
if ((error = zfs_zget(zsb, lr->lr_doid, &dzp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
xva_init(&xva);
zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID,
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, lr->lr_foid);
2008-11-20 20:01:55 +00:00
/*
* All forms of zfs create (create, mkdir, mkxattrdir, symlink)
* eventually end up in zfs_mknode(), which assigns the object's
* creation time and generation number. The generic zfs_create()
2008-11-20 20:01:55 +00:00
* doesn't have either concept, so we smuggle the values inside
* the vattr's otherwise unused va_ctime and va_nblocks fields.
*/
ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime);
xva.xva_vattr.va_nblocks = lr->lr_gen;
error = dmu_object_info(zsb->z_os, lr->lr_foid, NULL);
2008-11-20 20:01:55 +00:00
if (error != ENOENT)
goto bail;
if (lr->lr_common.lrc_txtype & TX_CI)
vflg |= FIGNORECASE;
switch (txtype) {
2008-11-20 20:01:55 +00:00
case TX_CREATE_ACL:
aclstart = (caddr_t)(lracl + 1);
fuidstart = (caddr_t)aclstart +
ZIL_ACE_LENGTH(lracl->lr_acl_bytes);
zsb->z_fuid_replay = zfs_replay_fuids(fuidstart,
2008-11-20 20:01:55 +00:00
(void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt,
lr->lr_uid, lr->lr_gid);
/*FALLTHROUGH*/
case TX_CREATE_ACL_ATTR:
if (name == NULL) {
lrattr = (lr_attr_t *)(caddr_t)(lracl + 1);
xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
xva.xva_vattr.va_mask |= ATTR_XVATTR;
2008-11-20 20:01:55 +00:00
zfs_replay_xvattr(lrattr, &xva);
}
vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS;
vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen;
vsec.vsa_aclcnt = lracl->lr_aclcnt;
vsec.vsa_aclentsz = lracl->lr_acl_bytes;
vsec.vsa_aclflags = lracl->lr_acl_flags;
if (zsb->z_fuid_replay == NULL) {
2008-11-20 20:01:55 +00:00
fuidstart = (caddr_t)(lracl + 1) + xvatlen +
ZIL_ACE_LENGTH(lracl->lr_acl_bytes);
zsb->z_fuid_replay =
2008-11-20 20:01:55 +00:00
zfs_replay_fuids(fuidstart,
(void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt,
lr->lr_uid, lr->lr_gid);
}
error = zfs_create(ZTOI(dzp), name, &xva.xva_vattr,
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
0, 0, &ip, kcred, vflg, &vsec);
2008-11-20 20:01:55 +00:00
break;
case TX_MKDIR_ACL:
aclstart = (caddr_t)(lracl + 1);
fuidstart = (caddr_t)aclstart +
ZIL_ACE_LENGTH(lracl->lr_acl_bytes);
zsb->z_fuid_replay = zfs_replay_fuids(fuidstart,
2008-11-20 20:01:55 +00:00
(void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt,
lr->lr_uid, lr->lr_gid);
/*FALLTHROUGH*/
case TX_MKDIR_ACL_ATTR:
if (name == NULL) {
lrattr = (lr_attr_t *)(caddr_t)(lracl + 1);
xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize);
zfs_replay_xvattr(lrattr, &xva);
}
vsec.vsa_mask = VSA_ACE | VSA_ACE_ACLFLAGS;
vsec.vsa_aclentp = (caddr_t)(lracl + 1) + xvatlen;
vsec.vsa_aclcnt = lracl->lr_aclcnt;
vsec.vsa_aclentsz = lracl->lr_acl_bytes;
vsec.vsa_aclflags = lracl->lr_acl_flags;
if (zsb->z_fuid_replay == NULL) {
2008-11-20 20:01:55 +00:00
fuidstart = (caddr_t)(lracl + 1) + xvatlen +
ZIL_ACE_LENGTH(lracl->lr_acl_bytes);
zsb->z_fuid_replay =
2008-11-20 20:01:55 +00:00
zfs_replay_fuids(fuidstart,
(void *)&name, lracl->lr_fuidcnt, lracl->lr_domcnt,
lr->lr_uid, lr->lr_gid);
}
error = zfs_mkdir(ZTOI(dzp), name, &xva.xva_vattr,
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
&ip, kcred, vflg, &vsec);
2008-11-20 20:01:55 +00:00
break;
default:
error = ENOTSUP;
}
bail:
if (error == 0 && ip != NULL)
iput(ip);
2008-11-20 20:01:55 +00:00
iput(ZTOI(dzp));
2008-11-20 20:01:55 +00:00
if (zsb->z_fuid_replay)
zfs_fuid_info_free(zsb->z_fuid_replay);
zsb->z_fuid_replay = NULL;
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_create(zfs_sb_t *zsb, lr_create_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
char *name = NULL; /* location determined later */
char *link; /* symlink content follows name */
znode_t *dzp;
struct inode *ip = NULL;
2008-11-20 20:01:55 +00:00
xvattr_t xva;
int vflg = 0;
size_t lrsize = sizeof (lr_create_t);
lr_attr_t *lrattr;
void *start;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
size_t xvatlen;
2008-11-20 20:01:55 +00:00
uint64_t txtype;
int error;
txtype = (lr->lr_common.lrc_txtype & ~TX_CI);
2008-11-20 20:01:55 +00:00
if (byteswap) {
byteswap_uint64_array(lr, sizeof (*lr));
if (txtype == TX_CREATE_ATTR || txtype == TX_MKDIR_ATTR)
zfs_replay_swap_attrs((lr_attr_t *)(lr + 1));
}
if ((error = zfs_zget(zsb, lr->lr_doid, &dzp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
xva_init(&xva);
zfs_init_vattr(&xva.xva_vattr, ATTR_MODE | ATTR_UID | ATTR_GID,
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, lr->lr_foid);
2008-11-20 20:01:55 +00:00
/*
* All forms of zfs create (create, mkdir, mkxattrdir, symlink)
* eventually end up in zfs_mknode(), which assigns the object's
* creation time and generation number. The generic zfs_create()
2008-11-20 20:01:55 +00:00
* doesn't have either concept, so we smuggle the values inside
* the vattr's otherwise unused va_ctime and va_nblocks fields.
*/
ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime);
xva.xva_vattr.va_nblocks = lr->lr_gen;
error = dmu_object_info(zsb->z_os, lr->lr_foid, NULL);
2008-11-20 20:01:55 +00:00
if (error != ENOENT)
goto out;
if (lr->lr_common.lrc_txtype & TX_CI)
vflg |= FIGNORECASE;
/*
* Symlinks don't have fuid info, and CIFS never creates
* symlinks.
*
* The _ATTR versions will grab the fuid info in their subcases.
*/
if ((int)lr->lr_common.lrc_txtype != TX_SYMLINK &&
(int)lr->lr_common.lrc_txtype != TX_MKDIR_ATTR &&
(int)lr->lr_common.lrc_txtype != TX_CREATE_ATTR) {
start = (lr + 1);
zsb->z_fuid_replay =
2008-11-20 20:01:55 +00:00
zfs_replay_fuid_domain(start, &start,
lr->lr_uid, lr->lr_gid);
}
switch (txtype) {
2008-11-20 20:01:55 +00:00
case TX_CREATE_ATTR:
lrattr = (lr_attr_t *)(caddr_t)(lr + 1);
xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize);
zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva);
start = (caddr_t)(lr + 1) + xvatlen;
zsb->z_fuid_replay =
2008-11-20 20:01:55 +00:00
zfs_replay_fuid_domain(start, &start,
lr->lr_uid, lr->lr_gid);
name = (char *)start;
/*FALLTHROUGH*/
case TX_CREATE:
if (name == NULL)
name = (char *)start;
error = zfs_create(ZTOI(dzp), name, &xva.xva_vattr,
0, 0, &ip, kcred, vflg, NULL);
2008-11-20 20:01:55 +00:00
break;
case TX_MKDIR_ATTR:
lrattr = (lr_attr_t *)(caddr_t)(lr + 1);
xvatlen = ZIL_XVAT_SIZE(lrattr->lr_attr_masksize);
zfs_replay_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), &xva);
start = (caddr_t)(lr + 1) + xvatlen;
zsb->z_fuid_replay =
2008-11-20 20:01:55 +00:00
zfs_replay_fuid_domain(start, &start,
lr->lr_uid, lr->lr_gid);
name = (char *)start;
/*FALLTHROUGH*/
case TX_MKDIR:
if (name == NULL)
name = (char *)(lr + 1);
error = zfs_mkdir(ZTOI(dzp), name, &xva.xva_vattr,
&ip, kcred, vflg, NULL);
2008-11-20 20:01:55 +00:00
break;
case TX_MKXATTR:
error = zfs_make_xattrdir(dzp, &xva.xva_vattr, &ip, kcred);
2008-11-20 20:01:55 +00:00
break;
case TX_SYMLINK:
name = (char *)(lr + 1);
link = name + strlen(name) + 1;
error = zfs_symlink(ZTOI(dzp), name, &xva.xva_vattr,
link, &ip, kcred, vflg);
2008-11-20 20:01:55 +00:00
break;
default:
error = ENOTSUP;
}
out:
if (error == 0 && ip != NULL)
iput(ip);
2008-11-20 20:01:55 +00:00
iput(ZTOI(dzp));
2008-11-20 20:01:55 +00:00
if (zsb->z_fuid_replay)
zfs_fuid_info_free(zsb->z_fuid_replay);
zsb->z_fuid_replay = NULL;
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_remove(zfs_sb_t *zsb, lr_remove_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
char *name = (char *)(lr + 1); /* name follows lr_remove_t */
znode_t *dzp;
int error;
int vflg = 0;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
if ((error = zfs_zget(zsb, lr->lr_doid, &dzp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
if (lr->lr_common.lrc_txtype & TX_CI)
vflg |= FIGNORECASE;
switch ((int)lr->lr_common.lrc_txtype) {
case TX_REMOVE:
error = zfs_remove(ZTOI(dzp), name, kcred);
2008-11-20 20:01:55 +00:00
break;
case TX_RMDIR:
error = zfs_rmdir(ZTOI(dzp), name, NULL, kcred, vflg);
2008-11-20 20:01:55 +00:00
break;
default:
error = ENOTSUP;
}
iput(ZTOI(dzp));
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_link(zfs_sb_t *zsb, lr_link_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
char *name = (char *)(lr + 1); /* name follows lr_link_t */
znode_t *dzp, *zp;
int error;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
int vflg = 0;
2008-11-20 20:01:55 +00:00
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
if ((error = zfs_zget(zsb, lr->lr_doid, &dzp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
if ((error = zfs_zget(zsb, lr->lr_link_obj, &zp)) != 0) {
iput(ZTOI(dzp));
2008-11-20 20:01:55 +00:00
return (error);
}
if (lr->lr_common.lrc_txtype & TX_CI)
vflg |= FIGNORECASE;
error = zfs_link(ZTOI(dzp), ZTOI(zp), name, kcred);
2008-11-20 20:01:55 +00:00
iput(ZTOI(zp));
iput(ZTOI(dzp));
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_rename(zfs_sb_t *zsb, lr_rename_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
char *sname = (char *)(lr + 1); /* sname and tname follow lr_rename_t */
char *tname = sname + strlen(sname) + 1;
znode_t *sdzp, *tdzp;
int error;
int vflg = 0;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
if ((error = zfs_zget(zsb, lr->lr_sdoid, &sdzp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
if ((error = zfs_zget(zsb, lr->lr_tdoid, &tdzp)) != 0) {
iput(ZTOI(sdzp));
2008-11-20 20:01:55 +00:00
return (error);
}
if (lr->lr_common.lrc_txtype & TX_CI)
vflg |= FIGNORECASE;
error = zfs_rename(ZTOI(sdzp), sname, ZTOI(tdzp), tname, kcred, vflg);
2008-11-20 20:01:55 +00:00
iput(ZTOI(tdzp));
iput(ZTOI(sdzp));
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_write(zfs_sb_t *zsb, lr_write_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
char *data = (char *)(lr + 1); /* data follows lr_write_t */
znode_t *zp;
int error;
uint64_t eod, offset, length;
2008-11-20 20:01:55 +00:00
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
if ((error = zfs_zget(zsb, lr->lr_foid, &zp)) != 0) {
2008-11-20 20:01:55 +00:00
/*
* As we can log writes out of order, it's possible the
* file has been removed. In this case just drop the write
* and return success.
*/
if (error == ENOENT)
error = 0;
return (error);
}
offset = lr->lr_offset;
length = lr->lr_length;
eod = offset + length; /* end of data for this write */
/*
* This may be a write from a dmu_sync() for a whole block,
* and may extend beyond the current end of the file.
* We can't just replay what was written for this TX_WRITE as
* a future TX_WRITE2 may extend the eof and the data for that
* write needs to be there. So we write the whole block and
* reduce the eof. This needs to be done within the single dmu
* transaction created within vn_rdwr -> zfs_write. So a possible
* new end of file is passed through in zsb->z_replay_eof
*/
zsb->z_replay_eof = 0; /* 0 means don't change end of file */
/* If it's a dmu_sync() block, write the whole block */
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
if (length < blocksize) {
offset -= offset % blocksize;
length = blocksize;
}
if (zp->z_size < eod)
zsb->z_replay_eof = eod;
}
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
error = zpl_write_common(ZTOI(zp), data, length, offset,
UIO_SYSSPACE, 0, kcred);
if (error) {
if (error < 0)
error = -error;
else
error = EIO; /* Short write */
}
iput(ZTOI(zp));
zsb->z_replay_eof = 0; /* safety */
return (error);
}
/*
* TX_WRITE2 are only generated when dmu_sync() returns EALREADY
* meaning the pool block is already being synced. So now that we always write
* out full blocks, all we have to do is expand the eof if
* the file is grown.
*/
static int
zfs_replay_write2(zfs_sb_t *zsb, lr_write_t *lr, boolean_t byteswap)
{
znode_t *zp;
int error;
uint64_t end;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
if ((error = zfs_zget(zsb, lr->lr_foid, &zp)) != 0)
return (error);
top:
end = lr->lr_offset + lr->lr_length;
if (end > zp->z_size) {
dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
zp->z_size = end;
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
iput(ZTOI(zp));
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
return (error);
}
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
(void *)&zp->z_size, sizeof (uint64_t), tx);
/* Ensure the replayed seq is updated */
(void) zil_replaying(zsb->z_log, tx);
dmu_tx_commit(tx);
}
2008-11-20 20:01:55 +00:00
iput(ZTOI(zp));
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_truncate(zfs_sb_t *zsb, lr_truncate_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
znode_t *zp;
flock64_t fl;
int error;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
if ((error = zfs_zget(zsb, lr->lr_foid, &zp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
bzero(&fl, sizeof (fl));
fl.l_type = F_WRLCK;
fl.l_whence = 0;
fl.l_start = lr->lr_offset;
fl.l_len = lr->lr_length;
error = zfs_space(ZTOI(zp), F_FREESP, &fl, FWRITE | FOFFMAX,
lr->lr_offset, kcred);
2008-11-20 20:01:55 +00:00
iput(ZTOI(zp));
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_setattr(zfs_sb_t *zsb, lr_setattr_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
znode_t *zp;
xvattr_t xva;
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vattr_t *vap = &xva.xva_vattr;
2008-11-20 20:01:55 +00:00
int error;
void *start;
xva_init(&xva);
if (byteswap) {
byteswap_uint64_array(lr, sizeof (*lr));
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if ((lr->lr_mask & ATTR_XVATTR) &&
zsb->z_version >= ZPL_VERSION_INITIAL)
2008-11-20 20:01:55 +00:00
zfs_replay_swap_attrs((lr_attr_t *)(lr + 1));
}
if ((error = zfs_zget(zsb, lr->lr_foid, &zp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
zfs_init_vattr(vap, lr->lr_mask, lr->lr_mode,
lr->lr_uid, lr->lr_gid, 0, lr->lr_foid);
2008-11-20 20:01:55 +00:00
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
vap->va_size = lr->lr_size;
ZFS_TIME_DECODE(&vap->va_atime, lr->lr_atime);
ZFS_TIME_DECODE(&vap->va_mtime, lr->lr_mtime);
2008-11-20 20:01:55 +00:00
/*
* Fill in xvattr_t portions if necessary.
*/
start = (lr_setattr_t *)(lr + 1);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
if (vap->va_mask & ATTR_XVATTR) {
2008-11-20 20:01:55 +00:00
zfs_replay_xvattr((lr_attr_t *)start, &xva);
start = (caddr_t)start +
ZIL_XVAT_SIZE(((lr_attr_t *)start)->lr_attr_masksize);
} else
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
xva.xva_vattr.va_mask &= ~ATTR_XVATTR;
2008-11-20 20:01:55 +00:00
zsb->z_fuid_replay = zfs_replay_fuid_domain(start, &start,
2008-11-20 20:01:55 +00:00
lr->lr_uid, lr->lr_gid);
Drop HAVE_XVATTR macros When I began work on the Posix layer it immediately became clear to me that to integrate cleanly with the Linux VFS certain Solaris specific things would have to go. One of these things was to elimate as many Solaris specific types from the ZPL layer as possible. They would be replaced with their Linux equivalents. This would not only be good for performance, but for the general readability and health of the code. The Solaris and Linux VFS are different beasts and should be treated as such. Most of the code remains common for constructing transactions and such, but there are subtle and important differenced which need to be repsected. This policy went quite for for certain types such as the vnode_t, and it initially seemed to be working out well for the vattr_t. There was a relatively small amount of related xvattr_t code I was forced to comment out with HAVE_XVATTR. But it didn't look that hard to come back soon and replace it all with a native Linux type. However, after going doing this path with xvattr some distance it clear that this code was woven in the ZPL more deeply than I thought. In particular its hooks went very deep in to the ZPL replay code and replacing it would not be as easy as I originally thought. Rather than continue persuing replacing and removing this code I've taken a step back and reevaluted things. This commit reverts many of my previous commits which removed xvattr related code. It restores much of the code to its original upstream state and now relies on improved xvattr_t support in the zfs package itself. The result of this is that much of the code which I had commented out, which accidentally broke things like replay, is now back in place and working. However, there may be a small performance impact for getattr/setattr operations because they now require a translation from native Linux to Solaris types. For now that's a price I'm willing to pay. Once everything is completely functional we can revisting the issue of removing the vattr_t/xvattr_t types. Closes #111
2011-03-01 20:24:09 +00:00
error = zfs_setattr(ZTOI(zp), vap, 0, kcred);
2008-11-20 20:01:55 +00:00
zfs_fuid_info_free(zsb->z_fuid_replay);
zsb->z_fuid_replay = NULL;
iput(ZTOI(zp));
2008-11-20 20:01:55 +00:00
return (error);
}
static int
zfs_replay_acl_v0(zfs_sb_t *zsb, lr_acl_v0_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
ace_t *ace = (ace_t *)(lr + 1); /* ace array follows lr_acl_t */
vsecattr_t vsa;
znode_t *zp;
int error;
if (byteswap) {
byteswap_uint64_array(lr, sizeof (*lr));
zfs_oldace_byteswap(ace, lr->lr_aclcnt);
}
if ((error = zfs_zget(zsb, lr->lr_foid, &zp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
bzero(&vsa, sizeof (vsa));
vsa.vsa_mask = VSA_ACE | VSA_ACECNT;
vsa.vsa_aclcnt = lr->lr_aclcnt;
vsa.vsa_aclentsz = sizeof (ace_t) * vsa.vsa_aclcnt;
vsa.vsa_aclflags = 0;
2008-11-20 20:01:55 +00:00
vsa.vsa_aclentp = ace;
error = zfs_setsecattr(ZTOI(zp), &vsa, 0, kcred);
2008-11-20 20:01:55 +00:00
iput(ZTOI(zp));
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Replaying ACLs is complicated by FUID support.
* The log record may contain some optional data
* to be used for replaying FUID's. These pieces
* are the actual FUIDs that were created initially.
* The FUID table index may no longer be valid and
* during zfs_create() a new index may be assigned.
* Because of this the log will contain the original
* doman+rid in order to create a new FUID.
*
* The individual ACEs may contain an ephemeral uid/gid which is no
* longer valid and will need to be replaced with an actual FUID.
*
*/
static int
zfs_replay_acl(zfs_sb_t *zsb, lr_acl_t *lr, boolean_t byteswap)
2008-11-20 20:01:55 +00:00
{
ace_t *ace = (ace_t *)(lr + 1);
vsecattr_t vsa;
znode_t *zp;
int error;
if (byteswap) {
byteswap_uint64_array(lr, sizeof (*lr));
zfs_ace_byteswap(ace, lr->lr_acl_bytes, B_FALSE);
if (lr->lr_fuidcnt) {
byteswap_uint64_array((caddr_t)ace +
ZIL_ACE_LENGTH(lr->lr_acl_bytes),
lr->lr_fuidcnt * sizeof (uint64_t));
}
}
if ((error = zfs_zget(zsb, lr->lr_foid, &zp)) != 0)
2008-11-20 20:01:55 +00:00
return (error);
bzero(&vsa, sizeof (vsa));
vsa.vsa_mask = VSA_ACE | VSA_ACECNT | VSA_ACE_ACLFLAGS;
vsa.vsa_aclcnt = lr->lr_aclcnt;
vsa.vsa_aclentp = ace;
vsa.vsa_aclentsz = lr->lr_acl_bytes;
vsa.vsa_aclflags = lr->lr_acl_flags;
if (lr->lr_fuidcnt) {
void *fuidstart = (caddr_t)ace +
ZIL_ACE_LENGTH(lr->lr_acl_bytes);
zsb->z_fuid_replay =
2008-11-20 20:01:55 +00:00
zfs_replay_fuids(fuidstart, &fuidstart,
lr->lr_fuidcnt, lr->lr_domcnt, 0, 0);
}
error = zfs_setsecattr(ZTOI(zp), &vsa, 0, kcred);
2008-11-20 20:01:55 +00:00
if (zsb->z_fuid_replay)
zfs_fuid_info_free(zsb->z_fuid_replay);
2008-11-20 20:01:55 +00:00
zsb->z_fuid_replay = NULL;
iput(ZTOI(zp));
2008-11-20 20:01:55 +00:00
return (error);
}
/*
* Callback vectors for replaying records
*/
zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE] = {
(zil_replay_func_t *)zfs_replay_error, /* no such type */
(zil_replay_func_t *)zfs_replay_create, /* TX_CREATE */
(zil_replay_func_t *)zfs_replay_create, /* TX_MKDIR */
(zil_replay_func_t *)zfs_replay_create, /* TX_MKXATTR */
(zil_replay_func_t *)zfs_replay_create, /* TX_SYMLINK */
(zil_replay_func_t *)zfs_replay_remove, /* TX_REMOVE */
(zil_replay_func_t *)zfs_replay_remove, /* TX_RMDIR */
(zil_replay_func_t *)zfs_replay_link, /* TX_LINK */
(zil_replay_func_t *)zfs_replay_rename, /* TX_RENAME */
(zil_replay_func_t *)zfs_replay_write, /* TX_WRITE */
(zil_replay_func_t *)zfs_replay_truncate, /* TX_TRUNCATE */
(zil_replay_func_t *)zfs_replay_setattr, /* TX_SETATTR */
(zil_replay_func_t *)zfs_replay_acl_v0, /* TX_ACL_V0 */
(zil_replay_func_t *)zfs_replay_acl, /* TX_ACL */
(zil_replay_func_t *)zfs_replay_create_acl, /* TX_CREATE_ACL */
(zil_replay_func_t *)zfs_replay_create, /* TX_CREATE_ATTR */
(zil_replay_func_t *)zfs_replay_create_acl, /* TX_CREATE_ACL_ATTR */
(zil_replay_func_t *)zfs_replay_create_acl, /* TX_MKDIR_ACL */
(zil_replay_func_t *)zfs_replay_create, /* TX_MKDIR_ATTR */
(zil_replay_func_t *)zfs_replay_create_acl, /* TX_MKDIR_ACL_ATTR */
(zil_replay_func_t *)zfs_replay_write2, /* TX_WRITE2 */
2008-11-20 20:01:55 +00:00
};