freebsd-nq/sys/pci/if_pnreg.h

713 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_pnreg.h,v 1.10 1999/04/14 19:40:08 wpaul Exp $
*/
/*
* PNIC register definitions.
*/
#define PN_BUSCTL 0x00 /* bus control */
#define PN_TXSTART 0x08 /* tx start demand */
#define PN_RXSTART 0x10 /* rx start demand */
#define PN_RXADDR 0x18 /* rx descriptor list start addr */
#define PN_TXADDR 0x20 /* tx descriptor list start addr */
#define PN_ISR 0x28 /* interrupt status register */
#define PN_NETCFG 0x30 /* network config register */
#define PN_IMR 0x38 /* interrupt mask */
#define PN_FRAMESDISCARDED 0x40 /* # of discarded frames */
#define PN_SIO 0x48 /* MII and ROM/EEPROM access */
#define PN_GEN 0x60 /* general purpose register */
#define PN_ENDEC 0x78 /* ENDEC general register */
#define PN_SIOPWR 0x90 /* serial eeprom power up */
#define PN_SIOCTL 0x98 /* EEPROM control register */
#define PN_MII 0xA0 /* MII access register */
#define PN_NWAY 0xB8 /* Internal NWAY register */
/*
* Bus control bits.
*/
#define PN_BUSCTL_RESET 0x00000001
#define PN_BUSCTL_ARBITRATION 0x00000002
#define PN_BUSCTL_SKIPLEN 0x0000007C
#define PN_BUSCTL_BUF_BIGENDIAN 0x00000080
#define PN_BUSCTL_BURSTLEN 0x00003F00
#define PN_BUSCTL_CACHEALIGN 0x0000C000
#define PN_BUSCTL_TXPOLL 0x000E0000
#define PN_BUSCTL_MUSTBEONE 0x04000000
#define PN_SKIPLEN_1LONG 0x00000004
#define PN_SKIPLEN_2LONG 0x00000008
#define PN_SKIPLEN_3LONG 0x00000010
#define PN_SKIPLEN_4LONG 0x00000020
#define PN_SKIPLEN_5LONG 0x00000040
#define PN_CACHEALIGN_NONE 0x00000000
#define PN_CACHEALIGN_8LONG 0x00004000
#define PN_CACHEALIGN_16LONG 0x00008000
#define PN_CACHEALIGN_32LONG 0x0000C000
#define PN_BURSTLEN_USECA 0x00000000
#define PN_BURSTLEN_1LONG 0x00000100
#define PN_BURSTLEN_2LONG 0x00000200
#define PN_BURSTLEN_4LONG 0x00000400
#define PN_BURSTLEN_8LONG 0x00000800
#define PN_BURSTLEN_16LONG 0x00001000
#define PN_BURSTLEN_32LONG 0x00002000
#define PN_TXPOLL_OFF 0x00000000
#define PN_TXPOLL_200U 0x00020000
#define PN_TXPOLL_800U 0x00040000
#define PN_TXPOLL_1600U 0x00060000
#define PN_TXPOLL_12_8M 0x00080000
#define PN_TXPOLL_25_6M 0x000A0000
#define PN_TXPOLL_51_2M 0x000C0000
#define PN_TXPOLL_102_4M 0x000E0000
#define PN_BUSCTL_CONFIG \
(PN_CACHEALIGN_8LONG|PN_BURSTLEN_8LONG)
/*
* Interrupt status bits.
*/
#define PN_ISR_TX_OK 0x00000001 /* packet tx ok */
#define PN_ISR_TX_IDLE 0x00000002 /* tx stopped */
#define PN_ISR_TX_NOBUF 0x00000004 /* no tx buffer available */
#define PN_ISR_TX_JABTIMEO 0x00000008 /* jabber timeout */
#define PN_ISR_LINKPASS 0x00000010 /* link test pass */
#define PN_ISR_TX_UNDERRUN 0x00000020 /* transmit underrun */
#define PN_ISR_RX_OK 0x00000040 /* packet rx ok */
#define PN_ISR_RX_NOBUF 0x00000080 /* rx buffer unavailable */
#define PN_ISR_RX_IDLE 0x00000100 /* rx stopped */
#define PN_ISR_RX_WATCHDOG 0x00000200 /* rx watchdog timeo */
#define PN_ISR_TX_EARLY 0x00000400 /* rx watchdog timeo */
#define PN_ISR_LINKFAIL 0x00001000
#define PN_ISR_BUS_ERR 0x00002000
#define PN_ISR_ABNORMAL 0x00008000
#define PN_ISR_NORMAL 0x00010000
#define PN_ISR_RX_STATE 0x000E0000
#define PN_ISR_TX_STATE 0x00700000
#define PN_ISR_BUSERRTYPE 0x03800000
#define PN_ISR_TXABORT 0x04000000 /* tx abort */
#define PN_RXSTATE_STOPPED 0x00000000 /* 000 - Stopped */
#define PN_RXSTATE_FETCH 0x00020000 /* 001 - Fetching descriptor */
#define PN_RXSTATE_ENDCHECK 0x00040000 /* 010 - check for rx end */
#define PN_RXSTATE_WAIT 0x00060000 /* 011 - waiting for packet */
#define PN_RXSTATE_SUSPEND 0x00080000 /* 100 - suspend rx */
#define PN_RXSTATE_CLOSE 0x000A0000 /* 101 - close rx desc */
#define PN_RXSTATE_FLUSH 0x000C0000 /* 110 - flush from FIFO */
#define PN_RXSTATE_DEQUEUE 0x000E0000 /* 111 - dequeue from FIFO */
#define PN_TXSTATE_RESET 0x00000000 /* 000 - reset */
#define PN_TXSTATE_FETCH 0x00100000 /* 001 - fetching descriptor */
#define PN_TXSTATE_WAITEND 0x00200000 /* 010 - wait for tx end */
#define PN_TXSTATE_READING 0x00300000 /* 011 - read and enqueue */
#define PN_TXSTATE_RSVD 0x00400000 /* 100 - reserved */
#define PN_TXSTATE_SETUP 0x00500000 /* 101 - setup packet */
#define PN_TXSTATE_SUSPEND 0x00600000 /* 110 - suspend tx */
#define PN_TXSTATE_CLOSE 0x00700000 /* 111 - close tx desc */
#define PN_BUSERR_PARITY 0x00000000
#define PN_BUSERR_MASTABRT 0x00800000
#define PN_BUSERR_TGTABRT 0x01000000
#define PN_BUSERR_RSVD1 0x01800000
#define PN_BUSERR_RSVD2 0x02000000
/*
* Network config bits.
*/
#define PN_NETCFG_HASHPERF 0x00000001 /* 0 == perf, 1 == hash */
#define PN_NETCFG_RX_ON 0x00000002
#define PN_NETCFG_HASHONLY 0x00000004 /* 1 == allhash */
#define PN_NETCFG_RX_PASSERR 0x00000008
#define PN_NETCFG_INVERSFILT 0x00000010
#define PN_NETCFG_BACKOFF 0x00000020
#define PN_NETCFG_RX_PROMISC 0x00000040
#define PN_NETCFG_RX_ALLMULTI 0x00000080
#define PN_NETCFG_FLAKYOSC 0x00000100
#define PN_NETCFG_FULLDUPLEX 0x00000200
#define PN_NETCFG_OPERMODE 0x00000C00
#define PN_NETCFG_FORCECOLL 0x00001000
#define PN_NETCFG_TX_ON 0x00002000
#define PN_NETCFG_TX_THRESH 0x0000C000
#define PN_NETCFG_TX_BACKOFF 0x00020000
#define PN_NETCFG_MIIENB 0x00040000 /* 1 == MII, 0 == internal */
#define PN_NETCFG_HEARTBEAT 0x00080000 /* 1 == disabled */
#define PN_NETCFG_TX_IMMEDIATE 0x00100000
#define PN_NETCFG_STORENFWD 0x00200000
#define PN_NETCFG_SPEEDSEL 0x00400000 /* 1 == 10Mbps 0 == 100Mbps */
#define PN_NETCFG_PCS 0x00800000 /* 1 == 100baseTX */
#define PN_NETCFG_SCRAMBLER 0x01000000
#define PN_NETCFG_NO_RXCRC 0x20000000
#define PN_NETCFG_EXT_ENDEC 0x40000000 /* 1 == ext, 0 == int PHY */
#define PN_OPMODE_NORM 0x00000000
#define PN_OPMODE_INTLOOP 0x00000400
#define PN_OPMODE_EXTLOOP 0x00000800
#define PN_TXTHRESH_72BYTES 0x00000000
#define PN_TXTHRESH_96BYTES 0x00004000
#define PN_TXTHRESH_128BYTES 0x00008000
#define PN_TXTHRESH_160BYTES 0x0000C000
/*
* Interrupt mask bits.
*/
#define PN_IMR_TX_OK 0x00000001 /* packet tx ok */
#define PN_IMR_TX_IDLE 0x00000002 /* tx stopped */
#define PN_IMR_TX_NOBUF 0x00000004 /* no tx buffer available */
#define PN_IMR_TX_JABTIMEO 0x00000008 /* jabber timeout */
#define PN_IMR_LINKPASS 0x00000010 /* link test pass */
#define PN_IMR_TX_UNDERRUN 0x00000020 /* transmit underrun */
#define PN_IMR_RX_OK 0x00000040 /* packet rx ok */
#define PN_IMR_RX_NOBUF 0x00000080 /* rx buffer unavailable */
#define PN_IMR_RX_IDLE 0x00000100 /* rx stopped */
#define PN_IMR_RX_WATCHDOG 0x00000200 /* rx watchdog timeo */
#define PN_IMR_TX_EARLY 0x00000400 /* rx watchdog timeo */
#define PN_IMR_BUS_ERR 0x00002000
#define PN_IMR_ABNORMAL 0x00008000
#define PN_IMR_NORMAL 0x00010000
#define PN_ISR_TXABORT 0x04000000 /* tx abort */
#define PN_INTRS \
(PN_IMR_RX_OK|PN_IMR_TX_OK|PN_IMR_RX_NOBUF| \
PN_IMR_TX_NOBUF|PN_IMR_TX_UNDERRUN|PN_IMR_BUS_ERR| \
PN_IMR_ABNORMAL|PN_IMR_NORMAL)
/*
* Serial I/O (EEPROM/ROM) bits.
*/
#define PN_SIO_DATA 0x0000003F
#define PN_SIO_OPCODE 0x00000300
#define PN_SIO_BUSY 0x80000000
/*
* SIOCTL/EEPROM bits
*/
#define PN_EE_READ 0x600
/*
* General purpose register bits.
*/
#define PN_GEN_CTL 0x000000F0
#define PN_GEN_100TX_LINK 0x00000008
#define PN_GEN_BNC_ENB 0x00000004
#define PN_GEN_100TX_LOOP 0x00000002 /* 1 == normal, 0 == loop */
#define PN_GEN_SPEEDSEL 0x00000001 /* 1 == 100Mbps, 0 == 10Mbps */
#define PN_GEN_MUSTBEONE 0x00000030
/*
* General ENDEC bits.
*/
#define PN_ENDEC_JABBERDIS 0x000000001 /* 1 == disable, 0 == enable */
/*
* MII bits.
*/
#define PN_MII_DATA 0x0000FFFF
#define PN_MII_REGADDR 0x007C0000
#define PN_MII_PHYADDR 0x0F800000
#define PN_MII_OPCODE 0x30000000
#define PN_MII_RESERVED 0x00020000
#define PN_MII_BUSY 0x80000000
#define PN_MII_READ 0x60020000 /* read PHY command */
#define PN_MII_WRITE 0x50020000 /* write PHY command */
/*
* Internal PHY NWAY register bits.
*/
#define PN_NWAY_RESET 0x00000001 /* reset */
#define PN_NWAY_PDOWN 0x00000002 /* power down */
#define PN_NWAY_BYPASS 0x00000004 /* bypass */
#define PN_NWAY_AUILOWCUR 0x00000008 /* AUI low current */
#define PN_NWAY_TPEXTEND 0x00000010 /* low squelch voltage */
#define PN_NWAY_POLARITY 0x00000020 /* 0 == on, 1 == off */
#define PN_NWAY_TP 0x00000040 /* 1 == tp, 0 == AUI */
#define PN_NWAY_AUIVOLT 0x00000080 /* 1 == full, 0 == half */
#define PN_NWAY_DUPLEX 0x00000100 /* 1 == full, 0 == half */
#define PN_NWAY_LINKTEST 0x00000200 /* 0 == on, 1 == off */
#define PN_NWAY_AUTODETECT 0x00000400 /* 1 == off, 0 == on */
#define PN_NWAY_SPEEDSEL 0x00000800 /* 0 == 10, 1 == 100 */
#define PN_NWAY_NWAY_ENB 0x00001000 /* 0 == off, 1 == on */
#define PN_NWAY_CAP10HALF 0x00002000
#define PN_NWAY_CAP10FULL 0x00004000
#define PN_NWAY_CAP100FULL 0x00008000
#define PN_NWAY_CAP100HALF 0x00010000
#define PN_NWAY_CAP100T4 0x00020000
#define PN_NWAY_AUTONEGRSTR 0x02000000
#define PN_NWAY_REMFAULT 0x04000000
#define PN_NWAY_LPAR10HALF 0x08000000
#define PN_NWAY_LPAR10FULL 0x10000000
#define PN_NWAY_LPAR100FULL 0x20000000
#define PN_NWAY_LPAR100HALF 0x40000000
#define PN_NWAY_LPAR100T4 0x80000000
/*
* Nway register bits that must be set to turn on to initiate
* an autoneg session with all modes advertized and AUI disabled.
*/
#define PN_NWAY_AUTOENB \
(PN_NWAY_AUILOWCUR|PN_NWAY_TPEXTEND|PN_NWAY_POLARITY|PN_NWAY_TP \
|PN_NWAY_NWAY_ENB|PN_NWAY_CAP10HALF|PN_NWAY_CAP10FULL| \
PN_NWAY_CAP100FULL|PN_NWAY_CAP100HALF|PN_NWAY_CAP100T4| \
PN_NWAY_AUTONEGRSTR)
#define PN_NWAY_MODE_10HD \
(PN_NWAY_CAP10HALF|PN_NWAY_CAP10FULL| \
PN_NWAY_CAP100FULL|PN_NWAY_CAP100HALF|PN_NWAY_CAP100T4| \
PN_NWAY_AUILOWCUR|PN_NWAY_TPEXTEND|PN_NWAY_POLARITY| \
PN_NWAY_TP)
#define PN_NWAY_MODE_10FD \
(PN_NWAY_CAP10HALF|PN_NWAY_CAP10FULL| \
PN_NWAY_CAP100FULL|PN_NWAY_CAP100HALF|PN_NWAY_CAP100T4| \
PN_NWAY_AUILOWCUR|PN_NWAY_TPEXTEND|PN_NWAY_POLARITY| \
PN_NWAY_TP|PN_NWAY_DUPLEX)
#define PN_NWAY_MODE_100HD \
(PN_NWAY_CAP10HALF|PN_NWAY_CAP10FULL| \
PN_NWAY_CAP100FULL|PN_NWAY_CAP100HALF|PN_NWAY_CAP100T4| \
PN_NWAY_AUILOWCUR|PN_NWAY_TPEXTEND|PN_NWAY_POLARITY| \
PN_NWAY_TP|PN_NWAY_SPEEDSEL)
#define PN_NWAY_MODE_100FD \
(PN_NWAY_CAP10HALF|PN_NWAY_CAP10FULL| \
PN_NWAY_CAP100FULL|PN_NWAY_CAP100HALF|PN_NWAY_CAP100T4| \
PN_NWAY_AUILOWCUR|PN_NWAY_TPEXTEND|PN_NWAY_POLARITY| \
PN_NWAY_TP|PN_NWAY_SPEEDSEL|PN_NWAY_DUPLEX)
#define PN_NWAY_MODE_100T4 PN_NWAY_MODE_100HD
#define PN_NWAY_LPAR \
(PN_NWAY_LPAR10HALF|PN_NWAY_LPAR10FULL|PN_NWAY_LPAR100HALF| \
PN_NWAY_LPAR100FULL|PN_NWAY_LPAR100T4)
/*
* Size of a setup frame.
*/
#define PN_SFRAME_LEN 192
/*
* PNIC TX/RX list structure.
*/
struct pn_desc {
u_int32_t pn_status;
u_int32_t pn_ctl;
u_int32_t pn_ptr1;
u_int32_t pn_ptr2;
};
#define pn_data pn_ptr1
#define pn_next pn_ptr2
#define RX_RXSTAT_FIFOOFLOW 0x00000001
#define PN_RXSTAT_CRCERR 0x00000002
#define PN_RXSTAT_DRIBBLE 0x00000004
#define PN_RXSTAT_WATCHDOG 0x00000010
#define PN_RXSTAT_FRAMETYPE 0x00000020 /* 0 == IEEE 802.3 */
#define PN_RXSTAT_COLLSEEN 0x00000040
#define PN_RXSTAT_GIANT 0x00000080
#define PN_RXSTAT_LASTFRAG 0x00000100
#define PN_RXSTAT_FIRSTFRAG 0x00000200
#define PN_RXSTAT_MULTICAST 0x00000400
#define PN_RXSTAT_RUNT 0x00000800
#define PN_RXSTAT_RXTYPE 0x00003000
#define PN_RXSTAT_RXERR 0x00008000
#define PN_RXSTAT_RXLEN 0x7FFF0000
#define PN_RXSTAT_OWN 0x80000000
#define PN_RXBYTES(x) ((x & PN_RXSTAT_RXLEN) >> 16)
#define PN_RXSTAT (PN_RXSTAT_FIRSTFRAG|PN_RXSTAT_LASTFRAG|PN_RXSTAT_OWN)
#define PN_RXCTL_BUFLEN1 0x00000FFF
#define PN_RXCTL_BUFLEN2 0x00FFF000
#define PN_RXCTL_RLINK 0x01000000
#define PN_RXCTL_RLAST 0x02000000
#define PN_TXSTAT_DEFER 0x00000001
#define PN_TXSTAT_UNDERRUN 0x00000002
#define PN_TXSTAT_LINKFAIL 0x00000003
#define PN_TXSTAT_COLLCNT 0x00000078
#define PN_TXSTAT_SQE 0x00000080
#define PN_TXSTAT_EXCESSCOLL 0x00000100
#define PN_TXSTAT_LATECOLL 0x00000200
#define PN_TXSTAT_NOCARRIER 0x00000400
#define PN_TXSTAT_CARRLOST 0x00000800
#define PN_TXSTAT_JABTIMEO 0x00004000
#define PN_TXSTAT_ERRSUM 0x00008000
#define PN_TXSTAT_OWN 0x80000000
#define PN_TXCTL_BUFLEN1 0x000007FF
#define PN_TXCTL_BUFLEN2 0x003FF800
#define PN_TXCTL_FILTTYPE0 0x00400000
#define PN_TXCTL_PAD 0x00800000
#define PN_TXCTL_TLINK 0x01000000
#define PN_TXCTL_TLAST 0x02000000
#define PN_TXCTL_NOCRC 0x04000000
#define PN_TXCTL_SETUP 0x08000000
#define PN_TXCTL_FILTTYPE1 0x10000000
#define PN_TXCTL_FIRSTFRAG 0x20000000
#define PN_TXCTL_LASTFRAG 0x40000000
#define PN_TXCTL_FINT 0x80000000
#define PN_FILTER_PERFECT 0x00000000
#define PN_FILTER_HASHPERF 0x00400000
#define PN_FILTER_INVERSE 0x10000000
#define PN_FILTER_HASHONLY 0x10400000
#define PN_MAXFRAGS 16
#define PN_RX_LIST_CNT 64
#define PN_TX_LIST_CNT 128
#define PN_MIN_FRAMELEN 60
#define PN_FRAMELEN 1536
This commit adds a software workaround for a hardware bug in certain PNIC chip revisions. (A buggy taiwanese chip? I'm just shocked; shocked I tell you.) So far I have only observed the anomalous behavior on board with PCI revision 33 chips. At the moment, this seems to include only the Netgear FA310-TX rev D1 boards with chips labeled NGMC169B. (Possibly this means it's an 82c169B part from Lite-On.) The bug only manifests itself in promiscuous mode, and usually only at 10Mbps half-duplex. (I have not observed the problem in full-duplex mode, and I don't think it ever happens at 100Mbps.) The bug appears to be in the receiver DMA engine. Normally, the chip is programmed with a linked list of receiver descriptors, each with a receive buffer capable of holding a complete full-sized ethernet frame. During periods of heavy traffic (i.e. ping -c 100 -f 8100 <otherhost>), the receiver will sometimes appear to upload its entire FIFO memory contents instead of just uploading the desired received frame. The uploaded data will span several receive buffers, in spite of the fact that the chip has been told to only use one descriptor per frame, and appears to consist of previously transmitted frames with the correct received frame appended to the end. Unfortunately, there is no way to determine exactly how much data is uploaded when this happens; the chip doesn't tell you anything except the size of the desired received frame, and the amount of bogus data varies. Sometimes, the desired frame is also split across multiple buffers. The workaround is ugly and nasty. The driver assembles all of the data from the bogus frames into a single buffer. The receive buffers are always zeroed out, and we program the chip to always include the receive CRC at the end of each frame. We therefore know that we can start from the end of the buffer and scan back until we encounter a non-zero data byte, and say conclusively that this is the end of the desired frame. We can then subtract the frame length from this address to determine the real start of the frame, and copy it into an mbuf and pass it on. This is kludgy and time consuming, but it's better than dropping frames. It's not too bad since the problem only happens at 10Mbps. The workaround is only enabled for chips with PCI revision == 33. The LinkSys LNE100TX and Matrox FastNIC 10/100 cards use a revision 32 chip and work fine in promiscuous mode. Netgear support has confirmed that they "have some previous knowledge of problems in promiscuous mode" but didn't have a workaround. The people at Lite-On who would be able to suggest a possible fix are on vacation. So, I decided to implement a workaround of my own until I hear from them. I suppose this problem made it through Netgear's QA department since Windows doesn't normally use promiscuous mode, and if Windows doesn't need the feature than it can't possibly be important, right? Grrr.
1998-12-31 17:19:21 +00:00
#define PN_RXLEN 1518
/*
* A tx 'super descriptor' is actually 16 regular descriptors
* back to back.
*/
struct pn_txdesc {
struct pn_desc pn_frag[PN_MAXFRAGS];
};
#define PN_TXNEXT(x) x->pn_ptr->pn_frag[x->pn_lastdesc].pn_next
#define PN_TXSTATUS(x) x->pn_ptr->pn_frag[x->pn_lastdesc].pn_status
#define PN_TXCTL(x) x->pn_ptr->pn_frag[x->pn_lastdesc].pn_ctl
#define PN_TXDATA(x) x->pn_ptr->pn_frag[x->pn_lastdesc].pn_data
#define PN_TXOWN(x) x->pn_ptr->pn_frag[0].pn_status
struct pn_list_data {
struct pn_desc pn_rx_list[PN_RX_LIST_CNT];
struct pn_txdesc pn_tx_list[PN_TX_LIST_CNT];
};
struct pn_chain {
struct pn_txdesc *pn_ptr;
struct mbuf *pn_mbuf;
struct pn_chain *pn_nextdesc;
u_int8_t pn_lastdesc;
};
struct pn_chain_onefrag {
struct pn_desc *pn_ptr;
struct mbuf *pn_mbuf;
struct pn_chain_onefrag *pn_nextdesc;
};
struct pn_chain_data {
struct pn_desc pn_sframe;
u_int32_t pn_sbuf[PN_SFRAME_LEN/sizeof(u_int32_t)];
struct pn_chain_onefrag pn_rx_chain[PN_RX_LIST_CNT];
struct pn_chain pn_tx_chain[PN_TX_LIST_CNT];
struct pn_chain_onefrag *pn_rx_head;
struct pn_chain *pn_tx_head;
struct pn_chain *pn_tx_tail;
struct pn_chain *pn_tx_free;
};
struct pn_type {
u_int16_t pn_vid;
u_int16_t pn_did;
char *pn_name;
};
struct pn_mii_frame {
u_int8_t mii_stdelim;
u_int8_t mii_opcode;
u_int8_t mii_phyaddr;
u_int8_t mii_regaddr;
u_int8_t mii_turnaround;
u_int16_t mii_data;
};
/*
* MII constants
*/
#define PN_MII_STARTDELIM 0x01
#define PN_MII_READOP 0x02
#define PN_MII_WRITEOP 0x01
#define PN_MII_TURNAROUND 0x02
#define PN_FLAG_FORCEDELAY 1
#define PN_FLAG_SCHEDDELAY 2
#define PN_FLAG_DELAYTIMEO 3
struct pn_softc {
struct arpcom arpcom; /* interface info */
struct ifmedia ifmedia; /* media info */
bus_space_handle_t pn_bhandle; /* bus space handle */
bus_space_tag_t pn_btag; /* bus space tag */
struct pn_type *pn_info; /* PNIC adapter info */
struct pn_type *pn_pinfo; /* phy info */
u_int8_t pn_unit; /* interface number */
u_int8_t pn_type;
u_int8_t pn_phy_addr; /* PHY address */
u_int8_t pn_tx_pend; /* TX pending */
u_int8_t pn_want_auto;
u_int8_t pn_autoneg;
caddr_t pn_ldata_ptr;
#ifdef PN_RX_BUG_WAR
#define PN_168_REV 16
#define PN_169_REV 32
This commit adds a software workaround for a hardware bug in certain PNIC chip revisions. (A buggy taiwanese chip? I'm just shocked; shocked I tell you.) So far I have only observed the anomalous behavior on board with PCI revision 33 chips. At the moment, this seems to include only the Netgear FA310-TX rev D1 boards with chips labeled NGMC169B. (Possibly this means it's an 82c169B part from Lite-On.) The bug only manifests itself in promiscuous mode, and usually only at 10Mbps half-duplex. (I have not observed the problem in full-duplex mode, and I don't think it ever happens at 100Mbps.) The bug appears to be in the receiver DMA engine. Normally, the chip is programmed with a linked list of receiver descriptors, each with a receive buffer capable of holding a complete full-sized ethernet frame. During periods of heavy traffic (i.e. ping -c 100 -f 8100 <otherhost>), the receiver will sometimes appear to upload its entire FIFO memory contents instead of just uploading the desired received frame. The uploaded data will span several receive buffers, in spite of the fact that the chip has been told to only use one descriptor per frame, and appears to consist of previously transmitted frames with the correct received frame appended to the end. Unfortunately, there is no way to determine exactly how much data is uploaded when this happens; the chip doesn't tell you anything except the size of the desired received frame, and the amount of bogus data varies. Sometimes, the desired frame is also split across multiple buffers. The workaround is ugly and nasty. The driver assembles all of the data from the bogus frames into a single buffer. The receive buffers are always zeroed out, and we program the chip to always include the receive CRC at the end of each frame. We therefore know that we can start from the end of the buffer and scan back until we encounter a non-zero data byte, and say conclusively that this is the end of the desired frame. We can then subtract the frame length from this address to determine the real start of the frame, and copy it into an mbuf and pass it on. This is kludgy and time consuming, but it's better than dropping frames. It's not too bad since the problem only happens at 10Mbps. The workaround is only enabled for chips with PCI revision == 33. The LinkSys LNE100TX and Matrox FastNIC 10/100 cards use a revision 32 chip and work fine in promiscuous mode. Netgear support has confirmed that they "have some previous knowledge of problems in promiscuous mode" but didn't have a workaround. The people at Lite-On who would be able to suggest a possible fix are on vacation. So, I decided to implement a workaround of my own until I hear from them. I suppose this problem made it through Netgear's QA department since Windows doesn't normally use promiscuous mode, and if Windows doesn't need the feature than it can't possibly be important, right? Grrr.
1998-12-31 17:19:21 +00:00
#define PN_169B_REV 33
u_int8_t pn_rx_war;
u_int8_t pn_cachesize;
struct pn_chain_onefrag *pn_rx_bug_save;
unsigned char *pn_rx_buf;
This commit adds a software workaround for a hardware bug in certain PNIC chip revisions. (A buggy taiwanese chip? I'm just shocked; shocked I tell you.) So far I have only observed the anomalous behavior on board with PCI revision 33 chips. At the moment, this seems to include only the Netgear FA310-TX rev D1 boards with chips labeled NGMC169B. (Possibly this means it's an 82c169B part from Lite-On.) The bug only manifests itself in promiscuous mode, and usually only at 10Mbps half-duplex. (I have not observed the problem in full-duplex mode, and I don't think it ever happens at 100Mbps.) The bug appears to be in the receiver DMA engine. Normally, the chip is programmed with a linked list of receiver descriptors, each with a receive buffer capable of holding a complete full-sized ethernet frame. During periods of heavy traffic (i.e. ping -c 100 -f 8100 <otherhost>), the receiver will sometimes appear to upload its entire FIFO memory contents instead of just uploading the desired received frame. The uploaded data will span several receive buffers, in spite of the fact that the chip has been told to only use one descriptor per frame, and appears to consist of previously transmitted frames with the correct received frame appended to the end. Unfortunately, there is no way to determine exactly how much data is uploaded when this happens; the chip doesn't tell you anything except the size of the desired received frame, and the amount of bogus data varies. Sometimes, the desired frame is also split across multiple buffers. The workaround is ugly and nasty. The driver assembles all of the data from the bogus frames into a single buffer. The receive buffers are always zeroed out, and we program the chip to always include the receive CRC at the end of each frame. We therefore know that we can start from the end of the buffer and scan back until we encounter a non-zero data byte, and say conclusively that this is the end of the desired frame. We can then subtract the frame length from this address to determine the real start of the frame, and copy it into an mbuf and pass it on. This is kludgy and time consuming, but it's better than dropping frames. It's not too bad since the problem only happens at 10Mbps. The workaround is only enabled for chips with PCI revision == 33. The LinkSys LNE100TX and Matrox FastNIC 10/100 cards use a revision 32 chip and work fine in promiscuous mode. Netgear support has confirmed that they "have some previous knowledge of problems in promiscuous mode" but didn't have a workaround. The people at Lite-On who would be able to suggest a possible fix are on vacation. So, I decided to implement a workaround of my own until I hear from them. I suppose this problem made it through Netgear's QA department since Windows doesn't normally use promiscuous mode, and if Windows doesn't need the feature than it can't possibly be important, right? Grrr.
1998-12-31 17:19:21 +00:00
#endif
struct pn_list_data *pn_ldata;
struct pn_chain_data pn_cdata;
};
/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val) \
bus_space_write_4(sc->pn_btag, sc->pn_bhandle, reg, val)
#define CSR_WRITE_2(sc, reg, val) \
bus_space_write_2(sc->pn_btag, sc->pn_bhandle, reg, val)
#define CSR_WRITE_1(sc, reg, val) \
bus_space_write_1(sc->pn_btag, sc->pn_bhandle, reg, val)
#define CSR_READ_4(sc, reg) \
bus_space_read_4(sc->pn_btag, sc->pn_bhandle, reg)
#define CSR_READ_2(sc, reg) \
bus_space_read_2(sc->pn_btag, sc->pn_bhandle, reg)
#define CSR_READ_1(sc, reg) \
bus_space_read_1(sc->pn_btag, sc->pn_bhandle, reg)
#define PN_TIMEOUT 1000
/*
* General constants that are fun to know.
*
* Lite-On PNIC PCI vendor ID
*/
#define PN_VENDORID 0x11AD
/*
* Lite-On PNIC PCI device ID.
*/
#define PN_DEVICEID_PNIC 0x0002
1999-02-26 07:50:53 +00:00
#define PN_DEVICEID_PNIC_II 0xc115
/*
* The 82c168 chip has the same PCI vendor/device ID as the
* 82c169, but a different revision. Assume that any revision
* between 0x10 an 0x1F is an 82c168.
*/
#define PN_REVMASK 0xF0
#define PN_REVID_82C168 0x10
#define PN_REVID_82C169 0x20
/*
* Texas Instruments PHY identifiers
*/
#define TI_PHY_VENDORID 0x4000
#define TI_PHY_10BT 0x501F
#define TI_PHY_100VGPMI 0x502F
/*
* These ID values are for the NS DP83840A 10/100 PHY
*/
#define NS_PHY_VENDORID 0x2000
#define NS_PHY_83840A 0x5C0F
/*
* Level 1 10/100 PHY
*/
#define LEVEL1_PHY_VENDORID 0x7810
#define LEVEL1_PHY_LXT970 0x000F
/*
* Intel 82555 10/100 PHY
*/
#define INTEL_PHY_VENDORID 0x0A28
#define INTEL_PHY_82555 0x015F
/*
* SEEQ 80220 10/100 PHY
*/
#define SEEQ_PHY_VENDORID 0x0016
#define SEEQ_PHY_80220 0xF83F
/*
* PCI low memory base and low I/O base register, and
* other PCI registers.
*/
#define PN_PCI_VENDOR_ID 0x00
#define PN_PCI_DEVICE_ID 0x02
#define PN_PCI_COMMAND 0x04
#define PN_PCI_STATUS 0x06
This commit adds a software workaround for a hardware bug in certain PNIC chip revisions. (A buggy taiwanese chip? I'm just shocked; shocked I tell you.) So far I have only observed the anomalous behavior on board with PCI revision 33 chips. At the moment, this seems to include only the Netgear FA310-TX rev D1 boards with chips labeled NGMC169B. (Possibly this means it's an 82c169B part from Lite-On.) The bug only manifests itself in promiscuous mode, and usually only at 10Mbps half-duplex. (I have not observed the problem in full-duplex mode, and I don't think it ever happens at 100Mbps.) The bug appears to be in the receiver DMA engine. Normally, the chip is programmed with a linked list of receiver descriptors, each with a receive buffer capable of holding a complete full-sized ethernet frame. During periods of heavy traffic (i.e. ping -c 100 -f 8100 <otherhost>), the receiver will sometimes appear to upload its entire FIFO memory contents instead of just uploading the desired received frame. The uploaded data will span several receive buffers, in spite of the fact that the chip has been told to only use one descriptor per frame, and appears to consist of previously transmitted frames with the correct received frame appended to the end. Unfortunately, there is no way to determine exactly how much data is uploaded when this happens; the chip doesn't tell you anything except the size of the desired received frame, and the amount of bogus data varies. Sometimes, the desired frame is also split across multiple buffers. The workaround is ugly and nasty. The driver assembles all of the data from the bogus frames into a single buffer. The receive buffers are always zeroed out, and we program the chip to always include the receive CRC at the end of each frame. We therefore know that we can start from the end of the buffer and scan back until we encounter a non-zero data byte, and say conclusively that this is the end of the desired frame. We can then subtract the frame length from this address to determine the real start of the frame, and copy it into an mbuf and pass it on. This is kludgy and time consuming, but it's better than dropping frames. It's not too bad since the problem only happens at 10Mbps. The workaround is only enabled for chips with PCI revision == 33. The LinkSys LNE100TX and Matrox FastNIC 10/100 cards use a revision 32 chip and work fine in promiscuous mode. Netgear support has confirmed that they "have some previous knowledge of problems in promiscuous mode" but didn't have a workaround. The people at Lite-On who would be able to suggest a possible fix are on vacation. So, I decided to implement a workaround of my own until I hear from them. I suppose this problem made it through Netgear's QA department since Windows doesn't normally use promiscuous mode, and if Windows doesn't need the feature than it can't possibly be important, right? Grrr.
1998-12-31 17:19:21 +00:00
#define PN_PCI_REVISION 0x08
#define PN_PCI_CLASSCODE 0x09
#define PN_PCI_CACHELEN 0x0C
#define PN_PCI_LATENCY_TIMER 0x0D
#define PN_PCI_HEADER_TYPE 0x0E
#define PN_PCI_LOIO 0x10
#define PN_PCI_LOMEM 0x14
#define PN_PCI_BIOSROM 0x30
#define PN_PCI_INTLINE 0x3C
#define PN_PCI_INTPIN 0x3D
#define PN_PCI_MINGNT 0x3E
#define PN_PCI_MINLAT 0x0F
#define PN_PCI_RESETOPT 0x48
#define PN_PCI_EEPROM_DATA 0x4C
/* power management registers */
#define PN_PCI_CAPID 0xDC /* 8 bits */
#define PN_PCI_NEXTPTR 0xDD /* 8 bits */
#define PN_PCI_PWRMGMTCAP 0xDE /* 16 bits */
#define PN_PCI_PWRMGMTCTRL 0xE0 /* 16 bits */
#define PN_PSTATE_MASK 0x0003
#define PN_PSTATE_D0 0x0000
#define PN_PSTATE_D1 0x0002
#define PN_PSTATE_D2 0x0002
#define PN_PSTATE_D3 0x0003
#define PN_PME_EN 0x0010
#define PN_PME_STATUS 0x8000
#define PHY_UNKNOWN 6
#define PN_PHYADDR_MIN 0x00
#define PN_PHYADDR_MAX 0x1F
#define PHY_BMCR 0x00
#define PHY_BMSR 0x01
#define PHY_VENID 0x02
#define PHY_DEVID 0x03
#define PHY_ANAR 0x04
#define PHY_LPAR 0x05
#define PHY_ANEXP 0x06
#define PHY_ANAR_NEXTPAGE 0x8000
#define PHY_ANAR_RSVD0 0x4000
#define PHY_ANAR_TLRFLT 0x2000
#define PHY_ANAR_RSVD1 0x1000
#define PHY_ANAR_RSVD2 0x0800
#define PHY_ANAR_RSVD3 0x0400
#define PHY_ANAR_100BT4 0x0200
#define PHY_ANAR_100BTXFULL 0x0100
#define PHY_ANAR_100BTXHALF 0x0080
#define PHY_ANAR_10BTFULL 0x0040
#define PHY_ANAR_10BTHALF 0x0020
#define PHY_ANAR_PROTO4 0x0010
#define PHY_ANAR_PROTO3 0x0008
#define PHY_ANAR_PROTO2 0x0004
#define PHY_ANAR_PROTO1 0x0002
#define PHY_ANAR_PROTO0 0x0001
/*
* These are the register definitions for the PHY (physical layer
* interface chip).
*/
/*
* PHY BMCR Basic Mode Control Register
*/
#define PHY_BMCR_RESET 0x8000
#define PHY_BMCR_LOOPBK 0x4000
#define PHY_BMCR_SPEEDSEL 0x2000
#define PHY_BMCR_AUTONEGENBL 0x1000
#define PHY_BMCR_RSVD0 0x0800 /* write as zero */
#define PHY_BMCR_ISOLATE 0x0400
#define PHY_BMCR_AUTONEGRSTR 0x0200
#define PHY_BMCR_DUPLEX 0x0100
#define PHY_BMCR_COLLTEST 0x0080
#define PHY_BMCR_RSVD1 0x0040 /* write as zero, don't care */
#define PHY_BMCR_RSVD2 0x0020 /* write as zero, don't care */
#define PHY_BMCR_RSVD3 0x0010 /* write as zero, don't care */
#define PHY_BMCR_RSVD4 0x0008 /* write as zero, don't care */
#define PHY_BMCR_RSVD5 0x0004 /* write as zero, don't care */
#define PHY_BMCR_RSVD6 0x0002 /* write as zero, don't care */
#define PHY_BMCR_RSVD7 0x0001 /* write as zero, don't care */
/*
* RESET: 1 == software reset, 0 == normal operation
* Resets status and control registers to default values.
* Relatches all hardware config values.
*
* LOOPBK: 1 == loopback operation enabled, 0 == normal operation
*
* SPEEDSEL: 1 == 100Mb/s, 0 == 10Mb/s
* Link speed is selected byt his bit or if auto-negotiation if bit
* 12 (AUTONEGENBL) is set (in which case the value of this register
* is ignored).
*
* AUTONEGENBL: 1 == Autonegotiation enabled, 0 == Autonegotiation disabled
* Bits 8 and 13 are ignored when autoneg is set, otherwise bits 8 and 13
* determine speed and mode. Should be cleared and then set if PHY configured
* for no autoneg on startup.
*
* ISOLATE: 1 == isolate PHY from MII, 0 == normal operation
*
* AUTONEGRSTR: 1 == restart autonegotiation, 0 = normal operation
*
* DUPLEX: 1 == full duplex mode, 0 == half duplex mode
*
* COLLTEST: 1 == collision test enabled, 0 == normal operation
*/
/*
* PHY, BMSR Basic Mode Status Register
*/
#define PHY_BMSR_100BT4 0x8000
#define PHY_BMSR_100BTXFULL 0x4000
#define PHY_BMSR_100BTXHALF 0x2000
#define PHY_BMSR_10BTFULL 0x1000
#define PHY_BMSR_10BTHALF 0x0800
#define PHY_BMSR_RSVD1 0x0400 /* write as zero, don't care */
#define PHY_BMSR_RSVD2 0x0200 /* write as zero, don't care */
#define PHY_BMSR_RSVD3 0x0100 /* write as zero, don't care */
#define PHY_BMSR_RSVD4 0x0080 /* write as zero, don't care */
#define PHY_BMSR_MFPRESUP 0x0040
#define PHY_BMSR_AUTONEGCOMP 0x0020
#define PHY_BMSR_REMFAULT 0x0010
#define PHY_BMSR_CANAUTONEG 0x0008
#define PHY_BMSR_LINKSTAT 0x0004
#define PHY_BMSR_JABBER 0x0002
#define PHY_BMSR_EXTENDED 0x0001
#ifdef __alpha__
#undef vtophys
#define vtophys(va) (pmap_kextract(((vm_offset_t) (va))) \
+ 1*1024*1024*1024)
#endif