freebsd-nq/sys/dev/si/si.c

2397 lines
55 KiB
C
Raw Normal View History

/*
* Device driver for Specialix range (SI/XIO) of serial line multiplexors.
*
* Copyright (C) 1990, 1992 Specialix International,
* Copyright (C) 1993, Andy Rutter <andy@acronym.co.uk>
* Copyright (C) 1995, Peter Wemm <peter@haywire.dialix.com>
*
* Originally derived from: SunOS 4.x version
* Ported from BSDI version to FreeBSD by Peter Wemm.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notices, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notices, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Andy Rutter of
* Advanced Methods and Tools Ltd. based on original information
* from Specialix International.
* 4. Neither the name of Advanced Methods and Tools, nor Specialix
* International may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHORS BE LIABLE.
*
* $Id: si.c,v 1.41 1996/05/30 23:41:35 peter Exp $
*/
#ifndef lint
static char si_copyright1[] = "@(#) (C) Specialix International, 1990,1992",
si_copyright2[] = "@(#) (C) Andy Rutter 1993",
si_copyright3[] = "@(#) (C) Peter Wemm 1995";
#endif /* not lint */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/ttydefaults.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/dkstat.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/devconf.h>
#ifdef DEVFS
#include <sys/devfsext.h>
#endif /*DEVFS*/
#include <machine/clock.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <i386/isa/icu.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/sireg.h>
#include <machine/si.h>
#include <machine/stdarg.h>
#include "si.h"
/*
* This device driver is designed to interface the Specialix International
* range of serial multiplexor cards (SI/XIO) to BSDI/386 on an ISA bus machine.
*
* The controller is interfaced to the host via dual port ram
* and a (programmable - SIHOST2) interrupt at IRQ 11,12 or 15.
*/
#define POLL /* turn on poller to generate buffer empty interrupt */
#define SI_DEF_HWFLOW /* turn on default CRTSCTS flow control */
#define SI_I_HIGH_WATER (TTYHOG - 2 * SI_BUFFERSIZE)
#define INT_COUNT 25000 /* max of 125 ints per second */
#define RXINT_COUNT 1 /* one rxint per 10 milliseconds */
enum si_mctl { GET, SET, BIS, BIC };
static void si_command __P((struct si_port *, int, int));
static int si_modem __P((struct si_port *, enum si_mctl, int));
static void si_write_enable __P((struct si_port *, int));
static int si_Sioctl __P((dev_t, int, caddr_t, int, struct proc *));
static void si_start __P((struct tty *));
static void si_lstart __P((struct si_port *));
static void si_disc_optim __P((struct tty *tp, struct termios *t,
struct si_port *pp));
static void sihardclose __P((struct si_port *pp));
static void sidtrwakeup __P((void *chan));
1995-12-10 13:40:44 +00:00
static int siparam __P((struct tty *, struct termios *));
1995-12-10 13:40:44 +00:00
static void si_registerdev __P((struct isa_device *id));
static int siprobe __P((struct isa_device *id));
static int siattach __P((struct isa_device *id));
static void si_modem_state __P((struct si_port *pp, struct tty *tp, int hi_ip));
struct isa_driver sidriver =
{ siprobe, siattach, "si" };
static d_open_t siopen;
static d_close_t siclose;
static d_read_t siread;
static d_write_t siwrite;
static d_ioctl_t siioctl;
static d_stop_t sistop;
static d_devtotty_t sidevtotty;
#define CDEV_MAJOR 68
static struct cdevsw si_cdevsw =
{ siopen, siclose, siread, siwrite, /*68*/
siioctl, sistop, noreset, sidevtotty,/* si */
ttselect, nommap, NULL, "si", NULL, -1 };
#ifdef SI_DEBUG /* use: ``options "SI_DEBUG"'' in your config file */
static void si_dprintf __P((struct si_port *pp, int flags, const char *fmt,
...));
static char *si_mctl2str __P((enum si_mctl cmd));
#define DPRINT(x) si_dprintf x
#else
#define DPRINT(x) /* void */
#endif
static int si_Nports;
static int si_Nmodules;
static int si_debug = 0; /* data, not bss, so it's patchable */
static struct tty *si_tty;
/* where the firmware lives; defined in si_code.c */
extern int si_dsize;
extern unsigned char si_download[];
struct si_softc {
int sc_type; /* adapter type */
char *sc_typename; /* adapter type string */
struct si_port *sc_ports; /* port structures for this card */
caddr_t sc_paddr; /* physical addr of iomem */
caddr_t sc_maddr; /* kvaddr of iomem */
int sc_nport; /* # ports on this card */
int sc_irq; /* copy of attach irq */
int sc_eisa_iobase; /* EISA io port address */
int sc_eisa_irqbits;
struct kern_devconf sc_kdc;
#ifdef DEVFS
struct {
void *ttyd;
void *cuaa;
void *ttyl;
void *ttyi;
} devfs_token[32]; /* what is the max per card? */
void *control_token;
#endif
};
1995-12-10 13:40:44 +00:00
static struct si_softc si_softc[NSI]; /* up to 4 elements */
#ifndef B2000 /* not standard, but the hardware knows it. */
# define B2000 2000
#endif
static struct speedtab bdrates[] = {
B75, CLK75, /* 0x0 */
B110, CLK110, /* 0x1 */
B150, CLK150, /* 0x3 */
B300, CLK300, /* 0x4 */
B600, CLK600, /* 0x5 */
B1200, CLK1200, /* 0x6 */
B2000, CLK2000, /* 0x7 */
B2400, CLK2400, /* 0x8 */
B4800, CLK4800, /* 0x9 */
B9600, CLK9600, /* 0xb */
B19200, CLK19200, /* 0xc */
B38400, CLK38400, /* 0x2 (out of order!) */
B57600, CLK57600, /* 0xd */
B115200, CLK110, /* 0x1 (dupe!, 110 baud on "si") */
-1, -1
};
/* populated with approx character/sec rates - translated at card
* initialisation time to chars per tick of the clock */
static int done_chartimes = 0;
static struct speedtab chartimes[] = {
B75, 8,
B110, 11,
B150, 15,
B300, 30,
B600, 60,
B1200, 120,
B2000, 200,
B2400, 240,
B4800, 480,
B9600, 960,
B19200, 1920,
B38400, 3840,
B57600, 5760,
B115200, 11520,
-1, -1
};
static volatile int in_intr = 0; /* Inside interrupt handler? */
static int si_default_rate = TTYDEF_SPEED;
static int si_default_iflag = 0;
static int si_default_oflag = 0;
static int si_default_lflag = 0;
#ifdef SI_DEF_HWFLOW
static int si_default_cflag = TTYDEF_CFLAG | CRTSCTS;
#else
static int si_default_cflag = TTYDEF_CFLAG;
#endif
#ifdef POLL
static int si_pollrate; /* in addition to irq */
SYSCTL_INT(_machdep, OID_AUTO, si_pollrate, CTLFLAG_RD, &si_pollrate, 0, "");
static int init_finished = 0;
static int fastpoll = 0;
static void si_poll __P((void *));
#endif
/*
* Array of adapter types and the corresponding RAM size. The order of
* entries here MUST match the ordinal of the adapter type.
*/
static char *si_type[] = {
"EMPTY",
"SIHOST",
"SI2", /* MCA */
"SIHOST2",
"SIEISA",
};
static struct kern_devconf si_kdc[NSI] = { {
0, 0, 0, /* filled in by dev_attach */
"si", 0, { MDDT_ISA, 0, "tty" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
&kdc_isa0, /* parent */
0, /* parent data */
DC_UNCONFIGURED, /* state */
"Specialix SI/XIO Host adapter",
DC_CLS_SERIAL, /* class */
} };
1995-12-10 13:40:44 +00:00
static void
si_registerdev(id)
struct isa_device *id;
{
if (id->id_unit != 0) {
bcopy(&si_kdc[0], &si_kdc[id->id_unit], sizeof(si_kdc[0]));
}
si_kdc[id->id_unit].kdc_unit = id->id_unit;
si_kdc[id->id_unit].kdc_isa = id;
si_kdc[id->id_unit].kdc_state = DC_UNCONFIGURED;
dev_attach(&si_kdc[id->id_unit]);
}
/* Look for a valid board at the given mem addr */
1995-12-10 13:40:44 +00:00
static int
siprobe(id)
struct isa_device *id;
{
struct si_softc *sc;
int type;
u_int i, ramsize;
volatile BYTE was, *ux;
volatile unsigned char *maddr;
unsigned char *paddr;
si_registerdev(id);
si_pollrate = (hz / 10); /* 10 per second */
maddr = id->id_maddr; /* virtual address... */
paddr = (caddr_t)vtophys(id->id_maddr); /* physical address... */
DPRINT((0, DBG_AUTOBOOT, "si%d: probe at virtual=0x%x physical=0x%x\n",
id->id_unit, id->id_maddr, paddr));
/*
* this is a lie, but it's easier than trying to handle caching
* and ram conflicts in the >1M and <16M region.
*/
if ((caddr_t)paddr < (caddr_t)IOM_BEGIN ||
(caddr_t)paddr >= (caddr_t)IOM_END) {
printf("si%d: iomem (%lx) out of range\n",
id->id_unit, (long)paddr);
return(0);
}
if (id->id_unit >= NSI) {
/* THIS IS IMPOSSIBLE */
return(0);
}
if (((u_int)paddr & 0x7fff) != 0) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: iomem (%x) not on 32k boundary\n",
id->id_unit, paddr));
return(0);
}
for (i=0; i < NSI; i++) {
if ((sc = &si_softc[i]) == NULL)
continue;
if ((caddr_t)sc->sc_paddr == (caddr_t)paddr) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: iomem (%x) already configured to si%d\n",
id->id_unit, sc->sc_paddr, i));
return(0);
}
}
#if NEISA > 0
if (id->id_iobase > 0x0fff) { /* EISA card */
int irq, port;
unsigned long base;
int eisa_irqs[] = { 0,IRQ1,IRQ2,IRQ3,IRQ4,IRQ5,IRQ6,IRQ7,
IRQ8,IRQ9,IRQ10,IRQ11,IRQ12,IRQ13,IRQ14,IRQ15 };
port = id->id_iobase;
base = (inb(port+1) << 24) | (inb(port) << 16);
irq = ((inb(port+2) >> 4) & 0xf);
id->id_irq = eisa_irqs[irq];
DPRINT((0, DBG_AUTOBOOT,
"si%d: EISA base %x, irq %x, id_irq %x, port %x\n",
id->id_unit, base, irq, id->id_irq, port));
if ((id->id_irq&(IRQ1|IRQ2|IRQ8|IRQ13)) != 0)
goto bad_irq;
id->id_iobase &= 0xf000;
id->id_iosize = 0x0fff;
type = EISA;
outb(p+2, (BYTE)irq << 4);
sc->sc_eisa_iobase = p;
sc->sc_eisa_irqbits = irq << 4;
ramsize = SIEISA_RAMSIZE;
goto got_card;
}
#endif
/* Is there anything out there? (0x17 is just an arbitrary number) */
*maddr = 0x17;
if (*maddr != 0x17) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: 0x17 check fail at phys 0x%x\n",
id->id_unit, paddr));
fail:
return(0);
}
/*
* OK, now to see if whatever responded is really an SI card.
* Try for a MK II first (SIHOST2)
*/
for (i=SIPLSIG; i<SIPLSIG+8; i++)
if ((*(maddr+i) & 7) != (~(BYTE)i & 7))
goto try_mk1;
/* It must be an SIHOST2 */
*(maddr + SIPLRESET) = 0;
*(maddr + SIPLIRQCLR) = 0;
*(maddr + SIPLIRQSET) = 0x10;
type = SIHOST2;
ramsize = SIHOST2_RAMSIZE;
goto got_card;
/*
* Its not a MK II, so try for a MK I (SIHOST)
*/
try_mk1:
*(maddr+SIRESET) = 0x0; /* reset the card */
*(maddr+SIINTCL) = 0x0; /* clear int */
*(maddr+SIRAM) = 0x17;
if (*(maddr+SIRAM) != (BYTE)0x17)
goto fail;
*(maddr+0x7ff8) = 0x17;
if (*(maddr+0x7ff8) != (BYTE)0x17) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: 0x17 check fail at phys 0x%x = 0x%x\n",
id->id_unit, paddr+0x77f8, *(maddr+0x77f8)));
goto fail;
}
/* It must be an SIHOST (maybe?) - there must be a better way XXXX */
type = SIHOST;
ramsize = SIHOST_RAMSIZE;
got_card:
DPRINT((0, DBG_AUTOBOOT, "si%d: found type %d card, try memory test\n",
id->id_unit, type));
/* Try the acid test */
ux = (BYTE *)(maddr + SIRAM);
for (i=0; i<ramsize; i++, ux++)
*ux = (BYTE)(i&0xff);
ux = (BYTE *)(maddr + SIRAM);
for (i=0; i<ramsize; i++, ux++) {
if ((was = *ux) != (BYTE)(i&0xff)) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: match fail at phys 0x%x, was %x should be %x\n",
id->id_unit, paddr+i, was, i&0xff));
goto fail;
}
}
/* clear out the RAM */
ux = (BYTE *)(maddr + SIRAM);
for (i=0; i<ramsize; i++)
*ux++ = 0;
ux = (BYTE *)(maddr + SIRAM);
for (i=0; i<ramsize; i++) {
if ((was = *ux++) != 0) {
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: clear fail at phys 0x%x, was %x\n",
id->id_unit, paddr+i, was));
goto fail;
}
}
/*
* Success, we've found a valid board, now fill in
* the adapter structure.
*/
switch (type) {
case SIHOST2:
if ((id->id_irq&(IRQ11|IRQ12|IRQ15)) == 0) {
bad_irq:
DPRINT((0, DBG_AUTOBOOT|DBG_FAIL,
"si%d: bad IRQ value - %d\n",
id->id_unit, id->id_irq));
return(0);
}
id->id_msize = SIHOST2_MEMSIZE;
break;
case SIHOST:
if ((id->id_irq&(IRQ11|IRQ12|IRQ15)) == 0) {
goto bad_irq;
}
id->id_msize = SIHOST_MEMSIZE;
break;
case SIEISA:
id->id_msize = SIEISA_MEMSIZE;
break;
case SI2: /* MCA */
default:
printf("si%d: %s not supported\n", id->id_unit, si_type[type]);
return(0);
}
si_softc[id->id_unit].sc_type = type;
si_softc[id->id_unit].sc_typename = si_type[type];
return(-1); /* -1 == found */
}
/*
* Attach the device. Initialize the card.
*/
1995-12-10 13:40:44 +00:00
static int
siattach(id)
struct isa_device *id;
{
int unit = id->id_unit;
struct si_softc *sc = &si_softc[unit];
struct si_port *pp;
volatile struct si_channel *ccbp;
volatile struct si_reg *regp;
volatile caddr_t maddr;
struct si_module *modp;
struct tty *tp;
struct speedtab *spt;
int nmodule, nport, x, y;
int uart_type;
#ifdef DEVFS
char name[32];
#endif
DPRINT((0, DBG_AUTOBOOT, "si%d: siattach\n", id->id_unit));
sc->sc_paddr = (caddr_t)vtophys(id->id_maddr);
sc->sc_maddr = id->id_maddr;
sc->sc_irq = id->id_irq;
sc->sc_ports = NULL; /* mark as uninitialised */
maddr = sc->sc_maddr;
/*
* OK, now lets download the firmware and try and boot the CPU..
*/
DPRINT((0, DBG_DOWNLOAD, "si%d: si_download: nbytes %d\n",
id->id_unit, si_dsize));
bcopy(si_download, maddr, si_dsize);
switch (sc->sc_type) {
case SIEISA:
#if NEISA > 0
/* modify the Z280 firmware to tell it that it's on an EISA */
*(maddr+0x42) = 1;
outb(sc->sc_eisa_iobase+2, sc->sc_eisa_irqbits | 4);
(void)inb(sc->sc_eisa_iobase+3); /* reset interrupt */
break;
#endif /* fall-through if not EISA */
case SI2:
/*
* must get around to converting the code for
* these one day, if FreeBSD ever supports it.
*/
return 0;
case SIHOST:
*(maddr+SIRESET_CL) = 0;
*(maddr+SIINTCL_CL) = 0;
break;
case SIHOST2:
*(maddr+SIPLRESET) = 0x10;
switch (sc->sc_irq) {
case IRQ11:
*(maddr+SIPLIRQ11) = 0x10;
break;
case IRQ12:
*(maddr+SIPLIRQ12) = 0x10;
break;
case IRQ15:
*(maddr+SIPLIRQ15) = 0x10;
break;
}
*(maddr+SIPLIRQCLR) = 0x10;
break;
}
DELAY(1000000); /* wait around for a second */
regp = (struct si_reg *)maddr;
y = 0;
/* wait max of 5 sec for init OK */
while (regp->initstat == 0 && y++ < 10) {
DELAY(500000);
}
switch (regp->initstat) {
case 0:
printf("si%d: startup timeout - aborting\n", unit);
sc->sc_type = SIEMPTY;
return 0;
case 1:
/* set throttle to 125 intr per second */
regp->int_count = INT_COUNT;
/* rx intr max of 25 timer per second */
regp->rx_int_count = RXINT_COUNT;
regp->int_pending = 0; /* no intr pending */
regp->int_scounter = 0; /* reset counter */
break;
case 0xff:
/*
* No modules found, so give up on this one.
*/
printf("si%d: %s - no ports found\n", unit,
si_type[sc->sc_type]);
return 0;
default:
printf("si%d: Z280 version error - initstat %x\n",
unit, regp->initstat);
return 0;
}
/*
* First time around the ports just count them in order
* to allocate some memory.
*/
nport = 0;
modp = (struct si_module *)(maddr + 0x80);
for (;;) {
DPRINT((0, DBG_DOWNLOAD, "si%d: ccb addr 0x%x\n", unit, modp));
switch (modp->sm_type & (~MMASK)) {
case M232:
case M422:
DPRINT((0, DBG_DOWNLOAD,
"si%d: Found 232/422 module, %d ports\n",
unit, (int)(modp->sm_type & MMASK)));
/* this is a firmware issue */
if (si_Nports == SI_MAXPORTPERCARD) {
printf("si%d: extra ports ignored\n", unit);
continue;
}
x = modp->sm_type & MMASK;
nport += x;
si_Nports += x;
si_Nmodules++;
break;
default:
printf("si%d: unknown module type %d\n",
unit, modp->sm_type);
break;
}
if (modp->sm_next == 0)
break;
modp = (struct si_module *)
(maddr + (unsigned)(modp->sm_next & 0x7fff));
}
sc->sc_ports = (struct si_port *)malloc(sizeof(struct si_port) * nport,
M_DEVBUF, M_NOWAIT);
if (sc->sc_ports == 0) {
mem_fail:
printf("si%d: fail to malloc memory for port structs\n",
unit);
return 0;
}
bzero(sc->sc_ports, sizeof(struct si_port) * nport);
sc->sc_nport = nport;
/*
* allocate tty structures for ports
*/
tp = (struct tty *)malloc(sizeof(*tp) * nport, M_DEVBUF, M_NOWAIT);
if (tp == 0)
goto mem_fail;
bzero(tp, sizeof(*tp) * nport);
si_tty = tp;
/* mark the device state as attached */
si_kdc[unit].kdc_state = DC_BUSY;
/*
* Scan round the ports again, this time initialising.
*/
pp = sc->sc_ports;
nmodule = 0;
modp = (struct si_module *)(maddr + 0x80);
uart_type = 0;
for (;;) {
switch (modp->sm_type & (~MMASK)) {
case M232:
case M422:
nmodule++;
nport = (modp->sm_type & MMASK);
ccbp = (struct si_channel *)((char *)modp+0x100);
if (uart_type == 0)
uart_type = ccbp->type;
for (x = 0; x < nport; x++, pp++, ccbp++) {
pp->sp_ccb = ccbp; /* save the address */
pp->sp_tty = tp++;
pp->sp_pend = IDLE_CLOSE;
pp->sp_state = 0; /* internal flag */
pp->sp_dtr_wait = 3 * hz;
pp->sp_iin.c_iflag = si_default_iflag;
pp->sp_iin.c_oflag = si_default_oflag;
pp->sp_iin.c_cflag = si_default_cflag;
pp->sp_iin.c_lflag = si_default_lflag;
termioschars(&pp->sp_iin);
pp->sp_iin.c_ispeed = pp->sp_iin.c_ospeed =
si_default_rate;
pp->sp_iout = pp->sp_iin;
}
break;
default:
break;
}
if (modp->sm_next == 0) {
printf("si%d: card: %s, ports: %d, modules: %d (type: %d)\n",
unit,
sc->sc_typename,
sc->sc_nport,
nmodule,
uart_type);
break;
}
modp = (struct si_module *)
(maddr + (unsigned)(modp->sm_next & 0x7fff));
}
if (done_chartimes == 0) {
for (spt = chartimes ; spt->sp_speed != -1; spt++) {
if ((spt->sp_code /= hz) == 0)
spt->sp_code = 1;
}
done_chartimes = 1;
}
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
#ifdef DEVFS
/* path name devsw minor type uid gid perm*/
for ( x = 0; x < sc->sc_nport; x++ ) {
y = x + 1; /* For sync with the manuals that start at 1 */
sc->devfs_token[x].ttyd = devfs_add_devswf(
&si_cdevsw, x,
DV_CHR, 0, 0, 0600, "ttyA%02d", y);
sc->devfs_token[x].cuaa = devfs_add_devswf(
&si_cdevsw, x + 128,
DV_CHR, 0, 0, 0600, "cuaA%02d", y);
sc->devfs_token[x].ttyi = devfs_add_devswf(
&si_cdevsw, x + 0x10000,
DV_CHR, 0, 0, 0600, "ttyiA%02d", y);
sc->devfs_token[x].ttyl = devfs_add_devswf(
&si_cdevsw, x + 0x20000,
DV_CHR, 0, 0, 0600, "ttylA%02d", y);
}
sc->control_token =
devfs_add_devswf(&si_cdevsw, 0x40000, DV_CHR, 0, 0, 0600,
"si_control");
#endif
return (1);
}
static int
siopen(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
int oldspl, error;
int card, port;
register struct si_softc *sc;
register struct tty *tp;
volatile struct si_channel *ccbp;
struct si_port *pp;
int mynor = minor(dev);
/* quickly let in /dev/si_control */
if (IS_CONTROLDEV(mynor)) {
if (error = suser(p->p_ucred, &p->p_acflag))
return(error);
return(0);
}
card = SI_CARD(mynor);
if (card >= NSI)
return (ENXIO);
sc = &si_softc[card];
if (sc->sc_type == SIEMPTY) {
DPRINT((0, DBG_OPEN|DBG_FAIL, "si%d: type %s??\n",
card, sc->sc_typename));
return(ENXIO);
}
port = SI_PORT(mynor);
if (port >= sc->sc_nport) {
DPRINT((0, DBG_OPEN|DBG_FAIL, "si%d: nports %d\n",
card, sc->sc_nport));
return(ENXIO);
}
#ifdef POLL
/*
* We've now got a device, so start the poller.
*/
if (init_finished == 0) {
timeout(si_poll, (caddr_t)0L, si_pollrate);
init_finished = 1;
}
#endif
/* initial/lock device */
if (IS_STATE(mynor)) {
return(0);
}
pp = sc->sc_ports + port;
tp = pp->sp_tty; /* the "real" tty */
ccbp = pp->sp_ccb; /* Find control block */
DPRINT((pp, DBG_ENTRY|DBG_OPEN, "siopen(%x,%x,%x,%x)\n",
dev, flag, mode, p));
oldspl = spltty(); /* Keep others out */
error = 0;
open_top:
while (pp->sp_state & SS_DTR_OFF) {
error = tsleep(&pp->sp_dtr_wait, TTIPRI|PCATCH, "sidtr", 0);
if (error != 0)
goto out;
}
if (tp->t_state & TS_ISOPEN) {
/*
* The device is open, so everything has been initialised.
* handle conflicts.
*/
if (IS_CALLOUT(mynor)) {
if (!pp->sp_active_out) {
error = EBUSY;
goto out;
}
} else {
if (pp->sp_active_out) {
if (flag & O_NONBLOCK) {
error = EBUSY;
goto out;
}
error = tsleep(&pp->sp_active_out,
TTIPRI|PCATCH, "sibi", 0);
if (error != 0)
goto out;
goto open_top;
}
}
if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
DPRINT((pp, DBG_OPEN|DBG_FAIL,
"already open and EXCLUSIVE set\n"));
error = EBUSY;
goto out;
}
} else {
/*
* The device isn't open, so there are no conflicts.
* Initialize it. Avoid sleep... :-)
*/
DPRINT((pp, DBG_OPEN, "first open\n"));
tp->t_oproc = si_start;
tp->t_param = siparam;
tp->t_dev = dev;
tp->t_termios = mynor & SI_CALLOUT_MASK
? pp->sp_iout : pp->sp_iin;
(void) si_modem(pp, SET, TIOCM_DTR|TIOCM_RTS);
++pp->sp_wopeners; /* in case of sleep in siparam */
error = siparam(tp, &tp->t_termios);
--pp->sp_wopeners;
if (error != 0)
goto out;
/* XXX: we should goto_top if siparam slept */
ttsetwater(tp);
/* set initial DCD state */
pp->sp_last_hi_ip = ccbp->hi_ip;
if ((pp->sp_last_hi_ip & IP_DCD) || IS_CALLOUT(mynor)) {
(*linesw[tp->t_line].l_modem)(tp, 1);
}
}
/* whoops! we beat the close! */
if (pp->sp_state & SS_CLOSING) {
/* try and stop it from proceeding to bash the hardware */
pp->sp_state &= ~SS_CLOSING;
}
/*
* Wait for DCD if necessary
*/
if (!(tp->t_state & TS_CARR_ON)
&& !IS_CALLOUT(mynor)
&& !(tp->t_cflag & CLOCAL)
&& !(flag & O_NONBLOCK)) {
++pp->sp_wopeners;
DPRINT((pp, DBG_OPEN, "sleeping for carrier\n"));
error = tsleep(TSA_CARR_ON(tp), TTIPRI|PCATCH, "sidcd", 0);
--pp->sp_wopeners;
if (error != 0)
goto out;
goto open_top;
}
error = (*linesw[tp->t_line].l_open)(dev, tp);
si_disc_optim(tp, &tp->t_termios, pp);
if (tp->t_state & TS_ISOPEN && IS_CALLOUT(mynor))
pp->sp_active_out = TRUE;
pp->sp_state |= SS_OPEN; /* made it! */
out:
splx(oldspl);
DPRINT((pp, DBG_OPEN, "leaving siopen\n"));
if (!(tp->t_state & TS_ISOPEN) && pp->sp_wopeners == 0)
sihardclose(pp);
return(error);
}
static int
siclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
register struct si_port *pp;
register struct tty *tp;
int oldspl;
int error = 0;
int mynor = minor(dev);
if (IS_SPECIAL(mynor))
return(0);
oldspl = spltty();
pp = MINOR2PP(mynor);
tp = pp->sp_tty;
DPRINT((pp, DBG_ENTRY|DBG_CLOSE, "siclose(%x,%x,%x,%x) sp_state:%x\n",
dev, flag, mode, p, pp->sp_state));
/* did we sleep and loose a race? */
if (pp->sp_state & SS_CLOSING) {
/* error = ESOMETING? */
goto out;
}
/* begin race detection.. */
pp->sp_state |= SS_CLOSING;
si_write_enable(pp, 0); /* block writes for ttywait() */
/* THIS MAY SLEEP IN TTYWAIT!!! */
(*linesw[tp->t_line].l_close)(tp, flag);
si_write_enable(pp, 1);
/* did we sleep and somebody started another open? */
if (!(pp->sp_state & SS_CLOSING)) {
/* error = ESOMETING? */
goto out;
}
/* ok. we are now still on the right track.. nuke the hardware */
if (pp->sp_state & SS_LSTART) {
untimeout((timeout_func_t)si_lstart, (caddr_t)pp);
pp->sp_state &= ~SS_LSTART;
}
sistop(tp, FREAD | FWRITE);
sihardclose(pp);
ttyclose(tp);
pp->sp_state &= ~SS_OPEN;
out:
DPRINT((pp, DBG_CLOSE|DBG_EXIT, "close done, returning\n"));
splx(oldspl);
return(error);
}
static void
sihardclose(pp)
struct si_port *pp;
{
int oldspl;
struct tty *tp;
volatile struct si_channel *ccbp;
oldspl = spltty();
tp = pp->sp_tty;
ccbp = pp->sp_ccb; /* Find control block */
if (tp->t_cflag & HUPCL
|| !pp->sp_active_out
&& !(ccbp->hi_ip & IP_DCD)
&& !(pp->sp_iin.c_cflag && CLOCAL)
|| !(tp->t_state & TS_ISOPEN)) {
(void) si_modem(pp, BIC, TIOCM_DTR|TIOCM_RTS);
(void) si_command(pp, FCLOSE, SI_NOWAIT);
if (pp->sp_dtr_wait != 0) {
timeout(sidtrwakeup, pp, pp->sp_dtr_wait);
pp->sp_state |= SS_DTR_OFF;
}
}
pp->sp_active_out = FALSE;
wakeup((caddr_t)&pp->sp_active_out);
wakeup(TSA_CARR_ON(tp));
splx(oldspl);
}
/*
* called at splsoftclock()...
*/
static void
sidtrwakeup(chan)
void *chan;
{
struct si_port *pp;
int oldspl;
oldspl = spltty();
pp = (struct si_port *)chan;
pp->sp_state &= ~SS_DTR_OFF;
wakeup(&pp->sp_dtr_wait);
splx(oldspl);
}
/*
* User level stuff - read and write
*/
static int
siread(dev, uio, flag)
register dev_t dev;
struct uio *uio;
int flag;
{
register struct tty *tp;
int mynor = minor(dev);
if (IS_SPECIAL(mynor)) {
DPRINT((0, DBG_ENTRY|DBG_FAIL|DBG_READ, "siread(CONTROLDEV!!)\n"));
return(ENODEV);
}
tp = MINOR2TP(mynor);
DPRINT((TP2PP(tp), DBG_ENTRY|DBG_READ,
"siread(%x,%x,%x)\n", dev, uio, flag));
return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
}
static int
siwrite(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
register struct si_port *pp;
register struct tty *tp;
int error = 0;
int mynor = minor(dev);
int oldspl;
if (IS_SPECIAL(mynor)) {
DPRINT((0, DBG_ENTRY|DBG_FAIL|DBG_WRITE, "siwrite(CONTROLDEV!!)\n"));
return(ENODEV);
}
pp = MINOR2PP(mynor);
tp = pp->sp_tty;
DPRINT((pp, DBG_WRITE, "siwrite(%x,%x,%x)\n", dev, uio, flag));
oldspl = spltty();
/*
* If writes are currently blocked, wait on the "real" tty
*/
while (pp->sp_state & SS_BLOCKWRITE) {
pp->sp_state |= SS_WAITWRITE;
DPRINT((pp, DBG_WRITE, "in siwrite, wait for SS_BLOCKWRITE to clear\n"));
if (error = ttysleep(tp, (caddr_t)pp, TTOPRI|PCATCH,
"siwrite", 0))
goto out;
}
error = (*linesw[tp->t_line].l_write)(tp, uio, flag);
out:
splx(oldspl);
return (error);
}
static struct tty *
sidevtotty(dev_t dev)
{
struct si_port *pp;
int mynor = minor(dev);
struct si_softc *sc = &si_softc[SI_CARD(mynor)];
if (IS_SPECIAL(mynor))
return(NULL);
if (SI_PORT(mynor) >= sc->sc_nport)
return(NULL);
pp = MINOR2PP(mynor);
return (pp->sp_tty);
}
static int
siioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd;
caddr_t data;
int flag;
struct proc *p;
{
struct si_port *pp;
register struct tty *tp;
int error;
int mynor = minor(dev);
int oldspl;
int blocked = 0;
#if defined(COMPAT_43)
int oldcmd;
struct termios term;
#endif
if (IS_SI_IOCTL(cmd))
return(si_Sioctl(dev, cmd, data, flag, p));
pp = MINOR2PP(mynor);
tp = pp->sp_tty;
DPRINT((pp, DBG_ENTRY|DBG_IOCTL, "siioctl(%x,%x,%x,%x)\n",
dev, cmd, data, flag));
if (IS_STATE(mynor)) {
struct termios *ct;
switch (mynor & SI_STATE_MASK) {
case SI_INIT_STATE_MASK:
ct = IS_CALLOUT(mynor) ? &pp->sp_iout : &pp->sp_iin;
break;
case SI_LOCK_STATE_MASK:
ct = IS_CALLOUT(mynor) ? &pp->sp_iout : &pp->sp_iin;
break;
default:
return (ENODEV);
}
switch (cmd) {
case TIOCSETA:
error = suser(p->p_ucred, &p->p_acflag);
if (error != 0)
return (error);
*ct = *(struct termios *)data;
return (0);
case TIOCGETA:
*(struct termios *)data = *ct;
return (0);
case TIOCGETD:
*(int *)data = TTYDISC;
return (0);
case TIOCGWINSZ:
bzero(data, sizeof(struct winsize));
return (0);
default:
return (ENOTTY);
}
}
/*
* Do the old-style ioctl compat routines...
*/
#if defined(COMPAT_43)
term = tp->t_termios;
oldcmd = cmd;
error = ttsetcompat(tp, &cmd, data, &term);
if (error != 0)
return (error);
if (cmd != oldcmd)
data = (caddr_t)&term;
#endif
/*
* Do the initial / lock state business
*/
if (cmd == TIOCSETA || cmd == TIOCSETAW || cmd == TIOCSETAF) {
int cc;
struct termios *dt = (struct termios *)data;
struct termios *lt = mynor & SI_CALLOUT_MASK
? &pp->sp_lout : &pp->sp_lin;
dt->c_iflag = (tp->t_iflag & lt->c_iflag)
| (dt->c_iflag & ~lt->c_iflag);
dt->c_oflag = (tp->t_oflag & lt->c_oflag)
| (dt->c_oflag & ~lt->c_oflag);
dt->c_cflag = (tp->t_cflag & lt->c_cflag)
| (dt->c_cflag & ~lt->c_cflag);
dt->c_lflag = (tp->t_lflag & lt->c_lflag)
| (dt->c_lflag & ~lt->c_lflag);
for (cc = 0; cc < NCCS; ++cc)
if (lt->c_cc[cc] != 0)
dt->c_cc[cc] = tp->t_cc[cc];
if (lt->c_ispeed != 0)
dt->c_ispeed = tp->t_ispeed;
if (lt->c_ospeed != 0)
dt->c_ospeed = tp->t_ospeed;
}
/*
* Block user-level writes to give the ttywait()
* a chance to completely drain for commands
* that require the port to be in a quiescent state.
*/
switch (cmd) {
case TIOCSETAW: case TIOCSETAF:
case TIOCDRAIN: case TIOCSETP:
blocked++; /* block writes for ttywait() and siparam() */
si_write_enable(pp, 0);
}
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
if (error >= 0)
goto out;
oldspl = spltty();
error = ttioctl(tp, cmd, data, flag);
si_disc_optim(tp, &tp->t_termios, pp);
if (error >= 0)
goto outspl;
switch (cmd) {
case TIOCSBRK:
si_command(pp, SBREAK, SI_NOWAIT);
break;
case TIOCCBRK:
si_command(pp, EBREAK, SI_NOWAIT);
break;
case TIOCSDTR:
(void) si_modem(pp, SET, TIOCM_DTR|TIOCM_RTS);
break;
case TIOCCDTR:
(void) si_modem(pp, SET, 0);
break;
case TIOCMSET:
(void) si_modem(pp, SET, *(int *)data);
break;
case TIOCMBIS:
(void) si_modem(pp, BIS, *(int *)data);
break;
case TIOCMBIC:
(void) si_modem(pp, BIC, *(int *)data);
break;
case TIOCMGET:
*(int *)data = si_modem(pp, GET, 0);
break;
case TIOCMSDTRWAIT:
/* must be root since the wait applies to following logins */
error = suser(p->p_ucred, &p->p_acflag);
if (error != 0) {
goto outspl;
}
pp->sp_dtr_wait = *(int *)data * hz / 100;
break;
case TIOCMGDTRWAIT:
*(int *)data = pp->sp_dtr_wait * 100 / hz;
break;
default:
error = ENOTTY;
}
error = 0;
outspl:
splx(oldspl);
out:
DPRINT((pp, DBG_IOCTL|DBG_EXIT, "siioctl ret %d\n", error));
if (blocked)
si_write_enable(pp, 1);
return(error);
}
/*
* Handle the Specialix ioctls. All MUST be called via the CONTROL device
*/
static int
si_Sioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
{
struct si_softc *xsc;
register struct si_port *xpp;
volatile struct si_reg *regp;
struct si_tcsi *dp;
struct si_pstat *sps;
int *ip, error = 0;
int oldspl;
int card, port;
int mynor = minor(dev);
DPRINT((0, DBG_ENTRY|DBG_IOCTL, "si_Sioctl(%x,%x,%x,%x)\n",
dev, cmd, data, flag));
#if 1
DPRINT((0, DBG_IOCTL, "TCSI_PORT=%x\n", TCSI_PORT));
DPRINT((0, DBG_IOCTL, "TCSI_CCB=%x\n", TCSI_CCB));
DPRINT((0, DBG_IOCTL, "TCSI_TTY=%x\n", TCSI_TTY));
#endif
if (!IS_CONTROLDEV(mynor)) {
DPRINT((0, DBG_IOCTL|DBG_FAIL, "not called from control device!\n"));
return(ENODEV);
}
oldspl = spltty(); /* better safe than sorry */
ip = (int *)data;
#define SUCHECK if (error = suser(p->p_ucred, &p->p_acflag)) goto out
switch (cmd) {
case TCSIPORTS:
*ip = si_Nports;
goto out;
case TCSIMODULES:
*ip = si_Nmodules;
goto out;
case TCSISDBG_ALL:
SUCHECK;
si_debug = *ip;
goto out;
case TCSIGDBG_ALL:
*ip = si_debug;
goto out;
default:
/*
* Check that a controller for this port exists
*/
/* may also be a struct si_pstat, a superset of si_tcsi */
dp = (struct si_tcsi *)data;
sps = (struct si_pstat *)data;
card = dp->tc_card;
xsc = &si_softc[card]; /* check.. */
if (card < 0 || card >= NSI || xsc->sc_type == SIEMPTY) {
error = ENOENT;
goto out;
}
/*
* And check that a port exists
*/
port = dp->tc_port;
if (port < 0 || port >= xsc->sc_nport) {
error = ENOENT;
goto out;
}
xpp = xsc->sc_ports + port;
regp = (struct si_reg *)xsc->sc_maddr;
}
switch (cmd) {
case TCSIDEBUG:
#ifdef SI_DEBUG
SUCHECK;
if (xpp->sp_debug)
xpp->sp_debug = 0;
else {
xpp->sp_debug = DBG_ALL;
DPRINT((xpp, DBG_IOCTL, "debug toggled %s\n",
(xpp->sp_debug&DBG_ALL)?"ON":"OFF"));
}
break;
#else
error = ENODEV;
goto out;
#endif
case TCSISDBG_LEVEL:
case TCSIGDBG_LEVEL:
#ifdef SI_DEBUG
if (cmd == TCSIGDBG_LEVEL) {
dp->tc_dbglvl = xpp->sp_debug;
} else {
SUCHECK;
xpp->sp_debug = dp->tc_dbglvl;
}
break;
#else
error = ENODEV;
goto out;
#endif
case TCSIGRXIT:
dp->tc_int = regp->rx_int_count;
break;
case TCSIRXIT:
SUCHECK;
regp->rx_int_count = dp->tc_int;
break;
case TCSIGIT:
dp->tc_int = regp->int_count;
break;
case TCSIIT:
SUCHECK;
regp->int_count = dp->tc_int;
break;
case TCSISTATE:
dp->tc_int = xpp->sp_ccb->hi_ip;
break;
/* these next three use a different structure */
case TCSI_PORT:
SUCHECK;
sps->tc_siport = *xpp;
break;
case TCSI_CCB:
SUCHECK;
sps->tc_ccb = *xpp->sp_ccb;
break;
case TCSI_TTY:
SUCHECK;
sps->tc_tty = *xpp->sp_tty;
break;
default:
error = EINVAL;
goto out;
}
out:
splx(oldspl);
return(error); /* success */
}
/*
* siparam() : Configure line params
* called at spltty();
* this may sleep, does not flush, nor wait for drain, nor block writes
* caller must arrange this if it's important..
*/
1995-12-10 13:40:44 +00:00
static int
siparam(tp, t)
register struct tty *tp;
register struct termios *t;
{
register struct si_port *pp = TP2PP(tp);
volatile struct si_channel *ccbp;
int oldspl, cflag, iflag, oflag, lflag;
int error = 0; /* shutup gcc */
int ispeed = 0; /* shutup gcc */
int ospeed = 0; /* shutup gcc */
BYTE val;
DPRINT((pp, DBG_ENTRY|DBG_PARAM, "siparam(%x,%x)\n", tp, t));
cflag = t->c_cflag;
iflag = t->c_iflag;
oflag = t->c_oflag;
lflag = t->c_lflag;
DPRINT((pp, DBG_PARAM, "OFLAG 0x%x CFLAG 0x%x IFLAG 0x%x LFLAG 0x%x\n",
oflag, cflag, iflag, lflag));
/* if not hung up.. */
if (t->c_ospeed != 0) {
/* translate baud rate to firmware values */
ospeed = ttspeedtab(t->c_ospeed, bdrates);
ispeed = t->c_ispeed ?
ttspeedtab(t->c_ispeed, bdrates) : ospeed;
/* enforce legit baud rate */
if (ospeed < 0 || ispeed < 0)
return (EINVAL);
}
oldspl = spltty();
ccbp = pp->sp_ccb;
/* ========== set hi_break ========== */
val = 0;
if (iflag & IGNBRK) /* Breaks */
val |= BR_IGN;
if (iflag & BRKINT) /* Interrupt on break? */
val |= BR_INT;
if (iflag & PARMRK) /* Parity mark? */
val |= BR_PARMRK;
if (iflag & IGNPAR) /* Ignore chars with parity errors? */
val |= BR_PARIGN;
ccbp->hi_break = val;
/* ========== set hi_csr ========== */
/* if not hung up.. */
if (t->c_ospeed != 0) {
/* Set I/O speeds */
val = (ispeed << 4) | ospeed;
}
ccbp->hi_csr = val;
/* ========== set hi_mr2 ========== */
val = 0;
if (cflag & CSTOPB) /* Stop bits */
val |= MR2_2_STOP;
else
val |= MR2_1_STOP;
/*
* Enable H/W RTS/CTS handshaking. The default TA/MTA is
* a DCE, hence the reverse sense of RTS and CTS
*/
/* Output Flow - RTS must be raised before data can be sent */
if (cflag & CCTS_OFLOW)
val |= MR2_RTSCONT;
ccbp->hi_mr1 = val;
/* ========== set hi_mr1 ========== */
val = 0;
if (!(cflag & PARENB)) /* Parity */
val |= MR1_NONE;
else
val |= MR1_WITH;
if (cflag & PARODD)
val |= MR1_ODD;
if ((cflag & CS8) == CS8) { /* 8 data bits? */
val |= MR1_8_BITS;
} else if ((cflag & CS7) == CS7) { /* 7 data bits? */
val |= MR1_7_BITS;
} else if ((cflag & CS6) == CS6) { /* 6 data bits? */
val |= MR1_6_BITS;
} else { /* Must be 5 */
val |= MR1_5_BITS;
}
/*
* Enable H/W RTS/CTS handshaking. The default TA/MTA is
* a DCE, hence the reverse sense of RTS and CTS
*/
/* Input Flow - CTS is raised when port is ready to receive data */
if (cflag & CRTS_IFLOW)
val |= MR1_CTSCONT;
ccbp->hi_mr1 = val;
/* ========== set hi_mask ========== */
val = 0xff;
if ((cflag & CS8) == CS8) { /* 8 data bits? */
val &= 0xFF;
} else if ((cflag & CS7) == CS7) { /* 7 data bits? */
val &= 0x7F;
} else if ((cflag & CS6) == CS6) { /* 6 data bits? */
val &= 0x3F;
} else { /* Must be 5 */
val &= 0x1F;
}
if (iflag & ISTRIP)
val &= 0x7F;
ccbp->hi_mask = val;
/* ========== set hi_prtcl ========== */
val = 0;
/* Monitor DCD etc. if a modem */
if (!(cflag & CLOCAL))
val |= SP_DCEN;
if (iflag & IXANY)
val |= SP_TANY;
if (iflag & IXON)
val |= SP_TXEN;
if (iflag & IXOFF)
val |= SP_RXEN;
if (iflag & INPCK)
val |= SP_PAEN;
ccbp->hi_prtcl = val;
/* ========== set hi_{rx|tx}{on|off} ========== */
/* XXX: the card TOTALLY shields us from the flow control... */
ccbp->hi_txon = t->c_cc[VSTART];
ccbp->hi_txoff = t->c_cc[VSTOP];
ccbp->hi_rxon = t->c_cc[VSTART];
ccbp->hi_rxoff = t->c_cc[VSTOP];
/* ========== send settings to the card ========== */
/* potential sleep here */
if (ccbp->hi_stat == IDLE_CLOSE) /* Not yet open */
si_command(pp, LOPEN, SI_WAIT); /* open it */
else
si_command(pp, CONFIG, SI_WAIT); /* change params */
/* ========== set DTR etc ========== */
/* Hangup if ospeed == 0 */
if (t->c_ospeed == 0) {
(void) si_modem(pp, BIC, TIOCM_DTR|TIOCM_RTS);
} else {
/*
* If the previous speed was 0, may need to re-enable
* the modem signals
*/
(void) si_modem(pp, SET, TIOCM_DTR|TIOCM_RTS);
}
DPRINT((pp, DBG_PARAM, "siparam, complete: MR1 %x MR2 %x HI_MASK %x PRTCL %x HI_BREAK %x\n",
ccbp->hi_mr1, ccbp->hi_mr2, ccbp->hi_mask, ccbp->hi_prtcl, ccbp->hi_break));
splx(oldspl);
return(error);
}
/*
* Enable or Disable the writes to this channel...
* "state" -> enabled = 1; disabled = 0;
*/
static void
si_write_enable(pp, state)
register struct si_port *pp;
int state;
{
int oldspl;
oldspl = spltty();
if (state) {
pp->sp_state &= ~SS_BLOCKWRITE;
if (pp->sp_state & SS_WAITWRITE) {
pp->sp_state &= ~SS_WAITWRITE;
/* thunder away! */
wakeup((caddr_t)pp);
}
} else {
pp->sp_state |= SS_BLOCKWRITE;
}
splx(oldspl);
}
/*
* Set/Get state of modem control lines.
* Due to DCE-like behaviour of the adapter, some signals need translation:
* TIOCM_DTR DSR
* TIOCM_RTS CTS
*/
static int
si_modem(pp, cmd, bits)
struct si_port *pp;
enum si_mctl cmd;
int bits;
{
volatile struct si_channel *ccbp;
int x;
DPRINT((pp, DBG_ENTRY|DBG_MODEM, "si_modem(%x,%s,%x)\n", pp, si_mctl2str(cmd), bits));
ccbp = pp->sp_ccb; /* Find channel address */
switch (cmd) {
case GET:
x = ccbp->hi_ip;
bits = TIOCM_LE;
if (x & IP_DCD) bits |= TIOCM_CAR;
if (x & IP_DTR) bits |= TIOCM_DTR;
if (x & IP_RTS) bits |= TIOCM_RTS;
if (x & IP_RI) bits |= TIOCM_RI;
return(bits);
case SET:
ccbp->hi_op &= ~(OP_DSR|OP_CTS);
/* fall through */
case BIS:
x = 0;
if (bits & TIOCM_DTR)
x |= OP_DSR;
if (bits & TIOCM_RTS)
x |= OP_CTS;
ccbp->hi_op |= x;
break;
case BIC:
if (bits & TIOCM_DTR)
ccbp->hi_op &= ~OP_DSR;
if (bits & TIOCM_RTS)
ccbp->hi_op &= ~OP_CTS;
}
return 0;
}
/*
* Handle change of modem state
*/
static void
si_modem_state(pp, tp, hi_ip)
register struct si_port *pp;
register struct tty *tp;
register int hi_ip;
{
/* if a modem dev */
if (hi_ip & IP_DCD) {
if ( !(pp->sp_last_hi_ip & IP_DCD)) {
DPRINT((pp, DBG_INTR, "modem carr on t_line %d\n",
tp->t_line));
(void)(*linesw[tp->t_line].l_modem)(tp, 1);
}
} else {
if (pp->sp_last_hi_ip & IP_DCD) {
DPRINT((pp, DBG_INTR, "modem carr off\n"));
if ((*linesw[tp->t_line].l_modem)(tp, 0))
(void) si_modem(pp, SET, 0);
}
}
pp->sp_last_hi_ip = hi_ip;
}
/*
* Poller to catch missed interrupts.
*
* Note that the SYSV Specialix drivers poll at 100 times per second to get
* better response. We could really use a "periodic" version timeout(). :-)
*/
#ifdef POLL
static void
si_poll(void *nothing)
{
register struct si_softc *sc;
register int i;
volatile struct si_reg *regp;
register struct si_port *pp;
int lost, oldspl, port;
DPRINT((0, DBG_POLL, "si_poll()\n"));
oldspl = spltty();
if (in_intr)
goto out;
lost = 0;
for (i=0; i<NSI; i++) {
sc = &si_softc[i];
if (sc->sc_type == SIEMPTY)
continue;
regp = (struct si_reg *)sc->sc_maddr;
/*
* See if there has been a pending interrupt for 2 seconds
* or so. The test <int_scounter >= 200) won't correspond
* to 2 seconds if int_count gets changed.
*/
if (regp->int_pending != 0) {
if (regp->int_scounter >= 200 &&
regp->initstat == 1) {
printf("si%d: lost intr\n", i);
lost++;
}
} else {
regp->int_scounter = 0;
}
/*
* gripe about no input flow control..
*/
pp = sc->sc_ports;
for (port = 0; port < sc->sc_nport; pp++, port++) {
if (pp->sp_delta_overflows > 0) {
printf("si%d: %d tty level buffer overflows\n",
i, pp->sp_delta_overflows);
pp->sp_delta_overflows = 0;
}
}
}
if (lost)
siintr(-1); /* call intr with fake vector */
out:
splx(oldspl);
timeout(si_poll, (caddr_t)0L, si_pollrate);
}
#endif /* ifdef POLL */
/*
* The interrupt handler polls ALL ports on ALL adapters each time
* it is called.
*/
static BYTE si_rxbuf[SI_BUFFERSIZE]; /* input staging area */
void
siintr(int unit)
{
register struct si_softc *sc;
register struct si_port *pp;
volatile struct si_channel *ccbp;
register struct tty *tp;
volatile caddr_t maddr;
BYTE op, ip;
int x, card, port, n, i, isopen;
volatile BYTE *z;
BYTE c;
DPRINT((0, (unit < 0) ? DBG_POLL:DBG_INTR, "siintr(%d)\n", unit));
if (in_intr) {
if (unit < 0) /* should never happen */
return;
printf("si%d: Warning interrupt handler re-entered\n",
unit);
return;
}
in_intr = 1;
/*
* When we get an int we poll all the channels and do ALL pending
* work, not just the first one we find. This allows all cards to
* share the same vector.
*/
for (card=0; card < NSI; card++) {
sc = &si_softc[card];
if (sc->sc_type == SIEMPTY)
continue;
/*
* First, clear the interrupt
*/
switch(sc->sc_type) {
case SIHOST :
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
/* flag nothing pending */
*(maddr+SIINTCL) = 0x00; /* Set IRQ clear */
*(maddr+SIINTCL_CL) = 0x00; /* Clear IRQ clear */
break;
case SIHOST2:
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
*(maddr+SIPLIRQCLR) = 0x00;
*(maddr+SIPLIRQCLR) = 0x10;
break;
case SIEISA:
#if NEISA > 0
maddr = sc->sc_maddr;
((volatile struct si_reg *)maddr)->int_pending = 0;
(void)inb(sc->sc_eisa_iobase+3);
break;
#endif /* fall through if not EISA kernel */
case SIEMPTY:
default:
continue;
}
((volatile struct si_reg *)maddr)->int_scounter = 0;
/*
* check each port
*/
for (pp=sc->sc_ports,port=0; port < sc->sc_nport; pp++,port++) {
ccbp = pp->sp_ccb;
tp = pp->sp_tty;
/*
* See if a command has completed ?
*/
if (ccbp->hi_stat != pp->sp_pend) {
DPRINT((pp, DBG_INTR,
"siintr hi_stat = 0x%x, pend = %d\n",
ccbp->hi_stat, pp->sp_pend));
switch(pp->sp_pend) {
case LOPEN:
case MPEND:
case MOPEN:
case CONFIG:
pp->sp_pend = ccbp->hi_stat;
/* sleeping in si_command */
wakeup(&pp->sp_state);
break;
default:
pp->sp_pend = ccbp->hi_stat;
}
}
/*
* Continue on if it's closed
*/
if (ccbp->hi_stat == IDLE_CLOSE) {
continue;
}
/*
* Do modem state change if not a local device
*/
si_modem_state(pp, tp, ccbp->hi_ip);
/*
* Check to see if there's we should 'receive'
* characters.
*/
if (tp->t_state & TS_CONNECTED &&
tp->t_state & TS_ISOPEN)
isopen = 1;
else
isopen = 0;
/*
* Do break processing
*/
if (ccbp->hi_state & ST_BREAK) {
if (isopen) {
(*linesw[tp->t_line].l_rint)(TTY_BI, tp);
}
ccbp->hi_state &= ~ST_BREAK; /* A Bit iffy this */
DPRINT((pp, DBG_INTR, "si_intr break\n"));
}
/*
* Do RX stuff - if not open then dump any characters.
* XXX: This is VERY messy and needs to be cleaned up.
*
* XXX: can we leave data in the host adapter buffer
* when the clists are full? That may be dangerous
* if the user cannot get an interrupt signal through.
*/
more_rx: /* XXX Sorry. the nesting was driving me bats! :-( */
if (!isopen) {
ccbp->hi_rxopos = ccbp->hi_rxipos;
goto end_rx;
}
/*
* If the tty input buffers are blocked, stop emptying
* the incoming buffers and let the auto flow control
* assert..
*/
if (tp->t_state & TS_TBLOCK) {
goto end_rx;
}
/*
* Process read characters if not skipped above
*/
op = ccbp->hi_rxopos;
ip = ccbp->hi_rxipos;
c = ip - op;
if (c == 0) {
goto end_rx;
}
n = c & 0xff;
if (n > 250)
n = 250;
DPRINT((pp, DBG_INTR, "n = %d, op = %d, ip = %d\n",
n, op, ip));
/*
* Suck characters out of host card buffer into the
* "input staging buffer" - so that we dont leave the
* host card in limbo while we're possibly echoing
* characters and possibly flushing input inside the
* ldisc l_rint() routine.
*/
if (n <= SI_BUFFERSIZE - op) {
DPRINT((pp, DBG_INTR, "\tsingle copy\n"));
z = ccbp->hi_rxbuf + op;
bcopy((caddr_t)z, si_rxbuf, n);
op += n;
} else {
x = SI_BUFFERSIZE - op;
DPRINT((pp, DBG_INTR, "\tdouble part 1 %d\n", x));
z = ccbp->hi_rxbuf + op;
bcopy((caddr_t)z, si_rxbuf, x);
DPRINT((pp, DBG_INTR, "\tdouble part 2 %d\n", n-x));
z = ccbp->hi_rxbuf;
bcopy((caddr_t)z, si_rxbuf+x, n-x);
op += n;
}
/* clear collected characters from buffer */
ccbp->hi_rxopos = op;
DPRINT((pp, DBG_INTR, "n = %d, op = %d, ip = %d\n",
n, op, ip));
/*
* at this point...
* n = number of chars placed in si_rxbuf
*/
/*
* Avoid the grotesquely inefficient lineswitch
* routine (ttyinput) in "raw" mode. It usually
* takes about 450 instructions (that's without
* canonical processing or echo!). slinput is
* reasonably fast (usually 40 instructions
* plus call overhead).
*/
if (tp->t_state & TS_CAN_BYPASS_L_RINT) {
/* block if the driver supports it */
if (tp->t_rawq.c_cc + n >= SI_I_HIGH_WATER
&& (tp->t_cflag & CRTS_IFLOW
|| tp->t_iflag & IXOFF)
&& !(tp->t_state & TS_TBLOCK))
ttyblock(tp);
tk_nin += n;
tk_rawcc += n;
tp->t_rawcc += n;
pp->sp_delta_overflows +=
b_to_q((char *)si_rxbuf, n, &tp->t_rawq);
ttwakeup(tp);
if (tp->t_state & TS_TTSTOP
&& (tp->t_iflag & IXANY
|| tp->t_cc[VSTART] == tp->t_cc[VSTOP])) {
tp->t_state &= ~TS_TTSTOP;
tp->t_lflag &= ~FLUSHO;
si_start(tp);
}
} else {
/*
* It'd be nice to not have to go through the
* function call overhead for each char here.
* It'd be nice to block input it, saving a
* loop here and the call/return overhead.
*/
for(x = 0; x < n; x++) {
i = si_rxbuf[x];
if ((*linesw[tp->t_line].l_rint)(i, tp)
== -1) {
pp->sp_delta_overflows++;
}
/*
* doesn't seem to be much point doing
* this here.. this driver has no
* softtty processing! ??
*/
if (pp->sp_hotchar && i == pp->sp_hotchar) {
setsofttty();
}
}
}
goto more_rx; /* try for more until RXbuf is empty */
end_rx: /* XXX: Again, sorry about the gotos.. :-) */
/*
* Do TX stuff
*/
(*linesw[tp->t_line].l_start)(tp);
} /* end of for (all ports on this controller) */
} /* end of for (all controllers) */
in_intr = 0;
DPRINT((0, (unit < 0) ? DBG_POLL:DBG_INTR, "end siintr(%d)\n", unit));
}
/*
* Nudge the transmitter...
*
* XXX: I inherited some funny code here. It implies the host card only
* interrupts when the transmit buffer reaches the low-water-mark, and does
* not interrupt when it's actually hits empty. In some cases, we have
* processes waiting for complete drain, and we need to simulate an interrupt
* about when we think the buffer is going to be empty (and retry if not).
* I really am not certain about this... I *need* the hardware manuals.
*/
static void
si_start(tp)
register struct tty *tp;
{
struct si_port *pp;
volatile struct si_channel *ccbp;
register struct clist *qp;
register char *dptr;
BYTE ipos;
int nchar;
int oldspl, count, n, amount, buffer_full;
int do_exitproc;
oldspl = spltty();
qp = &tp->t_outq;
pp = TP2PP(tp);
DPRINT((pp, DBG_ENTRY|DBG_START,
"si_start(%x) t_state %x sp_state %x t_outq.c_cc %d\n",
tp, tp->t_state, pp->sp_state, qp->c_cc));
if (tp->t_state & (TS_TIMEOUT|TS_TTSTOP))
goto out;
do_exitproc = 0;
buffer_full = 0;
ccbp = pp->sp_ccb;
/*
* Handle the case where ttywait() is called on process exit
* this may be BSDI specific, I dont know...
*/
if (tp->t_session != NULL && tp->t_session->s_leader != NULL &&
(tp->t_session->s_leader->p_flag & P_WEXIT)) {
do_exitproc++;
}
count = (int)ccbp->hi_txipos - (int)ccbp->hi_txopos;
DPRINT((pp, DBG_START, "count %d\n", (BYTE)count));
dptr = (char *)ccbp->hi_txbuf; /* data buffer */
while ((nchar = qp->c_cc) > 0) {
if ((BYTE)count >= 255) {
buffer_full++;
break;
}
amount = min(nchar, (255 - (BYTE)count));
ipos = (unsigned int)ccbp->hi_txipos;
/* will it fit in one lump? */
if ((SI_BUFFERSIZE - ipos) >= amount) {
n = q_to_b(&tp->t_outq,
(char *)&ccbp->hi_txbuf[ipos], amount);
} else {
n = q_to_b(&tp->t_outq,
(char *)&ccbp->hi_txbuf[ipos],
SI_BUFFERSIZE-ipos);
if (n == SI_BUFFERSIZE-ipos) {
n += q_to_b(&tp->t_outq,
(char *)&ccbp->hi_txbuf[0],
amount - (SI_BUFFERSIZE-ipos));
}
}
ccbp->hi_txipos += n;
count = (int)ccbp->hi_txipos - (int)ccbp->hi_txopos;
}
if (count != 0 && nchar == 0) {
tp->t_state |= TS_BUSY;
} else {
tp->t_state &= ~TS_BUSY;
}
/* wakeup time? */
ttwwakeup(tp);
DPRINT((pp, DBG_START, "count %d, nchar %d, tp->t_state 0x%x\n",
(BYTE)count, nchar, tp->t_state));
if ((tp->t_state & TS_BUSY) || do_exitproc)
{
int time;
if (do_exitproc != 0) {
time = hz / 10;
} else {
time = ttspeedtab(tp->t_ospeed, chartimes);
if (time > 0) {
if (time < nchar)
time = nchar / time;
else
time = 2;
} else {
DPRINT((pp, DBG_START,
"bad char time value! %d\n", time));
time = hz/10;
}
}
if ((pp->sp_state & (SS_LSTART|SS_INLSTART)) == SS_LSTART) {
untimeout((timeout_func_t)si_lstart, (caddr_t)pp);
} else {
pp->sp_state |= SS_LSTART;
}
DPRINT((pp, DBG_START, "arming lstart, time=%d\n", time));
timeout((timeout_func_t)si_lstart, (caddr_t)pp, time);
}
out:
splx(oldspl);
DPRINT((pp, DBG_EXIT|DBG_START, "leave si_start()\n"));
}
/*
* Note: called at splsoftclock from the timeout code
* This has to deal with two things... cause wakeups while waiting for
* tty drains on last process exit, and call l_start at about the right
* time for protocols like ppp.
*/
static void
si_lstart(pp)
register struct si_port *pp;
{
register struct tty *tp;
int oldspl;
DPRINT((pp, DBG_ENTRY|DBG_LSTART, "si_lstart(%x) sp_state %x\n",
pp, pp->sp_state));
oldspl = spltty();
if ((pp->sp_state & SS_OPEN) == 0 || (pp->sp_state & SS_LSTART) == 0) {
splx(oldspl);
return;
}
pp->sp_state &= ~SS_LSTART;
pp->sp_state |= SS_INLSTART;
tp = pp->sp_tty;
/* deal with the process exit case */
ttwwakeup(tp);
/* nudge protocols - eg: ppp */
(*linesw[tp->t_line].l_start)(tp);
pp->sp_state &= ~SS_INLSTART;
splx(oldspl);
}
/*
* Stop output on a line. called at spltty();
*/
void
sistop(tp, rw)
register struct tty *tp;
int rw;
{
volatile struct si_channel *ccbp;
struct si_port *pp;
pp = TP2PP(tp);
ccbp = pp->sp_ccb;
DPRINT((TP2PP(tp), DBG_ENTRY|DBG_STOP, "sistop(%x,%x)\n", tp, rw));
/* XXX: must check (rw & FWRITE | FREAD) etc flushing... */
if (rw & FWRITE) {
/* what level are we meant to be flushing anyway? */
if (tp->t_state & TS_BUSY) {
si_command(TP2PP(tp), WFLUSH, SI_NOWAIT);
tp->t_state &= ~TS_BUSY;
ttwwakeup(tp); /* Bruce???? */
}
}
#if 1 /* XXX: this doesn't work right yet.. */
/* XXX: this may have been failing because we used to call l_rint()
* while we were looping based on these two counters. Now, we collect
* the data and then loop stuffing it into l_rint(), making this
* useless. Should we cause this to blow away the staging buffer?
*/
if (rw & FREAD) {
ccbp->hi_rxopos = ccbp->hi_rxipos;
}
#endif
}
/*
* Issue a command to the Z280 host card CPU.
*/
static void
si_command(pp, cmd, waitflag)
struct si_port *pp; /* port control block (local) */
int cmd;
int waitflag;
{
int oldspl;
volatile struct si_channel *ccbp = pp->sp_ccb;
int x;
DPRINT((pp, DBG_ENTRY|DBG_PARAM, "si_command(%x,%x,%d): hi_stat 0x%x\n",
pp, cmd, waitflag, ccbp->hi_stat));
oldspl = spltty(); /* Keep others out */
/* wait until it's finished what it was doing.. */
while((x = ccbp->hi_stat) != IDLE_OPEN &&
x != IDLE_CLOSE &&
x != cmd) {
if (in_intr) { /* Prevent sleep in intr */
DPRINT((pp, DBG_PARAM,
"cmd intr collision - completing %d\trequested %d\n",
x, cmd));
splx(oldspl);
return;
} else if (ttysleep(pp->sp_tty, (caddr_t)&pp->sp_state, TTIPRI|PCATCH,
"sicmd1", 1)) {
splx(oldspl);
return;
}
}
/* it should now be in IDLE_OPEN, IDLE_CLOSE, or "cmd" */
/* if there was a pending command, cause a state-change wakeup */
if (pp->sp_pend != IDLE_OPEN) {
switch(pp->sp_pend) {
case LOPEN:
case MPEND:
case MOPEN:
case CONFIG:
wakeup(&pp->sp_state);
break;
default:
break;
}
}
pp->sp_pend = cmd; /* New command pending */
ccbp->hi_stat = cmd; /* Post it */
if (waitflag) {
if (in_intr) { /* If in interrupt handler */
DPRINT((pp, DBG_PARAM,
"attempt to sleep in si_intr - cmd req %d\n",
cmd));
splx(oldspl);
return;
} else while(ccbp->hi_stat != IDLE_OPEN) {
if (ttysleep(pp->sp_tty, (caddr_t)&pp->sp_state, TTIPRI|PCATCH,
"sicmd2", 0))
break;
}
}
splx(oldspl);
}
static void
si_disc_optim(tp, t, pp)
struct tty *tp;
struct termios *t;
struct si_port *pp;
{
/*
* XXX can skip a lot more cases if Smarts. Maybe
* (IGNCR | ISTRIP | IXON) in c_iflag. But perhaps we
* shouldn't skip if (TS_CNTTB | TS_LNCH) is set in t_state.
*/
if (!(t->c_iflag & (ICRNL | IGNCR | IMAXBEL | INLCR | ISTRIP | IXON))
&& (!(t->c_iflag & BRKINT) || (t->c_iflag & IGNBRK))
&& (!(t->c_iflag & PARMRK)
|| (t->c_iflag & (IGNPAR | IGNBRK)) == (IGNPAR | IGNBRK))
&& !(t->c_lflag & (ECHO | ICANON | IEXTEN | ISIG | PENDIN))
&& linesw[tp->t_line].l_rint == ttyinput)
tp->t_state |= TS_CAN_BYPASS_L_RINT;
else
tp->t_state &= ~TS_CAN_BYPASS_L_RINT;
/*
* Prepare to reduce input latency for packet
* discplines with a end of packet character.
*/
if (tp->t_line == SLIPDISC)
pp->sp_hotchar = 0xc0;
else if (tp->t_line == PPPDISC)
pp->sp_hotchar = 0x7e;
else
pp->sp_hotchar = 0;
DPRINT((pp, DBG_OPTIM, "bypass: %s, hotchar: %x\n",
(tp->t_state & TS_CAN_BYPASS_L_RINT) ? "on" : "off",
pp->sp_hotchar));
}
#ifdef SI_DEBUG
static void
#ifdef __STDC__
si_dprintf(struct si_port *pp, int flags, const char *fmt, ...)
#else
si_dprintf(pp, flags, fmt, va_alist)
struct si_port *pp;
int flags;
char *fmt;
#endif
{
va_list ap;
if ((pp == NULL && (si_debug&flags)) ||
(pp != NULL && ((pp->sp_debug&flags) || (si_debug&flags)))) {
if (pp != NULL)
printf("%ci%d(%d): ", 's',
(int)SI_CARD(pp->sp_tty->t_dev),
(int)SI_PORT(pp->sp_tty->t_dev));
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
}
static char *
si_mctl2str(cmd)
enum si_mctl cmd;
{
switch (cmd) {
case GET: return("GET");
case SET: return("SET");
case BIS: return("BIS");
case BIC: return("BIC");
}
return("BAD");
}
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
#endif /* DEBUG */
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
static si_devsw_installed = 0;
static void si_drvinit(void *unused)
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
{
dev_t dev;
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
if( ! si_devsw_installed ) {
dev = makedev(CDEV_MAJOR, 0);
cdevsw_add(&dev,&si_cdevsw, NULL);
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
si_devsw_installed = 1;
}
the second set of changes in a move towards getting devices to be totally dynamic. this is only the devices in i386/isa I'll do more tomorrow. they're completely masked by #ifdef JREMOD at this stage... the eventual aim is that every driver will do a SYSINIT at startup BEFORE the probes, which will effectively link it into the devsw tables etc. If I'd thought about it more I'd have put that in in this set (damn) The ioconf lines generated by config will also end up in the device's own scope as well, so ioconf.c will eventually be gutted the SYSINIT call to the driver will include a phase where the driver links it's ioconf line into a chain of such. when this phase is done then the user can modify them with the boot: -c config menu if he wants, just like now.. config will put the config lines out in the .h file (e.g. in aha.h will be the addresses for the aha driver to look.) as I said this is a very small first step.. the aim of THIS set of edits is to not have to edit conf.c at all when adding a new device.. the tabe will be a simple skeleton.. when this is done, it will allow other changes to be made, all teh time still having a fully working kernel tree, but the logical outcome is the complete REMOVAL of the devsw tables. By the end of this, linked in drivers will be exactly the same as run-time loaded drivers, except they JUST HAPPEN to already be linked and present at startup.. the SYSINIT calls will be the equivalent of the "init" call made to a newly loaded driver in every respect. For this edit, each of the files has the following code inserted into it: obviously, tailored to suit.. ----------------------somewhere at the top: #ifdef JREMOD #include <sys/conf.h> #define CDEV_MAJOR 13 #define BDEV_MAJOR 4 static void sd_devsw_install(); #endif /*JREMOD */ ---------------------somewhere that's run during bootup: EVENTUALLY a SYSINIT #ifdef JREMOD sd_devsw_install(); #endif /*JREMOD*/ -----------------------at the bottom: #ifdef JREMOD struct bdevsw sd_bdevsw = { sdopen, sdclose, sdstrategy, sdioctl, /*4*/ sddump, sdsize, 0 }; struct cdevsw sd_cdevsw = { sdopen, sdclose, rawread, rawwrite, /*13*/ sdioctl, nostop, nullreset, nodevtotty,/* sd */ seltrue, nommap, sdstrategy }; static sd_devsw_installed = 0; static void sd_devsw_install() { dev_t descript; if( ! sd_devsw_installed ) { descript = makedev(CDEV_MAJOR,0); cdevsw_add(&descript,&sd_cdevsw,NULL); #if defined(BDEV_MAJOR) descript = makedev(BDEV_MAJOR,0); bdevsw_add(&descript,&sd_bdevsw,NULL); #endif /*BDEV_MAJOR*/ sd_devsw_installed = 1; } } #endif /* JREMOD */
1995-11-28 09:42:06 +00:00
}
SYSINIT(sidev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,si_drvinit,NULL)