2002-11-26 17:26:06 +00:00
|
|
|
/*-
|
2007-04-21 22:08:48 +00:00
|
|
|
* Copyright (c) 1999-2002, 2007 Robert N. M. Watson
|
2005-01-26 23:43:32 +00:00
|
|
|
* Copyright (c) 2001-2005 Networks Associates Technology, Inc.
|
2002-11-26 17:26:06 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed by Robert Watson for the TrustedBSD Project.
|
|
|
|
*
|
|
|
|
* This software was developed for the FreeBSD Project in part by NAI Labs,
|
|
|
|
* the Security Research Division of Network Associates, Inc. under
|
|
|
|
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
|
|
|
|
* CHATS research program.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Developed by the TrustedBSD Project.
|
2007-04-22 15:31:22 +00:00
|
|
|
*
|
2002-11-26 17:26:06 +00:00
|
|
|
* Low-watermark floating label mandatory integrity policy.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/acl.h>
|
|
|
|
#include <sys/conf.h>
|
|
|
|
#include <sys/extattr.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/malloc.h>
|
2005-04-14 16:03:30 +00:00
|
|
|
#include <sys/mman.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <sys/mount.h>
|
2006-11-06 13:42:10 +00:00
|
|
|
#include <sys/priv.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <sys/proc.h>
|
2003-06-23 01:26:34 +00:00
|
|
|
#include <sys/sbuf.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/sysproto.h>
|
|
|
|
#include <sys/sysent.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/file.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/socketvar.h>
|
2005-09-19 18:52:51 +00:00
|
|
|
#include <sys/sx.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <sys/pipe.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <sys/syslog.h>
|
|
|
|
|
|
|
|
#include <fs/devfs/devfs.h>
|
|
|
|
|
|
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/if_var.h>
|
|
|
|
|
|
|
|
#include <netinet/in.h>
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
#include <netinet/in_pcb.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <netinet/ip_var.h>
|
|
|
|
|
|
|
|
#include <vm/vm.h>
|
|
|
|
|
2006-12-22 23:34:47 +00:00
|
|
|
#include <security/mac/mac_policy.h>
|
2006-10-22 11:52:19 +00:00
|
|
|
#include <security/mac/mac_framework.h>
|
2002-11-26 17:26:06 +00:00
|
|
|
#include <security/mac_lomac/mac_lomac.h>
|
|
|
|
|
|
|
|
struct mac_lomac_proc {
|
|
|
|
struct mac_lomac mac_lomac;
|
|
|
|
struct mtx mtx;
|
|
|
|
};
|
|
|
|
|
|
|
|
SYSCTL_DECL(_security_mac);
|
|
|
|
|
|
|
|
SYSCTL_NODE(_security_mac, OID_AUTO, lomac, CTLFLAG_RW, 0,
|
|
|
|
"TrustedBSD mac_lomac policy controls");
|
|
|
|
|
|
|
|
static int mac_lomac_label_size = sizeof(struct mac_lomac);
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, label_size, CTLFLAG_RD,
|
|
|
|
&mac_lomac_label_size, 0, "Size of struct mac_lomac");
|
|
|
|
|
2002-12-10 16:20:34 +00:00
|
|
|
static int mac_lomac_enabled = 1;
|
2002-11-26 17:26:06 +00:00
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, enabled, CTLFLAG_RW,
|
|
|
|
&mac_lomac_enabled, 0, "Enforce MAC/LOMAC policy");
|
|
|
|
TUNABLE_INT("security.mac.lomac.enabled", &mac_lomac_enabled);
|
|
|
|
|
|
|
|
static int destroyed_not_inited;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, destroyed_not_inited, CTLFLAG_RD,
|
|
|
|
&destroyed_not_inited, 0, "Count of labels destroyed but not inited");
|
|
|
|
|
|
|
|
static int trust_all_interfaces = 0;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, trust_all_interfaces, CTLFLAG_RD,
|
|
|
|
&trust_all_interfaces, 0, "Consider all interfaces 'trusted' by MAC/LOMAC");
|
|
|
|
TUNABLE_INT("security.mac.lomac.trust_all_interfaces", &trust_all_interfaces);
|
|
|
|
|
|
|
|
static char trusted_interfaces[128];
|
|
|
|
SYSCTL_STRING(_security_mac_lomac, OID_AUTO, trusted_interfaces, CTLFLAG_RD,
|
|
|
|
trusted_interfaces, 0, "Interfaces considered 'trusted' by MAC/LOMAC");
|
|
|
|
TUNABLE_STR("security.mac.lomac.trusted_interfaces", trusted_interfaces,
|
|
|
|
sizeof(trusted_interfaces));
|
|
|
|
|
|
|
|
static int ptys_equal = 0;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, ptys_equal, CTLFLAG_RW,
|
|
|
|
&ptys_equal, 0, "Label pty devices as lomac/equal on create");
|
|
|
|
TUNABLE_INT("security.mac.lomac.ptys_equal", &ptys_equal);
|
|
|
|
|
|
|
|
static int revocation_enabled = 1;
|
|
|
|
SYSCTL_INT(_security_mac_lomac, OID_AUTO, revocation_enabled, CTLFLAG_RW,
|
|
|
|
&revocation_enabled, 0, "Revoke access to objects on relabel");
|
|
|
|
TUNABLE_INT("security.mac.lomac.revocation_enabled", &revocation_enabled);
|
|
|
|
|
|
|
|
static int mac_lomac_slot;
|
2007-02-06 14:19:25 +00:00
|
|
|
#define SLOT(l) ((struct mac_lomac *)mac_label_get((l), mac_lomac_slot))
|
|
|
|
#define SLOT_SET(l, val) mac_label_set((l), mac_lomac_slot, (uintptr_t)(val))
|
2002-11-26 17:26:06 +00:00
|
|
|
#define PSLOT(l) ((struct mac_lomac_proc *) \
|
2007-02-06 14:19:25 +00:00
|
|
|
mac_label_get((l), mac_lomac_slot))
|
|
|
|
#define PSLOT_SET(l, val) mac_label_set((l), mac_lomac_slot, (uintptr_t)(val))
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2005-10-31 15:41:29 +00:00
|
|
|
MALLOC_DEFINE(M_MACLOMAC, "mac_lomac_label", "MAC/LOMAC labels");
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
static struct mac_lomac *
|
|
|
|
lomac_alloc(int flag)
|
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
|
|
|
|
mac_lomac = malloc(sizeof(struct mac_lomac), M_MACLOMAC, M_ZERO | flag);
|
|
|
|
|
|
|
|
return (mac_lomac);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
lomac_free(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac != NULL)
|
|
|
|
free(mac_lomac, M_MACLOMAC);
|
|
|
|
else
|
|
|
|
atomic_add_int(&destroyed_not_inited, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
lomac_atmostflags(struct mac_lomac *mac_lomac, int flags)
|
|
|
|
{
|
|
|
|
|
|
|
|
if ((mac_lomac->ml_flags & flags) != mac_lomac->ml_flags)
|
|
|
|
return (EINVAL);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_dominate_element(struct mac_lomac_element *a,
|
|
|
|
struct mac_lomac_element *b)
|
|
|
|
{
|
|
|
|
|
|
|
|
switch (a->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
switch (b->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_dominate_element: b->mle_type invalid");
|
|
|
|
}
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
switch (b->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
return (a->mle_grade >= b->mle_grade);
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_dominate_element: b->mle_type invalid");
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_dominate_element: a->mle_type invalid");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_range_in_range(struct mac_lomac *rangea, struct mac_lomac *rangeb)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&rangeb->ml_rangehigh,
|
|
|
|
&rangea->ml_rangehigh) &&
|
|
|
|
mac_lomac_dominate_element(&rangea->ml_rangelow,
|
|
|
|
&rangeb->ml_rangelow));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_single_in_range(struct mac_lomac *single, struct mac_lomac *range)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((single->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_single_in_range: a not single"));
|
|
|
|
KASSERT((range->ml_flags & MAC_LOMAC_FLAG_RANGE) != 0,
|
|
|
|
("mac_lomac_single_in_range: b not range"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&range->ml_rangehigh,
|
|
|
|
&single->ml_single) &&
|
|
|
|
mac_lomac_dominate_element(&single->ml_single,
|
|
|
|
&range->ml_rangelow));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_auxsingle_in_range(struct mac_lomac *single, struct mac_lomac *range)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((single->ml_flags & MAC_LOMAC_FLAG_AUX) != 0,
|
|
|
|
("mac_lomac_single_in_range: a not auxsingle"));
|
|
|
|
KASSERT((range->ml_flags & MAC_LOMAC_FLAG_RANGE) != 0,
|
|
|
|
("mac_lomac_single_in_range: b not range"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&range->ml_rangehigh,
|
|
|
|
&single->ml_auxsingle) &&
|
|
|
|
mac_lomac_dominate_element(&single->ml_auxsingle,
|
|
|
|
&range->ml_rangelow));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_dominate_single(struct mac_lomac *a, struct mac_lomac *b)
|
|
|
|
{
|
|
|
|
KASSERT((a->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_dominate_single: a not single"));
|
|
|
|
KASSERT((b->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_dominate_single: b not single"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&a->ml_single, &b->ml_single));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_subject_dominate(struct mac_lomac *a, struct mac_lomac *b)
|
|
|
|
{
|
|
|
|
KASSERT((~a->ml_flags &
|
|
|
|
(MAC_LOMAC_FLAG_SINGLE | MAC_LOMAC_FLAG_RANGE)) == 0,
|
|
|
|
("mac_lomac_dominate_single: a not subject"));
|
|
|
|
KASSERT((b->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_dominate_single: b not single"));
|
|
|
|
|
|
|
|
return (mac_lomac_dominate_element(&a->ml_rangehigh,
|
|
|
|
&b->ml_single));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_equal_element(struct mac_lomac_element *a, struct mac_lomac_element *b)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (a->mle_type == MAC_LOMAC_TYPE_EQUAL ||
|
|
|
|
b->mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
return (a->mle_type == b->mle_type && a->mle_grade == b->mle_grade);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_equal_single(struct mac_lomac *a, struct mac_lomac *b)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((a->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_equal_single: a not single"));
|
|
|
|
KASSERT((b->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_equal_single: b not single"));
|
|
|
|
|
|
|
|
return (mac_lomac_equal_element(&a->ml_single, &b->ml_single));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_contains_equal(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE)
|
|
|
|
if (mac_lomac->ml_single.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_AUX)
|
|
|
|
if (mac_lomac->ml_auxsingle.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_RANGE) {
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
if (mac_lomac->ml_rangehigh.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_subject_privileged(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((mac_lomac->ml_flags & MAC_LOMAC_FLAGS_BOTH) ==
|
|
|
|
MAC_LOMAC_FLAGS_BOTH,
|
|
|
|
("mac_lomac_subject_privileged: subject doesn't have both labels"));
|
|
|
|
|
|
|
|
/* If the single is EQUAL, it's ok. */
|
|
|
|
if (mac_lomac->ml_single.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* If either range endpoint is EQUAL, it's ok. */
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type == MAC_LOMAC_TYPE_EQUAL ||
|
|
|
|
mac_lomac->ml_rangehigh.mle_type == MAC_LOMAC_TYPE_EQUAL)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* If the range is low-high, it's ok. */
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type == MAC_LOMAC_TYPE_LOW &&
|
|
|
|
mac_lomac->ml_rangehigh.mle_type == MAC_LOMAC_TYPE_HIGH)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* It's not ok. */
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_high_single(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_high_single: mac_lomac not single"));
|
2003-07-05 01:24:36 +00:00
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
return (mac_lomac->ml_single.mle_type == MAC_LOMAC_TYPE_HIGH);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_valid(struct mac_lomac *mac_lomac)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
switch (mac_lomac->ml_single.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (mac_lomac->ml_single.mle_type != MAC_LOMAC_TYPE_UNDEF)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
|
|
|
switch (mac_lomac->ml_auxsingle.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (mac_lomac->ml_auxsingle.mle_type != MAC_LOMAC_TYPE_UNDEF)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_RANGE) {
|
|
|
|
switch (mac_lomac->ml_rangelow.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (mac_lomac->ml_rangehigh.mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
if (!mac_lomac_dominate_element(&mac_lomac->ml_rangehigh,
|
|
|
|
&mac_lomac->ml_rangelow))
|
|
|
|
return (EINVAL);
|
|
|
|
} else {
|
|
|
|
if (mac_lomac->ml_rangelow.mle_type != MAC_LOMAC_TYPE_UNDEF ||
|
|
|
|
mac_lomac->ml_rangehigh.mle_type != MAC_LOMAC_TYPE_UNDEF)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_set_range(struct mac_lomac *mac_lomac, u_short typelow,
|
|
|
|
u_short gradelow, u_short typehigh, u_short gradehigh)
|
|
|
|
{
|
|
|
|
|
|
|
|
mac_lomac->ml_rangelow.mle_type = typelow;
|
|
|
|
mac_lomac->ml_rangelow.mle_grade = gradelow;
|
|
|
|
mac_lomac->ml_rangehigh.mle_type = typehigh;
|
|
|
|
mac_lomac->ml_rangehigh.mle_grade = gradehigh;
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_set_single(struct mac_lomac *mac_lomac, u_short type, u_short grade)
|
|
|
|
{
|
|
|
|
|
|
|
|
mac_lomac->ml_single.mle_type = type;
|
|
|
|
mac_lomac->ml_single.mle_grade = grade;
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_SINGLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_range(struct mac_lomac *labelfrom, struct mac_lomac *labelto)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((labelfrom->ml_flags & MAC_LOMAC_FLAG_RANGE) != 0,
|
|
|
|
("mac_lomac_copy_range: labelfrom not range"));
|
|
|
|
|
|
|
|
labelto->ml_rangelow = labelfrom->ml_rangelow;
|
|
|
|
labelto->ml_rangehigh = labelfrom->ml_rangehigh;
|
|
|
|
labelto->ml_flags |= MAC_LOMAC_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_single(struct mac_lomac *labelfrom, struct mac_lomac *labelto)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((labelfrom->ml_flags & MAC_LOMAC_FLAG_SINGLE) != 0,
|
|
|
|
("mac_lomac_copy_single: labelfrom not single"));
|
|
|
|
|
|
|
|
labelto->ml_single = labelfrom->ml_single;
|
|
|
|
labelto->ml_flags |= MAC_LOMAC_FLAG_SINGLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_auxsingle(struct mac_lomac *labelfrom, struct mac_lomac *labelto)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT((labelfrom->ml_flags & MAC_LOMAC_FLAG_AUX) != 0,
|
|
|
|
("mac_lomac_copy_auxsingle: labelfrom not auxsingle"));
|
|
|
|
|
|
|
|
labelto->ml_auxsingle = labelfrom->ml_auxsingle;
|
|
|
|
labelto->ml_flags |= MAC_LOMAC_FLAG_AUX;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy(struct mac_lomac *source, struct mac_lomac *dest)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (source->ml_flags & MAC_LOMAC_FLAG_SINGLE)
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
if (source->ml_flags & MAC_LOMAC_FLAG_AUX)
|
|
|
|
mac_lomac_copy_auxsingle(source, dest);
|
|
|
|
if (source->ml_flags & MAC_LOMAC_FLAG_RANGE)
|
|
|
|
mac_lomac_copy_range(source, dest);
|
|
|
|
}
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
static int mac_lomac_to_string(struct sbuf *sb,
|
|
|
|
struct mac_lomac *mac_lomac);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
static int
|
|
|
|
maybe_demote(struct mac_lomac *subjlabel, struct mac_lomac *objlabel,
|
2007-04-23 13:15:23 +00:00
|
|
|
const char *actionname, const char *objname, struct vnode *vp)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
2003-06-23 01:26:34 +00:00
|
|
|
struct sbuf subjlabel_sb, subjtext_sb, objlabel_sb;
|
|
|
|
char *subjlabeltext, *objlabeltext, *subjtext;
|
|
|
|
struct mac_lomac cached_subjlabel;
|
|
|
|
struct mac_lomac_proc *subj;
|
2002-11-26 17:26:06 +00:00
|
|
|
struct vattr va;
|
|
|
|
struct proc *p;
|
|
|
|
pid_t pgid;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = PSLOT(curthread->td_proc->p_label);
|
2003-06-23 01:26:34 +00:00
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
p = curthread->td_proc;
|
|
|
|
mtx_lock(&subj->mtx);
|
|
|
|
if (subj->mac_lomac.ml_flags & MAC_LOMAC_FLAG_UPDATE) {
|
|
|
|
/*
|
|
|
|
* Check to see if the pending demotion would be more or
|
|
|
|
* less severe than this one, and keep the more severe.
|
|
|
|
* This can only happen for a multi-threaded application.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_dominate_single(objlabel, &subj->mac_lomac)) {
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bzero(&subj->mac_lomac, sizeof(subj->mac_lomac));
|
|
|
|
/*
|
|
|
|
* Always demote the single label.
|
|
|
|
*/
|
|
|
|
mac_lomac_copy_single(objlabel, &subj->mac_lomac);
|
|
|
|
/*
|
|
|
|
* Start with the original range, then minimize each side of
|
|
|
|
* the range to the point of not dominating the object. The
|
|
|
|
* high side will always be demoted, of course.
|
|
|
|
*/
|
|
|
|
mac_lomac_copy_range(subjlabel, &subj->mac_lomac);
|
|
|
|
if (!mac_lomac_dominate_element(&objlabel->ml_single,
|
|
|
|
&subj->mac_lomac.ml_rangelow))
|
|
|
|
subj->mac_lomac.ml_rangelow = objlabel->ml_single;
|
|
|
|
subj->mac_lomac.ml_rangehigh = objlabel->ml_single;
|
|
|
|
subj->mac_lomac.ml_flags |= MAC_LOMAC_FLAG_UPDATE;
|
Commit 14/14 of sched_lock decomposition.
- Use thread_lock() rather than sched_lock for per-thread scheduling
sychronization.
- Use the per-process spinlock rather than the sched_lock for per-process
scheduling synchronization.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
2007-06-05 00:00:57 +00:00
|
|
|
thread_lock(curthread);
|
2003-02-17 09:55:10 +00:00
|
|
|
curthread->td_flags |= TDF_ASTPENDING;
|
2002-11-26 17:26:06 +00:00
|
|
|
curthread->td_proc->p_sflag |= PS_MACPEND;
|
Commit 14/14 of sched_lock decomposition.
- Use thread_lock() rather than sched_lock for per-thread scheduling
sychronization.
- Use the per-process spinlock rather than the sched_lock for per-process
scheduling synchronization.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
2007-06-05 00:00:57 +00:00
|
|
|
thread_unlock(curthread);
|
2003-06-23 01:26:34 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Avoid memory allocation while holding a mutex; cache the
|
|
|
|
* label.
|
|
|
|
*/
|
|
|
|
mac_lomac_copy_single(&subj->mac_lomac, &cached_subjlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
mtx_unlock(&subj->mtx);
|
2003-06-23 01:26:34 +00:00
|
|
|
|
|
|
|
sbuf_new(&subjlabel_sb, NULL, 0, SBUF_AUTOEXTEND);
|
|
|
|
mac_lomac_to_string(&subjlabel_sb, subjlabel);
|
|
|
|
sbuf_finish(&subjlabel_sb);
|
|
|
|
subjlabeltext = sbuf_data(&subjlabel_sb);
|
|
|
|
|
|
|
|
sbuf_new(&subjtext_sb, NULL, 0, SBUF_AUTOEXTEND);
|
|
|
|
mac_lomac_to_string(&subjtext_sb, &subj->mac_lomac);
|
|
|
|
sbuf_finish(&subjtext_sb);
|
|
|
|
subjtext = sbuf_data(&subjtext_sb);
|
|
|
|
|
|
|
|
sbuf_new(&objlabel_sb, NULL, 0, SBUF_AUTOEXTEND);
|
|
|
|
mac_lomac_to_string(&objlabel_sb, objlabel);
|
|
|
|
sbuf_finish(&objlabel_sb);
|
|
|
|
objlabeltext = sbuf_data(&objlabel_sb);
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
pgid = p->p_pgrp->pg_id; /* XXX could be stale? */
|
2007-04-23 13:15:23 +00:00
|
|
|
if (vp != NULL && VOP_GETATTR(vp, &va, curthread->td_ucred,
|
2002-11-26 17:26:06 +00:00
|
|
|
curthread) == 0) {
|
|
|
|
log(LOG_INFO, "LOMAC: level-%s subject p%dg%du%d:%s demoted to"
|
|
|
|
" level %s after %s a level-%s %s (inode=%ld, "
|
|
|
|
"mountpount=%s)\n",
|
|
|
|
subjlabeltext, p->p_pid, pgid, curthread->td_ucred->cr_uid,
|
|
|
|
p->p_comm, subjtext, actionname, objlabeltext, objname,
|
2007-04-23 13:15:23 +00:00
|
|
|
va.va_fileid, vp->v_mount->mnt_stat.f_mntonname);
|
2002-11-26 17:26:06 +00:00
|
|
|
} else {
|
|
|
|
log(LOG_INFO, "LOMAC: level-%s subject p%dg%du%d:%s demoted to"
|
|
|
|
" level %s after %s a level-%s %s\n",
|
|
|
|
subjlabeltext, p->p_pid, pgid, curthread->td_ucred->cr_uid,
|
|
|
|
p->p_comm, subjtext, actionname, objlabeltext, objname);
|
|
|
|
}
|
2003-06-23 01:26:34 +00:00
|
|
|
|
|
|
|
sbuf_delete(&subjlabel_sb);
|
|
|
|
sbuf_delete(&subjtext_sb);
|
|
|
|
sbuf_delete(&objlabel_sb);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Relabel "to" to "from" only if "from" is a valid label (contains
|
|
|
|
* at least a single), as for a relabel operation which may or may
|
|
|
|
* not involve a relevant label.
|
|
|
|
*/
|
2002-11-26 17:38:25 +00:00
|
|
|
static void
|
2002-11-26 17:26:06 +00:00
|
|
|
try_relabel(struct mac_lomac *from, struct mac_lomac *to)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (from->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
bzero(to, sizeof(*to));
|
|
|
|
mac_lomac_copy(from, to);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Policy module operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_lomac_init(struct mac_policy_conf *conf)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Label operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_lomac_init_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, lomac_alloc(M_WAITOK));
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_init_label_waitcheck(struct label *label, int flag)
|
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, lomac_alloc(flag));
|
2002-11-26 17:26:06 +00:00
|
|
|
if (SLOT(label) == NULL)
|
|
|
|
return (ENOMEM);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_init_proc_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
2004-07-28 07:01:33 +00:00
|
|
|
PSLOT_SET(label, malloc(sizeof(struct mac_lomac_proc), M_MACLOMAC,
|
|
|
|
M_ZERO | M_WAITOK));
|
2002-11-26 17:26:06 +00:00
|
|
|
mtx_init(&PSLOT(label)->mtx, "MAC/Lomac proc lock", NULL, MTX_DEF);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_destroy_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
lomac_free(SLOT(label));
|
2004-07-28 07:01:33 +00:00
|
|
|
SLOT_SET(label, NULL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_destroy_proc_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
mtx_destroy(&PSLOT(label)->mtx);
|
|
|
|
FREE(PSLOT(label), M_MACLOMAC);
|
2004-07-28 07:01:33 +00:00
|
|
|
PSLOT_SET(label, NULL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_element_to_string(struct sbuf *sb, struct mac_lomac_element *element)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
switch (element->mle_type) {
|
|
|
|
case MAC_LOMAC_TYPE_HIGH:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "high"));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_LOW:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "low"));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_EQUAL:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "equal"));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
case MAC_LOMAC_TYPE_GRADE:
|
2003-06-23 01:26:34 +00:00
|
|
|
return (sbuf_printf(sb, "%d", element->mle_grade));
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
default:
|
|
|
|
panic("mac_lomac_element_to_string: invalid type (%d)",
|
|
|
|
element->mle_type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2003-06-23 01:26:34 +00:00
|
|
|
mac_lomac_to_string(struct sbuf *sb, struct mac_lomac *mac_lomac)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_single)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '[') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_auxsingle)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, ']') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (mac_lomac->ml_flags & MAC_LOMAC_FLAG_RANGE) {
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '(') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_rangelow)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (sbuf_putc(sb, '-') == -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
if (mac_lomac_element_to_string(sb, &mac_lomac->ml_rangehigh)
|
|
|
|
== -1)
|
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2003-11-08 00:21:20 +00:00
|
|
|
if (sbuf_putc(sb, ')') == -1)
|
2003-06-23 01:26:34 +00:00
|
|
|
return (EINVAL);
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_externalize_label(struct label *label, char *element_name,
|
2003-06-23 01:26:34 +00:00
|
|
|
struct sbuf *sb, int *claimed)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
|
|
|
|
if (strcmp(MAC_LOMAC_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
|
|
|
|
|
|
|
mac_lomac = SLOT(label);
|
|
|
|
|
2003-06-23 01:26:34 +00:00
|
|
|
return (mac_lomac_to_string(sb, mac_lomac));
|
2002-11-26 17:26:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_parse_element(struct mac_lomac_element *element, char *string)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (strcmp(string, "high") == 0 ||
|
|
|
|
strcmp(string, "hi") == 0) {
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
element->mle_grade = MAC_LOMAC_TYPE_UNDEF;
|
|
|
|
} else if (strcmp(string, "low") == 0 ||
|
|
|
|
strcmp(string, "lo") == 0) {
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_LOW;
|
|
|
|
element->mle_grade = MAC_LOMAC_TYPE_UNDEF;
|
|
|
|
} else if (strcmp(string, "equal") == 0 ||
|
|
|
|
strcmp(string, "eq") == 0) {
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
element->mle_grade = MAC_LOMAC_TYPE_UNDEF;
|
|
|
|
} else {
|
|
|
|
char *p0, *p1;
|
|
|
|
int d;
|
|
|
|
|
|
|
|
p0 = string;
|
|
|
|
d = strtol(p0, &p1, 10);
|
|
|
|
|
|
|
|
if (d < 0 || d > 65535)
|
|
|
|
return (EINVAL);
|
|
|
|
element->mle_type = MAC_LOMAC_TYPE_GRADE;
|
|
|
|
element->mle_grade = d;
|
|
|
|
|
|
|
|
if (p1 == p0 || *p1 != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: destructively consumes the string, make a local copy before
|
|
|
|
* calling if that's a problem.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mac_lomac_parse(struct mac_lomac *mac_lomac, char *string)
|
|
|
|
{
|
|
|
|
char *range, *rangeend, *rangehigh, *rangelow, *single, *auxsingle,
|
|
|
|
*auxsingleend;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/* Do we have a range? */
|
|
|
|
single = string;
|
|
|
|
range = index(string, '(');
|
|
|
|
if (range == single)
|
|
|
|
single = NULL;
|
|
|
|
auxsingle = index(string, '[');
|
|
|
|
if (auxsingle == single)
|
|
|
|
single = NULL;
|
|
|
|
if (range != NULL && auxsingle != NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
rangelow = rangehigh = NULL;
|
|
|
|
if (range != NULL) {
|
|
|
|
/* Nul terminate the end of the single string. */
|
|
|
|
*range = '\0';
|
|
|
|
range++;
|
|
|
|
rangelow = range;
|
|
|
|
rangehigh = index(rangelow, '-');
|
|
|
|
if (rangehigh == NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
rangehigh++;
|
|
|
|
if (*rangelow == '\0' || *rangehigh == '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
rangeend = index(rangehigh, ')');
|
|
|
|
if (rangeend == NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
if (*(rangeend + 1) != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
/* Nul terminate the ends of the ranges. */
|
|
|
|
*(rangehigh - 1) = '\0';
|
|
|
|
*rangeend = '\0';
|
|
|
|
}
|
|
|
|
KASSERT((rangelow != NULL && rangehigh != NULL) ||
|
|
|
|
(rangelow == NULL && rangehigh == NULL),
|
|
|
|
("mac_lomac_internalize_label: range mismatch"));
|
|
|
|
if (auxsingle != NULL) {
|
|
|
|
/* Nul terminate the end of the single string. */
|
|
|
|
*auxsingle = '\0';
|
|
|
|
auxsingle++;
|
|
|
|
auxsingleend = index(auxsingle, ']');
|
|
|
|
if (auxsingleend == NULL)
|
|
|
|
return (EINVAL);
|
|
|
|
if (*(auxsingleend + 1) != '\0')
|
|
|
|
return (EINVAL);
|
|
|
|
/* Nul terminate the end of the auxsingle. */
|
|
|
|
*auxsingleend = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
bzero(mac_lomac, sizeof(*mac_lomac));
|
|
|
|
if (single != NULL) {
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_single, single);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_SINGLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auxsingle != NULL) {
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_auxsingle,
|
|
|
|
auxsingle);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_AUX;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rangelow != NULL) {
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_rangelow,
|
|
|
|
rangelow);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
error = mac_lomac_parse_element(&mac_lomac->ml_rangehigh,
|
|
|
|
rangehigh);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
mac_lomac->ml_flags |= MAC_LOMAC_FLAG_RANGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = mac_lomac_valid(mac_lomac);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_internalize_label(struct label *label, char *element_name,
|
|
|
|
char *element_data, int *claimed)
|
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac, mac_lomac_temp;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (strcmp(MAC_LOMAC_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
|
|
|
|
|
|
|
error = mac_lomac_parse(&mac_lomac_temp, element_data);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
mac_lomac = SLOT(label);
|
|
|
|
*mac_lomac = mac_lomac_temp;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_copy_label(struct label *src, struct label *dest)
|
|
|
|
{
|
|
|
|
|
|
|
|
*SLOT(dest) = *SLOT(src);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: file system objects, and things that look
|
|
|
|
* a lot like file system objects.
|
|
|
|
*/
|
|
|
|
static void
|
When devfs cloning takes place, provide access to the credential of the
process that caused the clone event to take place for the device driver
creating the device. This allows cloned device drivers to adapt the
device node based on security aspects of the process, such as the uid,
gid, and MAC label.
- Add a cred reference to struct cdev, so that when a device node is
instantiated as a vnode, the cloning credential can be exposed to
MAC.
- Add make_dev_cred(), a version of make_dev() that additionally
accepts the credential to stick in the struct cdev. Implement it and
make_dev() in terms of a back-end make_dev_credv().
- Add a new event handler, dev_clone_cred, which can be registered to
receive the credential instead of dev_clone, if desired.
- Modify the MAC entry point mac_create_devfs_device() to accept an
optional credential pointer (may be NULL), so that MAC policies can
inspect and act on the label or other elements of the credential
when initializing the skeleton device protections.
- Modify tty_pty.c to register clone_dev_cred and invoke make_dev_cred(),
so that the pty clone credential is exposed to the MAC Framework.
While currently primarily focussed on MAC policies, this change is also
a prerequisite for changes to allow ptys to be instantiated with the UID
of the process looking up the pty. This requires further changes to the
pty driver -- in particular, to immediately recycle pty nodes on last
close so that the credential-related state can be recreated on next
lookup.
Submitted by: Andrew Reisse <andrew.reisse@sparta.com>
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
MFC after: 1 week
MFC note: Merge to 6.x, but not 5.x for ABI reasons
2005-07-14 10:22:09 +00:00
|
|
|
mac_lomac_create_devfs_device(struct ucred *cred, struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct cdev *dev, struct devfs_dirent *de, struct label *delabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
int lomac_type;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac = SLOT(delabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
if (strcmp(dev->si_name, "null") == 0 ||
|
|
|
|
strcmp(dev->si_name, "zero") == 0 ||
|
|
|
|
strcmp(dev->si_name, "random") == 0 ||
|
|
|
|
strncmp(dev->si_name, "fd/", strlen("fd/")) == 0 ||
|
|
|
|
strncmp(dev->si_name, "ttyv", strlen("ttyv")) == 0)
|
|
|
|
lomac_type = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
else if (ptys_equal &&
|
|
|
|
(strncmp(dev->si_name, "ttyp", strlen("ttyp")) == 0 ||
|
|
|
|
strncmp(dev->si_name, "ptyp", strlen("ptyp")) == 0))
|
|
|
|
lomac_type = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
else
|
|
|
|
lomac_type = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
mac_lomac_set_single(mac_lomac, lomac_type, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2002-12-09 03:44:28 +00:00
|
|
|
mac_lomac_create_devfs_directory(struct mount *mp, char *dirname,
|
2007-04-23 13:15:23 +00:00
|
|
|
int dirnamelen, struct devfs_dirent *de, struct label *delabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *mac_lomac;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac = SLOT(delabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
mac_lomac_set_single(mac_lomac, MAC_LOMAC_TYPE_HIGH, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2002-12-09 03:44:28 +00:00
|
|
|
mac_lomac_create_devfs_symlink(struct ucred *cred, struct mount *mp,
|
|
|
|
struct devfs_dirent *dd, struct label *ddlabel, struct devfs_dirent *de,
|
|
|
|
struct label *delabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(delabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mount(struct ucred *cred, struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_relabel_vnode(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(newlabel);
|
|
|
|
dest = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:36:54 +00:00
|
|
|
mac_lomac_update_devfs(struct mount *mp, struct devfs_dirent *de,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *delabel, struct vnode *vp, struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(vplabel);
|
|
|
|
dest = SLOT(delabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_associate_vnode_devfs(struct mount *mp, struct label *mplabel,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct devfs_dirent *de, struct label *delabel, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(delabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_associate_vnode_extattr(struct mount *mp, struct label *mplabel,
|
|
|
|
struct vnode *vp, struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac temp, *source, *dest;
|
2003-01-06 12:07:38 +00:00
|
|
|
int buflen, error;
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mplabel);
|
|
|
|
dest = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
|
|
|
error = vn_extattr_get(vp, IO_NODELOCKED, MAC_LOMAC_EXTATTR_NAMESPACE,
|
|
|
|
MAC_LOMAC_EXTATTR_NAME, &buflen, (char *)&temp, curthread);
|
|
|
|
if (error == ENOATTR || error == EOPNOTSUPP) {
|
2007-04-22 16:18:10 +00:00
|
|
|
/* Fall back to the mntlabel. */
|
2002-11-26 17:26:06 +00:00
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
return (0);
|
|
|
|
} else if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
if (buflen != sizeof(temp)) {
|
|
|
|
if (buflen != sizeof(temp) - sizeof(temp.ml_auxsingle)) {
|
|
|
|
printf("mac_lomac_associate_vnode_extattr: bad size %d\n",
|
|
|
|
buflen);
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
bzero(&temp.ml_auxsingle, sizeof(temp.ml_auxsingle));
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
(void)vn_extattr_set(vp, IO_NODELOCKED,
|
|
|
|
MAC_LOMAC_EXTATTR_NAMESPACE, MAC_LOMAC_EXTATTR_NAME,
|
|
|
|
buflen, (char *)&temp, curthread);
|
|
|
|
}
|
|
|
|
if (mac_lomac_valid(&temp) != 0) {
|
|
|
|
printf("mac_lomac_associate_vnode_extattr: invalid\n");
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
if ((temp.ml_flags & MAC_LOMAC_FLAGS_BOTH) != MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
printf("mac_lomac_associate_vnode_extattr: not single\n");
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
|
|
|
mac_lomac_copy_single(&temp, dest);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_associate_vnode_singlelabel(struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mplabel, struct vnode *vp, struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mplabel);
|
|
|
|
dest = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_create_vnode_extattr(struct ucred *cred, struct mount *mp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mplabel, struct vnode *dvp, struct label *dvplabel,
|
|
|
|
struct vnode *vp, struct label *vplabel, struct componentname *cnp)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest, *dir, temp;
|
|
|
|
size_t buflen;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(vplabel);
|
|
|
|
dir = SLOT(dvplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
if (dir->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
|
|
|
mac_lomac_copy_auxsingle(dir, &temp);
|
|
|
|
mac_lomac_set_single(&temp, dir->ml_auxsingle.mle_type,
|
|
|
|
dir->ml_auxsingle.mle_grade);
|
|
|
|
} else {
|
|
|
|
mac_lomac_copy_single(source, &temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
error = vn_extattr_set(vp, IO_NODELOCKED, MAC_LOMAC_EXTATTR_NAMESPACE,
|
|
|
|
MAC_LOMAC_EXTATTR_NAME, buflen, (char *)&temp, curthread);
|
|
|
|
if (error == 0)
|
|
|
|
mac_lomac_copy(&temp, dest);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_setlabel_vnode_extattr(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct label *intlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, temp;
|
|
|
|
size_t buflen;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
buflen = sizeof(temp);
|
|
|
|
bzero(&temp, buflen);
|
|
|
|
|
|
|
|
source = SLOT(intlabel);
|
|
|
|
if ((source->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, &temp);
|
|
|
|
error = vn_extattr_set(vp, IO_NODELOCKED, MAC_LOMAC_EXTATTR_NAMESPACE,
|
|
|
|
MAC_LOMAC_EXTATTR_NAME, buflen, (char *)&temp, curthread);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: IPC object.
|
|
|
|
*/
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_create_inpcb_from_socket(struct socket *so, struct label *solabel,
|
|
|
|
struct inpcb *inp, struct label *inplabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(inplabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_mbuf_from_socket(struct socket *so, struct label *solabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(mlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_socket(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(solabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_create_pipe(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(pplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_socket_from_socket(struct socket *oldso,
|
|
|
|
struct label *oldsolabel, struct socket *newso, struct label *newsolabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(oldsolabel);
|
|
|
|
dest = SLOT(newsolabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_relabel_socket(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(solabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_relabel_pipe(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(pplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_set_socket_peer_from_mbuf(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct socket *so, struct label *sopeerlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(sopeerlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: network objects.
|
|
|
|
*/
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_set_socket_peer_from_socket(struct socket *oldso,
|
|
|
|
struct label *oldsolabel, struct socket *newso,
|
|
|
|
struct label *newsopeerlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(oldsolabel);
|
|
|
|
dest = SLOT(newsopeerlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_bpfdesc(struct ucred *cred, struct bpf_d *d,
|
|
|
|
struct label *dlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(dlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_ifnet(struct ifnet *ifp, struct label *ifplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
2003-10-31 18:32:15 +00:00
|
|
|
char tifname[IFNAMSIZ], *p, *q;
|
2002-11-26 17:26:06 +00:00
|
|
|
char tiflist[sizeof(trusted_interfaces)];
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
int len, grade;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(ifplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
if (ifp->if_type == IFT_LOOP) {
|
2002-11-26 17:26:06 +00:00
|
|
|
grade = MAC_LOMAC_TYPE_EQUAL;
|
|
|
|
goto set;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (trust_all_interfaces) {
|
|
|
|
grade = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
goto set;
|
|
|
|
}
|
|
|
|
|
|
|
|
grade = MAC_LOMAC_TYPE_LOW;
|
|
|
|
|
|
|
|
if (trusted_interfaces[0] == '\0' ||
|
|
|
|
!strvalid(trusted_interfaces, sizeof(trusted_interfaces)))
|
|
|
|
goto set;
|
|
|
|
|
|
|
|
bzero(tiflist, sizeof(tiflist));
|
|
|
|
for (p = trusted_interfaces, q = tiflist; *p != '\0'; p++, q++)
|
|
|
|
if(*p != ' ' && *p != '\t')
|
|
|
|
*q = *p;
|
|
|
|
|
|
|
|
for (p = q = tiflist;; p++) {
|
|
|
|
if (*p == ',' || *p == '\0') {
|
|
|
|
len = p - q;
|
|
|
|
if (len < IFNAMSIZ) {
|
|
|
|
bzero(tifname, sizeof(tifname));
|
|
|
|
bcopy(q, tifname, len);
|
2007-04-23 13:15:23 +00:00
|
|
|
if (strcmp(tifname, ifp->if_xname) == 0) {
|
2002-11-26 17:26:06 +00:00
|
|
|
grade = MAC_LOMAC_TYPE_HIGH;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
*p = '\0';
|
|
|
|
printf("MAC/LOMAC warning: interface name "
|
|
|
|
"\"%s\" is too long (must be < %d)\n",
|
|
|
|
q, IFNAMSIZ);
|
|
|
|
}
|
|
|
|
if (*p == '\0')
|
|
|
|
break;
|
|
|
|
q = p + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
set:
|
|
|
|
mac_lomac_set_single(dest, grade, 0);
|
|
|
|
mac_lomac_set_range(dest, grade, 0, grade, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_ipq(struct mbuf *m, struct label *mlabel, struct ipq *ipq,
|
|
|
|
struct label *ipqlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
dest = SLOT(ipqlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_datagram_from_ipq(struct ipq *ipq, struct label *ipqlabel,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct mbuf *m, struct label *mlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(ipqlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* Just use the head, since we require them all to match. */
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_fragment(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct mbuf *frag, struct label *fraglabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(fraglabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2003-12-17 14:55:11 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_from_inpcb(struct inpcb *inp, struct label *inplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(inplabel);
|
|
|
|
dest = SLOT(mlabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_mbuf_linklayer(struct ifnet *ifp, struct label *ifplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_set_single(dest, MAC_LOMAC_TYPE_EQUAL, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_mbuf_from_bpfdesc(struct bpf_d *d, struct label *dlabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(dlabel);
|
|
|
|
dest = SLOT(mlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_mbuf_from_ifnet(struct ifnet *ifp, struct label *ifplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(ifplabel);
|
|
|
|
dest = SLOT(mlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_mbuf_multicast_encap(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct ifnet *ifp, struct label *ifplabel, struct mbuf *mnew,
|
|
|
|
struct label *mnewlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(mnewlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_mbuf_netlayer(struct mbuf *m, struct label *mlabel,
|
|
|
|
struct mbuf *mnew, struct label *mnewlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
source = SLOT(mlabel);
|
|
|
|
dest = SLOT(mnewlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_fragment_match(struct mbuf *m, struct label *mlabel,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *a, *b;
|
|
|
|
|
|
|
|
a = SLOT(ipqlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
b = SLOT(mlabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
return (mac_lomac_equal_single(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_relabel_ifnet(struct ucred *cred, struct ifnet *ifp,
|
|
|
|
struct label *ifplabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(ifplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_update_ipq(struct mbuf *m, struct label *mlabel, struct ipq *ipq,
|
|
|
|
struct label *ipqlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
/* NOOP: we only accept matching labels, so no need to update */
|
|
|
|
}
|
|
|
|
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_inpcb_sosetlabel(struct socket *so, struct label *solabel,
|
|
|
|
struct inpcb *inp, struct label *inplabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(solabel);
|
|
|
|
dest = SLOT(inplabel);
|
|
|
|
|
|
|
|
mac_lomac_copy_single(source, dest);
|
|
|
|
}
|
|
|
|
|
2006-12-13 06:03:22 +00:00
|
|
|
static void
|
|
|
|
mac_lomac_init_syncache_from_inpcb(struct label *label, struct inpcb *inp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(inp->inp_label);
|
|
|
|
dest = SLOT(label);
|
|
|
|
mac_lomac_copy(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_mbuf_from_syncache(struct label *sc_label, struct mbuf *m,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *mlabel)
|
2006-12-13 06:03:22 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(sc_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
2006-12-13 06:03:22 +00:00
|
|
|
mac_lomac_copy(source, dest);
|
|
|
|
}
|
|
|
|
|
2006-09-12 04:25:13 +00:00
|
|
|
static void
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_create_mbuf_from_firewall(struct mbuf *m, struct label *mlabel)
|
2006-09-12 04:25:13 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
dest = SLOT(mlabel);
|
2006-09-12 04:25:13 +00:00
|
|
|
|
|
|
|
/* XXX: where is the label for the firewall really comming from? */
|
|
|
|
mac_lomac_set_single(dest, MAC_LOMAC_TYPE_EQUAL, 0);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
/*
|
|
|
|
* Labeling event operations: processes.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_lomac_execve_transition(struct ucred *old, struct ucred *new,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct vnode *vp, struct label *vplabel, struct label *interpvnodelabel,
|
|
|
|
struct image_params *imgp, struct label *execlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest, *obj, *robj;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
source = SLOT(old->cr_label);
|
|
|
|
dest = SLOT(new->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
robj = interpvnodelabel != NULL ? SLOT(interpvnodelabel) : obj;
|
|
|
|
|
|
|
|
mac_lomac_copy(source, dest);
|
|
|
|
/*
|
|
|
|
* If there's an auxiliary label on the real object, respect it
|
|
|
|
* and assume that this level should be assumed immediately if
|
|
|
|
* a higher level is currently in place.
|
|
|
|
*/
|
|
|
|
if (robj->ml_flags & MAC_LOMAC_FLAG_AUX &&
|
|
|
|
!mac_lomac_dominate_element(&robj->ml_auxsingle, &dest->ml_single)
|
|
|
|
&& mac_lomac_auxsingle_in_range(robj, dest))
|
|
|
|
mac_lomac_set_single(dest, robj->ml_auxsingle.mle_type,
|
|
|
|
robj->ml_auxsingle.mle_grade);
|
|
|
|
/*
|
|
|
|
* Restructuring to use the execve transitioning mechanism
|
|
|
|
* instead of the normal demotion mechanism here would be
|
|
|
|
* difficult, so just copy the label over and perform standard
|
|
|
|
* demotion. This is also non-optimal because it will result
|
|
|
|
* in the intermediate label "new" being created and immediately
|
|
|
|
* recycled.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_enabled && revocation_enabled &&
|
|
|
|
!mac_lomac_dominate_single(obj, source))
|
|
|
|
(void)maybe_demote(source, obj, "executing", "file", vp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_execve_will_transition(struct ucred *old, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct label *interpvnodelabel,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct image_params *imgp, struct label *execlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj, *robj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(old->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
robj = interpvnodelabel != NULL ? SLOT(interpvnodelabel) : obj;
|
|
|
|
|
|
|
|
return ((robj->ml_flags & MAC_LOMAC_FLAG_AUX &&
|
|
|
|
!mac_lomac_dominate_element(&robj->ml_auxsingle, &subj->ml_single)
|
|
|
|
&& mac_lomac_auxsingle_in_range(robj, subj)) ||
|
|
|
|
!mac_lomac_dominate_single(obj, subj));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_proc0(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_set_single(dest, MAC_LOMAC_TYPE_EQUAL, 0);
|
|
|
|
mac_lomac_set_range(dest, MAC_LOMAC_TYPE_LOW, 0, MAC_LOMAC_TYPE_HIGH,
|
|
|
|
0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_create_proc1(struct ucred *cred)
|
|
|
|
{
|
|
|
|
struct mac_lomac *dest;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
mac_lomac_set_single(dest, MAC_LOMAC_TYPE_HIGH, 0);
|
|
|
|
mac_lomac_set_range(dest, MAC_LOMAC_TYPE_LOW, 0, MAC_LOMAC_TYPE_HIGH,
|
|
|
|
0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_relabel_cred(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *source, *dest;
|
|
|
|
|
|
|
|
source = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
dest = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
try_relabel(source, dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Access control checks.
|
|
|
|
*/
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_bpfdesc_receive(struct bpf_d *d, struct label *dlabel,
|
|
|
|
struct ifnet *ifp, struct label *ifplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *a, *b;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
a = SLOT(dlabel);
|
|
|
|
b = SLOT(ifplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (mac_lomac_equal_single(a, b))
|
|
|
|
return (0);
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_cred_relabel(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *new;
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
new = SLOT(newlabel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the credential, it may
|
|
|
|
* be an update of the single, range, or both.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAGS_BOTH);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAGS_BOTH) {
|
|
|
|
/*
|
2003-08-21 18:07:52 +00:00
|
|
|
* Fill in the missing parts from the previous label.
|
2002-11-26 17:26:06 +00:00
|
|
|
*/
|
2003-08-21 18:07:52 +00:00
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
mac_lomac_copy_single(subj, new);
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_RANGE) == 0)
|
|
|
|
mac_lomac_copy_range(subj, new);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC range on a credential, the new
|
|
|
|
* range label must be in the current range.
|
|
|
|
*/
|
2003-08-21 18:07:52 +00:00
|
|
|
if (!mac_lomac_range_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC single label on a credential, the
|
|
|
|
* new single label must be in the new range. Implicitly
|
|
|
|
* from the previous check, the new single is in the old
|
|
|
|
* range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, new))
|
2002-11-26 17:26:06 +00:00
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To have EQUAL in any component of the new credential
|
|
|
|
* LOMAC label, the subject must already have EQUAL in
|
|
|
|
* their label.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXXMAC: Additional consistency tests regarding the
|
|
|
|
* single and range of the new label might be performed
|
|
|
|
* here.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_cred_visible(struct ucred *cr1, struct ucred *cr2)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
subj = SLOT(cr1->cr_label);
|
|
|
|
obj = SLOT(cr2->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_ifnet_relabel(struct ucred *cred, struct ifnet *ifp,
|
|
|
|
struct label *ifplabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *new;
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
new = SLOT(newlabel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the interface, it may
|
|
|
|
* be an update of the single, range, or both.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAGS_BOTH);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Relabling network interfaces requires LOMAC privilege.
|
|
|
|
*/
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAGS_BOTH) {
|
2003-08-21 18:07:52 +00:00
|
|
|
/*
|
|
|
|
* Fill in the missing parts from the previous label.
|
|
|
|
*/
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
mac_lomac_copy_single(subj, new);
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_RANGE) == 0)
|
|
|
|
mac_lomac_copy_range(subj, new);
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
/*
|
|
|
|
* Rely on the traditional superuser status for the LOMAC
|
|
|
|
* interface relabel requirements. XXXMAC: This will go
|
|
|
|
* away.
|
2006-11-06 13:42:10 +00:00
|
|
|
*
|
|
|
|
* XXXRW: This is also redundant to a higher layer check.
|
2002-11-26 17:26:06 +00:00
|
|
|
*/
|
2006-11-06 13:42:10 +00:00
|
|
|
error = priv_check_cred(cred, PRIV_NET_SETIFMAC, 0);
|
2002-11-26 17:26:06 +00:00
|
|
|
if (error)
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXXMAC: Additional consistency tests regarding the single
|
|
|
|
* and the range of the new label might be performed here.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_ifnet_transmit(struct ifnet *ifp, struct label *ifplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *p, *i;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
p = SLOT(mlabel);
|
|
|
|
i = SLOT(ifplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
return (mac_lomac_single_in_range(p, i) ? 0 : EACCES);
|
|
|
|
}
|
|
|
|
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_inpcb_deliver(struct inpcb *inp, struct label *inplabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
|
|
|
{
|
|
|
|
struct mac_lomac *p, *i;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
p = SLOT(mlabel);
|
|
|
|
i = SLOT(inplabel);
|
|
|
|
|
|
|
|
return (mac_lomac_equal_single(p, i) ? 0 : EACCES);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_kld_load(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
if (!mac_lomac_high_single(obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_ioctl(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel, unsigned long cmd, void /* caddr_t */ *data)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
if (!mac_lomac_enabled)
|
2002-11-26 17:26:06 +00:00
|
|
|
return (0);
|
|
|
|
|
|
|
|
/* XXX: This will be implemented soon... */
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_read(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (maybe_demote(subj, obj, "reading", "pipe", NULL));
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_relabel(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj, *new;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for a pipe, it must be a
|
|
|
|
* single update.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAG_SINGLE);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To perform a relabel of a pipe (LOMAC label or not), LOMAC must
|
|
|
|
* authorize the relabel.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(obj, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on a pipe, the new pipe label
|
|
|
|
* must be in the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on a pipe to be EQUAL, the
|
|
|
|
* subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
Coalesce pipe allocations and frees. Previously, the pipe code
would allocate two 'struct pipe's from the pipe zone, and malloc a
mutex.
- Create a new "struct pipepair" object holding the two 'struct
pipe' instances, struct mutex, and struct label reference. Pipe
structures now have a back-pointer to the pipe pair, and a
'pipe_present' flag to indicate whether the half has been
closed.
- Perform mutex init/destroy in zone init/destroy, avoiding
reallocating the mutex for each pipe. Perform most pipe structure
setup in zone constructor.
- VM memory mappings for pageable buffers are still done outside of
the UMA zone.
- Change MAC API to speak 'struct pipepair' instead of 'struct pipe',
update many policies. MAC labels are also handled outside of the
UMA zone for now. Label-only policy modules don't have to be
recompiled, but if a module is recompiled, its pipe entry points
will need to be updated. If a module actually reached into the
pipe structures (unlikely), that would also need to be modified.
These changes substantially simplify failure handling in the pipe
code as there are many fewer possible failure modes.
On half-close, pipes no longer free the 'struct pipe' for the closed
half until a full-close takes place. However, VM mapped buffers
are still released on half-close.
Some code refactoring is now possible to clean up some of the back
references, etc; this patch attempts not to change the structure
of most of the pipe implementation, only allocation/free code
paths, so as to avoid introducing bugs (hopefully).
This cuts about 8%-9% off the cost of sequential pipe allocation
and free in system call tests on UP and SMP in my micro-benchmarks.
May or may not make a difference in macro-benchmarks, but doing
less work is good.
Reviewed by: juli, tjr
Testing help: dwhite, fenestro, scottl, et al
2004-02-01 05:56:51 +00:00
|
|
|
mac_lomac_check_pipe_write(struct ucred *cred, struct pipepair *pp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *pplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(pplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_proc_debug(struct ucred *cred, struct proc *p)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(p->p_ucred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range checks */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_proc_sched(struct ucred *cred, struct proc *p)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(p->p_ucred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range checks */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_proc_signal(struct ucred *cred, struct proc *p, int signum)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(p->p_ucred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX: range checks */
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ESRCH);
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_socket_deliver(struct socket *so, struct label *solabel,
|
|
|
|
struct mbuf *m, struct label *mlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *p, *s;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
p = SLOT(mlabel);
|
|
|
|
s = SLOT(solabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
return (mac_lomac_equal_single(p, s) ? 0 : EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_socket_relabel(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj, *new;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(solabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the socket, it may be
|
|
|
|
* an update of single.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new, MAC_LOMAC_FLAG_SINGLE);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To relabel a socket, the old socket single must be in the subject
|
|
|
|
* range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(obj, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
/*
|
|
|
|
* To relabel a socket, the new socket single must be in
|
|
|
|
* the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on the socket to contain EQUAL,
|
|
|
|
* the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2007-04-23 13:15:23 +00:00
|
|
|
mac_lomac_check_socket_visible(struct ucred *cred, struct socket *so,
|
|
|
|
struct label *solabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(solabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (ENOENT);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2007-04-22 15:31:22 +00:00
|
|
|
/*
|
|
|
|
* Some system privileges are allowed regardless of integrity grade; others
|
|
|
|
* are allowed only when running with privilege with respect to the LOMAC
|
|
|
|
* policy as they might otherwise allow bypassing of the integrity policy.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mac_lomac_priv_check(struct ucred *cred, int priv)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Exempt only specific privileges from the LOMAC integrity policy.
|
|
|
|
*/
|
|
|
|
switch (priv) {
|
|
|
|
case PRIV_KTRACE:
|
|
|
|
case PRIV_MSGBUF:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow processes to manipulate basic process audit properties, and
|
|
|
|
* to submit audit records.
|
|
|
|
*/
|
|
|
|
case PRIV_AUDIT_GETAUDIT:
|
|
|
|
case PRIV_AUDIT_SETAUDIT:
|
|
|
|
case PRIV_AUDIT_SUBMIT:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow processes to manipulate their regular UNIX credentials.
|
|
|
|
*/
|
|
|
|
case PRIV_CRED_SETUID:
|
|
|
|
case PRIV_CRED_SETEUID:
|
|
|
|
case PRIV_CRED_SETGID:
|
|
|
|
case PRIV_CRED_SETEGID:
|
|
|
|
case PRIV_CRED_SETGROUPS:
|
|
|
|
case PRIV_CRED_SETREUID:
|
|
|
|
case PRIV_CRED_SETREGID:
|
|
|
|
case PRIV_CRED_SETRESUID:
|
|
|
|
case PRIV_CRED_SETRESGID:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow processes to perform system monitoring.
|
|
|
|
*/
|
|
|
|
case PRIV_SEEOTHERGIDS:
|
|
|
|
case PRIV_SEEOTHERUIDS:
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow access to general process debugging facilities. We
|
|
|
|
* separately control debugging based on MAC label.
|
|
|
|
*/
|
|
|
|
case PRIV_DEBUG_DIFFCRED:
|
|
|
|
case PRIV_DEBUG_SUGID:
|
|
|
|
case PRIV_DEBUG_UNPRIV:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow manipulating jails.
|
|
|
|
*/
|
|
|
|
case PRIV_JAIL_ATTACH:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow privilege with respect to the Partition policy, but not the
|
|
|
|
* Privs policy.
|
|
|
|
*/
|
|
|
|
case PRIV_MAC_PARTITION:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow privilege with respect to process resource limits and login
|
|
|
|
* context.
|
|
|
|
*/
|
|
|
|
case PRIV_PROC_LIMIT:
|
|
|
|
case PRIV_PROC_SETLOGIN:
|
|
|
|
case PRIV_PROC_SETRLIMIT:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow System V and POSIX IPC privileges.
|
|
|
|
*/
|
|
|
|
case PRIV_IPC_READ:
|
|
|
|
case PRIV_IPC_WRITE:
|
|
|
|
case PRIV_IPC_ADMIN:
|
|
|
|
case PRIV_IPC_MSGSIZE:
|
|
|
|
case PRIV_MQ_ADMIN:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow certain scheduler manipulations -- possibly this should be
|
|
|
|
* controlled by more fine-grained policy, as potentially low
|
|
|
|
* integrity processes can deny CPU to higher integrity ones.
|
|
|
|
*/
|
|
|
|
case PRIV_SCHED_DIFFCRED:
|
|
|
|
case PRIV_SCHED_SETPRIORITY:
|
|
|
|
case PRIV_SCHED_RTPRIO:
|
|
|
|
case PRIV_SCHED_SETPOLICY:
|
|
|
|
case PRIV_SCHED_SET:
|
|
|
|
case PRIV_SCHED_SETPARAM:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* More IPC privileges.
|
|
|
|
*/
|
|
|
|
case PRIV_SEM_WRITE:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow signaling privileges subject to integrity policy.
|
|
|
|
*/
|
|
|
|
case PRIV_SIGNAL_DIFFCRED:
|
|
|
|
case PRIV_SIGNAL_SUGID:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow access to only limited sysctls from lower integrity levels;
|
|
|
|
* piggy-back on the Jail definition.
|
|
|
|
*/
|
|
|
|
case PRIV_SYSCTL_WRITEJAIL:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow TTY-based privileges, subject to general device access using
|
|
|
|
* labels on TTY device nodes, but not console privilege.
|
|
|
|
*/
|
|
|
|
case PRIV_TTY_DRAINWAIT:
|
|
|
|
case PRIV_TTY_DTRWAIT:
|
|
|
|
case PRIV_TTY_EXCLUSIVE:
|
|
|
|
case PRIV_TTY_PRISON:
|
|
|
|
case PRIV_TTY_STI:
|
|
|
|
case PRIV_TTY_SETA:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Grant most VFS privileges, as almost all are in practice bounded
|
|
|
|
* by more specific checks using labels.
|
|
|
|
*/
|
|
|
|
case PRIV_VFS_READ:
|
|
|
|
case PRIV_VFS_WRITE:
|
|
|
|
case PRIV_VFS_ADMIN:
|
|
|
|
case PRIV_VFS_EXEC:
|
|
|
|
case PRIV_VFS_LOOKUP:
|
|
|
|
case PRIV_VFS_CHFLAGS_DEV:
|
|
|
|
case PRIV_VFS_CHOWN:
|
|
|
|
case PRIV_VFS_CHROOT:
|
|
|
|
case PRIV_VFS_RETAINSUGID:
|
|
|
|
case PRIV_VFS_EXCEEDQUOTA:
|
|
|
|
case PRIV_VFS_FCHROOT:
|
|
|
|
case PRIV_VFS_FHOPEN:
|
|
|
|
case PRIV_VFS_FHSTATFS:
|
|
|
|
case PRIV_VFS_GENERATION:
|
|
|
|
case PRIV_VFS_GETFH:
|
|
|
|
case PRIV_VFS_GETQUOTA:
|
|
|
|
case PRIV_VFS_LINK:
|
|
|
|
case PRIV_VFS_MOUNT:
|
|
|
|
case PRIV_VFS_MOUNT_OWNER:
|
|
|
|
case PRIV_VFS_MOUNT_PERM:
|
|
|
|
case PRIV_VFS_MOUNT_SUIDDIR:
|
|
|
|
case PRIV_VFS_MOUNT_NONUSER:
|
|
|
|
case PRIV_VFS_SETGID:
|
|
|
|
case PRIV_VFS_STICKYFILE:
|
|
|
|
case PRIV_VFS_SYSFLAGS:
|
|
|
|
case PRIV_VFS_UNMOUNT:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow VM privileges; it would be nice if these were subject to
|
|
|
|
* resource limits.
|
|
|
|
*/
|
|
|
|
case PRIV_VM_MADV_PROTECT:
|
|
|
|
case PRIV_VM_MLOCK:
|
|
|
|
case PRIV_VM_MUNLOCK:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow some but not all network privileges. In general, dont allow
|
|
|
|
* reconfiguring the network stack, just normal use.
|
|
|
|
*/
|
|
|
|
case PRIV_NETATALK_RESERVEDPORT:
|
|
|
|
case PRIV_NETINET_RESERVEDPORT:
|
|
|
|
case PRIV_NETINET_RAW:
|
|
|
|
case PRIV_NETINET_REUSEPORT:
|
|
|
|
case PRIV_NETIPX_RESERVEDPORT:
|
|
|
|
case PRIV_NETIPX_RAW:
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* All remaining system privileges are allow only if the process
|
|
|
|
* holds privilege with respect to the LOMAC policy.
|
|
|
|
*/
|
|
|
|
default:
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-04-21 22:08:48 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_system_acct(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2007-04-21 22:08:48 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2007-04-21 22:08:48 +00:00
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
if (!mac_lomac_high_single(obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_system_auditctl(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2007-04-21 22:08:48 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2007-04-21 22:08:48 +00:00
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
if (!mac_lomac_high_single(obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_system_swapoff(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2007-04-21 22:08:48 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_system_swapon(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
if (!mac_lomac_high_single(obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2004-02-22 12:31:44 +00:00
|
|
|
mac_lomac_check_system_sysctl(struct ucred *cred, struct sysctl_oid *oidp,
|
|
|
|
void *arg1, int arg2, struct sysctl_req *req)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
2004-02-22 12:31:44 +00:00
|
|
|
* Treat sysctl variables without CTLFLAG_ANYBODY flag as
|
|
|
|
* lomac/high, but also require privilege to change them.
|
2002-11-26 17:26:06 +00:00
|
|
|
*/
|
2004-02-22 12:31:44 +00:00
|
|
|
if (req->newptr != NULL && (oidp->oid_kind & CTLFLAG_ANYBODY) == 0) {
|
2002-11-26 17:26:06 +00:00
|
|
|
#ifdef notdef
|
|
|
|
if (!mac_lomac_subject_dominate_high(subj))
|
|
|
|
return (EACCES);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (mac_lomac_subject_privileged(subj))
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_create(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct componentname *cnp, struct vattr *vap)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
if (obj->ml_flags & MAC_LOMAC_FLAG_AUX &&
|
|
|
|
!mac_lomac_dominate_element(&subj->ml_single, &obj->ml_auxsingle))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_deleteacl(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, acl_type_t type)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_link(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_mmap(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int prot, int flags)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rely on the use of open()-time protections to handle
|
|
|
|
* non-revocation cases.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
2005-04-14 16:03:30 +00:00
|
|
|
if (((prot & VM_PROT_WRITE) != 0) && ((flags & MAP_SHARED) != 0)) {
|
2002-11-26 17:26:06 +00:00
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (maybe_demote(subj, obj, "mapping", "file", vp));
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_check_vnode_mmap_downgrade(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, /* XXX vm_prot_t */ int *prot)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rely on the use of open()-time protections to handle
|
|
|
|
* non-revocation cases.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
*prot &= ~VM_PROT_WRITE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_open(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int acc_mode)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/* XXX privilege override for admin? */
|
|
|
|
if (acc_mode & (VWRITE | VAPPEND | VADMIN)) {
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_read(struct ucred *active_cred, struct ucred *file_cred,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct vnode *vp, struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_dominate_single(obj, subj))
|
|
|
|
return (maybe_demote(subj, obj, "reading", "file", vp));
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_relabel(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct label *newlabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *old, *new, *subj;
|
|
|
|
int error;
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
old = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
new = SLOT(newlabel);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is a LOMAC label update for the vnode, it must be a
|
|
|
|
* single label, with an optional explicit auxiliary single.
|
|
|
|
*/
|
|
|
|
error = lomac_atmostflags(new,
|
|
|
|
MAC_LOMAC_FLAG_SINGLE | MAC_LOMAC_FLAG_AUX);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To perform a relabel of the vnode (LOMAC label or not), LOMAC must
|
|
|
|
* authorize the relabel.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(old, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the LOMAC label is to be changed, authorize as appropriate.
|
|
|
|
*/
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_SINGLE) {
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on a vnode, the new vnode label
|
|
|
|
* must be in the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_single_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the LOMAC label on the vnode to be EQUAL,
|
|
|
|
* the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (new->ml_flags & MAC_LOMAC_FLAG_AUX) {
|
2003-08-21 18:07:52 +00:00
|
|
|
/*
|
|
|
|
* Fill in the missing parts from the previous label.
|
|
|
|
*/
|
|
|
|
if ((new->ml_flags & MAC_LOMAC_FLAG_SINGLE) == 0)
|
|
|
|
mac_lomac_copy_single(subj, new);
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
/*
|
|
|
|
* To change the auxiliary LOMAC label on a vnode, the new
|
|
|
|
* vnode label must be in the subject range.
|
|
|
|
*/
|
|
|
|
if (!mac_lomac_auxsingle_in_range(new, subj))
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the auxiliary LOMAC label on the vnode to be
|
|
|
|
* EQUAL, the subject must have appropriate privilege.
|
|
|
|
*/
|
|
|
|
if (mac_lomac_contains_equal(new)) {
|
|
|
|
error = mac_lomac_subject_privileged(subj);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_rename_from(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_rename_to(struct ucred *cred, struct vnode *dvp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
|
|
|
int samedir, struct componentname *cnp)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(dvplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
if (vp != NULL) {
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_revoke(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setacl(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, acl_type_t type, struct acl *acl)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setextattr(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, int attrnamespace, const char *name,
|
2002-11-26 17:26:06 +00:00
|
|
|
struct uio *uio)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
/* XXX: protect the MAC EA in a special way? */
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setflags(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, u_long flags)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setmode(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, mode_t mode)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setowner(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, uid_t uid, gid_t gid)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_setutimes(struct ucred *cred, struct vnode *vp,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct label *vplabel, struct timespec atime, struct timespec mtime)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2007-09-10 00:00:18 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_unlink(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dvplabel, struct vnode *vp, struct label *vplabel,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
subj = SLOT(cred->cr_label);
|
|
|
|
obj = SLOT(dvplabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
obj = SLOT(vplabel);
|
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-11-26 17:26:06 +00:00
|
|
|
static int
|
|
|
|
mac_lomac_check_vnode_write(struct ucred *active_cred,
|
2007-04-23 13:15:23 +00:00
|
|
|
struct ucred *file_cred, struct vnode *vp, struct label *vplabel)
|
2002-11-26 17:26:06 +00:00
|
|
|
{
|
|
|
|
struct mac_lomac *subj, *obj;
|
|
|
|
|
|
|
|
if (!mac_lomac_enabled || !revocation_enabled)
|
|
|
|
return (0);
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
subj = SLOT(active_cred->cr_label);
|
2007-04-23 13:15:23 +00:00
|
|
|
obj = SLOT(vplabel);
|
2002-11-26 17:26:06 +00:00
|
|
|
|
|
|
|
if (!mac_lomac_subject_dominate(subj, obj))
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_lomac_thread_userret(struct thread *td)
|
|
|
|
{
|
|
|
|
struct proc *p = td->td_proc;
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
struct mac_lomac_proc *subj = PSLOT(p->p_label);
|
2002-11-26 17:26:06 +00:00
|
|
|
struct ucred *newcred, *oldcred;
|
|
|
|
int dodrop;
|
|
|
|
|
|
|
|
mtx_lock(&subj->mtx);
|
|
|
|
if (subj->mac_lomac.ml_flags & MAC_LOMAC_FLAG_UPDATE) {
|
|
|
|
dodrop = 0;
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
newcred = crget();
|
|
|
|
/*
|
|
|
|
* Prevent a lock order reversal in
|
|
|
|
* mac_cred_mmapped_drop_perms; ideally, the other
|
|
|
|
* user of subj->mtx wouldn't be holding Giant.
|
|
|
|
*/
|
|
|
|
mtx_lock(&Giant);
|
|
|
|
PROC_LOCK(p);
|
|
|
|
mtx_lock(&subj->mtx);
|
|
|
|
/*
|
|
|
|
* Check if we lost the race while allocating the cred.
|
|
|
|
*/
|
|
|
|
if ((subj->mac_lomac.ml_flags & MAC_LOMAC_FLAG_UPDATE) == 0) {
|
|
|
|
crfree(newcred);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
oldcred = p->p_ucred;
|
|
|
|
crcopy(newcred, oldcred);
|
|
|
|
crhold(newcred);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
mac_lomac_copy(&subj->mac_lomac, SLOT(newcred->cr_label));
|
2002-11-26 17:26:06 +00:00
|
|
|
p->p_ucred = newcred;
|
|
|
|
crfree(oldcred);
|
|
|
|
dodrop = 1;
|
|
|
|
out:
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
if (dodrop)
|
|
|
|
mac_cred_mmapped_drop_perms(curthread, newcred);
|
|
|
|
mtx_unlock(&Giant);
|
|
|
|
} else {
|
|
|
|
mtx_unlock(&subj->mtx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mac_policy_ops mac_lomac_ops =
|
|
|
|
{
|
|
|
|
.mpo_init = mac_lomac_init,
|
|
|
|
.mpo_init_bpfdesc_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_cred_label = mac_lomac_init_label,
|
2007-04-23 13:36:54 +00:00
|
|
|
.mpo_init_devfs_label = mac_lomac_init_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_init_ifnet_label = mac_lomac_init_label,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_init_syncache_label = mac_lomac_init_label_waitcheck,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_init_inpcb_label = mac_lomac_init_label_waitcheck,
|
2003-03-26 15:12:03 +00:00
|
|
|
.mpo_init_ipq_label = mac_lomac_init_label_waitcheck,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_init_mbuf_label = mac_lomac_init_label_waitcheck,
|
|
|
|
.mpo_init_mount_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_pipe_label = mac_lomac_init_label,
|
|
|
|
.mpo_init_proc_label = mac_lomac_init_proc_label,
|
|
|
|
.mpo_init_socket_label = mac_lomac_init_label_waitcheck,
|
|
|
|
.mpo_init_socket_peer_label = mac_lomac_init_label_waitcheck,
|
|
|
|
.mpo_init_vnode_label = mac_lomac_init_label,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_init_syncache_from_inpcb = mac_lomac_init_syncache_from_inpcb,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_destroy_bpfdesc_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_cred_label = mac_lomac_destroy_label,
|
2007-04-23 13:36:54 +00:00
|
|
|
.mpo_destroy_devfs_label = mac_lomac_destroy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_destroy_ifnet_label = mac_lomac_destroy_label,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_destroy_inpcb_label = mac_lomac_destroy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_destroy_ipq_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_mbuf_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_mount_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_pipe_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_proc_label = mac_lomac_destroy_proc_label,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_destroy_syncache_label = mac_lomac_destroy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_destroy_socket_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_socket_peer_label = mac_lomac_destroy_label,
|
|
|
|
.mpo_destroy_vnode_label = mac_lomac_destroy_label,
|
2003-12-06 21:48:03 +00:00
|
|
|
.mpo_copy_cred_label = mac_lomac_copy_label,
|
2004-06-24 03:34:46 +00:00
|
|
|
.mpo_copy_ifnet_label = mac_lomac_copy_label,
|
2003-06-02 18:49:11 +00:00
|
|
|
.mpo_copy_mbuf_label = mac_lomac_copy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_copy_pipe_label = mac_lomac_copy_label,
|
Implement sockets support for __mac_get_fd() and __mac_set_fd()
system calls, and prefer these calls over getsockopt()/setsockopt()
for ABI reasons. When addressing UNIX domain sockets, these calls
retrieve and modify the socket label, not the label of the
rendezvous vnode.
- Create mac_copy_socket_label() entry point based on
mac_copy_pipe_label() entry point, intended to copy the socket
label into temporary storage that doesn't require a socket lock
to be held (currently Giant).
- Implement mac_copy_socket_label() for various policies.
- Expose socket label allocation, free, internalize, externalize
entry points as non-static from mac_net.c.
- Use mac_socket_label_set() in __mac_set_fd().
MAC-aware applications may now use mac_get_fd(), mac_set_fd(), and
mac_get_peer() to retrieve and set various socket labels without
directly invoking the getsockopt() interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-16 23:31:45 +00:00
|
|
|
.mpo_copy_socket_label = mac_lomac_copy_label,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_copy_vnode_label = mac_lomac_copy_label,
|
|
|
|
.mpo_externalize_cred_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_ifnet_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_pipe_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_socket_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_socket_peer_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_externalize_vnode_label = mac_lomac_externalize_label,
|
|
|
|
.mpo_internalize_cred_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_ifnet_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_pipe_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_socket_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_internalize_vnode_label = mac_lomac_internalize_label,
|
|
|
|
.mpo_create_devfs_device = mac_lomac_create_devfs_device,
|
|
|
|
.mpo_create_devfs_directory = mac_lomac_create_devfs_directory,
|
|
|
|
.mpo_create_devfs_symlink = mac_lomac_create_devfs_symlink,
|
|
|
|
.mpo_create_mount = mac_lomac_create_mount,
|
|
|
|
.mpo_relabel_vnode = mac_lomac_relabel_vnode,
|
2007-04-23 13:36:54 +00:00
|
|
|
.mpo_update_devfs = mac_lomac_update_devfs,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_associate_vnode_devfs = mac_lomac_associate_vnode_devfs,
|
|
|
|
.mpo_associate_vnode_extattr = mac_lomac_associate_vnode_extattr,
|
|
|
|
.mpo_associate_vnode_singlelabel =
|
|
|
|
mac_lomac_associate_vnode_singlelabel,
|
|
|
|
.mpo_create_vnode_extattr = mac_lomac_create_vnode_extattr,
|
|
|
|
.mpo_setlabel_vnode_extattr = mac_lomac_setlabel_vnode_extattr,
|
|
|
|
.mpo_create_mbuf_from_socket = mac_lomac_create_mbuf_from_socket,
|
2006-12-13 06:03:22 +00:00
|
|
|
.mpo_create_mbuf_from_syncache = mac_lomac_create_mbuf_from_syncache,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_create_pipe = mac_lomac_create_pipe,
|
|
|
|
.mpo_create_socket = mac_lomac_create_socket,
|
|
|
|
.mpo_create_socket_from_socket = mac_lomac_create_socket_from_socket,
|
|
|
|
.mpo_relabel_pipe = mac_lomac_relabel_pipe,
|
|
|
|
.mpo_relabel_socket = mac_lomac_relabel_socket,
|
|
|
|
.mpo_set_socket_peer_from_mbuf = mac_lomac_set_socket_peer_from_mbuf,
|
|
|
|
.mpo_set_socket_peer_from_socket =
|
|
|
|
mac_lomac_set_socket_peer_from_socket,
|
|
|
|
.mpo_create_bpfdesc = mac_lomac_create_bpfdesc,
|
|
|
|
.mpo_create_datagram_from_ipq = mac_lomac_create_datagram_from_ipq,
|
|
|
|
.mpo_create_fragment = mac_lomac_create_fragment,
|
|
|
|
.mpo_create_ifnet = mac_lomac_create_ifnet,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_create_inpcb_from_socket = mac_lomac_create_inpcb_from_socket,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_create_ipq = mac_lomac_create_ipq,
|
2003-12-17 14:55:11 +00:00
|
|
|
.mpo_create_mbuf_from_inpcb = mac_lomac_create_mbuf_from_inpcb,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_create_mbuf_linklayer = mac_lomac_create_mbuf_linklayer,
|
|
|
|
.mpo_create_mbuf_from_bpfdesc = mac_lomac_create_mbuf_from_bpfdesc,
|
|
|
|
.mpo_create_mbuf_from_ifnet = mac_lomac_create_mbuf_from_ifnet,
|
|
|
|
.mpo_create_mbuf_multicast_encap =
|
|
|
|
mac_lomac_create_mbuf_multicast_encap,
|
|
|
|
.mpo_create_mbuf_netlayer = mac_lomac_create_mbuf_netlayer,
|
|
|
|
.mpo_fragment_match = mac_lomac_fragment_match,
|
|
|
|
.mpo_relabel_ifnet = mac_lomac_relabel_ifnet,
|
|
|
|
.mpo_update_ipq = mac_lomac_update_ipq,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_inpcb_sosetlabel = mac_lomac_inpcb_sosetlabel,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_execve_transition = mac_lomac_execve_transition,
|
|
|
|
.mpo_execve_will_transition = mac_lomac_execve_will_transition,
|
|
|
|
.mpo_create_proc0 = mac_lomac_create_proc0,
|
|
|
|
.mpo_create_proc1 = mac_lomac_create_proc1,
|
|
|
|
.mpo_relabel_cred = mac_lomac_relabel_cred,
|
|
|
|
.mpo_check_bpfdesc_receive = mac_lomac_check_bpfdesc_receive,
|
|
|
|
.mpo_check_cred_relabel = mac_lomac_check_cred_relabel,
|
|
|
|
.mpo_check_cred_visible = mac_lomac_check_cred_visible,
|
|
|
|
.mpo_check_ifnet_relabel = mac_lomac_check_ifnet_relabel,
|
|
|
|
.mpo_check_ifnet_transmit = mac_lomac_check_ifnet_transmit,
|
Introduce a MAC label reference in 'struct inpcb', which caches
the MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols. This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.
This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.
For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks. Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.
Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.
Reviewed by: sam, bms
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
|
|
|
.mpo_check_inpcb_deliver = mac_lomac_check_inpcb_deliver,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_check_kld_load = mac_lomac_check_kld_load,
|
|
|
|
.mpo_check_pipe_ioctl = mac_lomac_check_pipe_ioctl,
|
|
|
|
.mpo_check_pipe_read = mac_lomac_check_pipe_read,
|
|
|
|
.mpo_check_pipe_relabel = mac_lomac_check_pipe_relabel,
|
|
|
|
.mpo_check_pipe_write = mac_lomac_check_pipe_write,
|
|
|
|
.mpo_check_proc_debug = mac_lomac_check_proc_debug,
|
|
|
|
.mpo_check_proc_sched = mac_lomac_check_proc_sched,
|
|
|
|
.mpo_check_proc_signal = mac_lomac_check_proc_signal,
|
|
|
|
.mpo_check_socket_deliver = mac_lomac_check_socket_deliver,
|
|
|
|
.mpo_check_socket_relabel = mac_lomac_check_socket_relabel,
|
|
|
|
.mpo_check_socket_visible = mac_lomac_check_socket_visible,
|
2007-04-21 22:08:48 +00:00
|
|
|
.mpo_check_system_acct = mac_lomac_check_system_acct,
|
|
|
|
.mpo_check_system_auditctl = mac_lomac_check_system_auditctl,
|
|
|
|
.mpo_check_system_swapoff = mac_lomac_check_system_swapoff,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_check_system_swapon = mac_lomac_check_system_swapon,
|
|
|
|
.mpo_check_system_sysctl = mac_lomac_check_system_sysctl,
|
|
|
|
.mpo_check_vnode_access = mac_lomac_check_vnode_open,
|
|
|
|
.mpo_check_vnode_create = mac_lomac_check_vnode_create,
|
|
|
|
.mpo_check_vnode_deleteacl = mac_lomac_check_vnode_deleteacl,
|
|
|
|
.mpo_check_vnode_link = mac_lomac_check_vnode_link,
|
|
|
|
.mpo_check_vnode_mmap = mac_lomac_check_vnode_mmap,
|
|
|
|
.mpo_check_vnode_mmap_downgrade = mac_lomac_check_vnode_mmap_downgrade,
|
|
|
|
.mpo_check_vnode_open = mac_lomac_check_vnode_open,
|
|
|
|
.mpo_check_vnode_read = mac_lomac_check_vnode_read,
|
|
|
|
.mpo_check_vnode_relabel = mac_lomac_check_vnode_relabel,
|
|
|
|
.mpo_check_vnode_rename_from = mac_lomac_check_vnode_rename_from,
|
|
|
|
.mpo_check_vnode_rename_to = mac_lomac_check_vnode_rename_to,
|
|
|
|
.mpo_check_vnode_revoke = mac_lomac_check_vnode_revoke,
|
|
|
|
.mpo_check_vnode_setacl = mac_lomac_check_vnode_setacl,
|
|
|
|
.mpo_check_vnode_setextattr = mac_lomac_check_vnode_setextattr,
|
|
|
|
.mpo_check_vnode_setflags = mac_lomac_check_vnode_setflags,
|
|
|
|
.mpo_check_vnode_setmode = mac_lomac_check_vnode_setmode,
|
|
|
|
.mpo_check_vnode_setowner = mac_lomac_check_vnode_setowner,
|
|
|
|
.mpo_check_vnode_setutimes = mac_lomac_check_vnode_setutimes,
|
2007-09-10 00:00:18 +00:00
|
|
|
.mpo_check_vnode_unlink = mac_lomac_check_vnode_unlink,
|
2002-11-26 17:26:06 +00:00
|
|
|
.mpo_check_vnode_write = mac_lomac_check_vnode_write,
|
|
|
|
.mpo_thread_userret = mac_lomac_thread_userret,
|
2006-09-12 04:25:13 +00:00
|
|
|
.mpo_create_mbuf_from_firewall = mac_lomac_create_mbuf_from_firewall,
|
2007-04-22 15:31:22 +00:00
|
|
|
.mpo_priv_check = mac_lomac_priv_check,
|
2002-11-26 17:26:06 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
MAC_POLICY_SET(&mac_lomac_ops, mac_lomac, "TrustedBSD MAC/LOMAC",
|
2003-10-21 15:18:26 +00:00
|
|
|
MPC_LOADTIME_FLAG_NOTLATE | MPC_LOADTIME_FLAG_LABELMBUFS,
|
|
|
|
&mac_lomac_slot);
|